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Qual è ’l geomètra che tutto s’affige
per misurar lo cerchio, e non ritrova,
pensando, quel principio ond’elli indige,

tal era io a quella vista nova:
veder voleva come si convenne
l’imago al cerchio e come vi s’indova.
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Abstract

In questo lavoro si presentano due modelli in cui la teoria dell’in-
varianza adiabatica può essere applicata per ottenere peculiari ef-
fetti nel campo della dinamica dei fasci, grazie all’attraversamento
di separatrici nello spazio delle fasi causato dal passaggio attraverso
determinate risonanze d’un sistema. In particolare, si esporrà un
modello bidimensionale con cui è possibile trasferire emittanza tra
due direzioni nel piano trasverso: si fornirà una spiegazione del mec-
canismo per cui tale fenomeno ha luogo e si mostrerà come prevedere
i valori finali di emittanza che un sistema raggiunge in tale configu-
razione. Questi risultati sono confermati da simulazioni numeriche.
Simulazioni numeriche e relativi studî parametrici sono anche i risul-
tati che vengono presentati per un altro modello, stavolta unidi-
mensionale: si mostrerà infatti come un eccitatore esterno oscillante
dipolare la cui frequenza passi attraverso un multiplo del tune della
macchina permetta di catturare le particelle d’un fascio in un certo
numero d’isole stabili.
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Introduction

The importance of particle accelerators in modern high-energy
physics experiments caused the rise of interest in topics belonging to
the never-outdated domain of classical mechanics, which, while not
addressing fundamental questions abount Universe, had retreated in
Mathematics departments and was still one of the main theoretical
framework in the field of celestial mechanics, i.e. in the low-energy,
long-distance region of the Okun cube.

Although fundamental principles of classical mechanics have been
well known for centuries, from Newton and then with the more
convenient reformulations by Euler-Lagrange, Hamilton and Jacobi,
when non-linear contributions appear in the equations, some highly
non-trivial results need to be applied if one wants to illustrate some-
thing about a given system.

Non-linear interactions are present both as gravitational pertur-
bative influence of planets, asteroids and comets on other celestial
bodies, but also as specific magnets act on charged particles in a
particle accelerator. Thus, in the sideral distances of outer space
and in the 100 m deep lhc tunnel in the proximity of Geneva, some
similar equations holds.

We are going to focus, in this Master thesis, on some of these
equations: and one should not be surprised, when noticing in the
bibliography books and review articles on celestial dynamics. More
specifically, we are going to inspect some effects that we expect to
happen when the energy of a system is slowly modulated. From the
mathematical point of view, this will lead us to talk about adiabatic
invariance, one of the main tools that "modern classical mechanics"
(however this can be interpreted as an oxymoron) offer us.

It turns out in fact that when energies are slowly varied, some
quantities remain quasi-constant. We will, of course, discuss what
slowly and quasi exactly mean). It is clear that this property has
a great power and is extremely useful when trying to exploit our
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non-linear effects.
More specifically, we will address two different models which rely

on such properties. The first one is a bidimensional one which con-
cerns emittance exchange, i.e. the handling of a particles’ beam
width in phase space. The second one, on which we will present
a sort of update of previous studies [7] is related to beam splitting.
In both cases the same principles are used: we try to exploit the
adiabatic invariance break down when a system crosses a separa-
trix of phase space as a result of a passage through a resonance. In
both cases, however, these models are not only theoretically inter-
esting, but also take on technological appeal as they may help to
achieve better performance in beam handling or in beam splitting
performance in a broader variety of conditions.

Actually, these projects are spin-off of a pioneering technique
which takes advantage of the same properties and which has already
lived its cursus honorum from a purely mathematical idea, through
numerical validation, experimental proof-of-concept and, finally, has
become implemented as a standard in one of the cern accelerators.
We are talking about Multi-Turn extraction (mte) and which we
will now briefly present.

Multi-turn extraction

First proposed in 2002 by Cappi and Giovannozzi [8], mte is
a method of splitting beams trapping particles into different phase
space stable islands which are obtained by slowly varying the tune
of the particle accelerator. It was designed to substitute the old and
flawed mechanical system of beam shaving which was responsible
of considerable beam losses and posed various maintenance issues.
After many years of development phase, in 2015 mte was finally
put in operation [13] at the cern Proton Synchrotron (ps).

In cern accelerator chain, ps comes before the Super Proton
Synchrotron (sps) which is 11 times longer: when particles reach
14 GeV energy they are injected into sps to continue their acceler-
ation process. Now, in order to speed up the extraction-injection
process, ps beams are splitted into 5 beamlets which are then in-
jected one at a time into sps: this allows 10/11 of sps circumeference
to be filled every 2 ps cycles, each lasting 1.2 s.

mte has the advantage, compared to the precedent method, not
to rely on any mechanical actions, but is only dependent on the ef-
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fect of magnetic fields. Thus, when a stable resonance, excited by
means of magnets generating non-linear fields, is crossed the phase
space separatrices modify their topology: a number of stable islands
(four if the resonance 1/4 is crossed, as it happens in ps) appears
and bunches of particles are trapped as the stable islands pass by:
the final effect is the splitting of a single-Gaußian initial beam dis-
tribution into several beamlets. Of course, this manipulation can be
generalised in several ways, e.g., by changing the resonance order or
by time-reversal, thus having Multi-Turn Injection (mti).

Structure of the work

An interesting thing that one can notice from the history of the
mte project is that, despite more than a decade occurred from the
initial to idea to a definitive implementation, is the fact that accel-
erator physics is one of the few branches of physics where a single
person, or a small group can still be held accountable for a theory
from its mathematical conception until its hoped experimental ver-
ification. In a certain sense, this means applying Galileian method
in one of its purest forms. This is what we will humbly attempt in
this work: our two models will undergo a theoretical analysis and
some numerical validation. A work — which is still in progress at
cern Beam department — which tries to link the models with their
possible experimental implementation (experiencing the painful and
error-prone work of translation from the mathematical ὑπερουράνιον
to the harsh reality.) will me mentioned in the end.

In greater detail, this Master thesis is structured as follows.
There is a first part which we called toolbox where general top-

ics in classical mechanics and accelerator physics that we will later
take advantage of while inspecting our models are briefly presented.

In the first chapter, devoted to Hamiltonian mechanics we
will review the main properties of the Hamiltonian rewriting of clas-
sical dynamics: we will present the theory Hamilton equations and
canonical transformation as well as Liouville theorem. Then some
important sections will be pledged to the theory of action-angle
variables and of the adiabatic invariance. We will briefly talk about
Birkhoff resonant forms, due to their importance in approximat-
ing accelerator dynamics near a resonance, and finally present the
break of adiabatic invariance at separatrix crossing, computing the
deterministic jump according to adiabatic theory and a stochastic
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correction due to the different averaging of oscillations.
In the second chapter, on the other hand, we will focus on

circular accelerators presenting the coordinate system, writing
the system Hamiltonian, describing the consequent motion and in-
troducing the concept of emittance, which will be central in the
following part, proving its main properties.

Then comes the second part which is focused on the emittance
exchange model. In the third chapter, after having discussed the
resulting Hamiltonian when the system crosses the (1, 2) resonance,
we give an argument in terms of adiabatic invariant jump which con-
firms and extends some preliminary inferences made by [18], about
the possibility of exchanging emittance between the horizontal and
vertical direction of accelerators’ transverse space. Furthermore, a
computation of the correction to this jump following what we ex-
plained in Chapter 1 is also attempted. Finally, some notes are
made about a generalization to different resonances. We shall em-
phasize the fact that, whereas the idea to study such a system has
been first presented in [9, 18], we now achieve a complete theoreti-
cal explaination of the phenomenon, which was absent in the cited
references.

In the fourth chapter, numerical simulations on the motion
equations derived in the precedent chapter are performed. We in-
tegrate equations not only to confirm the claims about emittance
exchange but also to show that the mechanism we propose to ex-
plain this phenomenon actually holds. We then proceed to make
some parametric study on the model in order to evaluate the emit-
tance exchange performance depending on the free parameters of
the system.

After this part, a final fifth chapter is present, where we talk
about a transverse beam splitting model which, as usual, relies
on adiabatic theory, but that differs from mte because the accel-
erator tune is kept constant while a dipolar external excitator is
driven through a resonance. There, we review some already-known
theory on the topic, before presenting numerical simulations and
parametric studies.



Part I

The toolbox





Chapter 1

Elements of Hamiltonian
mechanics

Maintenant, voici ce principe, si sage, si
digne de l’Être Suprême: lorsqu’il arrive
quelque changement dans la Nature, la
quantité d’action employée pour ce change-
ment est toujours la plus petite qu’il soit
possible

Pierre-Louis Moreau
de Maupertuis (1744)

Since the study of beam dynamics in particle accelerators, when
collective effects are neglected, reduces to the analysis of the motion
of initial conditions with a certain distribution subject to external
non-linear forces, the theoretical framework in which this type of
study is generally built upon is that of classical mechanics, expe-
cially in its Hamiltonian formulation, which is the best for inspecting
effects due to perturbations, bifurcations and resonances effects.

We will first conduct a brief review of fundamental concepts
of Hamiltonian mechanics, recalling the equations of motion, the
theory of canonical transformations and Liouville theorem. These
basic instruments will be needed almost everywere throughout this
work. Then, adiabatic invariance framework, which is commonly
used in accelerator physics field, will be presented.

The phenomena this work is centered upon, emittance exchange
and beam splitting, although grealy different from an experimental
point of view, rely their theoretical fundations on the combination
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of the same two aspects of some more advanced Hamiltonian dy-
namics, that are not commonly taught in undergraduate Analytical
mechanics courses: the averaging of perturbation in the vicinity of a
resonance and the separatrix crossing of a point and the subsequent
loss of adiabatic invariance, according to the neo-adiabatic theory

1.1 Hamiltonian mechanics

Given a set of coordinates (pi(t), qi(t)) and a functionH(pi, qi, t),
where 1 ≤ in

a system is said to be Hamiltonian if the following equations
hold:

ṗi = −∂H
∂qi

q̇i =
∂H
∂pi

.

(1.1)

These equations are called Hamilton equation while H is the
Hamilton function, or Hamiltonian.

These equations are related to the Least Action Principle via the
1-form (we use Einstein summation convention)

ω = pidq
i −Hdt . (1.2)

In fact, the integral of the form on the trajectory q0 → q1 which
is described by the motion of a particle in the time interval [t0, t1]
yields

∫ q1=q(t1)

q0=q(t0)

(
pidq

i −Hdt
)

=

∫ t1

t0

(
pi

dqi

dt
−H

)
dt =

∫ t1

t0

Ldt

where L = piq̇
i − H is the Lagrangian, obtained by Legendre

trasformation of the Hamiltonian.
Moreover, the Least Action Principle has a geometrical meaning

for the Hamiltonian systems and the physical trajectories are the
rotor curves of the 1-form ω.
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1.1.1 Canonical transformations

The power of the Hamiltonian formulation, and the real reason of
its adoption as the standard framework in which nonlinear problems
are studied, is that Hamilton equations treat in the same way every
coordinate, time included.

Yet, the choice of coordinates is unconstrained: impulses and co-
ordinates are independent (differently from the Lagrangian formula-
tion) and they can exchange their role, or being mixed in complete
freedom, while the Hamilton equations maintain their form.

We can therefore find, for an HamiltonianH(p, q, t) and a trasfor-
mation (pi, qi)→ (Pi, Qi), a function K(P,Q, t) for which

Ṗi = − ∂K
∂Qi

Q̇i =
∂K
∂Pi

Both formulations needs to fulfill Least Action Principle, written
out as a condition on rotor curves as

d
(
pidq

i −Hdt
)

= d
(
PidQ

i
)
−Kdt

This means that the two forms can differ only for a closed form
dF and

dF = pidq
i − PidQi + (K −H)dt

which yields the transformation laws

pi =
∂F

∂qi
qi = − ∂F

∂Qi

K = H +
∂F

∂t

It should be noted that the form of the Hamiltonian needs to be
updated only for time-dependent trasformation.

The function F (q,Q, t) is called generatrix or generating func-
tion.

Another interesting property of Hamiltonian systems, which we
will take advantage from, is the possibility of giving the role of time
to every coordinate of the system.

Let us express the k−th term of the form as pk = p̃, qk = q̃.
Hence we can write

pidq
i −Hdt =

∑
i 6=k

pidq
i + (−H)dt+ (−p̃)dq̃
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This form, which is formally equivalent to the previous one,
makes it possible to express the motion as a function of q̃, whilst
−p̃ plays the role of the Hamiltonian in the equivalent equations of
motion

dpi
dq̃

= − ∂p̃
∂qi

dqi
dq̃

=
∂p̃

∂pi
(i 6= k)

dH
dq̃

= −∂p̃
∂t

dt

dq̃
=

∂p̃

∂H

Finally, one of the most useful properties of the Hamiltonian
formulation is that even the time evolution of a system can be seen
as a peculiar canonical transformation.

In fact, being p′i and q′i the values of the canonical variables after
a small time evolution of ∆t, thanks to Hamilton equations

p′i = pi + ∆tṗi = pi −∆t
∂H
∂qi

and

q′i = qi + ∆tq̇i = qi + ∆t
∂H
∂pi

which, keeping only the O(∆t) terms, correspods to

qi = q′i −∆tq̇i = qi + ∆t
∂H
∂p′i

which is the canonical trasformation given by the generating
function

F = p′iq
i +H∆t

This property1 justifies the construction of symplectic integra-
tors, i.e. algorithms of numerical simulation that preserve the Hamil-
tonian structure of the system, but is also needed to prove the fol-
lowing theorem.

1Our simple argument is only valid for small values of ∆t. A full proof can
be made using Hamilton-Jacobi equation.
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1.2 Liouville theorem
Let us consider the case in which, during a time evolution de-

scribed by Hamilton equations, every point in the 2n−dimensional
phase-space evolves. Liouville theorem states that every volume el-
ement in phase space during such an evolution conserves its volume.

Now, the volume element dz in phase space is given by

dz = dq1 ∧ . . . dqn ∧ dp1 ∧ · · · ∧ dpn

We know that a time evolution is the result of successive canon-
ical transformation, thus if we prove that phase space volume is
invariant under any canonical tranformation, Liouville theorem will
be just a corollary of such an assertion.

Therefore, let (pi, qi) → (Pi, Qi) be a canonical transformation.
The volume element will transform according to the Jacobian deter-
minant

dZ =

∣∣∣∣det
∂Zi
∂zj

∣∣∣∣dz
where z and Z encode the 2n canonical variables in the original

and in the transformed system.
Volume is preserved if the Jacobian determinant is equal to 1.
Let us also define the ensemble of coordinates

z̃ = (qi, Pi)

Our Jacobian will read

det
∂Zi/∂z̃k
∂zj/∂z̃k

=
det ∂Zi/∂z̃j
det ∂zi/∂z̃j

(1.3)

Z and z̃ share the same second part, so all derivatives involving
those coordinates will cancel out, and

det
∂Zi
∂z̃j

= det
∂Qi

∂qj
(1.4)

and, for the same reason, but applied to the first half,

det
∂zi
∂z̃j

= det
∂pi
∂Pj

We now need an expression for ∂Qi/∂qk . Being F the generating
function of the transformation
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Qi =
∂F

∂Pi
and

∂Qi

∂qj
=

∂2F

∂Pi ∂qj

while, in the denominator determinant

∂pi
∂Pj

=
∂2F

∂qi ∂Pj

Thus, the two matrices in Eq. (1.3) are connected by a transpo-
sition, and being the determinant independent on trasposition their
ratio turns out to be equal to 1, proving our theorem [15].

1.3 Action-angle variables and adiabatic
invariance

Let us take into account an Hamiltonian system where the Ha-
miltonian function depends of a varying parameter λ.

If this variation is sufficiently slow (we will discuss what this
slowness actually means), there are variable which are quasi-inva-
riant. Also this quasi-invariance, and its relationship with the pa-
rameter variation speed needs further discussion.

Historical note. Although methods related to adiabatic invari-
ance are now standard in the mathematical treatment of classical
mechanics, their history does not date back to the golden age of
the mathematical reformulations of Newtonian mechanics. It was
introduced neither by Lagrange nor by Hamilton or by Jacobi. In
fact, the first physicist who mentioned an experiment of a pendulum
whose leg is slowly shortened was actually Albert Einstein, in the
beginning of the quantum adventure.

Proceedings of the 1911 Solvay conference report an interesting
debate between Einstein and Lorenz: [16]

M. Lorentz se rappelle une conversation qu’il eut
avec M. Einstein il y a déjà quelque temps, et dans
laquelle il fut question d’un pendule simple qu’on rac-
courcirait en tenant le fil entre deux doigts, qu’on glisse
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vers le bas. Supposons qu’au commencement le pendule
ait exactement un élément d’énergie tel qu’il correspond
à la fréquence de ses oscillations, il semble alors qu’à la
fin de l’expérience son énergie sera moindre que l’élément
qui correspond à la nouvelle fréquence.

M. Einstein. — Si l’on modifie la longueur du pen-
dule de manière infiniment lente, l’énergie de l’oscillation
reste égale à hν, si elle était primitivement égale à hν;
elle varie proportionellement à la fréquence. Il en est de
même pour un circuit électrique oscillant, dépourvu de
résistance, et aussi pour le rayonnement libre.

M. Lorentz. — Ce résultat est très curieux et
fait disparaître la difficulté. En général, l’hypothèse des
éléments d’énergie donne lieu à des problèmes intéres-
sants dans tous les cas où l’on peut changer à volonté la
fréquence des vibrations.

M. Warburg. — La fréquence d’un pendule fili-
forme en oscillation peut être augmentée sans échange
de travail, si, comme le faisait Galilée, on fait buter un
point du fil contre un arrêt, au moment où il passe par
sa position d’équilibre, et si l’on fixe ce point pendant
que le pendule continue son mouvement dans la même
direction.

The contribution of Warburg is also noteworthy. Arnol’d [1]
would resolve the dilemma requiring that the experimenter is blind,
i.e. cannot use information about the state of the pendulum in
order to modulate the shortening of the leg. This request can be
mathematically formalized simply asking a sufficient smooth leg-
lenght variation.

The discussion topic was the quantization problem. What are
the classical properties that in the quantum world turn out to be
discretized? Arnold Sommerfeld proposed as an answers adiabatic
invariants, which were first called this way by Paul Ehrenfest [11]
(Over adiabatische veranderingen van een stelsel in verband met de
theorie der quanta) owing to the fact that the slow modulation re-
sembled the one needed in thermodynamics to perform an adiabatic
transformation. The Bohr-Sommerfeld old quantum theory was fi-
nally overtaken by the later Schrödinger and Dirac axiomatic for-
mualation, and adiabatic invariance theory migrated to departments
of Mathematics — mainly in Soviet union — where classical me-
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chanics was still alive. The modern definition, which we will report,
of adiabatic invariant dates back to 1928 and is due to Leonid I.
Mandel’štam and his students, A. A. Andronov and E. A. Leontovič
[19]. However, in 1963 Vladimir Igorevič Arnol’d would write [2]
that adiabatic invariance has been little studied by mathematicians
in spite of its importance and interest in a paper primarily devoted
to celestial mechanics. More than astrophysics, though, common
interest in plasma and accelerator physics, due also both to the im-
plications of such researches, being just technological or related to
fundamental physics issues, contributed to revive this topic.

We can now give a definition of adiabatic invariance:

Adiabatic invariant. A variable J(p, q, λ = δt) is said to be an
adiabatic invariant if, for every ε > 0 there exists a δε > 0 so that,
for every δ < δε and t < 1/δ

|J(p(t), q(t), δt)− J(p(0), q(0), 0)| < ε

In a less formal way, we want that the adiabatic invariant, over
a time evolution of t ∼ ε−1, only undergoes a change which is O(ε).
It should be emphasized that this definition holds independently for
every disconnected region of the phase space.

Thus, the speed ε of parameter variation is related to the time
in which our variable variation is constrained.

A stronger requirement of a variable is to be a perpetual adiabatic
invariant: the variation of J should be O(ε) for every time. At
theorem, proven by Arnol’d, states that, for 1D hamiltonians, if
the parameter variation is periodic, adiabatic invariants are also
perpetual.[2]

The most known and principal example of adiabatic invariant is
the action variable.

1.3.1 Action-angle variables

First of all, we need to introduce the action-angle variable.
In a n degree of freedom system, i.e. a 2n−dimensional sym-

plectic manifold described by the phase variables (pi, qi), where n
integrals of motion Ii = ki in involution are known, a theorem due
to Liouville states that if the setMk — we define k = (k1, . . . , kn) —
of the points for which the integral have the same values k1, . . . , kn
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is compact, then it is diffeomorphic to the n−torus Tn. We also find
that for some functions ωi which we will call frequencies we have

φ̇i = ωi(k1 . . . , kn) (1.5)

This assures that, setting as the Hamiltonian one of the integrals,
e.g. H = I1, we have the equations

İi = 0 φ̇i = ωi(I1 . . . , In) (1.6)

which describe the phase flow relative to the chosen Hamiltonian.
Now we have the coordinates (Ii, φi) but nothing guarantees that

they are symplectic, i.e. that the trasformation (pi, qi)→ (Ii, φi) is
canonical.

It is possibile, however, to introduce different functions Ji =
Ji(I1, . . . , In) which fulfill

J̇i = 0 φ̇i = ωi(J1 . . . , Jn) (1.7)

and keep the canonical change of variables.
These functions can be explicitly written.
Let us start with the unidimensional case, where the only inte-

gral is the Hamiltonian, and its conserved value h, and the set Mk

redusces to Mh.
A canonical transformation is given by the generating function

S(J, q) and

p =
∂S

∂q
φ =

∂S

∂J
H
(
p =

∂S

∂q
, q

)
= h(J) (1.8)

The invariant torus reduces to the closed curves that are iden-
tified just from the value of the energy h, and, being h = h(J), by
that of J . The differential dS, for constant J , reads

dS =
∂S

∂q
dq = p dq (1.9)

so

S =

∫
p dq (1.10)

which is the generating function.
The 1−form p dq is closed, and therefore locally exact on invari-

ant surfaces. Thus, on a level curve of energy, the whole change of
S is
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∆S(J) =

∮
Mh(J)

p dq (1.11)

that. thanks to Stokes’ theorem, corresponds to the area inside
the curve.

We can rewrite, from the second equation of (1.8),∮
Mh(J)

dφ = 2π (1.12)

Now, the periodicity of φ on the torus means that∮
Mh(J)

d

(
∂S

∂J

)
=
∂∆S(J)

∂J
= 2π (1.13)

from which we finally get

J =
1

2π

∮
Mh

p dq (1.14)

On the other hand, differentiating (1.10) in J we retrieve, from
the definition of φ

φ =
1

2π

∂

∂J

∫
p dq (1.15)

The generalization to systems with more degrees of freedom is
straightforward, if we are working in a R2n phase space. In fact,
being γ1 . . . γn 1D cycles which form a basis on the torusMki , which
means that the variation of the angular variable φi on the cycle γj
is equal to 2πδij, δij being the Kroenecker symbol.

The actions Ji are then defined to be

Ji(k1, . . . , kn) =
1

2π

∫
γi

pj dqj (1.16)

It can be shown that these integrals are independent from the
choice of the γi.
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1.3.2 Adiabatic invariance of the action variable

We can now prove that action variables are actually adiabatic
invariants.

Starting from the time-dependent Hamiltonian H(p, q, λ(t)), we
have, differentiating

∂H
∂t

= λ̇
∂H
∂λ

(1.17)

we can take the average of this equality. If λ̇ is constant,〈
∂H
∂t

〉
= λ̇

〈
∂H
∂λ

〉
=
λ̇

T

∫ T

0

dt
∂H
∂λ

(1.18)

according to the definition of λ.
It is convenient to rewrite

dt =
dq

∂H/∂p
(1.19)

thanks to Hamilton equations. Moreover, the period T can be
written as

∫ T
0

dt, so〈
∂H
∂t

〉∮
dq

∂H/∂p
= λ̇

∮
dq
∂H/∂λ
∂H/∂p

(1.20)

where the closed-line integral is extended to one orbit of the
system in phase space.

We rewrite this expression in a single integral in the variable q:∮
dq

[〈
∂H
∂t

〉
∂p

∂H
− λ̇∂H

∂λ

(
∂H
∂p

)−1
]

= 0 (1.21)

If λ variation is slow, during one orbit its value can be seen as
constant, so the total derivative of H w.r.t. λ should be zero, i.e.

∂H
∂λ

= −∂H
∂p

∂p

∂λ
(1.22)

thanks to Leibniz’s rule.
Substituting this result into the Equation (1.21) we get∮

dq

[〈
∂H
∂t

〉
∂p

∂H
+ λ̇

∂p

∂λ

]
= 0 (1.23)

which turns out to be equal to
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∮
dq

[〈
∂p

∂t

〉
+ λ̇

∂p

∂λ

]
=

d

dt

〈∮
pdq

〉
= 0 (1.24)

This means that the average variation of the action

J = (2π)−1

∮
pdq

on a orbit is zero, i.e. that the action integral is an adiabatic
invariant.

1.3.3 Improved adiabatic invariant

However, something better can be achieved. If we define

J̃ = J + εu (1.25)

where (being T the motion period and performing the integral
on a unperturbed trajectory)

u =
1

2π

∫ T

0

dt

(
T

2
− t
)
∂H
∂λ

(1.26)

the improved adiabatic invariant J̃ is preserved up to O(ε2) [21].

1.4 Fast and slow variables. Averaging.
If we slowly perturb an integrable system, integrals of motion of

the original system are expected to slowly change, and the order of
magnitude of the time scale over which this change becomes con-
siderable is generally dependent on the inverse of the perturbation
parameter.

Now — sticking to the 1D case, the generalization to multiple
degrees of freedom being straightforward — if a system is integrable,
there exist an integral I and an angle coordinate φ so that

İ = 0 φ̇ = ω(I) (1.27)

where ω is the frequency.
When a perturbation, parametrized by ε is introduced, the equa-

tions become

İ = εf(I, φ, ε) φ̇ = ω(I) + εg(I, φ, ε) (1.28)
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where the two functions f and g are periodic in φ. I, whose
variation is O(ε), is said to be a slow variable, while φ, which varies
O(1), is called fast variable.

The idea behind averaging is to substitute I with a new variable,
J , whose equation of motion reads

J̇ = ε
1

2π

∫ 2π

0

dφf(J, φ, 0) (1.29)

where, because φ evolves faster than I, its contribution on a
period to the variation of J can be averaged. This is called averaging
principle.

Vladimir I. Arnol’d specifies in Mathematical methods of Classi-
cal Mechanics [1], that

This principle is not a theorem, but a physical propo-
sition, that is, a vaguely stated, and, strictly speaking,
false assertion. Such assertions often happen to be fruit-
ful sources for mathematical theorems.

But how well the averaged system approximates the original one?
For single-frequency systems which fulfill some technical assump-
tions, it can be shown that

|I(t)− J(t)| = O(ε) for t < ε−1 (1.30)

In fact (we follow [1, p. 289]) let

P = I + εk(I, φ) (1.31)

where k is a periodic function. Differentiating, we get

Ṗ = İ + ε
∂k

∂I
İ + ε

∂k

∂φ
φ̇

= εf(I, φ) + ε2
∂k

∂I
f(I, φ) + ε

∂k

∂φ
(ω(I) + εg(I, φ))

= ε

(
g(I, φ) +

∂k

∂φ
ω(I)

)
+O(ε2)

(1.32)

Inverting Eq. (1.32), we can also write

I = P + εh(P, φ, ε) (1.33)
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for some function h. We are not actually interested in h, because,
in our approximation,

Ṗ = ε

(
g(P, φ) +

∂k

∂φ
ω(P )

)
+O(ε2) (1.34)

where we need to assume from the beginning that ω, f , g and
their derivatives, up to the second order, are bounded.

In order for this to be true, also k and h and their first and
second derivatives needs to be bounded. We shall prove that this
holds.

We want to connect this result for P with the definition of J . If
we tried to set Ṗ = O(ε2) we would solve

− g(P, φ)

ω(P )
=
∂k

∂φ
(1.35)

This is impossible, if we need k to be periodic, because if we take
the average of both members of the equation we get

− 1

2πω(P )

∫ 2π

0

dφ, g(P, φ) =
1

2π

∫ 2π

0

dφ
∂k

∂φ

= k(P, 2π)− k(P, 0) = 0

(1.36)

which is, in general, not true.
The solution is, being g(P ) the average of g over a period, to set

g(P, φ) +
∂k

∂φ
ω(P ) = g(P ) (1.37)

or, equivalently,

k(P, φ) = −
∫ φ

0

dϕ
g(P, ϕ)− g(P )

ω(P )
(1.38)

which is bounded unless the frequency ω is null. Moreover, h is
also limited, thanks to the inverse function theorem.

Now,

J̇ = εg(P ) (1.39)

from the averaging principle, and

Ṗ = εg(P ) +O(ε2) (1.40)
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it follows that

|Ṗ − J̇ | = O(ε2) (1.41)

and, for t = O(ε−1), integrating we get

|P − J | = O(ε) (1.42)

On the other hand,

|P − I| = ε|k| = O(ε) (1.43)

and from the triangular inequality

|I − J | < |P − I|+ |P − J | = O(ε) (1.44)

This concludes our proof.

1.5 Birkhoff normal forms
Let H be an n-degree of freedom Hamiltonian with an equilib-

rium position. The Hamiltonian is composed of a linear oscillator
part H0

H0 =
n∑
k=1

1

2
ωk(pk + qk)

2 (1.45)

plus some interaction terms, i.e.

H = H0 +
m∑
l=1

Hl (1.46)

where the terms Hl have degree l in the pi and qi variables.
After a change of variables (pi, qi) → (xi, yi) and a further one

to polar coordinates

xi =
√

2Ji cosφi yi =
√

2Ji cosφi (1.47)

we define resonant normal form for our Hamiltonian at a given
resonance a polynomial function in (xi, yi) which, in polar coordi-
nates, depends only on angles in the linear combination selected by
the resonance.

The possibility of such a process of variables is assured by a
theorem which we will now prove.
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Let S be the generating function of the (pi, qi) → (xi, yi) trans-
formations.

We have

S = xiq
i + S̃(xi, qj) (1.48)

The new Hamiltonian H̃ obeys the equation

H
(
∂S

∂qi
, pj

)
= H̃

(
xi, qj +

∂S

∂yi

)
(1.49)

Thus, calling Sk each term of S̃ of degree k, we get, being Fl a
generic form, ∑

j

ωj

(
xj
∂Sl
∂qj
− qj

∂Sl
∂xj

)
= H̃l − Fk (1.50)

where H̃l corresponds to Hl under the (p, q) → (x, y) transfor-
mation

Passing to polar coordinates (Ji, φi) the last equation becomes

ωi
∂Sl
∂φi

= H̃l − Fl (1.51)

Thus, we can choose

Sl =
∑
r

i
fkr(Jr)

kjωj
exp
{
ikiφ

i
}

(1.52)

where the coefficients fkr come from the Fourier expansion of Fl
and the sum is extended to all the kr possible combination that are
not resonant.

Equation (1.52) therefore means that the resulting Hamiltonian
is in the correct form, i.e. only have the required angular depen-
dence.

1.6 Separatrix crossing and area variation

Let us consider a time-dependent Hamiltonian which causes the
separatrices to move. In general, this is achieved by introducing a
parameter λ in our Hamiltonian, with λ = εt.

If ε is sufficiently small, we can apply the adiabatic approxima-
tion to our system.
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Given initial conditions, the trajectory stays in the initial region
of phase space, moving, for each λ close to the energy level curves
for Hλ.

If the separatrices motion causes the region our system is en-
closed in to shrink, eventually the trajectory will occupy all the
region area. Thus, adiabatic approximation is no more valid, and
the trajectory can cross the separatrix and enter a different region,
dramatically changing its area value.

In reality, the jump of the adiabatic invariant we observe is com-
posed of two different contributions: one explained by the standard
theory of adiabatic invariance, and one which is a result from the
neo-adiabatic theory and acts as a correction for the classical jump.

1.6.1 The standard theory

When an averaging is done, the action variable of the unper-
turbed, which was still adiabatically invariant in the original, per-
turbed system, becomes an integral of motion in the averaged sys-
tem, and, for each region i of the phase space, the following equation
holds

Θi := −
∮
γi

∂H
∂λ

dt =
∂Ai
∂λ

where Ai is the area of the region i enclosed by the sepatratrix
γi.

In fact, being the action J integral of the averaged system, and
performing a gauge choice of the Hamiltonian such as the value of
the energy on the sepatrix is null, we have, from the definition of
action

∂Ai
∂λ

= 2π
∂J(h, λ)

∂λ
= −

∮
H=h

dt
∂H
∂λ

Before crossing the separatrix we assume the motion to happen
with constant action J0, which is given by the initial conditions, in
a region G0, At a certain time λ = λ∗, when the equation

A0(λ∗) = 2πJ0

the separatrix is crossed. A point can now enter an adjacent
region Gj with probability
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Pj =
Θj(λ

∗)

Θ0(λ∗)

It should be emphasized that entrance into a certain region is
not a deterministic event.

This formula for the probability can be explained in terms of
Liouville theorem, i.e. from the conservation of phase space volume
during the motion.

Let δAi be the area difference of Gi as λ varies from in [λ, λ+δλ].
Conversely, ∆Aj is the volume captured into Gj. The probability is

P (λ∗) = lim
δλ→0
ε→0

δAj
δAi

(1.53)

In fact, if

δAi = Ai(λ
∗ + δλ)− Ai(λ∗)

and

δAj = lim
ε→0

Aj(λ
∗ + δλ)− Aj(λ∗)

their ratio becomes, in the limit

lim
δλ→0

δAj
δAi

=
∂Aj/∂λ

∂Ai/∂λ

and formula (1.53) follows.
Finally, after the crossing, the point captured in Gj moves with

an action

Jf =
Aj(λ

∗)

2π

which is correspondent to the area of the landing region at the
crossing time [22].

1.6.2 Improved theory

Nevertheless, the aforementioned standard theory can be cor-
rected, since significant effects can arise not only in the exact instant
of the separatrix cross and of the subsequent discontinuous jump,
but contributions from both the approach and the subsequent de-
parture to and from the seapratrices have to be taken into account.
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l2l1
C

G1 G2G3

Figure 1.1 – Phase diagram of the phase space of the model studied in
[21].

In fact, when no separatrix crossings are involved, values of adi-
abatic invariants undergo natural small oscillations, which are O(ε).
In average, as we have shown, these oscillations cancel each other
and J can be taken as constant. But when a separatrix is crossed
and the action dramatically changes value, oscillations before and
after the crossing now does not cancel each other anymore, and a
residual effect is present and computable.

Of course, we expect this contribution to be at least of order
O(ε), since it need to disappear in the limit ε→ 0.

This phenomenon, while first put into light by Tennyson et al.
[23], has been fully mathematically exploited in the seminal work of
Anatolij I. Nejštadt [21], whose general result we will now review,
before applying the same method to the specific class of Hamiltoni-
ans we are interested in.

Let H be a 1D Hamiltonian, dependent on the parameter λ = εt,
whose phase space is described by Fig. 1.1, where C is the hyperbolic
point where the separatrices cross. The space is thus divided into
three regions, G1, G2 and G3. We will also set, on a separatrix,
H = 0, taking advantage of the gauge freedom.

If h, h � 1 is the value of the energy close to our separatrix.
The period of the motion depends logarithmically on h

Ti = −ai log |h|+ bi +O(h log |h|) (1.54)

Because, inverting the formula for the frequency
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Ti =
2π

ω
= 2π

∂J

∂H
= 2π

∂J

∂h
(1.55)

integrating (1.54) we get

2πJ = Si − aih log |h|+ (ai + bi)h+O(h2 log |h|) (1.56)

where the integration constant Si is the area of the region i, and
accounts for the value of J when the energy h is exactly zero.

We can get the expression for a = a(λ) via linearization of the
motion in the vicinity of the hyperbolic point.

In fact, close to a saddle point, our Hamiltonian is well approxi-
mated by an hyperbolic pendulum with frequency ω, i.e., the motion
reads

x(t) = x0 cosh(ωt) (1.57)

which, upon inversion, yields

t(x) = ω−1 log

 x
x0

±

√(
x

x0

)2

− 1

 ∼ ω−1 log |h| (1.58)

Thus, a is given by the hyperbolic frequency of the linearized
motion, which is given by

a = ω−1 =

(
d2Veff
dx2

∣∣∣∣
xhyp

)−1/2

(1.59)

where Veff is the resultant effective potential upon linearization
of H close to the hyperbolic point xhyp.

For an hamiltonian which is not written in diagonal form, this
result can be straightforwardly generalized as

a = (detH)−1/2

∣∣∣∣
xhyp

(1.60)

where H is the Hessian matrix of the Hamiltonian evaluated on
the saddle point.

If we stop at the O(h log |h|) order of magnitude, we therefore
obtain, differentiating, that, on a trajectory
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∮
dt
∂H
∂λ

= −2π
∂J

∂λ
= −∂Si

∂λ
+O(h log |h|) =: −Θi +O(h log |h|)

(1.61)
Then, we proceed calculating the improved adiabatic invariant

via Eq. 1.26.
Inside the separatrix, i.e. either in the G1 or G2 region, we have,

linearizing motion

2πu = di +O(|h|1/2 log |h|) (1.62)

where in the region G3, if h is small motion is close to the sepa-
ratrices and the integral reduces to

2πu =
1

2
Θ1T2 −

1

2
Θ2T1 + d3 +O(|h|1/2 log |h|)

=
a

2
(Θ2 −Θ1) ln |h|+ b2

2
Θ1 +

b1

2
Θ2 + +d3 +O(|h|1/2 log |h|)

(1.63)

If a point starts in the outer region, it revolves around the sep-
aratrix. Let us call J−, J̃− and τ−, respectively, the initial values
of the action, of the improved action and of the slow time. In the
same way, we will refer to their values at the separatrix crossing as
J∗, J̃∗, τ∗.

Then, we define a map which follows the evolution of the system
before the capture where every integer step coincides with a crossing
of the y axis every time closer to the saddle point. We label these
steps with the integers −N, −N + 1, . . . , 0 (N � 1), where the
index 0 corresponds to the capture instant (i.e. τ0 = τ∗) and −N
needs to be sufficiently close to initial conditions.

We will now express the values of energy, slow time, action and
improved action for the n+1-th step as function of the same variables
at the n-th iteration.

First of all, for the energy h

hn+1 = hn + ε(Θ3 +O(h
1/2
n+1)) (1.64)

For the slow time τ , we need to remember that a particle spends
most of the time in the vicinity of a saddle point, thus the only rel-
evant contribution to period motion calculation are the logarithmic
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ones which are given by Eq. 1.53, where the right energy has to be
taken into account.

In fact, during a turn around the G3 region our point passes three
times next to the saddle point. The first in at start, with energy hn.
Though, only half of the passage is included in the n→ n+ 1 step:
this explains the 1/2 factor we will multiply to this contribution.
Then, a full passage is made at the opposite side of the y axis, when
the energy is grown as hn + εΘ1. Finally, another half contribution
has to be taken into account when energy has finally reached the
value hn+1.

This means that the slow time will evolve as

τn+1 = τn + ε

[
1

2
(a log |hn| − b3) + (a log |hn + εΘ1| − b3)+

+
1

2
(a log |hn+1| − b3) +O(h

1/2
n+1)

] (1.65)

According to (1.56), for the action J we have

2πJn = S3(τn)− 2ahn log |hn|+ (2a+ b3)hn +O(h2
n+1 ln2 hn+1)

= S3(τ∗) + Θ3(τn − τ∗)− 2ahn log |hn|+ (2a+ b3)hn

+O(h2
n+1 ln2 hn+1)

(1.66)

where we rewrote S3(τn) integrating the relation Θ3 = dS3/dλ.
Finally, for the improved action J̃ = J + εu we also need a map

for u, that, following (1.63) reads

2πun+1 =
a

2
(Θ2 −Θ1) ln |h|+ b2

2
Θ1 +

b1

2
Θ2 + +d3 +O(|h|1/2 log |h|)

(1.67)
In order to obtain the improved adiabatic invariant difference

before the separatrix crossing we need to calculate the value

∆J̃ = J̃∗ − J̃− = (J̃0 − J̃N) + (J̃N − J̃−) (1.68)

We want to neglect the second term, in order to get the final
value only with the telescopic sum of the values of J̃n = Jn + εun. If
we want this to be true, the difference (J̃0− J̃N) needs to be smaller



Separatrix crossing and area variation 29

than the remainder of (J̃0− J̃N), and this will result in a constraint
about how close JN must be to J−.

We can now work on the main sum. Let us start with the easy
part. It is straightforward to see that, for every n,

hn = h0 + nεΘ3 (1.69)

Things get more difficult with τ . We have

τn = τ0 +
n−1∑

0

(τn+1 − τn)+

= τ0 + ε
∑[

1

2
(a log |hn| − b3)

+ (a log |hn + εΘ1| − b3)+

+
1

2
(a log |hn+1| − b3) +O(h

1/2
n+1)

]
(1.70)

and, using the last result for hn

τn = τ0 + ε

[
1

2

∑
k

(a log(h0 + kεΘ3)− b3)

+
∑
k

(a log(h0 + εΘ1 + kεΘ3)− b3)+

+
1

2

∑
k

(a log(h0 + kεΘ3)− b3)+

+
a

2
log

h0 + nεΘ3

h0

+O(h
1/2
n+1)

]
(1.71)

It is useful to remember that

N1∑
k=0

log(x+ ky) = log yN + log

(
x

y

)
N

= N log y + log
Γ(x/y +N)

Γ(x/y)

(1.72)
where (x)n = Γ(x + n)/Γ(x) is the Pochhammer symbol. One

should not be surprised that the fact that the sum of the logarithm
of a succession values that differ by one integer is something related
to the factorial, i.e. to the Gamma function.
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Applying this result to our sum for τ we get, defining ξ = h/(Θ3ε)

τn = τ0 − ε

{
− nb3 + a

[
2N ln(εΘ3) + ln

Γ(ξ + n)

Γ(ξ)

+ ln
Γ(ξ + Θ1/Θ3 + n)

Γ(+Θ1/Θ3)
+

1

2
ln
ξ + n

ξ

]}
(1.73)

We can take advantage of the Stirling approximation to get, for
large values of n

log Γ(z) = log
√

2π +

(
z − 1

2

)
log z − z +O(z−1) (1.74)

and, substituting,

τn = τ0 − nε(−b3 − 2a+ 2a ln εΘ3)

+ εa

[
ln

2π

Γ(ξ)Γ(ξ + Θ1/Θ3)
+ 2

(
ξ + n+

Θ1

2Θ3

− 1

4

)
log(ξ + n)

− 2ξ − 1

2
log ξ

]
+O(ε3/2 log ε)

(1.75)

Finally, we can substitute into the action J and find

2π(JN−J0) = Θ3∆τ−2ahN log hN+2ah0 log h0+(2a+b)∆h (1.76)

where, of course, ∆τ = τN − τ0 and ∆h = hN − h0 = NεΘ3

which means

2π(JN − J0) = Θ3∆τ − 2a(h0 +NεΘ3) log(h0 +NεΘ3)

+ 2ah0 log(h0) +NεΘ3(2a+ b)
(1.77)

and, for the improved action,

2π(uN−u0) =
a

2
(Θ2−Θ1) log

hN
h0

=
a

2
(Θ2−Θ1) log

h0 + εΘ3

h0

(1.78)
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Combining these results, and neglecting O(ε2) terms, we get the
final estimate for the improved adiabatic invariant variation before
the crossing as

2π(∆J̃)− = 2εaΘ3

[
−1

2
ln

2π

Γ(ξ)Γ(ξ + Θ1

Θ3
)

+ ξ +

(
Θ2

2Θ3

− ξ
)

ln ξ

]
+O(ε3/2 ln ε)

(1.79)

Nevertheless, this was only the first step. We need now to ana-
lyze what happens when the separatrix is crossed.

In this case, we need a better approximation for the crossing time
t∗, which we will call t(i)∗ where the index i denotes the attainment
region G1 or G2.

We will use

t(i)∗ = t∗ −
a

2
lnh0 −

a

2
ln |hi∗|+ bi +O(ε ln2 ε) (1.80)

where

hi∗ = h∗ − εΘ2 (1.81)

Then, denoting as J̃ (i)
∗ the value for J̃∗ which comes from the

integration of Eq. (1.55), we have, defining

ξi =
|h(i)
∗ |
εΘi

(1.82)

and thus using the substitutions

h∗ = εξΘ3 hi∗ = εξΘi (1.83)

the final result becomes (being ∆Θi = (−1)i(Θ2 −Θ1))

2π(∆J̃)∗,i =
Θi

Θ3

(2πJ − S3(τ∗)) + aεΘi

(
ξi −

1

2

)
ln(ξiΘiε)

−
(

2
Θi

Θ3

ln(ξΘ3ε)

)
+ aε

Θi

Θ3

(∆Θiξi − 2Θi)

+ Θiε

(
1

2
− ξi

)(
bi −

Θi

Θ3

b3

)
+ ε

(
di −

Θi

Θ3

d3

)
+O(ε3/2 ln ε)

(1.84)
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Finally, the point enters either in G1 or in G2. As done before,
we use a map where every step coincides with the passage on the x
axis, either at the left or at the right of the saddle point.

Nevertheless, the calculations and the involved approximation
are the same of those we used to obtain (1.79), but this time the
calculation of τN is simpler, because the particle now passes close to
the hyperbolic point only twice, moving for half a separatrix when
the energy is hn = h0−nεΘi and for another half with the increased
energy step hn+1.

This means that, having defined J̃+ as the final value for the
improved adiabatic invariant

2π(∆J̃)+,i = εaΘi

[
− ln

√
2π

Γ(ξi)
+ ξi +

(
1

2
− ξi

)
log ξi

]
+O(ε3/2 log ε)

(1.85)
We can now add the three contributions (1.79, 1.84, 1.85) to get

the final result in all of its glory:

2π∆J̃i = 2π(J̃+ − J̃−) = εaΘi

(
ξi −

1

2

)[
ln(εΘi)−

2Θi

Θ3

ln(εΘ3)

]
− εaΘi ln

(2π)3/2

Γ(ξi)Γ
(

Θi
Θ3

(1− ξi)
)

Γ
(

1− Θi
Θ3
ξi

)
+ εΘi

(
1

2
− ξi

)(
bi −

Θi

Θ3

b3

)
+ ε

(
di −

Θi

Θ3

d3

)
+

+O(ε3/2(ln ε− (1− ξi)−1))

(1.86)



Chapter 2

Fundamentals of beam
dynamics

I sometimes think about the tower at Pisa
as the first particle accelerator, a (nearly)
vertical linear accelerator that Galileo used
in his studies.

Leon M. Lederman

The first accelerator dates back to
prehistoric-historic times, when men built
bows and arrows for hunting.

S.Y. Lee [17]

2.1 Particle accelerators
The importance of particle accelerators in the recent history of

experimental physics needs not any further explaination. Break-
through discoveries in the field of high-energy particle physics, from
the gauge bosons to the top quark and the Higgs boson have been
made by large collaborations of scientists using accelerators, and
many Nobel prizes have been awarded for such discoveries.

Anyway, the principle on which complex machines like lhc are
built is quite simple: charged particles are accelerated by the action
of strong electric fields in order to increase their energy and observe
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what happens when they collide with either a fixed target or other
accelerated particles.

Two are the main challenges in such experiments: one, which is
the main duty of high-energy physicists, is to measure and recognize
the collision products, and to verify their relations with theoretically
expected values.

The other one, where this work belongs, is the task of the acceler-
ator physicists: to explain and control the dynamics of the ensemble
of particles (beam) inside the accelerator. [25]

One could think that this task is far simpler than the first, be-
cause the physical and matematical tools needed to study these is-
sues — electromagnetism, and thus Maxwell equations since elec-
tromagnetic fields are involved, and classical mechanics, mainly in
the Hamiltonian formulation, as particle move in certain potentials
— have foundations firmly built centuries ago, and are well known
and widely taught.

Actually, the solid foundations of these physical tools do not
mean that problems are easy to solve. As soon as nonlinearities
appear, i.e. systems are complex just a bit more than toy models,
our knowledge fails and research-level work is needed to overcome
these difficulties.

We will now present, mainly following [17], a brief review of some
fundamental concepts of beam dynamics that we need to tackle the
problems we are focusing this work on. First of all, it should be noted
that all that follows is related to circular accelerators. Of course, in
similar machines, electric fields are used to increase particles’ speed
while magnetic fields are first of all needed to keep the charges on the
circular trajectory, but they also account for effects in the transverse
plane.

Thus, we will describe the peculiar (and more convenient) co-
ordinate choice that is standard to describe motion in accelerators,
then we will justify an expression for the Hamiltonian we will intro-
duce in our equations which accounts for the magnetic effects. The
next step is to derive the basic equations of motion for a beam par-
ticle and analyze some of their properties. Finally, we deal with the
notion of emittance which is central in this work; its basic properties
will then be presemted.
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ρ

x

s

z

Figure 2.1 – The Frenet-Serret coordinate system which we will use
throughout this work. The dotted line is the particle trajectory, whose
curvature radius is ρ. The s coordinate is measured along the trajectory
while x and z are orthogonal to it.

2.2 Co-ordinates and motions

In order to describe the motion of particles inside accelerators
a coinvenient choice of co-ordinates needs to be performed, taking
advantage of the toroidal symmetry of the system.

First of all, we should distinguish between two types of motion:

• longitudinal, along the accelerator circumference (reference tra-
jectory)

• transverse, in the plane normal to the longitudinal motion

In an analogy with celestial mechanics, longitudinal motion is
the planet motion in the orbital plane, while transverse motion cor-
responds to evolution of planetary positions in the meridional plane.

We can introduce the Frenet-Serret coordinate system. It should
be natural to choose one curvilinear coordinate s along the longitu-
dinal motion and two cartesian coordinates x, z for the transverse
one (see. Fig. 2.1)

Let ρ be the accelerator radius. The cartesian system (X, Y, Z),
centered in the accelerator centre can be mapped into the Frenet-
Serret system via the following transformations:
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X = (x+ ρ) cos(s/ρ)− ρ Y = z Z = (x+ ρ) sin(s/ρ)

Our goal now is to rewrite the Hamiltonian for a particle in an
accelerator in this coordinate system.

Results will generally be derived in their complete form, where a
function β(s), which accounts for longitudinal coupling to transverse
effects will be present. Nevertheless, in the limit of no longitudinal
coupling, β(s)→ 1 and the only role assigned to longitudinal coor-
dinate s will be to act as a timestamp for our system.

It actually turns out that it is convenient to regard s as the time
coordinate (due to canonical coupling, the conjugated moment ps
will work as the Hamiltonian function).

The Hamiltonian we will apply to particlse in circular accelera-
tors is given by the Lorentz force, as long as charged particles are
accelerated in modulus by the action of an electric field E (or, better,
by a scalar potential Φ), and bent in order to keep their circular or-
bit by a magnetic field B which will be more conveniently expressed
by the vector potential A (B =∇×A).

A linear electromagnetic field keeps particles on a planar circular
motion with radius ρ, where ρ is given by the equilibrium between
magnetic and centrifugal force.

The quantity Bρ is called beam rigidity and corresponds to

Bρ =
p

e

where p is the particle momentum while e its charge.
Now, the Lorentz em Hamiltonian for a relativistic particle reads

H = eΦ +
√
m2c4 + (cp− eA)2

We should express the square norm of (cp− eA) in the Frenet-
Serret coordinates, whose metric tensor reads

gij = diag(1 + x/ρ, 1 1)

Thus,

H = eΦ +

√
m2c4 +

(cps − eAs)2

(1 + x/ρ)2
+ (cpx − eAx)2 + (cpz − eAz)2
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We will take advantage of the power of Hamiltonian mechanics
to democratically treat every variable, and we will substitute the
actual time variable with the longitudinal variable s. In this way,
the conjugated variable −ps will be promoted to the rank of new
Hamiltonian H̃. Solving the latter equation for ps, we obtain

H̃ = −
(

1− x

ρ

)√
E2

c2
−m2c2 − (px − eAx)2 − (pz − eAz)2 − eAs

where E = H− eΦ. According to special relativity

E2/c2 = p2 +m2c2

and our Hamiltonian reduces to

H̃ = −
(

1− x

ρ

)√
p2 − (px − eAx)2 − (pz − eAz)2 − eAs

where the equation of motion are

x′i =
∂H̃
∂pi

p′i = −∂H̃
∂xi

(i = x, z)

t′ =
∂H̃
∂H

H′ = −∂H̃
∂t

and the prime refers to differentiation with respect to s.
Because the motion in the longitudinal direction is far faster

than in the transverse ones, we have p � px and p � pz and the
Hamiltonian can be expanded, using the fact that

√
1 + x ∼ 1+x/2,

as

H̃ =

(
1 +

x

ρ

)[
−p+

1

2p

(
p2
x + p2

z

)]
− eAs (2.1)

where, as far as we are taking into account only transverse ef-
fects, we can assume there is no magnetic field in the longitudinal
direction, thus the only contribution to the vector potential is along
s, and Ax = Az = 0.
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2.3 Betatronic motion
From the Hamiltonian (2.1), we can retrieve the equation of mo-

tion of x and z. For the x direction, we have

x′ =

(
1 +

x

ρ

)
px
p

p′x =
p

ρ

(
1 +

x

ρ

)
+ e

∂As
∂x

while for z

z′ =

(
1 +

x

ρ

)
px
p

p′z = e
∂As
∂z

Now, we can express the partial derivatives of As as a function
of the x and z components of the magnetic field B.

Expressing the curl in Frenet-Serret coordinates, we have

∇×A = − x̂

1 + x/ρ

∂As
∂z

+
ẑ

1 + x/ρ

∂As
∂x

= Bxx̂+Bz ẑ

which yields

∂As
∂x

= −
(

1 +
x

ρ

)
Bz

∂As
∂z

=

(
1 +

x

ρ

)
Bx

The equations of motion now read

x′ =

(
1 +

x

ρ

)
px
p

p′x =

(
1 +

x

ρ

)[
p

ρ
− eBz

]
and

z′ =

(
1 +

x

ρ

)
px
p

p′z = e

(
1 +

x

ρ

)
Bx

which can also be written as second-order equation

x′′ =
1

ρ
+
x

ρ2
+
eBz

p

(
1 +

x

ρ

)2

z′′ =
eBx

p

(
1 +

x

ρ

)
Now, p = eBρ, so we can rewrite the equations as

x′′ =
1

ρ
+
x

ρ2
+
Bz

Bρ

(
1 +

x

ρ

)2
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z′′ =
Bx

Bρ

(
1 +

x

ρ

)2

Let now the magnetic field be linear both in x and z. We set
Bz = BρK1x and Bx = BρK2z. If we define Kx = 1

ρ2
− K1 and

Kz = K2 our equation become

x′′ +Kx(s)x = 0 z′′ +Kz(s)z = 0

which are the well-known Hill equations.
Now, let y be either the x or the z coordinate. Hill’s equation

reads

y′′ +K(s)y = 0 (2.2)

We can perform the Floquet trasformation

y = aw(s) exp{iψ(s)}

Taking the second derivative, we get

aeiψ(s)
(
w′′(s) + 2iw′ψ′ + iwψ′′ − wψ′2

)
= aeiψsK(s)w (2.3)

and, from the imaginary part

2w′ψ′ + wψ′′ = 0

which, by means of variable separation reduces to

logψ′ = −2 logw

id est

ψ′ =
1

w2

Substituting this result in the real part of equation (2.3 (and
taking account of the reality of K) we finally get

w′′ +Kw − 1

w3
= 0 (2.4)

Setting u = w2, the equation

u′′′ + 4Ku′ + 2K ′u = 0
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corresponds to the first derivative of Eq. (2.4) and is still solved
by the functions

u1 = weiφ u2 = we−iψ

The Wronskian

u1u
′
2 − u′1u2 = w(w′ − iwψ′)− (w′ + iwψ′)w = −2iw2ψ′ = −2i

turns out to be constant. Thus, the full solution y of Hill’s
equation (2.2) is a linear combination of u1 and u2. If we set w2 to
be the betatron function β(s), we can write

ψ(s) =

∫ s

0

ds′

β(s′)

and

y = aβ1/2 cos(ψ + ξ) (2.5)

where ξ is a phase. Letting η = yβ−1/2 φ = ψ/ν, Hill’s equation
becomes

η′′ + ν2η = 0

which is a linear harmonic oscillator equation, where

ν =
1

2π

∫ C

0

ds

β(s)

is the change in ψ on one accelerator turn (we set C to be the
machine circumference) and is called tune.

We can also substitute w = β1/2 in Eq. 2.2, and obtain

β′′

2
+Kβ − 1

β
(1 + α2) = 0

where

α = −β′/2

or

α′ = Kβ − 1

β
(1 + α2)
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Finally, if we define the Hamiltonian

H(y, y′, s) =
1

2
y′2 +

1

2
K(s)y2 (2.6)

we can get back Hill’s equation from the related equations of
motion. We now want to find the action-angle variable change, thus
we need a generating function F so that y′ = ∂F/∂y.

From the solution (2.5) , we get, upon differentiation

y′ =
a

β1/2
(β′ cosψ − sinψ) = − y

β
(tanψ + α)

and, integrating,

F =

∫
dyy′ = − y

2

2β
(tanψ + α)

Now, the action J reads

J = −∂F
∂ψ

=
y2

2β cos2 ψ

while the new Hamiltonian, differentiating F w.r.t. s becomes
simply

H̃ =
J

β

From the expression for the action variable, we get

y =
√

2βJ cosψ y′ = −
√

2J/β(sinψ + α cosψ)

which can be also cast in the form

y =
√

2βyJy cosψy py = −
√

2βyJy sinψy

A final trasformation can be made in order to use the orbital
angle θ = s/R and not the longitudinal coordinate s as the inde-
pendent variable. Using

ψ̃ = ψ −
∫ s

0

ds

β
+ ωθ

and keeping the same J , the new Hamiltonian, being the gener-
ating function F = ψ̃J becomes

H = ωJ
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and the phase-space coordinates finally read

y =
√

2βJ cos

(
ψ̃ +

∫ s

0

ds′

β
− ωθ

)
py = −

√
2βJ sin

(
ψ̃ +

∫ s

0

ds

β
− ωθ

)

2.4 Emittance
Let y be one of the transverse coordinates. Betatron motion is

described by Hill equation

y′′ +K(s)y = 0 (2.7)

It is possible to write a general solution of equation (2.7) as

y(s) = a
√
βy(s) cos (ψy(s) + ξs)

where a and ξ are fixed by the initial conditions, while

ψy(s) =

∫ s

0

ds′

βy(s′)

Now we perform the transformation into action-angle variables

y =
√

2βyJy cosψy py = −
√

2βyJy sinψy

It can also be shown that the following relation holds true:

py = βy
dy

ds
− 1

2

dβy
ds

y

Substituting the solution of y(s) in the latter expression, we have

py = βy
dy

ds
− 1

2

dβy
ds

y = − a√
β(s)

sin(ψs)

and we can define the Courant-Snyder ellipse

C(y, y′) =
y2 + p2

y

βy(s)
= γy2 + 2αyy′ + βy′2

Substituting the solutions for y and py we obtain

C(y, y′) =
1

β

(
a2β cos2 ψ + a2β sin2 ψ

)
= a2 =: ε
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√
εβ

√
εγ

y

y′

Figure 2.2 – The Courant-Snyder ellipse γy′2 + 2αyy′ + βy′2. The area
encoled by the ellipse is equal to πε.

The area enclosed by such an ellipse, that we show in Fig. 2.2,
will be equal to πε.

Being also a =
√
ε we can write

y(s) =
√
βyεy cosψy

It is clear that εy = 2Jy, i.e. twice the value of the action variable
of our particle.

This ε is called Courant-Snyder invariant and is a property rel-
ative to a single particle. It should not be confused with emittance,
which is relative to a beam, i.e. a distribution of particles in phase
space. However, these two quantities are deeply related, as we show.

Let ρ(y, y′) be such a (normalized) distribution. Average and
standard deviations read

〈y〉 =

∫
dydy′ yρ(y, y′) 〈y′〉 =

∫
dydy′ y′ρ(y, y′)

σ2
y =

∫
dydy′ (y− 〈y〉)2ρ(y, y′) σ2

y′ =

∫
dydy′ (y′− 〈y′〉)2ρ(y, y′)

σyy′ =

∫
dydy′ (y − 〈y〉)(y′ − 〈y′〉)ρ(y, y′)

Thus, we can define the rms emittance as
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εrms =
√
σ2
yσ

2
y′ − σ2

yy′ (2.8)

We should relate the single-particle, betatron emittance with this
statistically inferred value.

It is straightforward to show that, if the average of y and y′ is
zero, substituting in C(y, y′) the rms values for y and y′ we obtain

C(y, y′) =

∫
dydy′ρ(y, y′)

(
γy2 + 2αyy′ + βy′2

)
= ε

thanks to the normalization of ρ.
Thus, the beam emittance is the Courant-Snyder invariant of the

root mean square particle in the beam.
It must also be noted that in some literature a factor 4 is in-

troduced in this definition, so that ε := 4εrms. Anyway, throughout
this work, we will stick to the definition ε = εrms.

If we differentiate the expression of ε2 from Eq. (2.8) w.r.t. s we
get

dε2

ds
= σ2

y′
dσ2

y

ds
+ σ2

y

dσ2
y′

ds
− 2σyy′

dσyy′

ds

Now, remembering that dy/ds = y′,

dσ2
y

ds
=

∫
dydy′ρ(y, y′)

d

ds
(y − 〈y〉)2

= 2

∫
dydy′ρ(y, y′)(yy′ − y′ 〈y〉 − y 〈y′〉+ 〈y〉 〈y′〉)

We can also use the definition of 〈y〉 and 〈y′〉 and, after having
taken averaged values out of the integration, by normalization of ρ
we obtain

dσ2
y

ds
= 2(〈yy′〉 − 〈y〉 〈y′〉) = 2σyy′

where we have used the definition of average for yy′

〈yy′〉 =

∫
dydy′ρ(y, y′)yy′
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For the second term, we write, analogously,

dσ2
y′

ds
=

∫
dydy′ρ(y, y′)

d

ds
(y′ − 〈y′〉)2

= 2

∫
dydy′ρ(y, y′)(y′y′′ − y′′ 〈y′〉 − y′ 〈y′′〉+ 〈y′〉 〈y′′〉)

= 2(〈y′y′′〉 − 〈y′〉 〈y′′〉) =: 2σy′y′′

Finally, the covariance needs differentiation

dσyy′

ds
=

∫
dydy′ρ(y, y′)

d

ds
(yy′ − y 〈y′〉 − 〈y〉 y′ + 〈y〉 〈y′〉)

which, performing the same operations reduces to

dσyy′

ds
=
〈
y′2
〉
− 〈y′〉2 − 〈yy′′〉 − 〈y〉 〈y′〉 = σ2

y′ + σyy′′

being σyy′′ the correlation between y and y′′. Merging these
results, we finally get

dε2

ds
= 2σ2

y′σyy′ + 2σ2
yσy′y′′ − 2σyy′(σ

2
y′ + σyy′′) = 2σ2

yσy′y′′ − 2σyy′σyy′′

Now, if the Hamiltonian is linear, i.e. only dipole and quadrupole
magnets act on the beam, y′′ = −Ky and, following the definition,

σyy′′ = −Kσ2
y σy′y′′ = −Kσyy′

so that

dε2

ds
= 2K

(
σ2
yσyy′ − σ2

yσyy′
)

= 0

and conservation of emittance follows.
When we add nonlinear terms to the Hamiltonian (e.g., a ses-

tupole term k3y
3/3, which, means, upon differentiation, y′′ = Kx−

k3x
2) we get

dε2

ds
= 2k3

[
σ2
y

(〈
y′y2

〉
− 〈y′〉

〈
y2
〉)
− σyy′

(〈
y3
〉
− 〈y〉

〈
y2
〉)]
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i.e., the emittance evolution is equal to the strenght of the non-
linearity multiplied by a number which is a property only of the
distribution.

More generally, we would have, for a nonlinear knxn/n hamilto-
nian term

dε2
n

ds
= 2kn

[
σ2
y

(〈
y′yn−1

〉
− 〈y′〉

〈
yn−1

〉)
− σyy′

(
〈yn〉 − 〈y〉

〈
yn−1

〉)]
2.5 Advanced techniques

In the previous section we saw that, as long as only linear motion
is taken into account, emittance is an invariant. Thus, if we want
to manipulate beams’ transverse shape we need to break down the
invariance. This can be done thanks to the action of nonlinearities
and taking advantage of the time modulation of the strength of
magnets which act on the accelerator, which can be used to excite
some resonances.

Here lies the connection between beam dynamics and adiabatic
invariance theory. We described in Chapter 1 how adiabatic in-
variance can be broken when crossing a separatrix: applying that
theory to particle accelerators we could obtain effects which would
be impossible in the realm of linear motion.



Part II

Emittance exchange





Chapter 3

Theoretical results

Manipulating transverse distribution is one of the tasks that are
the responsibility of modern accelerator physicists. Certain distri-
bution might need to be attained, diverse applications may require
beams to be widened or squeezed, sometimes an useful geometry
alteration should be achieved only either in the horizontal or in the
vertical plane.

An example of this is given by the current mte configuration
at ps. The beamlets which result from the splitting process have
an high vertical width, and do not perfectly match with sps verti-
cal mechanical aperture. Thus, a system which could redistribute
emittances between the two transverse planes would be then warmly
welcomed.

A work by Lee et al. [18] suggests that crossing a specific 2D res-
onance a system undergoes an emittance exchange in the transverse
plane. As the goal of the authors of [18] is to avoid this exchange
during the resonance crossing, they only take care, to identify a
configuration which minimizes the emittance exchange. Conversely,
our aim is exactly opposite: we want to fully exploit the mechanism,
and, as we present a novel argument to explain how the exchange
works, we will be able to predict the final emittances of a system
that undergoes the crossing process.

3.1 The model

For the study of the emittance exchange at the crossing of a
Walkinshaw resonance, we start from ([18]), whose idea, as sug-
gested by [3, p. 409] is to reduce the Hamiltonian of the particle in
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the accelerator to a two-degrees of freedom resonant normal form,
then to reduce the system to only one degree of freedom, using one
of the action variables, which turns out to be invariant through-
out the whole motion, thus also during the separatrix crossing, as a
parameter.

Let Jx and Jz be, respectively, the transverse horizontal and
vertical actions of a particle in a beam.

A Gaußian two-dimensional distribution in x, px, z, pz reads, if
transformed into Jx, Jz, φx and φz coordinates

ρ(Jx, Jy) =
1

εxεz
exp

(
−Jx
εx
− Jz
εz

)
(3.1)

i.e., it becomes a negative-exponential distribution in terms of
the actions.

The mean values of Jx and Jz, which would correspond to the
variance of the x and z coordinate in the Gaußian distribution, are
the emittances

〈Jx〉 = εx 〈Jz〉 = εz

Now, we can write an Hamiltonian in the x and z variables for a
particle in an accelerator which takes account for the linear motion
plus the sextupole and octupole magnets contributions. We will
have Hill’s hamiltonian (2.6) for the x and z coordinates, and two
potentials V3 and V4 which account for the nonlinear terms.

H =
1

2
(x′2 +Kxx

2 + z′2 +Kzz
2) + V3(x, z, s) + V4(x, z, s)

From the multipolar expansion of the magnetic field we also get

V3 = −1

6
k3(s)(x3 − 3xz2)

where we have set

k3 =
∂2Bz

∂x2

∣∣∣∣
x=z=0

We can now trasform the Hamiltonian into action-angle variables
(Jx, Jz, ψx, ψz). For the harmonic part,

H(Jx, Jz, ψx, ψz) = ωxJz + ωzJz
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where ωx,z are the machine frequncies, which differ from the tunes
as they include a 2π factor.

Putting the tranformation x =
√

2βxJx cosψx, and the analogous
one for z in the expressions for V3 we get

V3 =− 23/2

6
k3J

3/2
x β3/2

x cos3 ψx

+
√

2k3J
1/2
x Jzβ

1/2
x βz cosψx cos2 ψz

From the exponential representation of the cosine function, it is
straightforward to show that

cos3 ψx =
1

4
cos 3ψx +

3

8
cosψx

and

cos2 ψz cosψx =
1

4
[cos(2ψz − ψx) + cos(2ψz + ψx) + 2 cosψx]

and perform the averaging in the vicinity of the (1, 2) resonance,
where the (m,n) symbol identifies the resonance given by mωx −
nωz = `. This means, according to Birkhoff normal forms theory,
that the only surviving angular-dependent term is the J1/2

x Jz one.
We therefore obtain

H(Jx, Jz, φx, φz) = ωxJx + ωzJz +
1

2
αxxJ

2
x + αxzJxJz +

1

2
αzzJ

2
z

+GJ1/2
x Jz cos(φx − 2φz − `θ + ξ)

(3.2)

where we have also introduced the detuning parameters which
account for the first-order correction to the x and z tunes. They
read

ωx = ωx + αxxJx + αxzJz

ωz = ωz + αxzJx + αzzJz

As long as the motion undergoes separatrix crossing, Jx and Jz,
although being adiabatic invariants, are not going to have their value
conserved during the evolution of the system.
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However, this Hamiltonian admits a integral, which is a linear
combination of Jx and Jz. In fact, performing the canonical trans-
formation

J1 = Jx J2 = 2Jx + Jz

φ1 = φx − 2φz − `θ + ξ φ2 = φz

we get the new Hamiltonian

H = δJ1 +
1

2
α11J

2
1 + α12J1J2 +GJ

1/2
1 (J2 − 2J1) cosφ1

+ ωzJ2 + α22J
2
2

(3.3)

where δ is the resonance distance parameter given by

δ = ωx − 2ωz − `

and the detuning parameters have conveniently been redefined
as

α11 = αxx − 4αzz α12 = αxz − 2αzz α22 = αzz

Now, the Hamiltonian (3.3) is not dependent on the angle φ2,
and according to Hamilton equations,

J̇2 =
∂H
∂φ2

= 0

which means that J2 remains constant during the resonance pas-
sage (i.e., the invariant does not undergo destruction at separatrix
crossing).

Moreover, the transformed Hamiltonian can be cast in the form
H1 +H2 where H2 recollects the terms which are only dependent on
J2. As far as we consider J2 to be constant, H2 is constant too, and
can safely be neglected. Since J2 is constant, from the definition

J2 = 2Jx + Jz

we immediately get that, over the whole evolution

2∆Jx = −∆Jz
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and, passing to averages and thus to emittances

2∆εx = −∆εz

We succeeded to couple the x and z directions and reduce the
2D problem to a unidimensional one.

Now, equations of motions for J1 and φ1 read

J̇1 = GJ
1/2
1 (J2 − 2J1) sinφ1

φ̇1 = δ + α12J2 + α11J1 +G
J2 − 6J1

2J
1/2
1

cosφ1

3.2 Distributions

Lee et al. [18] show the plausibility of a certain emittance ex-
change from an analysis of the evolution of beam distribution given
the transformation (Jx, Jz)→ (J1, J2).

We now report their argument, which we will compare with our
more general result, which will predict the exact value of the final
emittances.

Tranforming the Gaußian distribution (3.1) we get

ρ(J1, J2) =
1

εxεz
exp

(
−J1

εx
− J2 − 2J1

εz

)
Using the variable u = J1/J2 (0 ≤ u ≤ 1/2, if we want Jz to

remain positive) the distribution becomes

ρ(u, J2) =
J2

εxεz
exp

{(
− u

εx
− 1− 2u

εz

)
J2

}
and integrating over J2 we finally get

ρ(u) =
εx/εz

[εx/εz + (1− 2εx/εz)u]2

When the initial emittances εx,0, εz,0 are in the ratio

εx,0
εz,0

=
1

2

the distribution ρ(u) is uniform and we do not expect any emit-
tance exchange.
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Moreover, we can expect that if the beam reaches in its evolution
the state where εx/εz = 1/2, no more emittance will be exchanged
and this ratio will be kept till the end. This advocates the final
emittance values

εz,f = 2εx,0 (3.4)

and, according to the constancy of J2

εx,f =
εz,0
2

(3.5)

are plausible. However, we will prove that this actually occurs
according to separatrix crossing theory.

3.3 Phase space

From the Hamiltonian H1 we can describe the evolution of the
phase space topology following the variation of δ, i.e. the passing
through the Walkinshaw resonance. First of all, the condition Jz >
0, which translates to J1 < J2/2 limits the motion inside the circle
with radius

√
J2/2, which we will call outer circle.

Now, it is convenient to perform the transformation to the Carte-
sian (x, y) coordinates defined as

x =
√

2J1 cosφ y =
√

2J1 sinφ

whence

H(x, y) =
δ + α12J2

2
(x2+y2)+

α11

2

(
x2 + y2

2

)2

+
G√

2
x
(
J2 − x2 − y2

)
(3.6)

It is then possibile to identify ellyptic and hyperbolic points by
inspecting the first derivative of the Hamiltonian. We have

∂H
∂x

=
[
δ + α12 + α11(x2 + y2)

]
x+
√

2G(J2 − 3x2 − y2)

∂H
∂y

=
[
δ + α12 +

α11

2
(x2 + y2)

]
y −
√

2Gxy
(3.7)

We can write explicitly our separatrices
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x2 + y2 = J2
α11

4
(x2 + y2)−

√
2Gx+ δ + α12J2 +

1

4
α11J2 = 0

which are the outer circle (fixed) and a coupling arc, i.e. an arc
of a circumference with centre

C =

(
2
√

2G

α11

, 0

)
and radius

r =
1

|α11|
√

8G2 − α11J2(α11 + 4α12)− 4α11δ

which keeps expanding while δ decreases if α11 is positive (if it
were negative, we would have to cross the resonance in the opposite
way, increasing δ from a negative value to a positive one). We can
find some equilibria inside the circle, for a range of δ sufficiently
close to 0, i.e.

• for y = 0 two elliptic points1

• two hyperbolic points on the outer circle, at the intersection
with the coupling arc

Conversely, when |δ| is bigger than a critic value, there is only
a close-to-origin elliptic point, and the motion, while constrained in
the outer circle, remains quasi-periodic.

The α12J2 term only contributes in translating the point of res-
onance passage, while the α11 term, which controls the quadratic
dependence in J1 causes the coupling arc to increase its curvature.
In the notable case α11 = 0 the circumference centre and the radius
go to infinity, and the coupling arc becomes just the straight line

x = x0 =
δ + α12J2√

2G

In this case, area calculations are notably simpler and the equi-
libria are

1Substituting y = 0 in Eq. (3.7) we would find a cubic equation in x which
has 3 real solutions. Nevertheless, one of the roots is always extern to the outer
circle, and does not have any effects on the motion.
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• Elliptic: at y = 0 and

x =
√

2
δ + a12J2 ±

√
a2

12J
2
2 + 2J2(δa12 + 3G2) + δ2

6G

• Hyperbolic: at x = x0 and y = ±
√
J2 − x2

0

Simulations performed by Lee et al. actually show that emittance
exchange is actually independent from the value of α11. Anyway, we
will give an argument accounting for the extension of our results to
systems with α11 6= 0.

3.4 Separatrix crossing: classic theory
According to Nejštadt theory of separatrix crossing, crossing

probability between two phase space regions is a function of the
relative area variation velocity of those regions.

In our case, we have only two regions, all enclosed in a fixed
circle. Thus, the area gain of a region is equal to the area loss of
the other one, so the crossing probability is equal to 1.

Now, according to the trapping mechanism, the system preserves
area until it fills the available region, then jumps with probability 1
into the other region, as it is physically impossible to go outside of
the circle. We have

Af = Ao.c. − Ai

where Af is the final area, Ai the initial one and Ao.c. the outer
circle area, because, thanks to area adiabatic invariance, final area
is the area of the region the particle is trapped into when δ is greater
than the critical value δ∗.

Following these prescriptions, we immediately have

Ai = 2πJ1,0

and

Ao.c. = πJ2

since its radius is
√
J2. Thus,

Af = π(J2 − 2J1,0) (3.8)
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This means that final J1 (J1,f ) reads

J1,f =
Af

2π
=
J2

2
− J1,0

We can go back to the Jx, Jz coordinates and we find

Jx,f = J1,f =
1

2
(2Jx,0 + Jz,0)− Jx,0 =

Jz,0
2

and, from the definition of J2, thanks to its invariance,

Jz,f = J2 − 2Jx,f = J2 − Jz,0 = 2Jx,0

For a Gaußian distribution of the coordinates, i.e. an exponential
one for the actions, emittances εx and εz are just mean values of Jx
and Jz, so their change follows Jx and Jz, and we have:

εx,f =
εz,i
2

(3.9)

εz,f = 2εx,i (3.10)

This confirms the simulated data shown by [18], and supports
the possibility of performing an emittance exchange between the x
and z directions in the transverse plane, as the final x emittance
depends on the z initial one, and vice-versa.

Another useful distribution whose evolution is interesting to in-
spect is the Kapčinskij-Vladimirskij (kv) one [25], which is defined,
in the action-angle variables as

ρKV (Jx, Jz) =
1

4εxεz
δ

(
Jx
2εx

+
Jz
2εz
− 1

)
where δ(x) is the Dirac delta distribution. This means that the

distribution is uniform on the line where

Jx
2εx

+
Jz
2εz

= 1

Now, performing the transformations (3.9, 3.10), since the emit-
tances transform coherently, we immediately get to know that the
kv distribution is kept after the emittance exchange, of course with
new emittances.

In general, this result is guaranteed for any distribution in which
actions and emittances appear only in the ratios Jx/εx and Jz/εz.

It should be noted that also the normalization, if dependent from
the product εxεz, remains invariant.



58 Theoretical results

x

y

C2

C1

√
J2δ√

2G

Figure 3.1 – Phase space of the Hamiltonian system (3.6) with α11 =
α12 = 0.

3.5 Separatrix crossing: improved theory

Let us now apply the improved adiabatic approach to our Hamil-
tonian.

Differently from the calculations shown in §1.6.2, we are inter-
ested in a separatrix crossing only between two phase space regions.
In particular, we are analyzing a phase space whose topology is
shown in Fig. 3.1, where an outer fixed circle constraints the mo-
tion, and a single separatrix curve moves throughout the circle.

We have two saddle point, C1 and C2 which share the same mo-
tion in their vicinity, as the Hamiltonian, and thus the phase space,
are symmetric along the horizontal axis.

Therefore, using the same notation as before, we can label with
−N, . . . , −1, 0, 1, . . . , n, n+ 1, . . . the closest passages near one of
the two symmetrical hyperbolic points; the 0 label corresponding to
the separatrix crossing.

We have, like before

hn+1 = h− εΘ (3.11)

and
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τn+1 = τn− εa
[

1

2
log hn + log

(
hn − ε

Θ

2

)
+

1

2
log hn+1

]
+ εb (3.12)

because there are three hyperbolic (and thus, dominant) con-
tributions to the period of the motion: the initial one close to the
starting hyperbolic point, which counts for a half and with a hn en-
ergy; a full passage near the opposite saddle point, where energy is
increasing between hn and hn+1: for sufficiently large N , it can be
safely estimated as the middle point between the two energy steps;
and, finally, the return to the starting saddle with an half-passage
at the next energy step hn+1 = hn − εΘ

Everything follows just as before. The energy at the n−th step
will be given by hn − nεΘ and the slow time τ by

τn = τ0 − nεb+ εa

[
n log εΘ + log

Γ(ξ + n)

Γ(ξ)
+ n log

ξΘ

2
+

+ log
Γ(ξ/2 + n)

ξ/2
+

1

2
log(ξ + n)− 1

2
log ξ

]

and, following [14], we expect that the J̃ variation before crossing
reads

2π(J̃−N − J̃∗) = aεΘ

[
log

2π

Γ(ξ)Γ(ξ/2)
+ ξ log ξ − 3

2
ξ+

+
ξ

2
log

ξ

2
− 1

2
log ξ

]

After crossing, the particle lands in a region whose area evolu-
tion, being the motion confined in a fixed circle, is exactly opposite
of the starting region. Then, we can simply reuse Equation (3.13),
but having care to replace Θ′ = −Θ and ξ′ = 1− ξ.

We get
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2π(J̃0 − J̃N) = aεΘ

[
log

2π

Γ(1− ξ)Γ(1− ξ/2)

− (1− ξ) log(1− ξ) +
3

2
(1− ξ)

−
(

1− ξ

2

)
log

(
1− ξ

2

)
− 1

2
log(1− ξ)

]
(3.13)

Then, we need a formula for the change of J̃ at the exact reso-
nance crossing. However, following [14] we expect this contribution
to cancel all terms in the previous expressions except the one with
the Gamma functions, so that the final result reads

2π∆J̃ = aεΘ log
4π2

Γ(ξ)Γ(1− ξ) Γ(ξ/2)Γ(1− ξ/2)
(3.14)

and thanks to the fact that

Γ(x)Γ(1− x) = − π

sin πx
(3.15)

we finally get

2π∆J̃ = aεΘ log

(
4 sin(πξ) sin

πξ

2

)
(3.16)

Because ξ ∼ 1/ε changes dramatically if the initial conditions
differ only by O(ε), it can be regarded as a random variable uni-
formly distributed in the (0, 1) interval.

Now, the function

log

(
4 sin(πξ) sin

πξ

2

)
(3.17)

is at least L2([0, 1]), so for the jump ∆J we can easily get the
average 〈

2π∆J̃
〉

= 0 (3.18)

and the dispersion

σ2 = 2.47 a2ε2Θ2 (3.19)
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where the constant has been obtained evaluating numerically the
integral.

For actual models the quantity aΘ can be retrieved just knowing
the dynamics close to the saddle points and the area variation.

We can now apply these results to our Hamiltonian (3.3), in the
absence of detuning case (α11 = α12 = 0). Detuning can actually
be introduced without any bigger conceptual effort, yet algebraic
calculations become lengthy and cumbersome.

Now, our Hamiltonian reads

H = δJ1 +GJ
1/2
1 (J2 − 2J1) cosφ1 (3.20)

and admits two hyperbolic points at

J1 =
J2

2
cosφ1 =

δ

G
√

2J2

(3.21)

The determinant of the Hessian matrix of the Hamiltonian at
the saddle points is

detH = δ2 − 2J2G
2 (3.22)

and a, as a function of crossing δ∗ is given by

a =
1√

δ2
∗ − 2J2G2

(3.23)

Being the separatrix a straight line, it is also easy to calculate
the two regions’ area and thus Θ. We have

S(δ) =
1

2

(
J2

2

)2

(2φC − sin 2φC) (3.24)

where φC is the angle coordinate of the saddle point at δ∗. Per-
forming all the substitutions and differentiating we get

Θ(δ∗) = −
J2

√
δ2
∗ − 2J2G2

4G2
(3.25)

and we find that

aΘ = − J2

4G2
(3.26)

does not depend on δ∗.
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3.6 Generalization to higher resonances
Let us now take into account a class of Hamiltonians similar to

(3.2) that are the result of averaging near a generic resonance, i.e.
when the x and z tunes are in the relation

mωx − nωz = `

Starting from the initial Hamiltonian (3.2), the same approach
of averaging which was presented in the previous section would lead
us to the Hamiltonian

Hm,n(Jx, φx, Jz, φz) = ωxJx + ωzJz + αxxJ
2
x + αzzJ

2
z

+GJ
|m|
2

x J
|n|
2
z cos(mφx − nφz − `θ + ξ)

Now, given an integer order r = |m| + |n|, a resonance of that
order can be excited at least by a 2r−pole magnetic element.

In fact, the potential Vr term for a 2r−pole magnet is

Vr ∼ R(x+ iz)r =
∑

|a|+|b|=r

J |a|/2x J |b|/2z cos(aψx + bψz)

and, for a (m,n) resonance we only keep

Vr ∼ J |m|/2x J |n|/2z cos(mψx − nψz)
which is present in the latter Hamiltonian.
It should be emphasized that this approach actually corresponds

to finding the resonant Birkhoff normal form for the given Hamilto-
nian.

Now, applying the same procedure, we would like to find a canon-
ical transformation into two new actions, J1 and J2, where one, being
(adiabatically) invariant also during the separatrix crossing, can be
treated as a parameter, while the other one undergoes time evolu-
tion.

Such a transformation can be generated by the function [3, p. 410]

S = (mφx + nφz)(l2J1)J1 + (l1φx + l2φz)J2

where

J1 = l1J1 − l2J2
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and

J2 = −nJ1 +mJ2

The values l1 and l2 needs to be chosen by keeping the unitarity
of the transformation, i.e., computing the determinant

ml1 + nl2 = 1

If we want l2 = 0, we need l1 = 1/m and the transformation
reads

Jx = mJ1 φ1 = mφx − nφz − lθ + µ (3.27)
Jz = J2 − nJ1 φ2 = φz (3.28)

and in the rotating frame the Hamiltonian becomes

H(J1, φ1, J2) = δJ1 + α11J
2
1 + α12J1J2

+G(mJ1)
|m|
2 (J2 − nJ1)

|n|
2 cosφ1

+
[
ωzJ2 + α22J

2
2

] (3.29)

where δ = mωx − nωz is the resonance distance parameter and
the new constant α11, α12 and α22 are still function of αxx, αxz and
αzz.

As usual, we neglect the part of Hamiltonian only dependent on
J2 and we get the equations of motion:

φ̇1 =
∂H
∂J1

= δ + 2α11J1 + α12J2

+
m

2
G(mJ1)

m
2
−1(J2 − nJ1)

n
2
−1
[
mJ2 − n(m+ n)J1

]
cosφ1

J̇1 = − ∂H
∂φ1

= G (mJ1)
m
2 (J2 − nJ1)

n
2 sinφ1

Being J2 constant, the evolution of Jx and Jz should follow the
rule

∆Jz = − n
m

∆Jx (3.30)

Now, the phase space which these equations describe is far more
complex that the old (1, 2) one. However, some familiar elements
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are still present. First of all, we still have an outer circle where all
particles are needed to live in. The condition Jz > 0 is now

J1 <
J2

n

which, in the (x, y) coordinates, describes a circle with radius√
2J2/n. Then, a coupling arc which acts as a separatrix is still

present, because two symmetric hyperbolic points on the circle can
still be found. In fact, inserting the constraint J1 = J2/n in the
equation φ̇1 = 0 we get

cosφ1 =
2(J2(2α11 + nα12) + nδ)(m/nJ2)−m/2

Gn3

The coupling arc can now have a different geometry: it is not any
longer a circumference arc or a straight line, even in the absence of
the detuning parameters. However, our argument for the final values
of the emittances, as long as the improved calculation of adiabatic
jump is not involved, is just topological, and this should not be a
problem.

We could think, then, that the problem is solved, and that we
can easily get the emittance exchange for any resonance. Sadly, this
is not the end of the story.

For higher values ofm and n (i.e., for |m|+|n| ≥ 3), the degree of
the polynomial equation of motion, cast into the (x, y) coordinates,
increases, and thus also the number of the equilibrium points.

In fact, setting φ = 0 or φ = π in the equations, as the maximum
power that J1 can reach is (m + n)/2, we can get multiple (more
than two!) solutions which will become, alternatively, elliptic or
hyperbolic points.

This means that lots of new separatrices can grow and shrink
and move in the phase space, and, which is the worst thing, can
be crossed by particles. An example is given by the phase space
portraits presented in Fig. 3.2, which represent what happens, at
different values of δ, for a (3, 1) resonance.

If they were absent, or at least negligible, we would be able to
repeat the argument and get the final emittances.

In fact, as before, the starting action is J1,0 and Ai = 2πJ1,0.
Being 2πJ2/n the area of the outer circle, we have, at crossing of
the coupling arc,
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2πJ1,f = A∗ = 2π

(
J2

n
− J1,0

)
and, going back to the x and z actions

Jx,f = mJ1,f = m

(
Jz,0 + n/mJx,0

n
− Jx,i

m

)
=
m

n
Jz,0

and, following (3.30)

Jz,f =
n

m
Jx,0

where an emittance exchange, though with different ratios, still
happens.

This result could also be expected from the distribution analysis,
as if we start with a Gaußian distribution, and we transform into J1

and J2 for the (m,n) resonance, we get the distribution

ρmn(J1, J2) =
m

εxεy
exp

[
−J1

(
m

εx
− n

εy

)
− J2

εy

]
and, passing to the u = J1/J2 coordinate (this time, 0 ≤ u ≤

1/n)

ρ(u, J2) =
mJ2

εxεy
exp

[
−
(
m

εx
u+

1− nu
εy

)
J2

]
(3.31)

and, integrating out J2

ρ(u) =
mεx/εy

[εx/εy + (m− nεx/εy)u]2
(3.32)

which is uniform for if εx/εz = m/n. [12]
Nevertheless, one could think about choosing detuning parame-

ters in order to lower the polynomial grade of the equation ∂H/∂x =
0 for y = 0 and consequently reduce the number of zeroes and the
subsequent separatrices. Of course, the choice needs to be inde-
pendent of J2. A dependence on δ could be accepted, if we open
to the possibility of coherently vary the strength of the quadrupole
magnets which cause the detuning.

Unfortunately, if we inspect what happens at resonances of order
4, we see that such a choice is not possible.
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For resonances (1, 3) and (3, 1) the coefficient of the term J3
1 of

the equation reads

16(α2
11 + 27G2)

and can never be set to zero, while the J2
1 one is dependent on

J2.
Thus, in order to exploit higher-order resonance emittance ex-

change further inspection is needed in the parameters’ space, in
order to find appropriate values that could minimize the impact of
the other separatrices.
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Chapter 4

Simulations

In order to validate our theoretical analysis of the system in the
(1, 2) Walkinshaw resonance, we performed a number of numerical
simulations via symplectic algorithms.

Different kinds of simulations have been carried out:

• At fixed value of J2 with initial conditions uniformly generated
in the circle J2−2J1 > 0. For each particle, initial versus final
area is plotted to validate the linear relation (3.8).

• For single trajectories, with area measured every few thou-
sands of evolution steps, with the aim to verify conservation
of the adiabatic invariant and to see the behaviour of the adi-
abatic invariant (i.e., the jump) at separatrix crossing.

• Finally, with bunches of particles at initially random gener-
ated J1 and J2 according to the distributions (3.1) in order to
evaluate the performance of emittance exchange.

4.1 Algorithms
Integration of equation of motions As usual for Haniltonian
dynamics, simulation of the particle motion has been mainly per-
formed using a symplectic integrator, i.e. the 4-th order Candy-
Rozmus algorithm. Symplectic integrators are made in order to
guarantee that every discrete integration step is effectively a canon-
ical trasformation, just like, as we saw in Chapter 1, the continuous
time evolution of an Hamiltonian system is a canonical transfor-
mation itself. They thus preserve the symplectic invariants of the
system, like — and this is what we are looking exactly for — area.
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The idea is that, if we have a separable Hamiltonian

H = H1(p) +H2(x)

and we can exactly solve each the equation in which only one
part of the Hamiltonian appears, being ∆t the time interval we
have that the exact solution for H1 reads exp{∆tD1}x and, for H2,
exp{∆tD2}x.

Now, for the phase flow of H we have

exp{∆tDH} − exp{∆tD1} exp{∆tD2} =
(∆t)2

2
D[H1,H2] +O((∆t)3)

from the bch formula [24, p. 424].
This is a 1-st order integrator. We can do better and use a 4-th

order one, where the error is just O((∆t)4). In general, a symplectic
integrator acts on (x, y) in n steps which are evaluated as(

x
y

)
7→
(
x+ ∆t ci ∂H/∂y

∣∣
x

y −∆t di ∂H/∂x
∣∣
y

)
where the ci and di constants are given by the peculiar scheme

used. For the Candy-Rozmus algorithm [6] we have

c1 = c4 =
1

2(2− 21/3)
c2 = c3 =

1− 21/3

2(2− 21/3)

d1 = d3 =
1

2− 21/3
d2 = − 21/3

2− 21/3
d4 = 0

The Hamiltonian (3.3) has two problems: first of all it is singular
in J1. If the values of the J1 gets under zero the program will halt
trying to perform an impossible operation. This can be overcome
passing to the (x, y) coordinates as done in (3.6).

The second fact is that the Hamiltonian is not separable. We
could in fact build a real symplectic integrator, which would exactly
conserve area (far from separatrices, of course) separating the Hamil-
tonian into different terms and solving each one exactly. However,
this has not been necessary, because, as we show in the subsequent
figures, the performance of the basic Candy-Rozmus algorithm with
the chosen ∆t have been sufficiently satisfactory.
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On the other hand, for the (3, 1) resonance, the Candy integrator
did not show a sufficient conservation of areas, being the Hamilto-
nian impossible to solve piecewise, we had to fall back to a usual
Runge-Kutta 4th order integrator.

Measuring area In order to evaluate the phase space area of our
trajectories, a formula attributed to Gauß and sometimes known as
shoelace, was used. Given an ordered set of cartesian coordinates
xk = (xk, yk) for 1 ≤ k ≤ N , the area of the polygon whose vertices
are the elements of this set is given by

A =
1

2

∣∣∣∣∣
N∑
k=1

(xkyk+1 − xk+1yk)

∣∣∣∣∣
where xN+1 ≡ x1 and yN+1 ≡ y1.
A proof of this formula can be produced in terms of differential

manifolds. In fact, we can define the area of a set Ω as

A =

∫
Ω

dx ∧ dy

and if

ω =
1

2
(xdy − ydx)

we have, differentiating,

dω = dxdy − dydx = dx ∧ dy

Thus,

A =

∫
Ω

dω =

∫
∂Ω

ω

thanks to Stokes theorem.
Now, the boundary of Ω is defined by N segments Sj, where Sj

connects xj and xj+1

A =

∫
∂Ω

ω =
1

2

N∑
j=1

∫
Sj

xdy − ydx

We can write, being Aj segments parametrized by t ∈ [0, 1]

x = xj + (xj+1 − xj)t dx = (xj+1 − xj)dt
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and the same for y. Substituing, and performing the elementary
integration, we get

1

4

N∑
j=1

[(xj + xj+1)(yj+1 − yj)− x↔ y]

whence the result immediately follows.
From the data of the orbit, thus, area was measured identifying

the points which completed a closed orbit and therefore applying the
shoelace algorithm. The identification of a closed orbit has been im-
plemented checking the angular position of the particle and halting
the search when for the second time the same value, up to a thresh-
old, of the arctangent of that angle had been attained (in order to
have the algorithm work also if the orbit did not enclose the origin).
Now, the chosen threshold sometimes fails to stop the algotithm at
the first orbit but let it continue for a second one. These spurious
area values are however easily identified in the resulting data since
they account for an area value which is exactly twice than expected
and can be filtered out without any difficulty.

4.2 (1,2) resonance

4.2.1 Single trajectories and adiabatic jumps

First of all, in order to show how the separatrix-crossing me-
chanics works, we present in Fig. 4.1 a trajectory of a particle in the
phase space (J1, φ1) here represented in the Cartesian coordinates
(x, y) (colours encode the elapsed time). We see that, at a certain
time, the particle suddendly changes regime and lands in a different
region. In Fig. 4.2 we show, for another simulated particle, the area
of the revolutions as function of the time (datas have been filtered
to eliminate spurious values due to imperfections of the algorithm
or to the impossibility to measure area in the immediate vicinity of
the jump). We see that area remains quasi-constant far from sepa-
ratrix (with some oscillation that are O(ε), being ε the adiabaticity
parameter. When the particle is approaching the separatrix, oscil-
lations amplitude increases. Then the area suddendly jumps to its
final value with oscillations decreasing while drifting apart from the
separatrix.
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Figure 4.1 – Phase trajectory of a particle with initial position (x =
0.8, y = 0.5) undergoing emittance exchange. Parameters are set as G =
3, α11 = α12 = 0. Colours encode time steps in units of 106.
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Figure 4.2 – Plot of orbit area versus time step in a simulation.
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Figure 4.3 – Distribution of initial and final orbit area during an emit-
tance exchange process for 1000 uniformly distributed particles at fixed
J2 = 1. The continuous red line shows the theoretical line of Af = π−Ai.

4.2.2 Initial vs final areas

The next step, as stated in our schedule, is to run simulations of
the dynamics of a bunch of particles keeping constants J2. We per-
formed such a simulation with 1000 particles uniformly distributed
inside the outer circle x2 + y2 ≤ J2 (with no detuning and G = 3)
and we plotted in Fig. 4.3 the first orbit area versus the last one for
each particle. The relation

Af = π − Ai

which we derived in Chapter 3 from adiabatic theory is thus
confirmed; as warned before, some data result actually double than
expected: this is explained by the aforementioned imperfections of
the area measuring algorithm. These spurious values are concen-
trated at the extrema of the range, where either Ai or Af is very
small, and it is easier that the algorithm fails to individuate the end
of an orbit.
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Figure 4.4 – Distribution of initial and final Jx after an emittance ex-
change process.

4.2.3 Emittances exchange

We then proceed to simulate the evolution of a bunch of 30000
particles with G = 3 and no detuning and a starting Gaußian dis-
tribution with εx = εz = 1 in order to verify the proper execution
of the emittance exchange.

We plot in Fig. 4.4 and Fig. 4.5 the initial and final distribuition
of Jx and Jz for such a process (in which we varied δ from +20 to
−20 in 107 time steps).

The resulting value of emittance (εx = 0.53, εz = 1.99) are in
good corresponance with the theoretical ones (εx = 0.5, εz = 2)
and the distribution, as better shown in Figg. 4.6 and 4.7, where a
logarithmic scale has been used, remain exponential.

4.2.4 Dependence on parameters

Finally, several runs of the simulation have been made to verify
the dependence of the emittance exchange on the parameters of the
model, i.e. the sextupole resonance strenght G and the detuning
parameters α11 and α12. The study has been made taking into
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Figure 4.5 – Distribution of initial and final Jz after an emittance ex-
change process.
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Figure 4.6 – Distributions of Fig. 4.4 plotted in log scale. An exponen-
tial fit has been performed.
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Figure 4.7 – Distributions of Fig. 4.5 plotted in log scale. An exponen-
tial fit has been performed.

account a Gaußian initial distribution of 3000 particles with εx =
εz = 1 and performing the emittance exchange modulating δ from
+20 to −20 in 107 time steps.

For each bunch of particles, the final x emittance and the stan-
dard deviation of the action Jx, in order to check the preservation
of the exponential distribution, have been computed.

First of all, let us take into account the running over the pa-
rameter G, where simulations have been performed keeping α11 =
α12 = 0. Fig. 4.8 shows that, as expected, if G = 0 the equations
of motion is exactly correspondant to an harmonic oscillator, thus
no exchange is expected. While G increases, but still remains small,
the system is not sufficiently adiabatic to perform the emittance
exchange, and the final emittance value decreases until an optimal
point is reached (around G = 1). Then, for higher values of G the
performance gets worse, because, as the resonance passage becomes
slower, not all particles in the phase space are affected.

Fig. 4.9 shows data regarding the final x emittance for more val-
ues of G (a logarithmic scale is used): for extremely high values of
G, the emittance exchange performance looks good, but actually the
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Figure 4.8 – Emittance exchange performance as function of the pa-
rameter G (with α11 = α12 = 0).
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Figure 4.10 – Emittance exchange performance with different values of
α11 (G = 3, α12 = 0)

standard deviation values for such parameters show that the result-
ing distribution is not any more exponential. We believe that this
kind of exchange is due to a different mechanism, which is related
to what happens to the equations of motion where δ is negligible
compared to G.

For what concerns the detuning parameters, let us start with
α11. For a reasonable range of values (Fig. 4.10) the final emittance
remains close to the optimal value 0.5, and the standard deviation
values advocate for the conservation of the exponential distribution.
The same (Fig. 4.11) can be said for α12. The data we present
have been obtained with G = 3 and keeping one of the detuning
parameters switched off while the other undergoes variation.

One could be puzzled seeing that Lee et al. in [18] show that the
emittance exchange is preserved for values of α11 up to 2000πm−1

while we present only data for α11 < 2. The value difference is
explained by the fact that in [18] initial emittances are taken in the
order of the micrometer, while in our dimensionless model we are
keeping the emittances with an unitary value. Thus, as long as the
detuning parameter appears in the Hamiltonian coupled with the J2

1
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Figure 4.11 – Emittance exchange performance with different values of
α12 (G = 3, α11 = 0)

term, we see that our data also cover the range in which emittance
exchange is shown in [18].

4.3 (3,1) resonance

Generalization to higher resonances also in the realm of computer
simulation has then be attempted. However, two main obstacles
interpose between us and the understanding of the dynamics in such
a situation: not only the presence of other separatrices in the phase
space which can trap particles inside, but also the fact that in the
equations expressed in the (x, y) the quantity√

2J2 − x2 − y2

appears at denominator, thus creating a singularity close to the
the outer circle where integration errors get inflated and a computed
trajectory could finish out of the circle, this resulting in an error
thrown by the program as it attempts either to compute a division
by zero or the square root of a negative number. Thus, we were able



(3,1) resonance 81

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 20 40 60 80 100 120

A
re
a

Time

Figure 4.12 – Area variation as function of the time for a (3, 1) reso-
nance. Data have been filtered to exclude spurious values.

to track particles only in a limited number of cases and to collect
only semi-empirical data about the relationship between initial and
final areas this configuration.

For example, in Fig. 4.12 we see the variation of area in a (3, 1)
resonance crossing, with the same structure we witnessed at the
Walkishaw passage, with the increasing of oscillations close to the
separatrix, the jump and the subsequent decreasing of oscillation.
However, we do not have enough data to say whether the simple
relationship obtained in Chapter 3 for higher-order resonance are
confirmed by simulations, as we do not know whether particles are
going to be trapped in the other separatrices.
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Chapter 5

New approach to beam
splitting

The mte scheme, as it is performed applying an adiabatic mod-
ulation to the machine tune, might be limited, when exported to
other machines, by possible constraints in the choice of the working
point, i.e. the tunes (Qx, Qz). One possible solution can be found in
the pioneering work of Nejštadt (see, e.g., [20, 22]) who has shown
that trapping into stable islands can be achieved also by means of
a different approach: instead of exciting a resonance intrinsic to the
system under study, one adds an external, time-dependent force,
whose frequency is in resonance with that of the original system.
The interesting feature of this approach is that the initial system
does not need to feature a frequency close to a given resonance, as
this condition is created by the external force.

5.1 Theory review

Starting from the multipolar expansion of the magnetic field,
and taking into account only transverse motion in the horizontal
plane, the Hamiltonian of a particle moving under the influence of
magnetic fields in a circular accelerator can be written up to octupole
terms [17]

H0 =
p2

2
+ ω0

q2

2
+ k3

q3

3
+ k4

q4

4
(5.1)

We add to this Hamiltonian a new term, called dipolar kick,
controlled by the amplitude ε. We have,
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H =
p2

2
+ ω0

q2

2
+ k3

q3

3
+ k4

q4

4
+ εq cosωt (5.2)

Adiabatic variations of the kick frequency ω, modifying the sep-
aratrices, cause the particles to be randomly captured in islands of
stability different from the central one. Crossing a r-order resonance
(i.e. varying ω around r ω0) causes the creation of r stable islands.

The dipolar Hamiltonian has been studied in different works by
Nejštadt [20, 22] using an averaging approach. Nejštadt computes
a formula for the probability of a single particle to be captured into
1 : 1 resonance as a function of the frequency ω̃ when the separatrix
is crossed. This probability reads

P =
π −Θ

π −Θ/2
(5.3)

having defined

Θ = arccos

(
λ

2x2
C
− 2

)
(5.4)

and

xC =

√
6λ

3
cos

[
π

6
+

1

3
arcsin

(
3
√

6

4

µ

λ3/2

)]
(5.5)

where λ ∼ ω̃/k4 and µ ∼ ε/k4.
Averaging applied to different resonances causes only the appear-

ance of new constants in the expression of µ, thus not changing the
scaling laws. Indeed, we expect this probability law to be valid, at
least in a scaling sense, for the actual trapping fraction of particles
as a function of ε and k4.

For small values of ε, we have, from (5.3)

P ∼ αε1/2 + βε+O(ε3/2) (5.6)

and, for k4,

P ∼ αk
1/4
4 + βk

1/2
4 +O(k

3/4
4 ) (5.7)

while, for large values of ε, we expect a linear behaviour as P
approaches 1.

Note that, following the same approach, the probability has been
as well computed in [7] for a 2 : 1 resonance in the quadrupolar
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case (where the Hamiltonian perturbative term reads εq2/2 cos(ω1t),
obtaining

P =
8 arcsin

√
µ/λ

2π + 4 arcsin
√
µ/λ

(5.8)

where, just as before, λ ∼ ω̃/k4 and µ ∼ ε/k4.
Thus, as λ/µ does not depend on k4, we expect k4 to have little

effect in the quadrupolar trapping.
Indeed, for small values of ε the probability (5.8) scales as

P ∼ αε1/2 + βε+O(ε3/2) (5.9)

just like the dipolar case.
In the rest of this work, our simulations will be focused on the

dipolar excitation, only,

5.2 Simulation results
Numerical simulations have been performed using the 4th-order

Candy symplectic integrator. Starting from an initial distribution
(either Gaußian or uniform) we computed the final coordinates in
phase space of the particles in the beam, identifying, when the trap-
ping succeeded, the different islands appearing. Then, counting the
number of particles trapped in the external region, we computed the
trapping efficiency as

τ =
Ntrapped

Ntotal
. (5.10)

The number of trapped particles can be counted by a mere in-
spection of the resulting configuration, selecting particles which have
moved to different beamlets, or more efficiently, computing the tune
of their orbit via the frequency analysis algorithm we present, to
identify whether a particle has been trapped.

The initial distributions read, for the Gaußian case

fµq ,σ(p, q) =
1

2πσ
exp

{
−p

2 + (q − µq)2

2σ2

}
(5.11)

and, for the uniform one,

frmax(p, q) =
1

π(p2 + q2)
p2 + q2 ≤ rmax . (5.12)
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(a) µq = 0, rmax = 0.8, ε = 30 (b) µq = 0.35, rmax = 1.0, ε = 30

Figure 5.1 – Final state in the phase space of a uniform-distributed
beam with different centres for dipolar kick. Colour encodes starting
distance from the distribution centre.

Extensive scans over the different parameters affecting the trap-
ping efficiency (ε, k4, σ and µq of the initial distribution, number of
time iterations) have been performed. In every plot, the error δτ is
estimated by the square root rule

δτ =

√
Ntrapped

Ntotal
=

√
τ

Ntotal
. (5.13)

When not differently stated, for the dipolar kick we computed
the trapping linearly varying ω near the 4-order resonance, from
ωi = 4.00 to ωf = 3.60. The frequency ω0 and the sextupole constant
k3 are merely scaling parameters, and were set ω0 = 1, k3 = −2.41.

Uniform distribution The final results of a trapping process for
the dipolar kick starting from an uniform distribution centred in
(0, 0) and from one centred in the fixed point (0.35, 0) are plotted
in Fig. 5.1, where the different colours encode the starting radius
of the particle. From the plot it is possible to see that there exist
a minimum radius rmin so that, for r < rmin no trapping is possi-
ble. Moreover, when the initial distribution is centred on the fixed
point, the initial amplitude ordering is respected in the final phase
space, where particle at small amplitude are those with small initial
amplitude. This property is lost when the distribution is centred in
zero.
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Figure 5.2 – Behaviour of τ and σ of the central island as function
of centre of distribution (µq, 0). Gaußian distributions were used with
σ = 0.2.

Centering of the distribution. Study of σ In Fig. 5.2a we plot
the trapping efficiency as a function of the centre (µq, 0) of Gaußian
initial distributions with σ = 0.2. It should be noted that, when the
distribution is centred in the fixed point of the frozen phase space,
the trapping efficiency reaches a minimum. This could be explained
by the existence of a minimal radius (around the fixed point) be-
low which the trapping is not possible. Moving the distribution
away from the fixed point gets better trapping because less particles
start in the no-trapping region. The same behaviour (and the same
quadratic fit) appears in the plot in Fig. 5.2b where the standard
deviation of the final central island is computed for different µq.

Finally, in Fig. 5.3 we plot the evolution of trapping probability
for origin-centred Gaußian distribution of particles with different
standard deviation σ.

Study of ε The behaviour of the trapping efficiency versus the
dipole strength ε is plotted in Fig. 5.4. Gaußian initial distributions
centred in the origin have been used, with σ = 0.2. A comparison
with the scaling law (5.6) for small ε has also been made. Trapping
probabilities for higher values of ε have not been computed due to
lack of sufficient separation between the central and the external
islands.
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Figure 5.3 – Evolution of trapping probability τ for Gaußian distribu-
tion with µq = 0 and variable σ. The black line shows simulations for
ε = 20, while the blue one is for ε = 30.
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Figure 5.4 – Evolution of trapping probability as function of ε. We set
k4 = 0.24. The red line shows the fit for τ = const. + αε1/2 + βε.
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Study of k4 The behaviour of the trapping efficiency versus the
octupole constant k4 is plotted in Fig. 5.5 for different values of
ε. A fit for small values of k4 has been performed to evaluate the
agreement with the scaling law given by (5.7).

Indeed, we observed a remarkable phenomenon during the scan-
ning of k4 parameter. For every ε, there exist a maximum value k∗4
for the trapping to be performed. For k4 > k∗4, the external islands
merge, and a single annular region appears outside of the separatrix
(Fig. 5.6a). The value of k∗4 versus ε is plotted in Fig. 5.6b, and is
consistent with a linear law.

Time iterations The last parameter we focused on in our study
is the number of time iterations. For a slower variation of the kick
frequency, thus a better approximation of the adiabatic regime, we
achieve an increased trapping. We confirm (Fig. 5.7) the scaling law
τ ∼ n−0.5

iter stated in [5], at least for niter > 1× 105.

Different resonances Finally, a study has been conducted re-
garding the behaviour of the dipolar trapping for resonances 1, 2,
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(a) Final phase space distribution
of particles for ε = 30, k4 = 0.40 >
k∗4 .
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Figure 5.6 – Study of maximum value of k4.
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Figure 5.7 – Evolution of trapping probability τ in the dipolar case for
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Figure 5.8 – Analysis of different resonances.

and 3.

The results are shown in Fig. 5.8. It is clear that, for resonances
of lower order a trapping efficiency up to 100% can be achieved. Fur-
thermore, it was possible to verify the linear law we expected as the
trapping probability tends to 1. The plots share the same behaviour
of the 4-resonance case (Fig. 5.4). In Fig. 5.8d we show a compari-
son between the ε needed, at different resonances, for achieving the
same trapping efficiency. A power-law fit ε = αkβ, being k the reso-
nance order, gives compatible values of β for the three cases analyzed
(βτ=0.3 = 6.56(4), βτ=0.4 = 6.59(4), βτ=0.5 = 6.56(4)) suggesting a
∼ 6.5-power scaling law for ε as function of resonance order.
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5.2.1 Frequency analysis

In order to understand what is the relationship between trapping
into resonances and frequency variation, a Fast-Fourier-transform
analysis has been performed (following [4]) to determine the evolu-
tion of betatronic tune of trapped and non-trapped particles.

The algorithm we used performed an improved fft on the phase
space orbit data of a particle for a number ∆T of time iterations,
returning the main frequency ν̂.

In Fig. 5.9a we show the evolution of ν̂ for a trapped and a
non-trapped particle under the dipolar excitation. It is possible to
see that particles undergo a sudden tune jump when trapped into
resonance, shifting their frequency from ω0 to 1/4. We also plot, in
Fig. 5.9b, the final frequency of particles in a uniform distribution
with constant initial tune (the final distribution can be seen in Fig.
5.9d). A peculiar structure, with strips of phase space in which
trapping is achieved alternated with ones with no trapping, emerges.
Furthermore, in Fig. 5.9c, we show the time of the frequency jump
for the same distribution. Knowing the linear relationship between
time and kick frequency ω, we can retrieve the separatrix-crossing
ω̃ used by Nejštadt to compute the trapping probability in [20].
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(a) Tune evolution of two differ-
ent particles: the red line shows a
trapped particle, the black one a
non-trapped one.

(b) Initial distribution in phase
space of particles undergoing the
trapping process. Colours encode
the final tune: black particles are
going to be trapped.

(c) Final state in phase space of the
uniform distribution of Fig. 5.9b.
Colours encode tune-jumping time
(black particles do not undergo the
frequency change). Total number
of time iterations is 120× 103.

(d) Distribution in phase space of
particles from Fig. 5.9b after the
trapping process. Colours encode
the final tune.

Figure 5.9 – Dipole kick: frequency analysis
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Conclusions

In this Master thesis, we presented two models which use adia-
batic invariance theory to address some specific problems in accel-
erator physics.

We can summarize our main results:

• We explained the mechanism which is responsible for the ex-
change of emittances between transverse directions when a
(1, 2) resonance is crossed, computing, given an initial Gaußian
distribution, what are the expected final emittances. Numer-
ical simulations have then been performed to confirm these
results.

• We propose a novel alternative to mte to achieve beam split-
ting by means of an external excitator, reviewing previous the-
oretical results and presenting numerical studies which explore
the parameters’ space to achieve the best splitting efficiency.

This is the conclusion of the thesis, but not of the research work
related to this topic. We need to move these models from the the-
oretical framework to actual proposals that can be implemented in
particle accelerators.

While we write these final notes, an intense work with this exact
aim is undergoing at cern Beams department. In fact, we are trying
to adapt our models to the real configuration of the ps accelerator,
performing the translation between parameters of the model and
currents and magnet strength in the real machine. We use dedicated
software like MAD-X [10] to perform realistic beam simulations in such
configurations and verify whether the desired effects are actually
achievable.

Moreover, further theoretical study can be made to complete
generalizations of the models, or to analyze the systems in terms of
Hénon-like maps.
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These topics will be addressed, however, in a Doctoral project
which is soon starting: thus the best explicit of this work would
probably be

to be continued. . .

Bologna/Meyrin, June–October 2018.
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