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Abstract
Inhomogeneous nonlinear gauge field theory for fermions is studied in detail. We show that
the Lagrangian of the standard model can be rewritten in terms of the nonlinear connection.

I. Introduction

In this paper we try to explain in an elementary way the basic notions and principles of
the nonlinear gauge field theory for spinor fields. This theory opens up a new style and a new
aim in the spirit of the great unification of physical fields as dreamed of by Einstein. Instead
of the usual Kaluza—Klein type theory!} in which only bosonic fields are metric fields, we
construct the theory in which all fields are connection fields. Strictly speaking, in our theory
apart from the conventional electromagnetic and Yang—-Mills fields, fermionic fields as well as
Higgs field (commonly regarded as matter fields) also become here gauge fields. In fact from
the mathematical point of view, the gauge fields of the bosons introduced first by H. Weyl,m
Yang and Mills®l are the most simple kind of the linear homogeneous connections on a vector
bundle, geometrization of fermion needs to introduce inhomogeneous nonlinear connection on
a nonvector bundle.

Our theory postulates a total Lagrangian to be a square of the nonlinear curvature tensor
(the Yang-Mills’s type Lagrangian). No additional matter stress tensor is needed, because
here the usual matter fields are gauge fields and already contained in the curvature tensor. In
the above sense our theory is a self-sourced interacting.

The inhomogeneous nonlinear connections gave us the possibility to geometrize the fermion

in the framework of the Kaluze-Klein type theory, so that fermions can be considered as
components of the metric in higher-dimensional space.(®]

I1. Nonlinear Connection

We begin with briefly reviewing the main mathematical aspects of the nonlinear connection
theory. Let P(M,G) be a principal fiber bundle over a manifold M with group G. For each
u € P, let T,(P) be the tangent space of P at u and the vertical subspace is Gy, the subspace
of Tu(P) consisting of vectors tangent to the fiber through u. A connection T in P is an

_assignment of a subspace @, of T,(P) to each u € P such that!¥

(a) Tu(P) = Gu + Qy (direct sum);

(b) Qua = (R4)uQy for every u € P and a € G, where R, is the transformation of P
induced by a € G, Ryu = ua ;

1

(c) The horizontal subspace Q, depends differentiably on u.

A vector X € Ty(p) is called vertical (resp. horizontal) if it lies in Gy (resp. Qy). By (a),
every vector X € T,(P) can be uniquely written as X =Y + Z where Y € G, and Z € Q..

We can formulate the theory of the above connection in terms of the local coordinates.[3! Let
E(M, F,G, P) be the fiber bundle associated with P, where F is a manifold on which G acts
on the left. The connection I' on P(M, G) can induce a connection B on E(M, F, G, P). Since
o € G induces an differential automorphism ¢ : F — F, the local coordinate representation of
this automorphism is denoted by 4 = (0y)4 = p4(0,y), wherey € F and (A = 1,2,...,m).
The infinitesimal transformations A2 (y) = {[8¢*(c,y)] /(87i)}s=. Where e is the identity of
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G and its coordinate is always assumed to be 0, form a base of linear algebra isomorphic to
g; more precisely, the real linear space generated by the vector fields

}’.‘2/\?‘(1/)53‘;, Pi=1,2,...,m;. (1)
1s 1somorphic to g if we define the bracket
o ) o
Y, Y:] = ABZli _ \BYA _ ky 9
[ ) J] ( 1 6y3 ] ByB 61} C ko ()

where Cikj are structure constants of the Lie algebra. In conventional mathematical termi-
nology the word “representation” is normally reserved for matrix (i.e. linear homogeneous)
representations. But in our theory, it is inconvenient to make this restriction. In principle,
the A{(y) of Eq. (1) may be quite general. They may be independent of y* or they may be
complicated functionals of y4. The only restriction on them is the identity (2). In the local
coordinate neighborhood E,(zV,y4), where z € M , let

o 8 9
ZN = 5.8 T I'yYi = 3N +Bf\1r(z,y)'ay—,1 (3)

be the horizontal vector. Then the functions B# (z,y) = ' A{ define a connection in a wider
sense. A connection on a vector bundle is called here linear, otherwise we call it non-linear. If
y* = y?(z) is the local coordinate representation of a section s : M — E , then the covariant
derivatives of the section s can be defined by

Syt

which is invariant in the sense that
oA O™
~A — B Y4 Y= 5
Yin = YiM 5B GFN (5)
where . N 6"‘4
z Yy y
az‘NBM( ry) 3BBN( 'Y )+ (6)

We can prove that

i 6]
(ZN,Zm] = Ry Yi = Rf\‘rM(l':y)gg;{ = (Bf/r,N - B?‘J,M + Bf{,DBJQ - BII\‘I,DBJI\)I)BA (7)

i1s the vertical tensor. Under the local coordinate transformation

. . 0y ozX 9zt
RNM("r y) = ayB R’I'%L 62” M - (8)

The functions Riy s (z,y) and R, (z,y) define a curvature tensor.
The Yang—Mills-type action is defined as

A=k / 4V (R Rl Gi;GVE GMEY ©)

where GV¥ is the metric of the base space M and dV = /|det(Gnap)|d"z is an invariant
volume element on it. For simplicity, here we restrict ourselves only to the case with the
base space being flat (without gravitational field). We want to point out that it is possible to
construct the matrix G;; by means of A# in the following way : Gi; = aAf gAB/\B +bC¥ C'
where a and b are arbitrary constants and g4p is invariant metric on ¥ which transforms as
dap = (0y©/05*)(0y® /05 )9 p -

The concept of the above connection on E(M, F, G, P) contains all the usual connections
(gauge fields) used in physics. For example, for U(1) x SU(2) gauge theory, let c° and o* be
corresponding group parameters. Then

Z,=08,+BYo + ALY, (10)
[Z[JyZU] = (BBUJ —Bzyu )80+(A:/1}l u)U +gC'kAi;A5)}/1 = F:L)Uao-*-F;lU}/‘ (11)
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where
VY -YYi=gChYe,  Yi= M0 =SThyP0a, (12)

and T/ are generators of SU(2) group. We see that F, and F}, are usual electromagnetic
field and Yang-Mills field respectively. We entitle the above connections linear homogeneous
connections or linear gauge fields.

The simplest example of a nonlinear connection is the inhomogeneous affine connection
which we will discuss in the next section.

II1. Gauge Theory of the Translation Group

For the first time, gauge theory of the Poincare group was first brought into play by Kibble,
Frolov, Sciama at the beginning of 60s in order to generalize R. Utiyama’s gauge version of
gravity which had left open the question on the gauge status of tetrad gravitational fields.
At the same time, gauge potentials of spatial translations appeared to acquire satisfactory
physical utilization to the gauge theory of dislocations in continuous media.(¢]

The translation group T* is a subgroup of the Poincare group and the affine group A(4, R).
In the conventional gauge theory of the affine group, one faces the problem of physical inter-
pretation for both gauge translation potentials and sections y®(z) of the affine tangent bundle
TM. The gauge theory of dislocations is based on the fact that, in the presence of disloca-
tions, displacement vectors of small deformations are determined only with accuracy to gauge
translations u® — u®+0“(z). In this theory, the gauge translational potentials N (z) describe
a plastic distortion. The covariant derivative

Vyu® = Dyu® — Ng(z) (13)
coincides with the elastic distortion and the strength
Fj, = DuNJ}(z) — D, N(z) (14)

describes the dislocation density. Some authors(”! had studied the theory of dislocation and
disclination continuum and found that the geometrical properties of plastic imperfection are
closely related to that of a nonriemannian space, which can be described by metric, torsion
and curvature tensor. They pointed out that the dislocation density Ff,_, plays the role of
Cartan torsion.

Many authors attempted to use the seeming identity of the tensor ranks of tetrad functions
eﬁ and gauge potentials Ng of the translation subgroup of Poincare group. We are especially
interested in this situation, in which the Poincare structure group of a bundle contracts to its
Lorentz subgroup. In this case a global section y®(z) of the associated bundle exists in the
quotient spaces. The connections of the localized Poincare group is defined as

Zy =08, +T%y" 0. + Njda, (15)
where I'}, and N denote a homogeneous Lorentz connection and an inhomogeneous trans-
lation connection respectively. The covariant derivative of the section y®(z) can be defined
by

b
Vuy® = 0,y® —T%y" — N = DLy* — N&, (16)
which is invariant in the sense that under the above two (homogeneous and inhomogeneous)
gauge transformations
- — ag°
§° = S¢(o1)y’ + 05 ; Vay® = (a—y;) prb = S:(Ul)vuyb- (17)
The transformation property of the (homogeneous and inhomogeneous) connections are

T4, = SST2.(S™HE + S5, (S™HE, (18)
N& = SINZ + 0,08 — SqT4 (S7Y)50h - Sq . (S7Hia3. (19)
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We decompose a translation connection in two parts

N3(z) = DLy® + k% = ni(z) + hi(z). (20)
One easily sees that just the components nj = D}:y“ are responsible for the inhomogeneous
transformation law of the connection N under gauge translations, while hj remains invari-
ant under these transformations and satisfies the linear law of gauge-Lorentz transformations.
The curvature tensor corresponding to the above connections is dependent only on hj. More-
over, there is always a certain translation gauge, where the inhomogeneous part nj of the
translation connection N equals zero, and N} coincides with the part hj. One sees at once
the agreement of the tensor ranks of the translational gauge potentials A} and vierbein field
e;. For a long time this superficial agreement stimulated repeated attempts to describe the
tetrad gravitational fields in the framework of gauge gravitational theory as gauge potentials
of the translation group. The current situation is not at all clear cut, however.[®l. We shall not
discuss this question here. We only want to point out that for some physical considerations!®!
it is possible to choose a very special metric compatible gauge potentials of Poincare group

such that the second part of translation connection h§ = —ej,. In other words, without losing
invariant property of the theory, we can assume that D,I:gab =0 and
Vuyt :ayya—rzbyb—-N::D}:y"—Nﬁ =e,. (21)

In this case the curvature tensor corresponding to the localized translation group will play the
role of the Cartan torsion.

I'V. Inhomogeneous Spinor Connection.

In this section we will discuss another very special inhomogeneous connection in the spinor
space. By using this kind of connection we will prove that Dirac field can be considered as an
inhomogeneous nonlinear spinor connection which corresponds to the special inhomogeneous
translational transformations in the spinor space. The most important results of our work are
connections (36), (49) (in this section) and connection (63) (in the next section). In fact these
connections were at the first obtained by means of the computer. So, in general one could
directly define connection B# as (36), (49) or (63), and omit the following discussions from
the article. We feel, however, that it is worthwhile to take some time to understand certain
1deas rising in the definition of these connections.

Dirac spinors are complex, so we must work on a complex spinor space Fs, where the
coordinate system can usually be chosen as 84 =(8%,8"*)T, the symbol * denotes complex
conjugate. In physics the useful scalar is ¥y = (¥ Tv0)¥, where g is a linear combination
of 8* ie. § = (8" o), denotes a Dirac conjugate of . If we consider the Dirac field with
the presence of an electromagnetic field, then it is better to use another spinor coordinate
64 = (9“,9‘5‘)T, where % is an another linear combination of 9%, ie. % = (nCCG-T)é‘ which
denotes a charge conjugate of 8%, where C = Cy4p = —Cpaq is a charge conjugation matrix
and 7. is an arbitrary unobservable phase generally taken as being to umity. Thus if %<
describes the motion of a particle of charge e, with magnetic moment g, then (¢)* describes
an antiparticle of charge —e with magnetic moment —yu. In these coordinates

_ _ . el
280 = (67, 8)G, (;’T) — (7. 6°T)G, ( 9“’_ ) = (6°T 65T)C ap ( Zﬁ > L (22
where . .

(0 I _ 0 7{) _(0 —ab)
Gl_(l 0)’ G2_<70 o) CaB= Csp O

can be considered as metrics on the spinor space in different coordinates systems.
Consider a set of matrices Sy with arbitrary parameters o¢

. 1 ys\7 . 1+v5\7
Sis =15 + o’fz'yg’p(-—i—)ﬁ = exp [afz'yg’p(—Q—)ﬂ]. (23)
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It is easy to prove that S3(01)S+(01) = Sx(o1 +07) and (S 1) x(01) = Sx(~a1), S£(0) = L.
It means that the set of matrices S3(0y) € Gg, with parameters ¢ constitute 4-dimensional
Abelian group.[gl Now let us construct another reducible representations of this group with
the following matrices

S. S S_
A‘=< 5‘”)’ Az:( S')’ Sg:( S+>

where Sy = (CSZ*C~!)T. We can prove that
ATGiA =Gi, ATGaA2=G,, STGS =G,

which means that these group transformations keep the metrics Gap in Eq. (22) on the
spinor space Fg unchanged. Without loss of generality, in this paper we will work only with
the third form of the metric and corresponding matrix representation of the gauge group.
We will construct a gauge field theory being invariant under the action of this group. For
this, the coordinates of the spinor space will be chosen as (by using similarity transformation
y* = Q468 which keeps the metrics G4 unchanged)

o (l=75\* ~ - s (1+75V\21,
a __ |re d:. a g a __ |7& d. o B
y* = (15 +béivg, . )ﬁ]o = 15 g - )ﬁ_]e (24)
here b4 are arbitrary constants, and ‘yé’b = -—C,;g‘yf,YC’é‘ — (73 = —Cv4C1).

Notice that the matrices vg,{(1 — 75)/2]2 are nilpotent, so we can formally rewrite the
above spinors y* = (y*, ¥*)7 in another form
. 1—y5\° ; ; & (LH75\?
* = 07 exp [béing, (—22)" | & = 08 exp [binds ) 25
y PG (5 ), v pb%a (5 ); (25)
We see that b¢ can be considered as arbitrary “phase angles”. The transformation §4 =
S’g(al)yB can induce the translational transformation in the “phase angles” manifold, i.e.

b = po 4+ o%. Moreover, it is important to notice that although y# include the arbitrary
“phase angles” b? formally, but in our case

Yy Gapy® = 2y%CupyP® = 20%Csp6° = 200, (26)
so they can disappear, at least from a Lagrangian (scalar) for fermion!®l which was constructed
by means of y*. The situation is the same as the Lagrangian of the U(1)-invariant charged
field ®(z#,t) = ®(x#)exp(—1t) with an arbitrary phase angle ¢.

Next we introduce an idempotent projector operators (Pr)$ and its complement V4 =
- PL)g

s = e vin ()] (5]

(P} = n[[+ydi‘7d(lz75)}j(l 2"’)2

(27)

where y¢ € MY and M7 is Minkowski space. We may verify that
(PL)(PL) =(PL), (PL)V =0, VvV =V. (28)
Two idempotents Pr and V are said to mutually annihilate. Any spinor y? € Fs can be
decomposed in two parts y* = (Pr)ay? + ViyP = y; + yp and one can verifies that
nyAByf = ngAByg = 0. Under transformation S§(oy) € Gsr , the spinor y* € Fs
transforms as
7* = Sgy® = SEvP + vk - (29)

This means that in Fs the group Gsy acts only on its projection subspace Fsz! The explicit
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form of yf = (y2,y$)T € Fsi is
1 - 4 - vy
L= [I§+y"i'r§’p( 275) ]950 = [13+y"i“r,§’p(l 275),] (1 275)p]9ﬁ’
. R . p
yr = n[Ig+y“i‘r§§,(————1g75) ]eio = n[I" +y z*/dp(lg%)ﬁ](l-;%) 9"
where Bgo is the usual left-handed spinor. Generally, yf is not conventional left-handed spinor,
1t includes right-handed “phase angles”, these angles can be gauged away by gauge transfor-
mation. We entitle to call yf € Fs; as “generalized left-handed” spinors. (Experimentalist
assert that they have not observed fermions with V + A weak interaction. So for a reason that
will be clear shortly we will work only with generalized left-handed spinors.) It is interesting
to notice that yf € Fsp are closely related to the “null twistors” which was studied earlier by
R. Penrose.l'%11] One may verify that a point in M/, with standard Minkowski coordinates
y? € MT (metric diag.(+1,-1,-1,-1)), is said to be “incident” with the null twistor, i.e. this
kind of twistors has the property that its homogeneous co-ordinates y7 satisfy ngdﬂyi =0.
This 1s the so-called standard flat-space twistor correspondence. The geometry is clearest in
terms of the projective twistor space. Considering y¢ to be fixed and looking for real solutions
yle MI of Eq. (30), it turns out that a solution exists only if yLCaﬂyL = 0. These solutions
for y? in the real Mmcowskx space M/, constitute a null straight line (null geodesics) whenever
yLCa,gyL =0, 9L # 0 and every null straight line in M7 arises in this way. If 8 =0, the
point in the twistor space can be interpreted in the space M as an a—plane (or null geodesic)
at infinity. To understand these one has to go to compactified space. We shall not enter into
the details of this case.

We see that of € Gs induces an differential automorphism oy : F's — Fs or oy : Fsy —
Fsp

gA = ‘PA(O-l)y) A

it =<P"(01,yL)=SByL - =yt +0f, (31)

B — Edzbd-{-of,

72 GapiE = yAGapyf = 2163, Cagb? =0.

As we mentioned in Ref. [9], for some physical considerations we can consider o as the
parameters of Poincare translation in the spinor space which induced by translation in the
tangent bundle TM of space-time manifold and discussed in the previous section. Let y¢
is coordinate of the tangent space TM. If ed is the orthogonal tetrad (vierbein), then for a
particular choice of origin of coordinate sistem we can take y¢ = :c“e‘; + h4, where h¢ denotes
an arbitrary “origin-point” in TM. We know that the law of physics is not dependent upon
arbitrary choice of the origin of TM. The infinitesimal transformation of this group in the
spinor space Fg is

. 1—75\# 5
a J— a
)\A( ) |:6(p (0'1, )] _ /\d(y) - rydﬂ( 2 )6y (32)
dof - ; s (LTS A
o (M= fo’a( 2 )sy6 '
Localization of this transformation leads to introducing the corresponding connections (gauge
fields) in different representation spaces

Zy=0u+ N:(z)/\f(y)aA ) Zy =0+ Nji(z)da. (33)
For the reasons as we discussed in the previous section we choose the metric compatible
connection satisfying 0,y°(z)~Ng(z) = ej (we work in torsion free flat space where e§ = 63).
It is easy to prove that the corresponding curvature tensor dependent only on vierbein field

ex, and in our case equal zero. We can choice suitable gauge such that y* = 0 and N3 = -4,
another very useful gauge is N} = 0 and y® = z#¢4. From mathematical point of view this is
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the case with a flat connection on a trivial bundle.[’] Physicaly it means that in the flat space
(without gravitational field) we have not observed the new type of massless particles, so N
must be only the pure gauge which can be gauged away by suitable choice of the origin of
coordinate sistems.

Next we introduce another inhomogeneous group transformation o3 € Gsp which induces
another differential automorphism o3 : Fs — Fs

=pA(02,9) = y* + 07, (34)
M) = [M] 54 (39)
o2=0

B
0o

We may consider this transformation as a displacement in the spinor space, which means that
the choice of an origin of the coordinate system does not change the property of the spinor
space.

Localization of these transformations leads to the introduction of the corresponding con-
nections (gauge fields). The explicit form of these connections is dependent on the choice of
the representation space. For example

Zy =04+ N2(2)A2(y)0a + WE (2)A504 = 0, + Thpy®0a + W04 . (36)

If y* = y*(z) is the local coordinate representation of a section s : M — Es, then the
covariant derivatives of a section s can be defined by

= v ~Thas? ~ WL 7
which is invariant in the sense that under the above two (homogeneous and inhomogeneous)
gauge transformations

g4

A = Sp(o)y? + o8, ity = (ay Yot = SE (o)l (38)
The transformation property of the above connections are-

Y d

Ni=Ni+of,, (39)

— . 1— 75\
Wi = Sg(a)Wf + [a;‘,,‘ ~(Ny + i, )1736(—2—)/3051 ;
) (40)
+7s 3
_Sa(Ul)W + [0’2 " (Nd+0‘1,u )z7d6<—T)5U€)] .
Let n# = Diy* = d,y* — T#5y®. As we mentioned in the previous séction one can

expand a translation connection to two parts

Wf(:z) = n’:(:z:) + hﬁ(z) . (41)
We can prove that the curvature tensor which corresponding to these connections and de-
termined by Eq. (7) is dependent only on covariant vector-spinors A% . In other words, it is
possible to shift a zero point (origin of coordinate system) by dislocational transformation
of 03 € Gsp such that W = h#. By using projection operator introduced in Eq. (27), we

decompose hA In two parts h“‘ (PL) hB + Vg hB L“‘ + RA The transformation property
of h# is

. o4
A B _ B D Ap B
i = (50) "% = Shlevh] = SAeDI(PL)BRD) +1VERT). (42)

One easily sees that just the components Lﬁ =(PL)s hf (null vector-spinors) are respon-
sible for the transformation law of the gauge field, and as we mentioned in the above to be
“incident” with the null geodesics in Minkowski space-time. So, without losing invariant prop-
erty of the theory, we can assume that Vghf = Rf“ = 0. In this case, the covariant part of
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the connection A# must be of the form of generalized left-handed null vector-spinor

L = (15 + vty (S52); ] = [17 vt (572 ] (5570), 22

A _
P = 1+ 1+ 1+ (43)
R Y s B _ [ & o did s ] s
Lu_n[1ﬁ+y17dp( 5 ) ]L =n|lf+y 174p( 5 )‘r ( 5 )[50“'

Next, we introduce an invariant tensor

1 0 c

TYuYy '

uvB = (PL) 4 1 ' ) (44)

0 17;471/ B
which is invariant in the sense that

Sa(eDmacWNS ™ 5(of) = i p(v* + 1) (45)
Notice T ,\DT,P,,B = T‘“,B With the help of 74 v, one can further decompose L in two parts

v . 1_7 1 1_75
Ly = L75 + 72,07 = LT3 + [12 + y¥ivg, 5)7] 100 | 575 ( )L]

2 4 2

=172+ [I;’ + ydi'ygp(l "275) ]mﬁRﬁ (46)

; ; ; a1+ .5 g
LS = Lf" - [Iﬁ: + ydzyg’,;( 275)‘9]1735}?,52 .
It means that LF includes a generalized left- handed vector-spinor field LT" (with the con-
straints z—y L1 =7s5)/2]1 LT"’ =0), and a spin § right-handed spinor smglet
6 _ i Vij l—7s o
R = (5 8
According to Eq. (7), the curvature tensor corresponding to these connections is defined
by

(24,2} = Fi,Ya+ F8,Ys + FLY; = (NJ,u—N3,, )Ya

[ we s -we g (- 2 W"-N,‘jivgp(l—275) wiloa  (a7)

[ i (2w gy () Wi

The existence of the torsion field in Nature is an open question, so if one does not like it,
then at the beginning without losing invariant property of the theory, one can assume that
Tg, = F2, = 0. And finally we get only the Lagrangian which describes the motion of the

spin % right-handed spinor singlet R4 and the motion of the left-handed vector-spinor field
Lta

1 5 ; . « ; .
L=- 5F°’,Cd5Fﬂu = 6R"Cdg(z'yfa)R s —6R% ., Cap(ivi,)R® (48)
Caﬁ(l‘Yua)LO vop T 0 u i Cﬂﬂ(l‘ypa)L + 2[L CdﬂRﬂ - RdcdﬁLg‘ﬁ],# :
We may ignore the last divergence term. This term may be integrated up to the topological
quantum number. Variation of Eq (48) with respect to L%;f’, and using the method of Lagrange

multipliers, we can prove that L Lyt ”+ 18,LE# includs a spin % left-handed spinor singlet
Lg{‘ = L7#, which satisfies rnassless Dirac equatlon and the spin 3 left-handed vector spinor

Lm# satisfies v,0,L3;, — v, L, = 0; 7“Lg1u = 0. It is important to notice that condition
LT" = 0 is gauge invariant, so it does not break invariant property of the theory.

We know that the charged field has an arbitrary phase angle which we denoted here by
z° and subjected to the condition of cyclicity i.e. ¥(z#,z%) = ¥(z#)e=#91%°, The Lagrangian
does not depend on this phase angle. This condition reflects the independence of an observed
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phenomena on the coordinate z® and is called the condition of cylindricity. It implies the

orthogonality of the space-time manifold with the phase manifold. If we regard that parameters
of localized gauge group o°, o*, o¢, 0§ are functions not only of space-time coordinate z# but
also are functions of phase angle z°, then it leads to introduce an additional gauge fields (for
simplicity we will work in y® = 0, N = —44 gauge, and take LT3 = 0).

- NI EE AN
Zu = 8, + BLoo + ALY + [Ni(ivg) (-5 22) v + 755 R0

N R A R (49)
d ] 81 5.
+ i) (57) 0 - s oa, ‘
Zs = 05 + alagao + ag7réY} + iang‘aa + ia4L§'6(~, .
On the analogy of Kaluza—Klein theory, we introduce an ansatz of “dimentional reduction”,
taking the electromagnetic field B} and the Yang-Mills field A} to be independent of the
extra coordinate z°; and assume that the left-handed fermion field L*(z#,z%,y%) = L*(z*#)
exp(—igay® —ig12%), L¥(z#,25,4°) = L(z*) exp(igay® +ig,2%) the right-handed fermion field
R*(z#,2%,y°) = R*(z*)exp(—ig2y® — ig12°), R*(z#,2°,3°) = R%(z*)exp(igay® + ig12°),
o(z*) is a scalar field, 7* is a triplet of pseudoscalars (pions). o(z) and 73(z) are neu-
tral (i.e. 850 = 8573 = oo = Gom® = 0). There are two charged fields 7+(z,y%) =
7+ (z) exp(igsy°) and 77 (z,3°) = 77 (z)exp(—igsy°®), so that 7' = {7+ + 77) and 7? =
—5(7t — 77) are real.
According to Eq. (9), the corresponding Lagrangian density are:
1 1 4
L=F) F), —<Fs Fr ~ =F2 CspFP,

vt opv 4 m uu—2

. 1 1
— G(F%CspFlg + S FOFls + §F:5F,f5)

27 #3
1 1 ' - . : . o
= - ZFL’,,FS,, - ZF,f‘uF:U +6R*Cap(i72,)VuR* — 6V, R*Cap(i75,) R (50)

+ A203a4[L% Cap(i70,)VuL® = V4 L*Cap(i704)L°]
— Xa2(92a10 + g1)(a3RECapLP + a4 L5 Cyp RP)
+ 3 02(03(840)(040) + a3(V,m*) (V)]
where G%° = — ) and
Vrk = (", +ngﬂC§,-7ri + %ALijﬂj) ,
V.R® = (R® , — ig2BLR?), (51)

VuR* = (R® , +ig2B,R%).
The scalar field o and pions 7* can acquire the mass after further enlargement of dimension of
space-time manifold. It is possible to take z° = §5y® = ¢°, in this case we can get the similar

result (except by constant factors).

V. Geometrization of Electro-Weak Interaction

Now, let us study the Lagrangian of electro-weak interaction!!?! using the concept of in-
homogeneous nonlinear gauge field we have just introduced. We will show that it is possible
to construct this Lagrangian in terms of connections and curvature tensor. For practical pur-
poses, it is certainly useful to rewrite the Weinberg-Salam Lagrangian in our own notations.
For this, let

) ;1,0 I
®(z#, 2%, y°) = B(z*) exp (i;t:z:5 - E%) = ((Z&H> (52)
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be a doublet of the Higgs—Goldston complex scalar field, and
;100
s, 0y u 1gly - Ve
L(=,3") = L(= )exp(%)—( (53)

er
be a charged left-handed spinor doublet . We rewrite them in the following form

(H! = %(45’ +¢7), I Lot =,

H* = %(—aﬁ’ + ¢y, LP? = _jy,, Lo = qy¢ ”
H3 — l(¢11+¢.11)’ L =ep, L83 = et ,
— : ad . ;¢

where H# are real and v¢ is charge conjugation of the left handed neutrino spinor v.. The
right-handed spinor singlet is denoted by
1 .
51— 3s)e = Re(22%3°) = Ro(2) explig' vk — ina®) . (55)
In these notations the Lagrangian of the Standard model can be rewritten as

L= (6,0 + %B@T + %’1@%,-,4;‘,) (8,0 - %B‘,Q - %ALT,@)
1. ; Lo W Wi giyis
+ 5 Liv (6w +- B L-Zayr iL) = 50,1 = 5-B,L + 5 LnuAl)ir*L

1. _ _
+ FRiv*(uR +ig'BuR) - 5(6“1{ —ig'B,R)iv*R

_ - 56
+ [p?|®T® — A(®'®)% - g, (R®'L + LOR) — Fﬁ,Fﬂu - FLUF;“, (56)
= (V, HA)(V H")+I#ZUETH—A(J‘H{)2
1
(v LY Cap(V, LPA) + = (v R C4p(V,R*)
— go(RECapLPAHA + HAL*4CspRP) - —Fg,,Ff, - 4F;,,F:“, ,
where 7; (¢ = 1,2,3) are Pauli matrices, and
V,HA = (8,H* + k1B, HA,0+2A;,T HE),
VL% = (8,L%* + kB, L°A,0+ ALTALE —iy2 L4, (57)

VuR* = (0pR* + k1B,R* 0 —iymR") .
Notice that, in these notations the Lagrangian for fermions has the same form as that for
bosons. Without loss of generality, the generators of the gauge group SU(2) are chosen in

such a way that
e R T T
Thy? =M = ( vyt -y —y2> : (58)

-y oyt oyt =

As mentioned ir the previous section, the base space can be enlarged. The coordinates of
the base space M are zV = (z#,z%,z%), where 2% and z° are coordinates of represantation
space of groups U(1) and SU(2). We introduce a matrix

vy gt
1] ¥ -yt -yt 4
A _
I<b -_ _ 2 1 .4 3 (59)
v: oy vty
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where y = \/yAya. We can consider it as an orthogonal frame, because Kg‘&“be = §4B,
Moreover it is important to notice that if (J,)8 = (yK2),p then

Jady = JoJa = 2CE6L8], JTi = TiJa=0, T;Ti—TT; =2C5Te. (60)
Now we are in a position to study the standard model using the concept of the nonlinear
connection. If we demand that generators of gauge groups o°, o*, 03, o$ are not only func-
tions of z* but also are functions of z% and z%, then more gauge field components must be
introduced. In general we must take Zy = Oy + B4§0a as
Z, = 8, + B% + BLY: + B3da + By 0s
Zs = 05 + B28, + BLY; + BE0, + B§0a (61)
Za = aa +3230 +B;Yi + B:aa +Bgad
Especially, if we restrict ourselves to the standard model of electroweak interaction only, then
for simplicity we can take BS = Bi = BZ = B§ = B} = 0. In the N = —§] gauge ’

. a7\ s
Z, = 0, + kB3 + ALY: + (i3 (—522) v + (135) R | 0a

- & 1475 8 § .4 8
- [(m,;)( 5 )éy +(75)R ]3,, (62)
Zs = 05
Zo = 8 + ikoKBHY8, + KEL0, + KBLEO;
where k, are constants. The metrics on the horizontal and vertical spaces are taken as
A0 0
01 6i; O 8 o0 0
Gap = N . GMM = 0 A O . (63)
0 O 0 -C ) s
<« 0 0 Agb®
0 0 Cap 0
According to Eq. (9), the total Yang-Mills type Lagrangian is defined as

k
= -3 [ VTGV (RfsRE1Gas G GM)

M o‘ 0 J QR 1 8
- k/M GV [~ 2P, P, = 3FiFi — 5F2.Cas Pl (64)
: A ML Ada)s
— AsF&CapFP, — —12 2P0 Fgy - 14 SO FY — = 5 F35F35]~

The base space is a product of three spaces, M = M} x M; x M3, where M} is a 4-
dimensional Minkowski space and an internal space M3 x M3 is a 5-dimensional compact
space of a size being necessarily much shorter than any length we have ever measured.

After redefining the constants k, and Am we can get the Lagrangian density of the standard
model in our notations. Here

Ao po _ Lo g Mikf
——ZFquuv—ZFquuv = - 4

(BB,,, _B;Ouu )(BS:M "ng )
1 . . . ) . . (65)
= 7 (Avw — Al +9Ci AL AY) (AL — AL +9CLALAD)

are the Lagrangian terms of the electromagnetic field and the Yang-Mills field respectively;

) A . a .y a & .y & :
—§F§ycf,any = 6[R*Cap(i774)(R*,u +ig’' BuR®) — (R* s —ig'BuR )Cap(i724)R°] (66)
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is the Lagrangian term which describes the free motion of the right-handed spinor singlet.

. . _ iq ;
NaFCon Fly = s [L&Can(ivle) (0,L°4 + - Bu1™4 + LA, T L7

. 1gl & g i & . @ 67
- (8#L°‘A — —2—B“L A + §AuT;ABL B)Caﬁ(l‘Yfa)LA] ( )
— 4g'kT ko A3(R*Cap LA HA + HALSCap RP)

is the Lagrangian term which describes the motion of the left handed spinor doublet, it includes
the mass term of the electron e.

A AA2 Ath2)

— SR - S P FL G - S F

A1Askg Ao g4 MABKE9? apave , MA2dapikd s a (6%
= 220V, HAV,H —T(HH)Jr——Q-——(HH)

is the Lagrangian term of the Higgs-Goldston field with $* potential.
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