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ABSTRACT

The theory of N = | supergravity with gauged supermatter is studied in the context of a k = + 1 Friedmann
minisuperspace model. 1t is found by imposing the Lorentz and supersyinmetry constraints that there are no
physical states in the particular SU(B) model studied. When the model is truncated by setting the spin-1.

o1 . . .
spin-3 multiplet to zero, a very restricted set of non-zero quantum states is found.

PACS numbers: 04.60.+ n, 04.65.+ ¢, 98.80. Hw

The subjects of supersymmetric quantum gravity and cosmology have achieved a
number of interesting results and conclusions during the last ten years or so. In finding a
physical state, it is sufficient to solve the Lorentz and supersymmetry constraints of the
theory because the algebra of constraints of the theory leads to anti-commutation relations
implying that a physical wave functional ¥ will also obey the Hamiltonian constraints [1,2).
Using the triad Arnowitt-Deser-Misner canonical formulation, Bianchi models of class A
have beeu studied in pure ¥ = 1 supergravity with and without a cosmological constant
[3-8] and have been found to have very simple allowed quantum states. [Supersymmietry (as
well as other considerations) forbids mini-superspace models of class B.]. Other approaches
can be found Ref. [9-15]

Clearly. a richer and more interesting class of minisuperspace models is given by cou-
pling supermatter to N = 1 supergravity in 4 dimensions. In particular, from (1+43)
dimensional N=1 supergravity a dimensional reduction allows one to obtain a (140)-
dimensional theory with N=4 supersynumetry by making a suitable homogeneous Ansatz.
In [16-18] such an Ansatz for the gravitational and gravitino fields was introduced in or-
der to yield a Fricdmann k = +1 geometry and a homogeneous gravitino field on the §3
spatial sections. The Hamiltonian structure of the resulting theory was found, leading to
the quantuin constraint equations. The Hartle-Hawking wave-function {19] can be found
as one solution of the quantum constraints. Following the model described in ref. [23].
a Friedmanu-Robertson-Walker (FRW) minisuperspace in N=1 supergravity coupled to
locally supersymmetric supermatter { a massive complex scalar with spin-1 partner) was

considered in [16-18]. In the massless case [17.18]. the general solution of the quantum
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coustraints can he found as an integral expression, admitting a ground quantum wormhole
state [20].

One would like to extend this understanding to more general supergravity models
involving spin-1 fields. We apply here the canonical formulation to the more general
theory of N = 1 supergravity coupled to supermatter, and in particular its supersymmetry
constraints, especially in the case with zero analytic potential P (®') [ef. ref. [21]. Such
a study was performed in ref. [22]. Our objective here is to study a k = 1 supersymmetric
FRW mini-superspace quantum cosmological model with a family of spin-0 as well as spin-
1 gauge fields together with their odd (anti-commuting) spin-3 partners. Assuming an
Ansatz for the the gravitational and gravitino fields as well as for the supermatter fields
and their fermionic partners such as to to respect the homogeneity and isotropy of the FRW
53 spatial sections, N = 1 supergravity plus supermatter in 4 dimensions may be reduced
to a N=4 locally supersymmetric FRW quantum cosmological model in 1 dimension. Qur
supermatter model is chosen to correspond to a two-dimensional spherically symmetric
Kahler geometry {21]. In the following the supersynunetry constraints will be derived from
the reduced theory with supermatter. Subsequently. we solve for the components of the
wave function the set of coupled partial differential equations which are obtained from
the quantum constraints. We will then find that there are no solutions for the quantum
states of the FRW universe analysed here. In addition, we also find that when the model is
truncated by setting the spin-1, spin-% multiplet to zero, a very restricted set of non-zero
quantumn states is obtained. A discussion and interpretation of our results, together with

a summary of our research and indications of further possibilities completes this paper.

Let us begin by specifying our model in some detail. The more general gauged N=1

supergravity theory coupled to supermatter [21] depends on the tetrad ¢ 34 | where 4. A'

.
w

are two-component spinor indices using the conventions of [1] and g is a space-time in-

dex, the odd (anti-commuting) gravitino field (zj""‘l,x/i“;‘), a vector field Ai,“) labelled
by an index (a), its odd spin—% partners (,\‘.‘;",Xf;,’), a family of scalars (<I>’,‘I>J‘) and

their odd spin-3 partners (\"4, '\vi,) Its Lagrangian is given in Eq. (25.12) of ref. [21]:
it is too long to write out here. The indices I....,J*. ... are Kahler indices, and there
is a Kéhler metric 975+ = L'y on the space of (&, &7 ). where Kyye is a shorthand
for ?K/0$'8%7" with I the Kaller potential. Each index (a) corresponds to aun in-
dependent (holomorphic) Killing vector field X!} of the Kihler geometry. The gauge
group is the isometry group of the Nahler manifold. Killing’s equation implies that

there exist real scalar functions D) (®/ #!") known as Killing potentials, such that
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We choose the geometry to be that of a & = +1 Friedmann model with $3 spatial
sections, which are the spatial orbits of G = SO(4) - the group of homogeneity aund

isotropy. The tetrad of the four-dimensional theory can be taken to be:

_(N(r) 0 an _ [ N(7)™! 0
Can _( 0 uEu,> et ( 0 a(T)_lE‘i‘) (1)

where @ and ¢ run from 1 to 3. Ey; is a basis of left-invariant 1-forms on the unit 3 with

. . ' . -
volume o? = 2rn2. The spatial tetrad ¢ ' satisfies the relation

0(.—!:\' _ 0,(:\:4'
( ]

9,2 AATk :
, = 2a ¢ ke (2)

as a consequence of the group structure of SO(3), the isotropy (sub)group.

This Ansatz reduces the number of degrees of freedom provided by e44,. If super-
symnetry invariance is to be retained, then we need an Ansatz for wA“ and 1,1)“;‘ which
reduces the number of fermionic degrees of freedom, so that there is equality between the
munber of hosonie and fermionic degrees of freedom. One is naturally led to take v, and
oAy to be functions of time ouly. In the four-dimensional Hamiltonian theory, ¢, and

:f'""o are Lagrange multipliers which may be freely specified. We further take

= ("H', Y l'/_:\" = A"’,-l/’.-a ) (3)
where we introduce the new spinors ¢4 and 4 which are functions of time only. [It is
possible to justify the Ausatz (3) by requiring that the form (1) of the tetrad be preserved
under suitable homaogencous supersynumetry transformations [16,17].]) Moreover, it turns
out that the coustraints obeyed by classical solutions of the 1-dimensional theory lead to a
4-dimensional energy-momentum tensor which is isotropic, consistent with the assumption
of a Friedinaun geometry.

In the Euclidean context. it is natural to regard y 4 and 1[1_.\: as independent quau-
tities. The Ausatz for l;"”“ is preserved under a combination of a non-zero (spatially
homogeneous) supersymmetry transformation and possible local Lorentz and coordinate
trausformations [16.17) if. in the case without supermatter, we impose the additional con-
straint "'BL:“.(BB" = 0. This implies that q"Bu"B' x H,BU', which can be written in the
equivalent form :

-y ,
Jap =" ngyp =0, (4)

togethier with its hermitian conjugate, thereby defining J4. The constraint Jag = 0

has a natural interpretation as the reduced form of the Lorentz rotation constraint arising
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in the full theory [1]. By requiring that the coustraint Jyp = 0 he preserved under the
same combination of transformations as used above. one finds equations which are satisticd
provided the supersymnetry constraints S4 = 0, Sy = 0 (sce below) hold. By furthe
requiring that the supersynunetry constraints be preserved, one finds additionally that the
Hamiltonian constraint H = 0 should hold. When matter ficlds are taken into accouunt

(see next paragraphs) the generalisation of the Jag constraint is :
J — i -\ i _/\(u);\(u)___o (5)
AB = Wate — \alp — A A =0

Now, consider the supermatter fields. First, we choose for the gauge group of our

model the compact group G = SU(2). In this case [21]

; 4 j ~ » 1~ ¢4
D“):l(——"’”’_),D“’——i (——"" "’_), D = —1(——-), 6
2\1+ ¢4 2\1+¢¢ 2\1+¢9 ©)

with ' = In(1 + ¢¢). Hence Yoo = (—H—L—O—); L999 = (1 + 06)? and the Levi-Civita
i ‘A Cmant s pive ¢ _ eePee s ¢ p “
connection of the Kéhler manifold is given by I = ¢#% 322 = 20595 and its complex

conjugate. The rest of the components are zero. The scalar super-multiplet, cousisting of
a complex massive scalar field ¢ and massive spiu-% field \ .\ are chosen to be spatially
homogeneous, depending only on time. The odd spin-3 partner (A, A1), a = 1,2,3.
is chosen to depend only on time as well. As far as the vector field A:,") is concerned we
adopt here the Ansatz formulated in ref. {24-27] aud choose

Ao = 870 (

-1

where {w#} represents the moving coframe {w#} = {dt.w*} . (b =1,2,3), of one-forms.
invariant under the left action of SU(2) and 7T, are the generators of the SU(2) gauge
group. Notice in the above form for the gauge field the Ay component is taken to be
identically zero. Thus, we will not have in our FRW case a gauge constraint Q'*) = 0.
However, in the case of larger gauge group some of the gauge symmetries will survive,
giving rise, in the oune-dimensional model, to local internal symmetries with a reduced
gauge group. Therefore, a gauge constraint can be expected to play an important role i
such a case and a study of such a model would be interesting.

Using the Ansitze previously described, the action of the full theory (Eq. (25.12) in
ref. [21]) can be reduced to one with a finite number of degrees of freedom. Starting from

the action so obtained, we study the Hamiltonian formulation of this model [22). The
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procedure to find the expressions of Sy aud Sy is simple. First, we have to calculate the
conjugate momenta of the dynamical variables and then evaluate the reduced Hamitoniau.
Afterwards. we read out the coefficients of ¢, and u'»u"" from this expression in order to
get the Sy and Sy constraints. respectively.

The contributions from the spin-0 field ¢ to the Sy constraint are seen to be

1 ie*a® o ) 5 o3¢ _B
—=\ FL,‘+—-——47H“UI/\‘U'“ Ay —————npgp X B
V2 2/2 (1 + o0) 2/2 (1 + ¢¢)?
3 sldto 5 B 3 ald® 8.8 olalgf AB
Ry — ==y \ P —-——:an mno \ B’-\'" .
23 (1 + oo) V2 (1+ op) V(1 + ¢g)2

(8)

where 02 = 272, The contributions to the Sy constraint from the spin-1 field are

- \/j a (a8 02(’3
i B A +

7 v A B (P e AWIB | GBAB A (DT

Ly o : 27y (4)
+——aa'a = (f = 1)L
SV3 ol 1A%
1, . , 1 1 DR
+5”'“’/\(""‘(—n.-\u".w/\("’u g AP 3".4.4'U'B/\(")B+5”.4,1"¢'B'/\(")B ). {9)
We have used ¢ ya0i = 09 i €ai, where 04 4, (a = 1,2, 3) are Infeld-van der Waerden symbols

{1). The contributions from the spin-2 field and spin-3/2 field to S/ constraint are

3 4 3,
AT 0y — —=o0 a” iy + ga a

V2

The following terms are also present in the S 40 supersynunetry constraint:

3n8, B yppip . (10)

1, .
—%alu"gD“lu__\u\("H
ola®

- 1 T BB’
m(g—)f_,(—”BA'll'B‘ + §7IBB'¢’A')X X

1., . - , . _nt
-—In"u"(u_.”;u\(“H/\(“f‘,U'H + ll_,\,Ap/\'“)"‘/\(a,),,'l/)B )
-t g N N e N ) (11}

41 + oo)-
The supersymmetry constraint S.p is then the sum of the above expressions. The super-
symmetry coustraint Sy is just the complex conjugate of S4.. Notice that with our choice

of gauge group SU(2) and compact Kahler manifold, it directly follows that the analytical
potential P{(®7) is zero [30]

(413

Let us here solve explicitly the correspouding quantum supersyimmetry coustraints,
First we need to redefine the fermionic fields. \ 4. ¢y and A 4 in order to simplify the Divae

brackets [2]. following the steps described in {22,28.29):

{ ocal { oal 5 (12)
4= 7T \4, \y = 54—\ y 2
23(1 + ¢4) 23(1+ ¢¢)
The conjugate momenta become
. Y ' . <A .
71’\," = —inqgq4\ . TF‘A’ = —ti g4\ . (13)

This pair forms a set of second class constraints. The Dirac bracket ([ ) is

N4 Na)e = —inga . (14)

Similarly for the 44 field,

where the conjugate momenta are

~ A4

T, Staxy T, = gt (16)
¥ ¥
and the Dirac bracket becomes
[147',4. Gade = dngae . (17)
and also for the )4 field:
% {a) %
Ta) aa {a) 3 - au {(a)
/\"‘z_')i AN /\A,—-—')% Ay (18)
giving
. sfa)’ . Cla)a
Ty = —ingqA P = —in g A (19)
A A
with
. =(a}
A A e = =0y (20)
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Furthermore,

[u.ﬁ“], =1. [O.Truv,], =1, [(P, 7T,,’,]‘ =1, [f, "j] =1 (21)

aud the rest of the brackets are zero.
It is simpler to describe the theory using only (say) unprimed spinors, and. to this

end. we define
vy = 211_4" g . \q4 = 2”.,‘H \g, /\("4) =2n B Al (22)
withh which the new Dirac brackets are

Navgle = —iean . [va,vp). = iean AN = —id%teqp (23)

The rest of the brackets remain unchanged. Quantum mechanically, one replaces the Dirac

brackets by anti-commmutators if both arguments are odd (O) or commutators if otherwisce

(E):

[Ey.E2) = i[E\.Es)s . [O,E] =i{0,E]s, {01,0:) =i[01,0]. . (24)
Here, we take units with 4 = 1. The only non-zero {anti- )commutator relations are:
(AR =0ean . (\a\Bl =ean . {va,vs) = —ean (25)

la.7a] = [0 7] ={o.7mg]) = [f.7)] =i

Here we choose (\ 4, 4., @, 9) to be the coordinates of the configuration space, and

\ 4, 004, Ty, T T, to be the momentum operators in this representation. Hence

v a A o d
TAT TR s T T PA T A
2 2 9 2 ,
Tu —»E, 7.—‘,,—»—1-0—0. K‘,'—'—Iz)—‘; . Tr,—'—la—f (20)

Following the ordering used in ref.[5]. we put all the fermionic derivatives in $ 4 ou the vight.
In S,. all the fermonic derivatives are on the left. Implementing all these redefinitions.
the supersymumetry constraints have the differential operator form

P o1 0
A= —775( + ¢9) .-\5‘; - mﬂu 13

aud

a
+o 4y

3 4 5¢ NURY.
37 4\/5‘ o
17} g
syl s o\ap?
8\/_ Q- \/— a(r/v
—i—\,\ v“_“ + ﬁ\
16 N 4/2
1 3
VAR
L o e, 8B ((a)D 2
+ma Ao hpy noen A U‘{'(‘);\(—MU
1 g B a)yDy(b) a
+mo“__m,ﬂ"u Vi BB 0Dy B E
17 .
— e th ,\(“)( A /\[u)(
26 " oo Yt opC
; 1 Jd
2.3 (a)ya _ (a)
+ \/'a @ gD, 4\/_ C9xtaA
atalyf BA' v
gt BV X
VA1 +¢0)
1

B

H\ /\(“) (_\/__9_

Sie i soed 2L 0 0
V=BT 8 T 206 0a 00
By R

WA TR
1 pc 0 0 9 2

5 0 90 .y

S4B OB A

3 0f

TG BT

tss

1]
VA IE TR

VB ye 20

1A
1 2 9
2/6 0t N B

o

Olf!B O\C

\ll

—(f-1)? )a‘la*>

B



gt GHCCy A D 2 0 v
AT gD gxta B C

1

367
9

B A D

+Va ,01) nyin U'a,\‘“”-"é),\(”)cd

10 9 s 3 a a
+ ——A —_——
2\/6 (’)I’h-‘ 0/\(11”1 2\/(—5 a/\'“,B 0/\(")‘4

1 sc 0 9 s
EXGE 4\/’ OB g\(a)C” A4

d’B

1, .
___a,_'“JgD(a)

Ve

Vi +os) * T AT 8y

2v2 9 1 I
+u_i‘r‘r‘ ‘,( 3 0, +m(1—(_f—1)2)n'u')5m (28)

2.2 ¢
a?a®y . 0
Jf N .-l'aﬂBI‘\(a)

We now proceed to find the wavefunction of our model. The Lorentz constraint J4py
is easy to solve. It tells us that the wave function should be a Lorentz scalar. We can easily

see that the most general form of the wave function which satisfies the Lorentz constraint
is
¥ = A+ B ve + Co\e +iDA Ve + EgCpeXxCxc
T VS (L W IS (5 S (LS oL NS
AN P+ dgp AN AP 4 MNCR Ly Py
Ffaa M OCANO 4 g AOCAEND Gy 4 ey AR AO Dy,
+dnhl‘;\(a)('A“;)‘/\(r)D\[) + (."Md/'\la)('/‘(l}!;\(c)D:\(g + ,lnb;(a)c;(g¢D¢DXExE

+f“hr5\(u)('/\l?g,\um\ “,J.E'.‘l{+falnv/i‘“’(‘/\‘b('-/\(c)DU'D\E\E+dahcd;\(a)c;\(bcg:\(c)D;\(gU’E'/'l'.'

b a A VOARNODRINE o fpd MR UROPR Dy Ex g

Cy(b) S(DE
+gabcrl)\(", A (,/\(C)D"/.D,\(l )b\E

i /\“‘"5\";’9A“”“,\‘?}A"’Eu"s+u~_w\""'A‘}?A”’”/\‘B?\"’”weﬂta?\“’CJ\“C’?\‘””?\‘E?\"‘”‘W-

i ABICRAM DA NNEY gy AOCRPANDRGADEY g ADERQRDDRDA®E

' : EIEVEITANE L)y (b) y(d) /
+F/\“'( /\(:_)/\(_nl)’\( ;))/\(.;)1‘/\1;:) +h"b'd/\(¢)( /\((!/\(C)D,\(l)) ’EU’E/\FXF
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+bl/\(Z’CIA('ﬁPA‘:”U/\(;,‘,)A"“"'1,'1;\"‘\,,-
T AC RN\ E L\ Fy
+03/\(l)c/\(l(.);\('z)l)/\(‘i))/\(3)1:‘(/,5\F\F
FPADORRODAG OBk
+‘72/i(”C;\(:;-)/»\”)D/\(B/\um\E#‘FU’F
+,)3,‘\‘(1)(';\“(!'/\(2)1)5\(3));\(3)[;\Ed,Fd,F
+G/i(1)('/\(l(}/\(z)l);\(‘f));\(s)Ej‘(C:S)waF
FHANCRARPAGASENEINFy
+1/\(l)( /\(')/\(I)IJA(I)AH)L/\H)\ g
+RAC /\(l),\(')l)/\(“/\u)b)\(il ‘J\ g ‘ (29)

where A, B, C, D, E etc are functions of a, ¢ and ¢ only. This Ansatz contains all allowed
combinations of the fermionic fields and is the most general Lorentz invariant function we
can write down.

The next step is to solve the supersymmetry constraints S4% = 0 and 549 = ¢
Since the wave function (29) is of even order in fermionic variables, the equations S4¥ = 0
and S4% = 0 will be of odd order in fermionic variables. Since each order in fermionic
variables is independent, the munber of constraint equations will be very high. Their full
analysis is quite tedious and to write all the terms would overburden the reader. Let us
show some examples of the calculations involved in solving the S4¥ = 0 constraint.

Consider the terms linear in \ 4:

a4 atd®gf BA' %
—(1 + 0¢)— ]\, + o, PV XA p = 0. (30)
[ V2 26 17T A1+ ee) £

Since this is true for all \ 4, the above equation becomes

alalyf

[—L(l + m)@] ef
T80 | T A+ 00)

- . . . ' ,
Mutliplying the whole equation by np g and using the relation nggmnf4’ = %eg‘} , We can

o'y e B X — g, (31)

see that the two terms are independent of each other since the ¢ matrices are orthogonal

to the n matrix. Thus, we conclude that




Now conusider.eg.the ters linear in \ go@ o, We have

aB 1. o a oC ," RV I c
(l+oo)%+§¢3+:4\/§50— 4\/_6 +t——~oaC X4y~ e

alalgf

+'m”“_.._w”-“'X“"’B\ B¢ e = 0. (33)

By the sawe arguuent as above, the first term is independent of the second one aud we
Liave the result

B =0. (34)

As we proceed, this pattern keeps repeating itself. Some equations show that the
coefficients have some symmetry properties. For example, dqp = 2¢45. But when these two

teris are combined with cach other, they become zero. This can be seen as follows,

: N T
dap A NENDIIN g G AN,

. NI ¢y 16)
20 AN AN e 4 g AN NPy

it

(b)) 3 (b) i =
—gat A NN oy 4 g MO\ Py, {35)

using the property that g, = gie and the spinoridentity 45 = %9006,43 where 84 g 1s anti-
symetric in the two indices. The same property applies to the terms with coefficients f,cq
and gypeqa. Other equations imply that the coefficients cape o dube » Cabed s €abe s fabe s Qubed »
Cabed « Tapea arve totally symmnetric in their indices. This then leads to the terms cancelling
with each other. as can casily be shown. In the end, considering both the S4% = 0 and
Sa¥ = 0 coustraints. we arve left with the surprising result that the wave function (29)
must be zero in order to satisfy the quantum constraints.

Now we briefly comunent on the case when we set the multiplet consisting of f and A 4
to zero. The only coefficients left in the Aunsatz of the wave fuction are A, B, ', D and

E. We will get four cquations from S4% = 0 and another four equations from S, ¥ = 0.

' A
—ﬁ(l%—oc;)%—w— =0. (3Ga)

a 04 3 .., .
)\/_ Da Ea a*4 =0, (36h)

B 1,, a OC T, V3
(1+0¢) oB + \/_0“ 4—\/§C+ >
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2od?C =0, (36¢)

%%2 +2V36%a?D - V3D — (1 + w)% - g‘bC' =0, (3Gd)
i\/§(1+®¢)g—g =0, (370)

%%- Gota’E =0 . (370)

}%TB_, 30%aB — \/_B+(1+<.7q>)g—c+ oC =0, (37¢)
(1+ 99) z+%¢0—11\'/—§%%+4\7[('+ Bric =0 (37d)

We can see that (36a), (36h) and (37a). (37h) constitute decoupled equations for 4 and

E, respectively. They have the general solution.
A = f(@)exp(—3cta?) , E = g(¢)exp(3aia®) (38)

where f,g are arbitrary anti-holomorphic and holomorphic functions of ¢, respectively.
Eq. (36¢c) and (36d) are coupled equatious between B and €' and eq. (37¢) and (37d)
are coupled equations between C' and D. The first step to decouple these equations 1s as
follows. Let B = B(1+ ¢¢)" % . C = 55(1 +09)"% . D =D(1+é¢) %. Equations (36¢).
(36d), {37c) and (37d) then become

OB  « dC [ )
(1-{—(])(,)) +;E-EC+§U aC =0, (39¢)
OD «dC T .1 2 A .
(1 +<p¢p) “ o ——:;( + 50 «C =0, (390)
%% —(1%—1“) 6o5%a*D +3D =0 . (39¢)
0(_ +“0_q -—G 2B -3B=0. (39d)
Do da

From (39a) and (39d), we can eliminate B to get a partial differential equation for C:

1+ ¢¢)20 0'¢ 1")02 (a?) + %“a_(l + [3«‘(1" +30%d® - % C=0, (40)
z 0u a




and from (39h) and (39¢). we will get another partial differential equation for C:

‘ N e a ac 5 ac |1 22 14
(14 00) 330 " 1 oa ((15(7)4-6115;—}—[30 «' —3oa ~a C=0. (41)

We can see jnmmediately that € = 0 because the coefficients of 02a2C are different for

these two equations. Using this result. we find
B = h(e)}1 + oo)_‘:’u:‘ exp(30%¢?®) . C=0. D =Mo)l+ ¢f¢)"l1a3 exp(—302a?) . (42)

We can also chieck that when the Killer manifold is replaced by R?, C remains zero. This

should be compared with the result of {17)

To summarise, we have applied the eanonical formulation of the more general theory
of N = 1 supergravity with supermatter [22] to a k = +1 FRW mini-superspace model.
subject to suitable Ansatze for the the gravitational field, gravitino field and the gauge
vector field A% as well as the sealar fields and corresponding fermionic partners. After a
dimeunsional reduction, we derived the supersynunetric constraints for our one-dimensional
model. We then solved the Lorentz and supersymmetry constraints for the case of a
two-dimensional spherically symmetric Kahler manifold. When the model is truncated
by setting the spin-1. spiu—% multiplet to zero, a very restricted set of quantum states is
obtained. However for the case when all supermatter fields are included, we found that
there are no physical states in this model. A similar conclusion was also obtained iu ref.
[7-8] where no matter but a cosmological coustant term was present. All this seews to
suggest that as oue introduces more terms in a locally supersymmetric action,giving more
ficld modes with associated mixing. then the constraints impose severe restrictions on the
possible allowed states. assuming homogeneity and isotropy. This is not to say that there
might not be many inhomogenous states.

Ini the future. the framework presented in this paper will be extended to the case, for
example, of a Bianchi-I universe. We would like to see if the same type of results occur
there. As more gravitino modes are present (8}, we could consider a non-zero analytic
potential P(®). The potential termi in the supersymmetry constraints is similar to that
induced by a cosmological constant. It will be interesting to check in the case of P(®) #
0 (possibly restricting ourselves to zero spin-1 and fermionic partner fields) whether no
physical states can be found as solutions of the quantum constraints. In that case the
analytic potential terms could not he present in a realistic N=1 supergravity theory with

supermatter,
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