Paner presented at the International Conference on Hypernuclear and Strange Particle Physics, Vancouver, July 4-8 TRI-PP-94-87 Oct 1994 ## A Multi-cell Target for AA Hypernuclei Searches (presented by L. Lee for the BNL-E885 Collaboration) B. Bassalleck^b, A.R. Berdoz^c, J. Birchall^a, T. Buerger^d, M. Burger^d, R.E. Chrien^e, C.A. Davis^{a,g}, G. Diebold^f, J. Dornboos^g, M. Eggers^d, G.F. Franklin^c, J. Franz^d, L. Gana, T. lijimah, K. Imaih, M. Landrya, L. Leea, J. Lowei, R. Magahize, C. Mahere. A. Masaikeh, M. Maye, R. McCradye, F. Merrille, K. Okada, S.A. Pagea, P.H. Pilee, B. Quinn^c, W.D. Ramsay^e, E. Roessle^d, A. Rusek^b, R. Sawafta^e, H. Schmitt^d, R. Schumacher^e, R.L. Stearns^k, R.. Stotzer^b, I.R. Sukaton^e, R.J. Sutter^e, F. Takeutchi^j, W.T.H. van Oersa, D. Wolfeb, K. Yamamotoh, M. Yosoih, V.J. Zepsc, R. Zyberti ("Univ. Manitoba, "Univ. New Mexico, "Carnegie-Mellon Univ., "Univ. Freiburg, BNL, Yale Univ., TRIUMF, Kyoto Univ., Univ. Birmingham. Kyoto-Sangvo Univ., *Vassar College) An experiment (Expt. 885) to search for AA hypernuclei will be carried out at the Brookhaven AGS 2 GeV (D6) beamline. This experiment will succeed the present Hdibaryon search experiments (Expt. 813 and Expt. 836) on the 2 GeV beamline and will be set up in a similar way, making use of the K^+ spectrometer (see fig. 1). A multi-cell target is being designed to make use of the reactions $K^- + p \rightarrow K^+ + \Xi^-$ and $\Xi^- + {}^A Z \rightarrow {}^A_{AA} (Z-1) + n$. As illustrated in fig. 2, a Ξ^- is created via the (K^-, K^+) reaction in a primary target (CH_2) and the outgoing K^+ is momentum analyzed using the K^+ spectrometer. The recoiling Ξ^- travels through a gas microstrip chamber (GMSC). slows down in a tungsten degrader, and travels through a thin silicon detector before coming to rest in a secondary target made of ⁶LiH or CH (scintillating fiber stack). The stopped Ξ^- can then capture into an atomic state and, a fraction of the time, nuclear absorption of the Ξ^- produces a $\Lambda\Lambda$ hypernucleus along with a monoenergetic neutron. Observation of this monoenergetic neutron in one of two large neutron arrays located on either side of the target (see fig. 1), in coincidence with the stopping Ξ^- , identifies the formation of a AA hypernucleus. The E885 target is set up with a cellular geometry and consists of a series of approximately 8-10 cells. Each 'cell' is composed of a CH₂ block, followed by a gas microstrip/W-degrader/Si-detector sandwich, followed by a LiH or scintillating fiber block. The Si detector is used to tag the 'stopping Ξ^{-} ' by measuring its dE/dx before it enters the secondary target. The gas microstrip chambers provide 'in-target' tracking for the incoming K^+ , the outgoing K^+ and its associated Ξ^- . This allows for a more refined determination of (1) the $K^+ - \Xi^-$ opening angle; (2) the Ξ^- trajectory; (3) the (K^-, K^+) vertex; (4) the K^+ scattering angle; and (5) the incident K^- momentum. These chambers will present an active area that is thin, low in mass, able to handle high CERN LIBRARIES, GENEVA 2 C440 WZ ## SCAN-9411474 rates, resistant to radiation damage, and able to provide good spacial resolution. Monte Carlo studies have been carried out and indicate that the microstrip chamber should occupy a volume no thicker than about 1.0 cm, and that a spatial resolution of 0.5 mm in Y will be required. Fig. 3 shows the present layout for the microstrip Y-plane. A prototype for the E885 target is presently being assembled and may receive some test beam in the summer of 1994. Fig 1. Schematic layout of AGS Expt.885. Fig 2 Schematic layout of the E885 Multicell target Fig 3 Layout of the microstrip Y plane. The strips are laid at a pitch of 500 juin with the anode and cathode widths at 20 and 280 μm , respectively