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1 Introduction

The optical elements of the Virgo interferometer undergo position and angle fluctuations
that are mostly due to the thermal and seismic noise. In general these are low-frequency
fluctuations (< 10 Hz) that can be rapidly damped if one has a system that is capable to
detect the deviations and to intervene in a closed-loop circuit with the appropriate time
scale. Since any angular tilt causes a variation of the length of the cavity and this can
simulate a GW-signal, the specifications required for the angular stability are determined
by the sensitivity level one is aiming at for the detection of a GW-signal. These can turn
out to be very severe and thus the sensitivities required in monitoring the error signals can
become an issue.

Let us consider a pure TEMgp laser beam impinging upon a plano-concave Fabry-Perot
cavity under the condition of a perfect alignment and matching: the cavity and laser prop-
agation axis are perfectly lined up and the beam waist lies on the plane mirror M;(Ma)
with the right size (wo) (see fig.(1)). If the laser beam does not drift in angle and/or po-
sition, a beam/cavity misalignment can occur only under one of these two circumstances

(see fig.(1)):

i) an angular tilt of the input mirror M;(Ma) that causes a rotation and translation of
the optical axis;

11) an angular tilt or lateral displacement of the exit mirror M2(M4) that both cause a
lateral displacement of the optical axis;

or any linear combination of the above. Notice that any lateral diplacement of the mirror
M, (M3) is totally ineffective. A variation in the position and/or size of the beam waist does
not affect the alignment but generates only a beam/cavity mismatching.

Let us consider the two above mentioned cases under the simplifying assumption that
both the angle and/or position off-set occur only in one direction. If L(= 3000 m) is the
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Figure 1: Michelson’s interferometer scheme.

length of the cavity and R(= 3450 m) is the curvature radius of the mirror M3(M,) the value
of the ”cavity parameter” g = 1 — (L/R) is 0.13. With simple geometrical considerations it
can be shown that

e an M;-tilt A# generates

1. a cavity axis rotation AV}
2. a cavity axis displacement Az ~ gR(A0)

3. a cavity length variation

=3 (75) e (1)

e an M,-tilt (Af) generates

1. a cavity axis displacement Az = R(A6)

2. a cavity length variation

=5 (=) ey @)

Notice that since g = 0.13, a tilt of the curved mirror M, (M) has an effect 10-times
worse than the same tilt of the plane mirror M1(M3). If for argument’s sake, we assume a
guess value of AL/L = 10721, egs.(1,2) state that the angular tilts of M; and M; must be
controlled at better than 1.1-1071° rad and 4.2 - 10~!'rad, respectively.




The active alignment technique described in refs. [1, 2] has demonstrated sensitivities of
0.1 nrad/+/H z to tilts and of 0.08 nm/+/H z to lateral displacements for a single Fabry-Perot
on a table-top configuration. Similar results have been obtained by using the ”differential
phase sensing technique” experimentally tested by the Glasgow group [3] on a single Fabry-
Perot cavity. Both these results seem to be very promising. Here we consider a possible
application of both these methods to the case of the Virgo interferometer.

2 The Anderson method

Let us consider a pure TEMgg laser beam entering a Fabry-Perot cavity with a tilting angle
Aa with respect to the cavity axis. In the limit where this angle is much smaller than the
far field divergence of the beam (A = 1.064 um; wo = 2 cm)

ap = — = 1.69-107° rad (3)
TWgo
it can be shown that the cavity sees the beam traveling along its axis as a linear superposition
of the TEMgq distribution and the first off-axis mode TEM;o. Similarly, if the TEMoo
beam enters the cavity with a lateral displacement Az much smaller than the beam waist,
the cavity sees again the incoming beam profile as a linear superposition of the TEMoo
distribution and the first off-axis mode TEM,,.

The important difference between these two cases is that the rotations lead to a coupling
into the TEM;o mode as the translations do, but with a 90° phase shift. This means that
a misalignment causes a coupling to the lowest-order off axis mode with a phase that
depends upon the type of misalignment. Therefore, the transverse field distribution seen
by the cavity as a consequence of small walks off of the two terminal mirrors, can be always
approximated by a linear combination of these two modes

E=Colo+CUy, (4)

where E is the normalized input field, and Uy and U, are the usual Hermite-Gaussian func-
tions associated with the TEMoo and TEM;o modes. Cg and C are the coupling coefficients
and in general are complex numbers. In particular:

1. for a pure translation Az: C = Az/wg ;
2. for a pure rotation Aa: C =1Aa/ag;

and Cg is always close to unity. A

Furthermore, since M; can basically generate only rotations (§ <« 1) and M; only trans-
lations, the detection of a tilt or displacement type of error determines not only the extent
.of the drift but also the mirror that generated it. Therefore the basic idea of the method




is to find a way to detect the amplitude and phase of this induced TEM;o componenent.
The logical place where to look at would be right behind the mirror M;. But this presents
an immediate problem. In a plano-concave cavity, the frequency difference between the
fundamental mode and the first associated higher order mode, is given by:

Av = 5 L arccos(y/g) = 19.11 kHz . (5)

Consequently, if the cavity is tuned at one of the fundamental TEMqqg longitudinal modes,
which are frequency spaced of exactly ¢/2L = 50 K Hz, the TEM;¢ compornent introduced
by the misalignment is necessarily off-resonance.

Following Appendix A, one has that in the Virgo case (TZ = 0.1, T? = 10™*) the ratio
between the transmittivities on (cos 2kL = —1) and off-resonance (cos 2kL = 1) is given by

To%; 1+ Rpy2
7 = (1_R1) = 1444 . (6)

This means that very little of the power associated with the TEM; is transmitted by the
cavity. An elegant way out from this problem is offered by the optical heterodyne technique
where phase modulation generates sidebands with the same frequency spacing that separates
the first order mode from the fundamental TEMgo mode [2]. The field amplitude for a beam
of phase modulated light at the optical frequency w, has the form

l=o0
E = Boe*{Jo(m) + 3_ Ji(m)[e™ + (—)'e~*™ 1}, (7)
=1

where 2 = 2w Av is the modulation frequency, Ep is a constant real vector, and Ji(m) is
the Bessel function of order / and phase modulation index m. In this notation, the physical
electric field is obtained by taking the real part of the complex quantities. For small values
of the modulation index m only the first three in the expansion (7) can be retained and the
expression of the electric field (4) reduces to :

E = Eo(Uo + CUy) e { Jo(m) + 20J3(m) sin (021) } . (8)

By disregarding the non resonant terms in (w — ), this equation shows that the transmit-
ted beam comsists mostly of the fundamental mode at the carrier frequency with a small
contribution from the TEM;o mode at the sideband frequency (w + ) [2]. The result-
ing transmitted intensity exhibits a spatially dependent component modulated at the beat
frequency Q as follows (Iy =| Ep |2):

I=T*|EP= {2 U2+ C? I U}
+ 2J0J1UoUs [Re(C) cos Qt + Im(C) sin ]} . (9)

Since the Hermite-Gaussian functions are mutually orthogonal when integrated all over
space, the detection of the entire transmitted beam by a single photodiode results in a DC-
signal. The correspondent DC-photocurrent is obtained by integrating the first and leading




term of eq.(8) yielding
Idc:n_cTzIO Jg(m) ) ' (10)

where 7 is the quantum efficiency (=0.8). On the contrary, a separate detection of each
half of the transmitted beam, followed by electronic subtraction of the two photocurrents,
yields a current signal given by '

P LR i
Taiss = 2\/;1‘1': Jo {Re(c)cosﬂt +Im(C)sin Qt} . (11)

Eq.(11) shows that the intensity modulation that is in-phase with the modulation is pro-
portional to the translational error and the quadrature signal is proportional to the angular
alignment error. Thus, by selecting the proper demodulation phase, one can obtain both the
error signals simultaneously and independently. With the same argument, a quadrant pho-
todiode detector permits simultaneous detection of couplings to both vertical and horizontal
off-axis modes.

3 Shot noise limitations

The result of the method, expressed by egs.(10,11), says that the error signal is related
to the measurement of the difference between two almost equal currents. Ultimately, this
problem reduces to that of taking the difference between two almost equal numbers and,
thus, the method finds its intrinsic limitation in the photon statistics. The rms shot noise

current associated with eq.(10) is
Iy = Velge (12)

and the displacement and/or tilt that corresponds to a signal to noise ratio equal to one,

turns out to be . )
e
Cl=— 1/——- . 13
1 2J1 V 214 (13)

4 Coupling between the two FP-cavities

The case where one wants to apply this method to control simultaneusly the two arms
of the Virgo interferometer presents a potential problem. Since the laser light bounces
continuously between the two Fabry-Perot (FP; and FP;), the information relative to a
misalignment of one is inevitably transferred to the other one and viceversa. The extent of
this coupling effect is anything but neglegible and can be seen in the following way.




Let us consider the frequency modulated laser beam that leaves the recycling mirror, is
split by the beam splitter and impinges upon the front mirrors of the two FP’s as shown
in fig.(1). Let us suppose that initially the two cavities are perfectly aligned and, all of a
sudden, independent misalignments occour in both FP; and FP,. Two TEM;¢ components
will immediately appear in both the transmitted and reflected beams from FP; ;. These
components will be recycled trough the whole interferometer and, after some transient
time, an equilibrium condition will be reached. At this point, the two signals detected
behind the two terminal mirrors will be a linear combination of the displacements a; ,
and the angular tilts a; 2. This combination can be analytically calculated if the following
simplifying hypothesis are assumed:

1. the recycling mirror and the beam splitter remain perfectly aligned;

2. the dephasing generated by a reflection from a FP-cavity is always F 90° depending
if the wave-frequency is resonant or non-resonant in the cavity;

3. the frequency difference between the main carrier and the lateral sidebands is neglected
in propagating the beam through the recycling cavity;

4. the component at the carrier frequency is assumed to estinguish on the output port
(dark fringe condition).

Under these conditions, the complete calculation of the recycling process leads to the fol-
lowing expression for the powers P; transmitted behind the FP;-terminal mirror:

e = () et w0 ()

4JoJ4 .
\/Zr—(l — ,HzR(z))(A cos Mt + Bsin Qt)}

(+ = Left, — = Right) (14)
p, = PP 4 p®

where TZ(R2) denote the transmittivity (reflectivity) of the recycling mirror, and

B =+/1-T3F
ay + axf Ry
A= —— = 15
wo(1 — BRo) (15)
=2
Qo

From eqs.(14,15) it’s interesting to notice that the cross-talk between the two arms cou-
ples the two displacements only; neither angle/angle nor angle/displacement couplings are
predicted. By assuming R2 = 0.95 the extent of this coupling effect is (8 = 0.998):

BRo = 0.97 (16)




which is very close to one and thus potentially dangerous for a good functioning of the
feed-back system. By neglecting the term in JZ, the left /right asymmetry, which is free
from systematic errors, is given by

_ Left - Rzght . 8 J1 1- ﬁRo
" Left+ Right  /2x Jo 1+ BRo

(Acos§it + Bsin Qt) . (17)

With this equation we are now in the position to give a more realistic estimate of the
minimum angle and lateral off-set that can be appreciated.

Let us suppose that the maximum power impinging upon the photodiode cannot exced
10 mW. According to eq.(10) and assuming 7 = 0.8, Jo = 1, the corresponding total-output
current is Inaz = 6.85 mA. The minimum asymmetry that can be appreciated is:

AMin = ,/I ¢ -48-10°/VHz. (18)

Following eq.(15,17) we get:

. i
o V2m Jo 1+ BRo
Qo - 8 J1 1- ﬂRo

A™"=99-107"/VHz, (19)

and, assuming FP; aligned (az = 0)

T (1= pRo) (%) = 3.0+ 1074/ (20)
Wo Qo

5 The Feed-Back System

Fig.(2) shows the basic conceptual scheme of the servo-loop mechanism that we have in
mind.

For the time being, only tilts and displacements in one plane will be considered. The
signals from each pair of photodiode detectors located behind the two Mj-mirrors are fed
into a lock-in amplifier toghether with the reference frequency at 19.1 kH z given by eq.(5).
The two outputs are proportional to the in-phase and quadrature components associated
with the lateral and angular displacements and constitute the error signals. For what we
have been saying so far, these signals receive the extra contributions that are induced by
the cross-talk between FP; and FP; and can be expressed in the following form (h = BRo):

v = k@x®, vl = kOx{? + hx{?)
| (21)
v = k@ x( v = kx4 nx{)
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Figure 2: Conceptual scheme of the servo loop mechanism.

where we introduced a label to distinguish the angular (a) and the lateral (t) displace-
ments. The parameters ¥(*) and k(*) are the amplification factors for tilts and translations,
respectively.

Following a basic feed-back scheme, the voltage of eqs.(21) are first amplified and then
plugged into linear filters. Each linear filters is programmed so as to generate a linear com-
bination of these error signals and their first derivatives. For the time being the integrations
will be ignored. These combinations are transformed into voltages and, by subsequent ap-
plication to the steering coils, act on the mirrors and determine their accelerations if these
mirrors can be considered as free suspended masses. Hence, as the final result of this elabo-
ration, the motion of each degree of freedom will obey a second order differential equations.
In practice, the mirrors are not free and the real action will be interfaced by the "marionetta
mechanism” that introduces a transfer function between the correction signals and the final
actuators on the mirrors. This will complicate the algorithm of the feed-back system but, at
least in principle, shouldn’t alter the generality of the present discussion. Therefore, if ~y(ait)
and 6(*t) are the adjustable parameters of the linear combinations, with the definitions of
eqs.(21), one has:

@ = e x(@) | sl ()
(22)
X® = A @ x4 sk 1
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and

X§" = 7(‘)k(‘)(X§‘) + th)) + 6(‘)k(‘)()'(§‘) + th‘))
(23)
2O = OrOxP 4 hx®) + §OROX + nXY)

Eqs.(23) constitute a system of two linear and coupled differential equations with constant
coefficients. With the positions:

r=x®1x®, ¢=xP-xP (24)

it can be reduced to a system of two decoupled differential equations, for the variables 7
and g :

F— (1+ h)EB(EOF 4 4Br)y =0

(25)
i - (1~ WO +909) = 0
An eye inspection of Eqs.(22,25) shows that the stability of the solutions requires
MoK s < 0 (I =a,t)
(26)

|[h] < 1

otherwise the feed-back system, as we have considered it, won’t work. The coupling coef-
ficient h introduces an asymmetry between the two eqs.(25) but, within the conditions of
eqs.(26), the stability of the solutions is always guaranteed. However, it is evident that the
stronger the coupling is and the higher the gain k(") has to be.

6 Low-frequency noise suppression

Finally we have to consider the low-frequency damping effects. Eqgs.(22,25) become stochas-
tic equations if we consider a term on the right hand side representing the effect of additional
random forces. These are due to all the noises that can disturb the suspended mirrors and
have some determined spectral composition in frequency.

Let us consider the particular component at the frequency wp and seek a particular
solution of the inhomogeneous equation for ¢ (or 7)

g—(1—-h k() 6“):} + 'y“’q = Zow? sinwgt , (27)
0 -

of the form
g = Nsin(wot + ¢) . (28)
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The result is vefy well known and yields:

2
Zo wO

N =
VIwZ + (1 = REOy O 4 [(1 - h)E§Ouw]?

(29)

B (1- h)k(t)a(t)
p = arctan{ - wg Ty h)k(‘)'y(‘) wo}

When the solution of the homogeneous eq.(27) has died off, only the term of eq.(28)
survives. The amplitude ¢ will follow the action of the external disturbing force with
a different phase and a different amplitude. Moreover, eq.(29) shows that the feed-back
mechanism has introduced a pole into the system with frequency and width given by:

WoR = 1/(}1, — ]_)k(t)'y(t)

5(t)
— 2

(30)

If the gain is sufficiently high so that the pole is kept far above the region of interest
(10 Hz), the suppression factor s, defined as

2
N wp

Zo \Jwd(Bwor)? + (wlp — wd)?

s

(31)

in the low frequency region becomes:

wg \2 .
s§=|—] . 32
(52) (32)
In conclusion, in spite of the presence of a strong coupling effect, the feed-back system
will have a strong damping effect in the low-frequency region if the gain (h — 1)k(®)4(®) can
be made sufficiently high.

7 The Glasgow method: the differential phase sensing tech-
nique.

This alternative tecnique has been suggested by R.Drever at Caltech and experimentally
demonstrated by H.Ward at the University of Glasgow [3]. It’s basically an extension of the
method that will be described for the longitudinal locking (Pound and Drever) and relies
on using the light which is reflected from the input mirror. The beam is phase modulated
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but the modulation frequency  is not to be equal to the frequency difference between
fundamental and first transverse mode as it is in the Anderson method.

Let us suppose that the cavity is both laterally and angularly misaligned with respect
to the incoming beam direction of the usual quantities a and a respectively. In the cavity
frame the incoming beam is described by

E“n = Eoeth[Uo + (a. + Za)Ul][Jo + 2‘LJ1 sin (Qt)] s (33)

where the carrier frequency is resonant but the two sidebands (w + ) are not. If the
cavity is locked at resonance, the expression for the fully reflected beam in the main beam
frame, follows from the second consideration of sec.4

E,.ef = —1E0€m}t[Jo(Uo — 2GU1) + 2ZJ1(U0 + 21,QU1) sin (Qt)] . (34)

The idea of the method is to let this beam evolve freely in space and to consider that
an additional term intervenes in this process. This term is the phase difference between the
real Gaussian beam and the ideal plane wave approximation given by

A
$n(2) = (n+ 1)§(2), tand(z)= — =8.2-107%2. o (35)
Twg
The index n refers to the n-th order mode and z is the propagation coordinate whose
origin, z = 0, is at the location of the beam waist. This means that different modes evolve
differently and the two components U and U; acquire the phase difference ¢(2):

Eres = —1Eqe™ { [Jo(Uo — 2aUj cos ¢) — 4aJy cos ¢ sin (Q2t)]
— 2t[aloU; sin ¢ + J1(Uo + 2aU; sin ¢) sin ()] } . (36)

The intensity associated with this field depends upon the position where the detector
is located. If the current difference between the two halves of a photodetector is taken
at a given z-position, and the signal is demodulated at the frequency 2, the dominant
component that will be detected is given by:

Iiss x — 8JoJ1UoUs(asing + acos @) sin () . (37)

The beam has a waist on M; and thus sin ¢ = 0 in eq.(37). Therefore, in the region right
after the reflection the method is sensitive only to tilts. However, if the beam is let to evolve
the sin ¢ term builds up with distance and an equal sensitivity to angles and displacements
is reached when ¢ = 7 /4 or, in the Virgo case, for z = 1219.5 m. The same distance, for the
Frascati interferometer would be 298.2 cm. In both cases these values can be considerably
shortened with the introduction of an appropriate focusing.lens. This has been discussed
in detail in ref.[3].

At present we don’t have any data on this method for our top bench interferometer.
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8 The Frascati table-top interferometer

8.1 Generalities

As it has been mentioned above, the Anderson method has never been used to control the
alignment of a Michelson interferometer with recycling and Fabry-Perot in the arms. The
only experimental demonstration of power recycling in a such a system has been reported in
[4, 5] where no informations about automatic alignment systems are given. To illuminate the
practical difficulties one can encounter with a completely automatized system, we decided
to construct a rigid prototype Michelson interferometer with commercial mounts on a small
optical table. The lay-out is shown in fig.(3).

Figure 3: Frascati table top interferometer.

The laser is a small He-Ne (Newport-1 mW) and the two Fabry-Perot are plane-concave
cavities. In the following table we summarized the main characteristics of the mirrors
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Mirror Label | Transmittivity | Curvature radius
recycling Mg (1+10)% 0o
input M, M3 (1+10)% oo
output My, Mg | (0.02+1)% 10 m
beam splitter BS 50% 00

All the mirrors are mounted on Burleigh-(piezo mounting). The single Fabry-Perot cavity is
1 m long and the separation between two longitudinal modes is 150 M H z. The transverse-
longitudinal separation is 15 M Hz. The line-width profile measured in transmission behind
the terminal mirror is reported in fig.(4).

From the measured value of the width of the resonance

c/2L . v R1 Ry
= = ———— = 111. 38
N F(finesse) 1_R.R, 111.1 (38)

one has RyR, = 0.974 consistent with the values experimentally used R; = 0.995 and
R, = 0.975.

0.6
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(AlL)
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0.3 |

0.2 |

0.1

Figure 4: Line-width profile.
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8.2 The Pound-Drever method

The single Fabry-Perot has been longitudinally locked using the Pound-Drever method
technique [6]. The basic mechanism of this method can be summarized as follows.

Let’s suppose to have a phase-modulated beam at the frequency (1) impinging upon
the cavity and to look at the beam reflected back from the input mirror cavity M;(Mgs).
The expressions for the incident and reflected amplitudes are:

Einc — EO etwt{Jo + Jl etﬂt _ Jl e—tﬂt}
(39)
Epef = ex(wt+¢o){A0 + A+ez(m+¢+ ~0) 4 A_e—.(m+¢o—¢_)}

where w is the beam frequency and the real quantities 4; (i = 0, +,—) are the reflectivity
functions of the Fabry-Perot. The corresponding expression for the reflected power is:

| Eves =140 >+ | A4 P+ A- 2
+ 2A0A+ cos (Qt + ¢+ - ¢0) + 2AOA_ Ccos (Qt + ¢0 e ¢_) ' (40)
+ 2A+A_. COSs (2Qt + ¢+ - ¢_)

which shows a DC-level and two components modulated at frequency @ and 2Q1. If the
two sidebands are completely off-resonance and we reasonably assume ¢4 = ¢_ =7 /2, the
term in ) of eq.(40) symplifies into

(Ay + A_)singocosQt — (A4 — A_)cosdosin 2t . (41)
Exactly at the resonance, one has:
¢o=—§, Ay +A_=0 (42)

and both the sine and cosine terms vanish. The behaviours of these components when the
cavity length is scanned through the resonance are shown in fig.(5,6).

In particular, the sine term exhibits a fast slope through zero, which is linear over a
region of the order of 5- 1073 of a wavelength. Thus this component is a nice candidate for
being the error signal necessary to generate the correction to be applied to the piezo mount
hosting the terminal mirror.

8.3 The length stabilization

The piezo mount has a frequency response that relates the applied voltage to the motion
effectively executed by the mirror. This means that for any sinusoidal perturbation at a
given frequency w one has:

z(w) = G(w)Vin(w) , (43)
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Figure 5: Pound-Drever method : sin Q¢ amplitude from eq.(40).
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Figure 6: Pound-Drever method : cos Q¢ amplitude from eq.(40).
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where z(w) and Vi,(w) are the mirror position and piezo voltage amplitudes, respectively.
The transfer function G(w) is, in general, a complex function and, for a correct understand-
ing of the feed-back system, has to be experimentally measured. A special set up has been
arranged for this measurement. An acousto- optic modulator driven at 40 M H z generates
a secondary component, which is up-shifted in frequency of the same amount and travels
slightly tilted at an angle with respect to the main beam. This second component impinges
upon the mirror holder which is set into oscillation by a voltage driving the piezo at a given
amplitude and frequency. After being reflected by the mirror this component is summed
with the main component that leaves the modulator unshifted. The signal that results from
the beating between these two beams of different frequencies is demodulated at 40 M H z and
yields the amplitude and phase of the actual movement of the mirror. This fully determines
the transfer function of eq.(43). The experimental determinations of G(w) = g(w)e*¥(*) are
shown in fig.(7,8) in the frequency interval from zero to 800 Hz. The resonances visible in
the region between 200 Hz and 500 H z are of mechanical nature and have been efficiently
damped by adding an extra load to the mount.

In the feed-back system that we used, the error signal described above, is first integrated,
then amplified and finally, after some delay time 7, applied to the piezo. The mathematical
translation of this procedure drives to a second order differential equation for the mirror
position z(t). If, similarly to what has been done in sec.6, a forcing term Zge**o? is supposed
to act on the piezo mount, this equation can be written as:

TE(t) + £(t) — kG(wo)z(t) = 1Zp wp exp (wpt) , (44)

where k is an overall amplification factor. The stability for the solution of the homogeneus
equation (44) requires:

kg(wo) cosp(wp) < 0 (45)
and, at equilibrium, one has:

z(t) = zg exp [2(wot + 77)] , (46)

where (go = g(wo); Yo = ¥(wo))

Zowy
Tg =
\/kzgg + wd(1 + T2w3) + 2kgowo(Two cos Yo — sin Po)
(47)
2
Tws + kgo cos o
= t
7 = arctan PP m—— }
In all practical cases, it’s always

Twy € 1 (48)

and, given our experimental conditions

k=6.32-10°V/em-s, g(wo=0)=20-10"em/V, (49)




18—

2.5¢-07 }--

Responsd
(cm/V)

N an . /\/\MMW 5 ...........

1.5e-07 fbomidododo e R

1e-07 Fid L A

5e-08 |- L JU SR SN ORI S N SO e e /\I_

10 100 Freq. (Hz)

Figure 7: Transfer function : amplitude g(v).

Phase
(deg)
-20

-40 |-

-60

.80 i

-120

140 i ]

| 1
-160 i
10 100 Freq. (Hz)

Figure 8: Transfer function : phase %(v).




— 19—

at low frequency it’s also
k
go— > 1. (50)
Wo
Therefore, the suppression factor becomes:

o wo

S(UJQ) = Z_O = Eg—ﬁ ) (51)

and

tann =

ey (52)

The experimental results for 1/s(w) are reported in fig. (9) where a comparison between
the data and eq.(47) are reported. The effect of the feed-back system can be appreciated -

10 po

Figure 9: Attenuation factor 1/s(v).

in fig.(10) where the time behaviour of the power transmitted by the cavity is presented.
The measured distribution of the power values is reported in fig.(11) and shows that the
power fluctuations are always very well kept above 98% of the maximum available power.
This level of stability is certainly satisfactory for our purposes.
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Figure 10: Transmitted power time behaviour.
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Figure 11: Transmitted power histogram.
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8.4 Experimental results on the Anderson Method

Once the FP-cavity has been longitudinally locked, it is possible to start testing the auto-
matic alignment method. According to the procedure described in sec.2, the beam trans-
mitted through the terminal mirror of the FP-cavity hits a quadrant photodiode right in
the center between two sections and the two halves of the beam generate two photocurrents.
These two currents enter a tuned transformer that provides the required difference signal at
the modulation frequency of 18.3 M Hz. According to eq.(17), the in-phase and quadrature
components of this difference provide the error signals (see fig.(12)).

FP1
Q.PH.

0 deg

Input

T

/ sin

Figure 12: Feedback scheme for the angular control.

90 deg

The first test of the system is to misalign the cavity and to realign it back, by turning
on the feed-back loops. According to eqgs.(1,2) a rotation of the terminal mirror M; induces
a lateral off-set, while a rotation of the input mirror M, causes instead a displacement and
a tilt: in this case both error signals are affected. Fig.(13) shows the behaviours of the
two error signals, starting from a situation when both mirrors had been misaligned and the
feed-back loops were turned on, one at a time.

Finally, a pink noise has been applied to M,. The different spectra of the error signal,
obtained by turning on and off the feed-back system are presented in fig.(14). The corre-
spondent ratio (see fig.(15)) shows that the suppression factor defined by eq.(51), goes from
10 to 1 in the range (0.5 + 20) Hz.

The sensitivity limit on the angular and lateral off-set of a single Fabry-Perot, in our
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Figure 14: Spectral density of angular error signal with a pink noise.
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Figure 15: Suppression factor.

present experimental configuration, has been measured to be:

L =2 410 VA (53)

Wo Qg

* Given the values wo = 7.2-107* m,ap = 2.8 - 10™* rad the minimum detectable misalign-
ments are:

Gmin =30 nm/VHz, OQmin=11nrad/VHz. (54)

The sensitivity limit of eq.(53) expected from the shot noise is 1.2-10~6 /+/Hz. There-
fore, at the present stage of the experiment we are still dominated by the electronic noise.
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A Basic Formulas

A.1 The S-matrix

A generic "two-ports” optical system S is defined as an optical assembly where two beams
come in and other two beams go out (see fig.(16)).

Figure 16: Generic "two-ports” optical system.

By indicating with e = (e;, e2) and u = (uq, u;) these two e.m. beam vectors, the action
of the optical system is described by a (2 x 2) complex matrix S (7] defined by the following
transformation:

S:e—u= Se. (A.1)

The diagonal terms S;; give the fractions of the outcoming waves that result from the
reflection of the incoming waves. The off-diagonal terms S;; are related to the components
that are transmitted by the system. By imposing the energy conservation and the invariance
under time-reversal, this matrix turns out to be symmetric and unitary. This implies that
its general expression depends only upon 3 independent parameters and can be written in
the following form:

5 = ( rett — /1= rZedt ) . det§ = 2%+ ’ (A.2)
— /1 —rle+ re's
where ¢4 = (¢1 + ¢2)/2.

As an example, let us consider a mirror with amplitude reflectivity r and transmittivity

t related by

PPyt =1,
Without loss of generality one can assume that the reflection causes a 90° deg phase shift
[8] so that ¢y = ¢ = ¢4 = 7/2 and eqs.(A.2) become '

S:<" t), detS = —1. (A.3)

t ar
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A.2 The Q-matrix

In the case of a cascade of "two-ports” optical system, it’s more convenient to group the four
beams of fig.(16) in a different combination of beam vectors: i = (e;,u;) and 0 = (uz, e2).
With these definitions, the Poynting vectors associated to the corresponding components of
i and o are parallel and the action of the optical system is described by a (2 x 2) complex
matrix Q defined by the following transformation: '

S

The relationship between this matrix and the S matrix defined in section A.1 is:

i—-o=Qi.

Q = _1__ —detS Sj _ l re -
S12 -Sn 1 V= et |
where ¢_ = (¢1 — ¢2)/2. This matrix is hermitian with
1
det@Q = —-2—(—det5+511523) = =1.
512
In the case of the mirror considered above (¢4 = 7/2,¢_ = 0) one has:
1 1
Q= T\ —oer

A.3 The Fabry-Perot

(A.4)

(A.5)

(A.6)

(A.7)

As shown in fig.(17), a FP-cavity can be seen as a sequence of a mirror, a drift space and

a second mirror.

Q (1)

D(l)

Q (2)

Figure 17: Q-matrices sequence for a FP.

For the two mirrors one has (see eq.(A.7)):

; 1
() = =
Q t

1 175
N — 1T 1

),ﬁ+£:1 (i=1,2).

(A.8)
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For a drift space of length [ filled with a medium of refracfive index n, the )-matrix is:

by = (fow e?.p) Cw= k= 2D, (A.9)

c

and can be obtained putting r = 0 and ¢, = —¢ 4 7/2 in the general expression (A.5).
Hence, for the FP-sequence one has: ‘

d = Q(Z)DU)Q(I) = 1 (

e~ 4 rirget? e + irget?
tit2 ’

A.10
—arge” ¥ — e rrge”V 4 e¥ ( )

In all our considerations only the beam e; enters the cavity traveling along its axis and
is partially reflected and transmitted. From the Q-matrix definition (A.4) and the condition
e, = 0 one has

i
Uy = ——ﬂeI:Rel = Re'* ey,
32
Uy = -1—61 =T€1 = Te'" €1, (All)
1Py .

where

T2 412 4+ 21173 cos 29 r1(1 4 r3) + ro(1 + r?) cos 2¢
R = 1T 2 = arct 2 1 , (A2
\/IJr r3r2 + 2ry7g cos 24 p = arctan { r9t2 sin 29 } ( )

and

{1t
14 r2r + 2rrpcos 29

T = 1—7‘17‘2

tan g} . (A.13)

T = arctan { -
14 7ri7mg

Depending on the value of the phase ¥, one obtains different conditions. In particular
(m € N)

e I'P on resonance': ¢ = (2m + 1)7/2

Ty — T s
2o = (4m+3)T,
R’ 1—7‘17‘2 p ( m+ )2
tita T
- = —. A.14
T T T=(2m+ 3)2 ( )

'we are assuming ry < 72
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o FP off resonance : ¢ = mmw

T2+ 71 T
R=212TTL = (4m+ DT,
1§ rir2 p=(4m+1)5
tits .
T = = . A.15
1 T T =mn ( )

Finally, after some algebra, one can give the expressions for the stored beam amplitudes
as well (see fig.(16)). From equations (A.10), (A.11) and fig.(17), one has:

T .
ap = (Q(lll)q’zz - lez)¢2l) U ge’( e,
. rol
bo = (Q(gll)d’zz - Q%)Qzl)uz =1 —:—z-e'(T Ve . (A.16)
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B The Michelson Interferometer

The whole Michelson Interferometer (MI) can be seen as a sequence of optical elements
in a way very similar to the one just described for the single FP-cavity. The MI-case can
be conveniently discussed in the framework of a more general scheme as shown in fig.(18).
As a matter of fact this scheme represents the "dual-recycling solution” and should be
investigated on its own for a possible application to the Virgo case. The ”single-recycling
solution”, which is at present adopted, is obtained as a particular case of this more general

scheme.

{in)

fref)

(in)

(r)

Ql("l rt/) (rec) : QJ(’; ’t.v)
L/
L 1 )7 12
L 4
L 2
] Qz(rzrtz)

Figure 18: Michelson’s interferometer scheme.

(out)

(in)

3

By using the same language of the previous sections, this scheme is a ”four-ports” optical
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system and can be pictured as shown in fig.(19).

01
i =(A(iﬂ) A("f))
tr) in)
o = (AT A)

Lo MI I

g =AY AY)
0, = (A, A%

[/

3

Figure 19: "four-ports” structure for ML

Following the @-matrix formalism, one can write:

ir,i= Fz307 — t,Fp03

t,i= Fpog —r,Fa03 (B.1)
where
Fo= Qi1 ' D(-L1)1 D(~1l3) &7,
Fy =1Q, ' D(—Ly1) 62 D(—L3) Q'
F3=Q; ' D(—Ly)83D(~h) 3,71, (B.2)
and

. 0 —2 . 1 0
0’2:(1 0), U3=<O _1) (B3)

are two Pauli-matrices, whose appearance reflects the structure of the basis vectors used to
define the Q-matrix of section A.2.

In the case of no incoming beams at the output ports (A(li") = Ag‘") = A(;") = 0), one
can demonstrate that (see fig.(18)):

1- 'L‘T‘gCg(t,,T,)
e+ 171.Cy (74, ts) — 172C (s, 74)

Cl(]., 1.)
1 — 1ryCa(ty,7s)

A(rec) =t

Alm)

A(out) — ZT,t,tge‘(n_F’) A(rec) , (B4)

where

C =1~ 7‘11'272172.28—12(6“-{-6") y
Ci(e,y) = 2Rtk — P Roe™ ¥, (k= 1,2) (B.5)
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and

w ..
rnw=_k, Ti=—Li, b;=7+T;. (ij=12) (B-6)

If we consider the case of single recycling (r = 0,t; = 1) in the following simplifying
hyphotesis:

i) 50/50 beam-splitter (r2 = 2 = 1/2)

ii) identical FP-cavities (R; = Ry = R)

egs.(B.4) become:

A(rec) _ 2t1

= Alin)
2 + R (e 211 — e~%n) )

Alout) _ % e:(Fl—I‘:)R(e—tZJu + e—‘vsn)A(fGC) . (B.7)

B.1 Modulation

In the case of the "phase modulation” discussed in the text, the beam results from the
linear combination of three amplitudes at equispaced frequencies

Wa = wp + af) (a = 0,%) (B.8)

In the normal MI-operating conditions the following special requirements are simulta-
neously imposed to the fundamental line (a = 0),

i) recycling cavity on resonance: | A% | rmaz.
i1) dark fringe on the exit port: | A(®*) | min.

iii) FP-cavities on resonance: see eqs.(A.14)

These conditions are fullfilled if (m,n € N):
611 = (2m+ 1)% y 621 = nr, (Bg)

and, eqs.(B.7) become (Ro = R(wo))

31

A un) =

Al™)(w) Al)(wg) = 0. (B.10)
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At any specific position of the interferometer the general expression for the total ampli-
tudes is always: .
A = Y Awa) = Y Ga AlM(wa), (B.11)

where

A (w,) = Ju AU (wp) et (B.12)

The modulation coefficients J, satisfy to the following conditions:

NJii=1, J=-J=1J,

and
2t

2 + 171 R(wa ) ewa) [e—+211(wa) — e—tbn(wa)]

Ga = G(wa)e?a) = (B.13)

are the coefficients that characterize the total amplitude at the given position inside the
MIL

From the second of eqs.(A.12), we see that in the region around the resonance the phase
of the reflected wave from a FP-cavity can be always written in the following form:

p(wa) = p(wo) + alp(2) (o = 0,4) (B.14)

and, analogously from eq.(B.6), one can write:
Q
5,‘1‘(0.)0,) = 6,‘j(wo) + a: (l“ + LJ’) (a =0, :h) (Bl5)

Taking into account egs.(A.14) and conditions (B.9), one has:

V2t
\/2 — 271 R(wq )(cos ax + cos af) + 12 R:(wq)(1 + cosa(x — £)]

r1R(wa) (sin ax + sin af) } (B.16)
— 71 R(wq)(cos ax + cos af) .

Gwa) =

f{wq ) = arctan { 5

where q Q
f=ap@-22mily,  x=dp®-2T(rl)  (BID

From the second of eqs.(B.16) we see that 8(wp) = 0. Furthermore, since from the first
of eqs.(A.12) is R(wy) = R(w_) = R, one has:

Go€R, Gy =G2. (B.18)
Hence, eq.(B.13) can be written in the following form:

Go = Gae® (@ = 0,) (B.19)
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where (G4 = G_ = G)

G- V2t
\/2 — 2ryR(cos x + cosé) + r2R?[1 + cos (x — £)]
R (sinx + sin €)
0 = arct . .
archan {2 —rR(cosx + cosf)} (B.20)

Go = G(wp), obtained from the first of these equations in the special case x = £ = .0,
coincides with the coefficient of A(™) in the first of eqs.(B.10). Following eq.(B.11), the
total recycling amplitude is given by:

AT = {JoGo + 217G sin (0 + Q1) }A™ (wo) (B.21)
and:
I Agrec) Iz - . . .
CIPEE = J5G5{(1+4 g) — (gcos28) cos 2t + (gsin28) sin2Qt } , (B.22)
where |
g=2 (J‘:go)z. (B.23)

Following the same procedure one can obtain the expression for the total amplitude of
(out)
the beam A;  :

A = 24 JH sin (o + 0t) At (wo) (B.24)
where:
H=—Ryfi-es(x-0)G,
o =6 + arctan { :;I; E? 13 m :;((I;i?)} , (B.25)
and Q
D= =(Li-L). (B.26)
By squaring eq.(B.24), one has:
S n20) s
A (wo) |2 = J§{Ggh {1 — (cos26) cos 20t + (sin20) sin2Qt } , (B.27)

where
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h o= %g R2[1 - cos (x — £)] (B.28)

It’s important to notice that, under the conditions expressed by egs.(B.9), | Alree) |2 and
| Aleut) 12 do not exhibit any components at the modulation frequency Q. The frequency
dependence of the 2Q-components and the DC-level appearing in eqs.(B.22) and (B.27)
are shown in figs.(20,21) for the case of an interferometer with the following optical and

geometrical characteristics:

11 = 10cm lz = 1lbem
lpp, = T0cm (i1=1,2)

t? = 8x 1072 2 =1
FPs’in. mirr. : t2 = 8x 1072

FPs’ out. mirr. : t2 = 2 x 1074

Modulation : J2 = 1072
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Figure 20: DC, cos 20, sin 2Q¢-coefficients in the expression of |A(re2)|2 (eq(B.22)).
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Figure 21: The same as in fig.20 in the interval Q/2x = [27,30] MHz.
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