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Abstract

We investigate the interplay between the enumerative geometry of Calabi-Yau fourfolds
with fluxes and the modularity of elliptic genera in four-dimensional string theories. We
argue that certain contributions to the elliptic genus are given by derivatives of modular
or quasi-modular forms, which encode BPS invariants of Calabi-Yau or non-Calabi-Yau
threefolds that are embedded in the given fourfold. As a result, the elliptic genus is only
a quasi-Jacobi form, rather than a modular or quasi-modular one in the usual sense. This
manifests itself as a holomorphic anomaly of the spectral flow symmetry, and in an elliptic
holomorphic anomaly equation that maps between different flux sectors. We support our
general considerations by a detailed study of examples, including non-critical strings in
four dimensions.

For the critical heterotic string, we explain how anomaly cancellation is restored due to
the properties of the derivative sector. Essentially, while the modular sector of the elliptic
genus takes care of anomaly cancellation involving the universal B-field, the quasi-Jacobi
one accounts for additional B-fields that can be present.

Thus once again, diverse mathematical ingredients, namely here the algebraic geo-
metry of fourfolds, relative Gromow-Witten theory pertaining to flux backgrounds, and
the modular properties of (quasi-)Jacobi forms, conspire in an intriguing manner precisely
as required by stringy consistency.
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1 Introduction and Overview

Recent developments in the context of the Weak Gravity Conjecture [1], reviewed in [2,3], have
revived interest in string dualities, which underlie the emergence of tensionless strings [4–9] at
infinite distance boundaries of moduli space.

Specifically, the previous work [6] initiated a study of the emergence of asymptotically ten-
sionless heterotic strings in N = 1 supersymmetric string compactifications in d = 4 dimensions.
These strings arise as solitonic objects in certain flux compactifications on Calabi-Yau fourfolds
in F-theory. In suitable limits, they furnish the dominant degrees of freedom, and become weakly
coupled when described in the proper duality eigenframe. The main purpose of that work was
to test various Quantum Gravity Conjectures in a controlled four-dimensional setting.1

The confirmation of the Weak Gravity Conjecture in [4–6] crucially hinged on the modular
properties of a certain index-like partition function, the elliptic genus, of the asymptotically
tensionless strings. Related aspects of modularity in this context have been discussed in [1,
19–22]. As a somewhat surprising outcome of the analysis in [6], the elliptic genera of four-
dimensional strings turn out not to be modular or even quasi-modular.

The goal of the present paper is to study the interplay between geometry and modular
properties of elliptic genera in much greater depth. We will observe that the deviation from the
expected (quasi-)modularity of the elliptic genus in four dimensions is due to the appearance
of derivatives of (quasi-)modular Jacobi forms. These derivatives yield so-called quasi-Jacobi
forms in the sense of [23, 24], in agreement with general conjectures made in [25]. As we will
see, they originate from underlying, formally six-dimensional sectors of the theory. This fact
manifests itself in an intriguing way in the geometry of the Calabi-Yau fourfolds and certain
threefolds embedded therein. These structures will likely be of use for further applications to
non-perturbative, especially non-critical, strings in four dimensions.

In the next subsection we will review known results in order to set the stage, followed by
a summary of our findings as a road map. The rest of the text is then devoted to a detailed
analysis. In Section 2 we will set up the geometry underlying the fourfold and flux configur-
ations that we consider. The geometric objects which we will study are relative2 genus-zero
Gromov-Witten, or equivalently BPS invariants on elliptically fibered fourfolds. In Section 3 we
relate these invariants to a geometric, generally non-perturbative definition of elliptic genera of
four-dimensional strings, with focus on the relationship between their modular properties and
the underlying flux configurations. In this context we also observe an intriguing relation between
partition functions associated with transversal and non-transversal fluxes, and this turns out to
be a manifestation of the elliptic holomorphic anomaly equation of [25]. Our analysis, condensed
into Conjecture 2, applies not only to the elliptic genus of solitonic heterotic strings, but also
more generally to those of non-critical strings such as four-dimensional versions of E-strings.
Section 4 is devoted to the interplay between modularity, elliptic genera and anomaly cancella-
tion, for the special case of a heterotic solitonic string. Specifically, in Section 4.3 we provide a
match between the Green-Schwarz terms in the effective action, and the various modular sec-
tors of the elliptic genus. In Sections 5 and 6 we present a detailed technical analysis of several
examples for heterotic and non-critical strings. Further mathematical facts are relegated to the
Appendices.

1See [10–16] for a small sample of complementary, quantitative geometrical tests especially of the Swampland
Distance Conjecture [17,18].

2The term relative invariants here refers to invariants for curves of form Cb +Cfib, where Cb lies in the base
and Cfib in the fiber of the elliptic fibration.
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1.1 Review of Known Results

An important quantity that captures certain robust features of string theories is the elliptic
genus [26–29], which serves as a loop space extension of the ordinary chiral index in quantum
field theories. By turning on background fields, a wealth of exact information about the chiral
spectrum and its charges can be extracted. In this paper we will mainly consider elliptic genera
for four-dimensional string theories in a U(1) gauge background. More concretely, what we will
consider are the partition functions in the Ramond-Ramond sector of superconformal worldsheet
theories with right-moving supersymmetry, which in d = 2n+ 2 dimensions are defined as

Z(q, ξ) = trRR

[
(−1)FRF n

R q
HL q̄HRξJ

]
, q ≡ e2πiτ , ξ ≡ e2πiz . (1.1)

Here τ denotes the modular parameter of the toroidal worldsheet, and z represents the back-
ground gauge field strength, or fugacity, which couples to a left-moving, holomorphic U(1)
current, J . In order to obtain a non-vanishing result, the zero modes are saturated by insert-
ing an appropriate power F n

R of the right-moving fermion number operator. In the present,
four-dimensional, context, we have n = 1 and the worldsheet theory possesses N = (0, 2)
supersymmetry.

The elliptic genus (1.1) should be contrasted with the familiar one of N = (2, 2) supercon-
formal theories. For these one can refine the elliptic genus in a canonical way as to keep track
of the left-moving U(1) superconformal R-symmetry. On the other hand, the current J in the
present context is just the worldsheet incarnation of some four-dimensional gauge symmetry,
which for concreteness we have taken to be U(1).3 This is a generic, model-dependent symmetry
which does not pertain to any left-moving N = 2 superconformal algebra.

It is familiar from the earliest works [26–29] that the elliptic genus (1.1), defined as the
RR partition function of a weakly coupled, toroidal worldsheet theory, enjoys distinguished
transformation properties under the modular group, SL(2,Z): For a string in d = 2n + 2
dimensions, it transforms with modular weight w = −n. As we will recall later in Section 4,
for the special case of a critical heterotic string this has important implications for anomaly
cancellation [26,27,30,31] via the Green-Schwarz [32] mechanism.

When the elliptic genus is refined by an extra U(1) gauge background, as considered here, one
might expect that it will be promoted to a weak Jacobi form [33–35]. This means that Z(q, ξ) =
Φ−n,m(τ, z), where Φw,m denotes a generic weak Jacobi form of modular weight w and index
m (the index m is model dependent and specifies the level of the underlying U(1) Kac-Moody
algebra, or equivalently, the spacing of the charge lattice). As summarized in Appendix A.1,
such Jacobi forms enjoy distinguished modular and shift transformation properties, which play
an important rôle for elliptic genera in general (for a review, see e.g. [36]).

While this expectation is indeed realised in six dimensions, we find that the elliptic genus
in four-dimensional string theories is not necessarily a modular or quasi-modular weak Jacobi
form, but rather what is known as a quasi-Jacobi form (see again Appendix A.1). This is not
in conflict with the arguments of [33] which are based on spectral flow [37], as these arguments
do not apply to generic U(1) currents in (0, 2) models. Indeed it is known [38] that (left-right
asymmetric) spectral flow is not necessarily a symmetry of the theory. In fact the situation
is not that bad, in that the elliptic genus will still be closely related to weak Jacobi forms,
albeit in a more intricate way: namely, at least in special situations, as a collection of formally
six-dimensional elliptic genera in disguise. We will explain these matters, which are among our
main findings, in detail in the next subsection.

3In Section 6.1, we will also discuss a non-abelian extension.
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Historically the elliptic genus of critical strings as written in (1.1) refers to a weakly coupled,
conformal worldsheet theory and as such it is an intrinsically perturbative, one-loop quantity.
However, it was later understood how elliptic genera for critical as well as for non-critical strings
can also be defined and computed in non-perturbative settings, by resorting to a variety of
methods such as mirror symmetry, the topological vertex, localization, and 2d CFT technology
[4,6,39–65,65–73]. This has the advantage of being far more general than for perturbative strings
based on weakly coupled worldsheet theories, and applies also to non-perturbative heterotic as
well as to non-critical strings.

In this paper we will exploit the fact that elliptic genera can be computed geometrically
in terms of Gromov-Witten invariants arising in dual string compactifications in M- or F-
theory. Most of the work has been done, so far, for six-dimensional theories. Essentially,
the idea is to consider solitonic strings that arise in F-theory from D3-branes wrapping some
curve, Cb, which lies in the base of an elliptic threefold, Y3. In the dual M-theory formulation,
the charged excitations of the string wrapped on an extra S1 correspond to M2-branes on
C = Cb + nEτ + C f

r. Here Eτ is the elliptic fiber of Y3 and the other fibral curves C f
r are

associated with the gauge symmetry. The degeneracies that are encoded in the elliptic genus
(1.1) then have an interpretation as the genus-zero BPS invariants, NCb

(n, r), associated with
C. These invariants can be assembled into the following free energy, which is defined relative
to Cb:

FCb
(q, ξ) =

∑
NCb

(n, r)qnξr . (1.2)

Here we assumed just one extra U(1) gauge symmetry.4 Physically the M2 brane wrapping
numbers n and r correspond to levels and charges of excitations of the solitonic string.

Via duality the free energy FCb
(q, ξ) can be argued to coincide with the elliptic genus5 (1.1)

of the solitonic string, upon identifying the modulus of the elliptic fiber with the modulus of
the toroidal worldsheet (and similarly for the U(1) fugacity):

ZCb
(q, ξ) = −qE0FCb

(q, ξ) , (1.3)

where E0 is the ground state energy of the Ramond sector of the string worldsheet theory.
In [6] we have addressed the analogous situation for four-dimensional F-theory compacti-

fications on fourfolds, Y4, focussing on geometries that lead to dual heterotic strings. This is
much more involved not the least because BPS invariants on fourfolds, Nα;Cb

, depend on extra
data. Namely they need to be defined [74–77] with respect to some basis of cohomology classes,
ωα ∈ H2,2(Y4,R). In physics terms these data correspond to choices for the background four-
flux, G = cαω

α. Thus for a given fourfold Y4, we have in general a collection of independent
elliptic genera labelled by background fluxes,

Zα;Cb
(q, ξ) = −qE0

∑
n,r

Nα;Cb
(n, r)qnξr , (1.4)

so that the full elliptic genus for a given flux background G is given by a linear combination

ZG;Cb
(q, ξ) =

dimH2,2(Y4,R)∑
α=1

cα Zα;Cb
(q, ξ) . (1.5)

4The generalisation to multiple U(1) factors should be straightforward, in terms of (quasi-)Jacobi forms with
multiple elliptic variables, along the lines of [5].

5Throughout this work we are considering genus-zero BPS invariants. In six dimensions, with a suitable
omega background turned on, one can define an elliptic genus that also captures higher genus BPS invariants of
Calabi-Yau threefolds as in [41]. Note however that for compact Calabi-Yau fourfolds only genus zero and genus
one invariants are relevant [74].
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As far as the modular properties are concerned, it was found in [6] that depending on the flux
sectors labelled by α, the various building blocks Zα;Cb

(q, ξ) behave very differently. To be more
specific, let us introduce the following symbolic notation (now labelling by modular weight and
index rather than by flux and curve):[

Z∗−1,m

]
=
[
ZM
−1,m

]
⊕
[
ZQM
−1,m

]
⊕
[
ZQJ
−1,m

]
, (1.6)

where the superscripts refer to6 “modular”, “quasi-modular” and “quasi-Jacobi”, respectively.
We will explain these terms in due course. Note that at this point there is an ambiguity in that
any ZQM

−1,m is a priori defined only up to a modular piece, and ZQJ
−1,m up to modular and quasi-

modular pieces. The precise alignment between the modular properties and fluxes in H2,2(Y4),
in relation to the overall geometry of the fourfold Y4, will be a main issue in the present paper
and will be discussed later in detail.

Let us go through the various components of [Z∗−1,m] and briefly characterize their modular
properties. The fully modular piece, ZM

−1,m in (1.6) is, by definition, given by some weak Jacobi

form [33–35] (see Appendix A.1). The quasi-modular piece, ZQM
−1,m, is a benign modification, the

only difference being that it is a quasi-modular and not fully modular Jacobi form. By this we
mean that besides the ordinary modular Eisenstein series E4 and E6, also the quasi-modular
series E2 appears. As is familiar, this mild violation of modularity can be repaired by replacing
E2 by its modular, but non-holomorphic cousin

Ê2 = E2 −
3

πImτ
, (1.7)

which transforms uniformly with modular weight two. In field theoretic terms, this reflects
a regularization ambiguity in the zero mode sector, which is resolved by imposing modular
invariance at the expense of holomorphicity.

This is just a manifestation of the celebrated holomorphic anomaly [78], which has many
manifestations in physics. In the present context (and for genus-zero invariants) it is well-
known [40,50,79–83] to mean that the base curve Cb = C0, which corresponds to the heterotic
string, splits over certain subloci: C0 = C1

E + C2
E. The curves Ci

E in turn are associated with
non-critical E-strings, and the split just reflects the fact that the heterotic string can fractionate
into two E-strings [45]. In the dual heterotic language these correspond to having extra 5-branes
in the geometry, which means that the quasi-modular sector of the theory is intrinsically non-
perturbative as seen from the heterotic perspective. As we will discuss later in Section 4, this
will have also a non-trivial bearing on anomaly cancellation, which is closely tied to the modular
properties of the elliptic genus.

Finally, most peculiar and thus most interesting is the last component of the elliptic genus,
ZQJ
−1,m, in (1.6). It was found in [6] that it cannot be an ordinary modular or quasi-modular

Jacobi form, since it does not obey the characteristic transformation properties (A.1) and (A.2).
However it was observed that the coefficients of an expansion in powers of z are quasi-modular
forms term by term, so that one can at least assign a uniform overall modular weight, w = −1,
to it.

1.2 Summary of Present Work

The main new result of the present paper is that the component ZQJ
−1,m of the ellitpic genus in

(1.6) is actually also expressible in terms of the more familiar (quasi)-modular Jacobi forms,

6With “modular” (and similarly with “quasi-modular”) we refer in this context to the transformation prop-
erties of weak Jacobi forms, which comprise besides (A.1) also the double quasi-periodicity (A.2).
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though in an intriguing way. Namely, it is given by a derivative

ZQJ
−1,m(q, ξ) = ξ

∂

∂ξ
Z−2,m(q, ξ) (1.8)

of a partition function Z−2,m(q, ξ) of modular weight −2 and index m. Depending on the
geometry it can be either a modular or quasi-modular weak Jacobi form. Thus, just like for
the (quasi-)modular sector, the extra sector splits into two, namely into a perturbative and a
non-perturbative piece, and we can refine the symbolic decomposition (1.6) as follows:[

Z∗−1,m

]
=
([
ZM
−1,m

]
⊕
[
ZQM
−1,m

])
⊕ ξ ∂

∂ξ

([
ZM
−2,m

]
⊕
[
ZQM
−2,m

])
. (1.9)

Accordingly, from now on we will refer to these extra components as the “derivative sector”,
which by itself can come in a modular and quasi-modular version.

One main concern in the present paper will be to understand the mathematical origin and
physical interpretation of this sector in terms of the underlying fourfold geometry and flux
background. More concretely we aim to understand how the set of possible four-form fluxes
maps into the space (1.9) of elliptic genera, i.e.,[

G
]
−→

[
Z∗−1,m

]
. (1.10)

This question will be addressed in Section 3, with special emphasis on geometries that are
dual to heterotic strings in Section 3.2. In this concrete setting we can explicitly match the
geometrical data to the decomposition (1.9) of the elliptic genus in terms of modular objects.
Specifically, we anticipate, as described in our key equation (3.13), that

Z−1,m = g0 Z0
−1,m + gE ZE

−1,m +
∑
i

gi
1

2m
ξ∂ξ Z

i
−2,m , (1.11)

where the index m is determined by a certain topological intersection product to be explained
later. The flux-dependent coefficients, g∗, are intersection products as well and are given in
eqs. (3.14). The first term in (1.11) represents the fully modular piece of the elliptic genus,
while the second constitutes a possible non-perturbative, quasi-modular piece. It originates
from a possible blowup of the base threefold, B3, which introduces an exceptional divisor, E,
and is also associated with non-critical E-strings. As mentioned in the previous section, this
generalizes well-known results in six dimensions [50,82,83]. The novel piece in four dimensions is
then the derivative piece, which is in general given by a sum of terms, as labelled by i in (1.11).

In fact, the derivative structure nicely ties in with statements given in the mathematical
literature [24, 25]. In particular it was proven in [24] that elliptic genera will in general lie
in the ring of quasi-Jacobi forms, which is a broader notion than just Jacobi or quasi-modular
Jacobi forms. It is easy to see from the definitions given in Appendix A, that ZQJ

−1,m in (1.8) yields
a simple and concrete realization of such quasi-Jacobi forms, which explains the superscript.
The paper [25] furthermore conjectured that the generating functions of relative BPS invariants
in any elliptically fibered variety can generally be expressed in terms of quasi-Jacobi forms.
Our results for Calabi-Yau fourfolds were found in an independent manner, and thus provide a
nontrivial check of these conjectures.

Given that the derivative terms do not behave well under either SL(2,Z) transformations
(A.1) or under shifts (A.2), one might raise the point of consistency of the physical theories.
Specifically the shift z → z + λτ , λ ∈ Z, which is a manifestation of spectral flow in the U(1)

7



Figure 1: A sketch of the interplay between elliptic holomorphic anomalies and (almost holo-
morphic) partition functions, Ẑw,m(q, ξ), pertaining to the various fluxes as classified in (2.17).

Here Ẑ−1,m(q, ξ) is (the non-holomorphic cousin of) the elliptic genus in four dimensions.

Moreover Ẑ−2,m(q, ξ) encodes relative invariants of certain embedded threefolds Yi
3, which can,

at least formally, be associated to elliptic genera in six dimensions.

sector of the theory, would seem to be broken for flux backgrounds that lead to derivative
contributions to the elliptic genus.

This is analogous to the problem discussed in the previous section, where the quasi-modular
Eisenstein series E2 appears in the component ZQM

∗,∗ of the elliptic genus. In that case, the
cure for restoring modular invariance was to add a non-holomorphic piece to E2, replacing it
by the modular, non-holomorphic weight-two Eisenstein series Ê2 as in (1.7). In the present
context of quasi-Jacobi forms, we have a similar remedy: we can augment the derivative piece
by introducing a non-holomorphic term, and declare the following to be the (“derivative” part
of the) physical elliptic genus:7

ẐQJ
−1,m(τ, z) = ∇z,mZ

∗
−2,m(τ, z) ≡

(
∂z + 4πim

Imz

Imτ

)
Z∗−2,m(τ, z) . (1.12)

This restores not only the modular SL(2,Z) symmetry (A.1), but also invariance under the
shifts z → z + λτ , λ ∈ Z, ie., spectral flow. In other words, what we encounter here as a novel
phenomenon, on top of the known modular anomaly, is an anomaly of the spectral flow which
can be cancelled upon sacrificing holomorphicity.

As we will explain in Section 3.4, eq. (1.12) has an interpretation in terms of an elliptic gen-
eralization of the holomorphic anomaly equation [40, 50, 78–83]. It is analogous to the familiar
holomorphic anomaly equation, which in essence states that given an almost holomorphic, mod-
ular function which depends on Ê2, there is a functional identity between the non-holomorphic
sector and a derivative with respect to E2. More specifically, we trivially infer from (1.12) that

∂

∂ Imz
Imτ

ẐQJ
−1,m(τ, z) = 4πimZ∗−2,m(τ, z) . (1.13)

The surprising point is that the image of the derivative yields the generating function of BPS
invariants related to a different flux sector. Indeed we will find in Section 3.4 that the Zi

−2,m(τ, z)
coincide with invariants related to certain non-transversal fluxes, even though these have no

7This does not change the counting of states, since the q-expansion is defined in the regime Imτ →∞.
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interpretation in terms of gauge fluxes in four-dimensional F-theory! See Figure 1 for a sketch
of the relations between the various flux sectors.

This makes contact with the work of [76, 77], where the BPS invariants induced by non-
transversal fluxes have been observed to organise into quasi-modular partition functions. More-
over in ref. [77] a holomorphic anomaly equation was found that relates flux sectors associated
with modular weights w = 0 and w = −2; the rightmost arrow in Figure 1 refers to this. Our
result (1.13) relates the elliptic genus of weight w = −1 to a flux sector associated with modular
weight w = −2. In fact, after translating our setup to the formalism [25], equation (1.13) turns
out to be a manifestation of the elliptic holomorphic anomaly equation that was introduced in
a more abstract form in that reference.

Moreover, we have found another, related interpretation of the Zi
−2,m(τ, z): We will see that

for certain geometries, the Zi
−2,m(τ, z) are literally the elliptic genera of certain six-dimensional

string theories. For example, in the context of solitonic heterotic strings, where the base
threefold B3 of the elliptic fourfold Y4 is itself fibered over some surface, B2, the Zi

−2,m are
labelled by curve classes Ci in B2. To each of these Ci we can associate a certain specific
threefold, Yi

3, which is defined by the restriction of the fourfold to the pullback divisor p∗(Ci)
as follows:

Yi
3 := Y4|p∗(Ci) . (1.14)

Here {Cj} denotes the basis of curves dual to the basis {Ck} on B2. This geometric setup
is schematically depicted in Figure 2. As we will argue in Section 3.2, the Zi

−2,m just encode
the relative BPS invariants of these auxiliary threefolds. This alternative interpretation of the
Zi
−2,m then provides an intriguing relationship between background fluxes in H2,2

(−2) and the

enumerative geometry of the threefolds Yi
3. It also gives independent support to some of the

conjectures of ref. [25].
In may cases, the embedded threefolds, Yi

3, can be Calabi-Yau by themselves for an appro-
priately chosen basis {Ci}. Since they are elliptically fibered as well, one can then associate
to each of them a chiral, six-dimensional F-theory compactification. We will show that in this
situation, the collection of the Zi

−2,m that feature in the sum (1.11) are nothing but the elliptic
genera associated with these threefolds Yi

3. This phenomenon generalises also to non-critical
strings which will be the subject of section 6.

More generally, however, it turns out that the embedded threefolds Yi
3 are not necessarily

Calabi-Yau. We nonetheless conjecture, and support with some arguments, that the Zi
−2,m

continue to encode BPS invariants of the embedded threefolds, Yi
3. For these cases, an inter-

pretation in terms of elliptic genera likely persists only as a formal analogy.
To support our considerations, we will present a detailed analysis of several examples. In

Section 5.1 we will discuss an example where the derivative sector comprises two embedded
threefolds both of which are Calabi-Yau. On the other hand, Section 5.2 shows an example with
a single embedded threefold, which has negative anti-canonical bundle; the derivative piece of
the elliptic genus can then be associated via duality, in a formal sense, to a certain elliptic surface
with 36 singular fibers. Furthermore we see in examples that the derivative structure appears
even more broadly, and also applies to elliptic genera of non-critical strings. This suggests, as
stated in Conjecture 2, that it is a general feature of elliptic genera in four dimensions. In
Section 6 we will see how it applies to what we will call four-dimensional E-strings,8 as well as
to a non-critical string arising from a D3-brane wrapping a curve on B3 = P3.

8It would be interesting to make explicit the relation of these four-dimensional theories to the compactifica-
tions of 6d E-string theories with flux, whose study was initiated in [84].
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} }}}

Figure 2: The derivative contribution to the elliptic genus of a four-dimensional string is
captured by the relative BPS invariants of certain threefolds Yi

3 inside the given elliptic fourfold
Y4. Here we present a sketch of how these threefolds are embedded for the example of a heterotic
string. The heterotic string arises in this F-theory geometry from a D3-brane that wraps the
rational fiber C0 in the base threefold, B3 ⊂ Y4. The extra two-form fields Bi that are needed for
reinstating Green-Schwarz anomaly cancellation arise by expanding the ten-dimensional four-
form, C4, with respect to the divisor classes p∗(Ci) for i = 1, . . . h1,1(B2).

From a physics perspective, one may wonder about the Green-Schwarz cancellation of the
U(1) gauge anomaly, which is known to be closely tied to the modular properties of the elliptic
genus. For the example of a flux background that is dual to the heterotic string, we will show
in Section 4 that anomaly cancellation persists also when derivative pieces are present, albeit
in a modified way.

As we will recall in Section 4.1, the modular properties of the elliptic genus underlie the
standard Green-Schwarz mechanism which involves the universal B-field. The derivative terms
in the elliptic genus, Zi

−2, appear precisely when, depending on the geometry and flux, further
2-form fields Bi contribute to the Green-Schwarz mechanism [85].9 The additional 2-form fields
arise from the curve classes Ci in the base threefold B2, which also determine, as per (1.14), the
corresponding elliptic threefolds Yi

3. To close the circle of ideas, the threefolds in turn encode
the BPS invariants pertaining to the ith derivative sector of the elliptic genus, and altogether
everything conspires such that anomalies are cancelled.

2 Geometric Foundations

In Section 2.1 we briefly review the geometric definition of BPS invariants for curves on Calabi-
Yau fourfolds and their computation via mirror symmetry. In Section 2.2 we then specialise
to the relative BPS invariants on elliptic fibrations in the presence of fluxes. These concepts
become particularly important in light of F-theory/heterotic duality, whose salient geometric
manifestation we recall in Section 2.3.

9For clarity we neglect here the quasi-modular sector, which brings in its own B-fields, as explained in Section
4.1.
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2.1 BPS Invariants on Calabi-Yau Fourfolds

In this work we investigate the structure of certain integral BPS invariants for Calabi-Yau
fourfolds, Y4, which are analogous to the familiar integral BPS invariants on Calabi-Yau three-
folds. There are two ways to approach the definition of the invariants, either on purely geometric
grounds or via mirror symmetry, and we will briefly review both. For more details we refer e.g.
to [74–77] and references therein.

We begin with the geometric approach by first defining the (in general rational) Gromov-
Witten invariants of a Calabi-Yau fourfold. Consider a curve class C ∈ H2(Y4,Z) and the
moduli space of stable holomorphic maps from a Riemann surface of genus g to C with s
points fixed, denoted as Mg,s. This moduli space has expected or virtual (complex) dimension
dimvir(Mg,s) = 1− g + s. For genus g = 0 and s = 1, the virtual dimension of Mg,s is two and
thus one can define a topological invariant by, loosley speaking, integrating a suitably quantized
element G ∈ H4(Y4,R) over the moduli space. More precisely, following [74] we denote by µ
the virtual fundamental class of M0,1 associated with a curve C (with one point fixed). Then
this defines the genus-zero Gromov-Witten invariants nG(C) of C with respect to G as

nG(C) =

∫
µ

ev∗(G) , (2.1)

where ev∗ is the evaluation map applied to G. By holomorphicity, this integral is non-zero only
if G ∈ H2,2(Y4,R). While Gromov-Witten invariants are in general not integral, there exist
related integral BPS invariants for fourfolds which are analogues of the integral BPS invariants
of threefolds [86–88]. This was first conjectured in [75] and proven for g = 0 in [89]. We will
denote these integral BPS invariants by NG(C). At genus zero, and as long as we do not consider
multiples of curve classes, the two notions of invariants are equivalent; throughout this work we
will be in this situation and can hence use both notions of invariants interchangeably.

The BPS invariants NG(C) can be computed by mirror symmetry [90, 91], by interpreting
the Calabi-Yau fourfold Y4 as the compactification space of Type IIA string theory to two
dimensions, and the element G ∈ H2,2(Y4,R) as a four-form background flux. The space
H2,2(Y4,R) of supersymmetric flux backgrounds admits a decomposition [90,92]

H2,2(Y4,R) = H2,2
vert(Y4,R)⊕H2,2

hor(Y4,R)⊕H2,2
rest(Y4,R) , (2.2)

where the vertical subspace H2,2
vert(Y4,R) is generated by all products of two elements in H1,1(Y4),

while the horizontal subspace H2,2
hor(Y4,R) is obtained by the variation of Hodge structure from

the unique (4, 0)-form on Y4. In a flux background given by G ∈ H2,2
vert(Y4,R), the N = (2, 2)

supersymmetric compactification of Type IIA string theory on Y4 is partially determined by the
free energy, FG(t), which depends holomorphically on the Kähler moduli ta, a = 1, . . . , h1,1(Y4).
The two-point functions for the chiral fields in the effective action associated with the Kähler
moduli are then given by [91,93]

Cab,G = ∂a∂bFG(t) . (2.3)

The free energy FG(t), which plays the rôle of a superpotential in two dimensions, encodes the
genus-zero invariants as follows: Define first the variables

qa = e2πita , a = 1, . . . , h1,1(Y4) , (2.4)

and expand a given curve class Cβ in terms of the basis Ca of H2(Y4) with complexified volumes
ta,

Cβ = βaCa . (2.5)
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Hence to each curve Cβ one can associate the product

qβ = qβ
1

1 . . . qβ
h1,1(Y4)

h1,1(Y4) . (2.6)

The free energy FG(t) then enjoys a worldsheet instanton expansion of the form

FG(t) =
∑
β

NG(Cβ) Li2(qβ) , NG(Cβ) ∈ Z , (2.7)

where we have suppressed possible classical pieces which are polynomial in ta. The function
FG(t), and hence the invariants NG(Cβ), can in turn be computed by mirror symmetry: Type
IIA string theory on Y4 with flux G ∈ H2,2

vert(Y4,R) is dual to Type IIA string theory on the
mirror Ỹ4 with a dual flux G̃ ∈ H2,2

hor(Y4,R). Under the mirror map the free energy FG(t) maps
to

FG̃ =

∫
Ỹ4

G̃ ∧ Ω̃4,0 , (2.8)

which is a holomorphic function of the complex structure moduli of Ỹ4. It is, in principle, exactly
computable as a period integral, which eventually determines the invariants NG(Cβ). For more
details see [91,93–95].

2.2 Relative BPS Invariants on Elliptic Calabi-Yau Fourfolds

We now focus on invariants NG(Cβ) of those Calabi-Yau fourfolds Y4 which admit an elliptic
fibration of the form

π : Eτ → Y4

↓
B3 (2.9)

The base B3 of the fibration is a Kähler threefold, which, in order for such a fibration to exist,
must have an effective anti-canonical divisor, K̄B3 .

As we will see, for certain choices of curve class Cβ and flux G, the genus-zero invariants
NG(Cβ) admit yet another interpretation in terms of an elliptic genus of a string. To arrive
at this interpretation, we view the Kähler threefold B3 as the compactification space of F-
theory [96] to four dimensions. Compactification of this theory on a further circle, S1

F , gives
rise to a theory in three dimensions, which coincides with M-theory compactified on Y4.10

We will furthermore assume that the gauge group of the four-dimensional F-theory is non-
trivial. For any non-abelian factor G of the gauge group, there must be a divisor bG on B3

which is wrapped by a stack of 7-branes. For the geometry of Y4, this implies that the generic
elliptic fiber Eτ splits into several holomorphic curves over bG. In the dual M-theory picture,
M2-branes wrapping these fibral curves give rise to the non-abelian gauge bosons that are not
in the Cartan subalgebra of G. The fibral curves may split further over curves on bG, in which
case additional matter fields charged under G appear. Even for G = U(1), massless charged
matter exists only if the elliptic fiber splits over certain curves on B3.

10The following well-known elements of F-theory are reviewed for example in [97, 98], to which we refer for
details and original references.
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For definiteness we now focus on gauge group G = U(1). Geometrically, in such situation
the fourfold Y4 then exhibits an extra rational section, S, in addition to the zero-section, S0.
Associated with S is the divisor class

σ ≡ σ(S) ∈ H1,1(Y4) , (2.10)

which is the image of the Shioda map. It has the defining properties that

σ ◦ π∗w6 = 0 , σ ◦ S0 ◦ π∗w4 = 0 ∀w6 ∈ H6(B3) , w4 ∈ H4(B3) . (2.11)

Here and in what follows we use the notation ◦ for the intersection product on Y4, i.e.,

wa ◦ wb ◦ . . . ◦ w8−a−b−... =

∫
Y4

wa ∧ wb ∧ . . . ∧ w8−a−b−... . (2.12)

Given σ we can expand the M-theory 3-form as C3 = A ∧ σ + . . ., where the 1-form field A
becomes the G = U(1) gauge potential in the dual M-theory.

In the language of Type IIB/F-theory, the abelian gauge group is associated with a linear
combination of 7-branes, each wrapping a 4-cycle on B3. The linear combination of four-cycles
associated with the U(1) in this way can be identified with the the so-called height-pairing

bU(1) ≡ b = −π∗(σ ◦ σ) . (2.13)

As mentioned before, in addition to the gauge potential there will in general be a collection
of massless charged matter fields. In the Type IIB/F-theory picture, massless N = 1 chiral
multiplets with

U(1) charge Q = r (2.14)

arise from open strings stretched between the 7-branes. The open strings give rise to massless
states of charge r which are localized on certain (self-)intersecting curves of the 7-branes on
B3. We will call these “matter curves” and denote them by Σr. In the M-theory picture, the
charged matter fields are obtained by wrapping M2-branes on curves C f

r which sit in the fiber
of Y4 over Σr. Their charges are determined by the intersection product with the Shioda map:

r = σ ◦ C f
r . (2.15)

Apart from the geometry intrinsic to the fourfold Y4, the effective theory also depends on
the background flux, which, via the duality to M-theory, is encoded in a flux G ∈ H4(Y4,R)
in M-theory. It is quantized such that G + 1

2
c2(Y4) ∈ H4(Y4,Z). Importantly for us, the

primary vertical subspace H2,2
vert(Y4,R), as sketched in (2.2), receives additional structure if Y4

is elliptically fibered. In this case, H2,2
vert(Y4,R) is spanned by three different types of 4-forms

which can be characterised as follows:

H2,2
vert(Y4,R) = H2,2

(0) (Y4,R) ∪H2,2
(−1)(Y4,R) ∪H2,2

(−2)(Y4,R) (2.16)

with

H2,2
(0) (Y4,R) = 〈(S0 +

1

2
π∗(K̄B3)) ∧ π∗(wi)〉

H2,2
(−1)(Y4,R) = 〈σ(S) ∧ π∗(wi)〉

H2,2
(−2)(Y4,R) = 〈π∗(wi) ∧ π∗(wj)〉 .

(2.17)
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Here {wi} is a basis of H1,1(B3), S0 denotes the zero-section and σ(S) the Shioda map image
associated with the additional independent section S, as before. Note that not all elements in
the set {π∗(wi) ∧ π∗(wj)} are linearly independent within H2,2

vert(Y4,R). As will become clear
later, the subscript in H2,2

(w)(Y4,R) refers to the modular weight w of the partition function, Zw,m,
that is associated with the given flux.

Of special importance for us is the so-called transversal subspace H2,2
(−1)(Y4,R) of H2,2

vert(Y4).

It is orthogonal to the other two subspaces in (2.17), i.e., a flux G ∈ H2,2
(−1)(Y4,R) by definition

satisfies the two conditions

G ◦ π∗(wi) ◦ π∗(wj) = 0 , G ◦ S0 ◦ π∗(wi) = 0 ∀wi ∈ H1,1(B3) . (2.18)

The transversality conditions (2.18) ensure that the flux G, which is a priori defined as back-
ground in the M-theory compactification on Y4, is compatible with the duality to F-theory on
B3, in the sense of giving rise to a four-dimensional effective theory with full Poincaré invariance
in R1,3. Such transversal fluxes related to the U(1) symmetry will be denoted by

GU(1) = σ ∧ π∗(F ) , F ∈ H1,1(B3) . (2.19)

All other elements in H2,2
vert(Y4), while corresponding to valid flux backgrounds in M-theory

or Type IIA string theory, are not liftable to F-theory. In the more general context of M-
theory/Type IIA string theory on Y4, one can in any case analyse the BPS invariants of an
elliptic fibration in a non-transversal flux background, as pioneered in [76,77].

Let us now recall how the transversal fluxes determine the chiral index of massless charged
matter in the context of four-dimensional F-theory compactifications [97]. As noted above,
massless matter fields with U(1) charge Q = r are localised on a curve Σr on the base B3. The
fiber over Σr contains the curve C f

r, and an M2-brane wrapping C f
r gives rise to a BPS particle

in the dual M-theory picture. In fact, the fibration of C f
r defines a surface Σ̂r,

πr : C f
r → Σ̂r

↓
Σr (2.20)

in terms of which the chiral index of massless matter of charge Q = r is computed as

χGU(1),Q=r = n+
r − n−r =

∫
Σ̂r

GU(1) = r

∫
Σr

F = r (Σr · F ) . (2.21)

The third equality is a consequence of the factorized form (2.19). Furthermore we have intro-
duced, after the last equality, the intersection product on B3 that we will henceforth denote by
a dot.

In fact, the integral invariant χGU(1),Q=r is exactly the genus-zero Gromov-Witten invariant

for the fibral curve C f
r with respect to GU(1) [6],

χGU(1),Q=r = nGU(1)
(C f

r) = NGU(1)
(C f

r) . (2.22)

The first equation follows from the geometric definition (2.1) because the moduli space of C f
r

with one point fixed coincides with the surface Σ̂r. The second equation holds because for the
rational curves in the fiber, C f

r = rC f
r=1 in cohomology; if nGU(1)

(C f
r) 6= 0, there must exist an

actual curve in this class in the fiber. Hence the non-vanishing invariants nGU(1)
(C f

r) 6= 0 do not

involve multiple wrappings and therefore agree with the BPS invariants NGU(1)
(C f

r).
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More generally, we are interested in the structure of genus-zero integral BPS invariants for
curves of the form

C = Cb + nEτ + C f
r , (2.23)

with respect to fluxes in H2,2
vert(Y4) that satisfy (2.18). We denote these invariants as

NG[Cb + nEτ + C f
r] =: NG;Cb

(n, r) . (2.24)

As long as Cb is not a multiple of an integral curve class on B3, these integral invariants coincide
with the Gromov-Witten invariants for the same curve. They are called the relative Gromov-
Witten invariants with respect to the elliptic fibration π.

These integral invariants can be packaged into a generating function

FG;Cb
=
∑
n,Q

NG;Cb
(n, r)qn ξr . (2.25)

Here we have defined the variables

q = e2πiτ , ξ = e2πiz , (2.26)

where τ is the Kähler parameter of the generic elliptic fiber Eτ and z is the Kähler parameter of
the fibral curve C f

r=1. From the perspective of Type IIA string theory on Y4, FG,Cb
contributes

to the two-dimensional superpotential F(t), as defined in (2.7).
As stressed above, in the context of F-theory we must insist that G is a transversal flux.

Under this proviso, (2.25) coincides with the elliptic genus of a four-dimensional solitonic string
(up to a prefactor), as will be explained in Section 3.1. On the other hand, for Type IIA com-
pactifications on fourfolds, there is no restriction to transversal flux backgrounds, and one can
consider generating functions (2.25) for the other, non-transversal types of flux as well. As ex-
emplified in [76,77], the partition functions for fluxes in H2,2

(−2)(Y4) and H2,2
(0) (Y4) are meromorphic

(quasi-)modular forms of weight −2 and 0, respectively.

2.3 P1-Fibered Base Spaces and F-Theory/Heterotic Duality

As a special case of the structure outlined in the previous section, we now consider the situation
where the base space B3 by itself admits a further, rational fibration with section S−, possibly
blown up along one or several curves on the section. The projection of the rational fibration
will be denoted by

p : C0 → B3

↓
B2 (2.27)

The generic fiber is some rational curve C0. Prior to performing any blowup, the fibration can
be understood as the projectivised bundle P(O⊕L), where L is a line bundle on B2. This means
that the section S−, which is oftentimes referred to as an exceptional section, has self-intersection
S− · S− = −S− · p∗(c1(L)). One can therefore define another section S+ := S− + p∗c1(L) such
that

S− · S+ = S− · (S− + p∗c1(L)) = 0 . (2.28)

We can also perform an optional blowup along some curve Γa in the base B2. After the
blow-up, the rational fiber C0 over the curve Γa splits into two rational curves,

C0 = C1
Ea + C2

Ea . (2.29)
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The blowup introduces an exceptional divisor Ea, which is itself a P1-fibration over Γa. We label
the curves C1

Ea
and C2

Ea
such that C2

Ea
is the fiber of the divisor Ea. With this convention the

intersection numbers of the exceptional curves C1,2
Ea

with the sections S± and with Ea become

S± · C0 = 1 , S± · C1
Ea = 1 S± · C2

Ea = 0

Ea · C0 = 0 , Ea · C1
Ea = 1 Ea · C2

Ea = −1 .
(2.30)

This process can of course be repeated for several different curves Γa and followed up by
successive blowups in the fiber. For simplicity of presentation, however, we assume only one
such blow-up locus and hence drop the label a.

Whenever the base B3 is endowed with such a P1-fibration, F-theory on B3 has a clearly
identifiable heterotic dual [99]. Viewed from the dual, weakly coupled eigenframe, the heterotic
string theory appears as a four-dimensional compactification on a certain Calabi-Yau 3-fold Z3.
The latter is elliptically fibered over the same base B2 as before,

ρ : Ehet → Z3

↓
B2 (2.31)

Apart from the geometry of Z3, the dual heterotic theory is determined by a gauge background
in form of some polystable E1

8 × E2
8 bundle W = V1 ⊕ V2. The particular choice of background

depends both on the details of the elliptic fibration Y4 and on the original F-theory background
flux, GU(1).

Moreover, the optional blow-up along the curve Γ on B2 on the F-theory side translates to
heterotic 5-brane that is wrapped on the same curve Γ in B2, now viewed as the base of the
heterotic 3-fold Z3. Such compactifications are inherently non-perturbative from the heterotic
perspective.

3 Elliptic Genera and the Geometry of Modularity

We are now in a position to discuss the identification of the relative BPS invariants, defined
in the previous section, with the degeneracies of states contributing to the elliptic genus of
four-dimensional solitonic strings. We state this connection in Conjecture 1 of Section 3.1,
which is a four-dimensional version of the correspondence between BPS invariants and elliptic
genera in six dimensions [4, 39–44, 49, 50, 57, 61–63, 65, 65, 70–73]. In Conjecture 2 of Section
3.2 we present the modular properties of the four-dimensional elliptic genus. In Section 3.3
we point out an intriguing relation between the derivative sector of the elliptic genus and the
BPS invariants of certain threefolds embedded in the Calabi-Yau fourfold. In Section 3.4 we
explain how these threefold invariants can alternatively be computed from the non-transversal
(−2)-fluxes, even though these do not have a direct interpretation in F-theory. This leads to an
elliptic holomorphic anomaly equation.

3.1 The Elliptic Genus of Solitonic Strings in Four Dimensions

From a physical point of view, the main objective of this paper is to obtain a better understand-
ing of four-dimensional critical and non-critical strings. This crucially rests on the observation,
which was already put to use in [6], that the generating function (2.25) for the relative genus-
zero Gromov-Witten invariants coincides, up to a factor, with the elliptic genus of a solitonic
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string. The aim of this section is to spell out this relationship in greater detail and formulate it
as a general conjecture that, supposedly, applies to all four-dimensional solitonic strings.

Let us first start by discussing how the solitonic strings arise in our context. Consider an
F-theory compactification with base space B3. A D3-brane wrapped on a curve Cb in the base
B3 gives rise to a string in the four-dimensional extended spacetime. The worldsheet theory of
this string is an N = (0, 2) supersymmetric field theory [100]. One can now define the elliptic
genus, as in (1.1), as a trace in the Ramond-Ramond sector of the N = (0, 2) superconformal
worldsheet theory of the solitonic string, or equivalently as a partition function on a torus with
modular parameter τ . As before, we consider a configuration with four-dimensional gauge group
G = U(1), associated with charge operator J . Then the elliptic genus takes the form (1.1):

ZGU(1);Cb
(q, ξ) = trRR

[
(−1)FRFRq

HL q̄HRξJ
]
, q = e2πiτ , ξ = e2πiz , (3.1)

where FR is the right-moving fermion number. The extra insertion of FR is needed to saturate
the fermionic zero modes in the right-moving sector. The elliptic genus does not only depend
on the choice of curve wrapped by the D3-brane, but also on the background flux GU(1) of the
parent F-theory compactification. In order for an F-theory interpretation to exist, this flux
must satisfy the transversality conditions (2.18).

As a consequence of the supersymmetry in the right-moving sector, the trace (3.1) is a
meromorphic function of q and ξ. In can be expanded as

ZGU(1);Cb
= −qE0

∑
n≥0,r

NGU(1);Cb
(n, r) qn ξr , (3.2)

where

E0 = −1

2
K̄B3 · Cb (3.3)

is the zero point energy of the string on T2. As we will discuss in a few moments, the degeneracies
NGU(1),Cb

(n, r) at level n and charge r for the flux ackground GU(1), are conjectured to agree
with the relative BPS invariants NGU(1),Cb

(n, r) that we have defined in the previous section.
For a general curve Cb, the solitonic string that arises from a wrapped D3-brane is generically

some strongly coupled, non-critical string in four dimensions [91]. We can distinguish three
possible types of strings. First, if Cb is a shrinkable curve, we can decouple the dynamics of
the string from the fields in the bulk of the base B3 by taking the volume of B3 to infinity. In
this case we arrive at a four-dimensional superconformal field theory in the limit of decoupled
gravity. An example of such a string would be a D3-brane wrapped on an exceptional curve.
For instance, this can be of the form Cb = C1,2

Ea
as defined in (2.29), with normal bundle

NCb/B3 = OCb
(−1) ⊕ OCb

. Such strings could be viewed as four-dimensional analogs of the
familiar E-strings in six dimensions [101–103] and will be discussed in Section 6.1.

There are also non-critical strings associated with curves whose volume cannot be taken to
zero without shrinking B3. Such non-critical strings cannot be decoupled from gravity. An
example would be for instance a curve Cb = H ·H, where H is the hyperplane class on B3 = P3.
For this curve the normal bundle is NCb/B3 = OCb

(1)⊕OCb
(1). This example will be investigated

in Section 6.2.
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Finally, the case where NCb/B3 = OCb
⊕OCb

is special: The curve Cb must be the fiber, C0,
of either a rational fibration of the form (2.27) or of an elliptic fibration. In the first case, a
D3-brane wrapped on C0 gives rise to a solitonic, critical heterotic string.11 In its proper duality
eigenframe, this string becomes precisely the fundamental heterotic string compactified on the
threefold Z3 as given in (2.31), additionally equipped with some gauge bundle W . Moreover
the elliptic genus (3.1), as defined via the G-flux background in F-theory, turns into the (not
necessarily perturbative) chiral partition function of that heterotic string compactification. More
precisely, the degeneracy NG;C0(n, r) counts (with signs) the excitations in the Ramond sector
at excitation level n and charge r.

For the critical heterotic string, the vacuum energy in (3.2) is E0 = −1
2
C0 · K̄B3 = −1. The

mass of the physical states at excitation level n thus is

M2 = 8πT (n− 1) , (3.4)

where T is the tension of the heterotic string. This identifies NGU(1);C
0(1, r) as the chiral index

over the massless states of charge r. By duality with F-theory, this spectrum must coincide with
the physical massless spectrum in the original F-theory compactification on Y4, and therefore
the index NGU(1);C

0(1, r) must agree with the chiral index (2.21):

χGU(1),r = NGU(1);C
0(1, r) . (3.5)

Furthermore recall from (2.22) that χGU(1),r coincides with the genus-zero Gromov-Witten in-

variant for the fibral curve C f
Q=r, which in turn is the same as the BPS invariant NGU(1)

(C f
r).

This demonstrates that the degeneracies NGU(1),C
0(n = 1, r) are computable from certain

BPS invariants of Y4 for the special case of Cb = C0 for which NGU(1);C
0(1, r) = NGU(1)

(C f
r).

With the situation in six dimensions serving as inspiration, it is natural to conjecture a far more
general connection. More precisely, we conjecture that up to an overall factor of qE0 , the elliptic
genus (3.1) for any kind of solitonic string agrees with the generating function of relative BPS
invariants (2.25) at genus zero:

Conjecture 1 The generating function FGU(1),Cb
for the relative BPS invariants at genus zero

associated with the base curve Cb, for any four-flux background GU(1) that satisfies the trans-
versality conditions (2.18), is proportional to the elliptic genus (3.1) for the solitonic string
obtained by wrapping a D3-brane on Cb:

ZGU(1);Cb
= −q−

1
2
Cb·K̄B3 FGU(1);Cb

. (3.6)

In particular the relative BPS invariants for Cb, NGU(1);Cb
(n, r), agree with the index-like de-

generacies NGU(1);Cb
(n, r) of the excitations of the solitonic string at level n and charge r:

NGU(1);Cb
(n, r) = NGU(1);Cb

(n, r) . (3.7)

11If C0 is the fiber of an elliptically fibered base B3, we expect instead a Type II string dual in a non-geometric
background. The six-dimensional version has been discussed in [8]. We will not investigate this type of strings
further as their elliptic genus vanishes in four dimensions.
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This statement is the analogue of the well-tested duality between certain free energies of
elliptic Calabi-Yau threefolds and the elliptic genera of solitonic heterotic and non-critical strings
in six dimensions. The new ingredient in four dimensions, of course, is the dependence on the
F-theory four-form flux GU(1) and its respective manifestation in the dual solitonic string.

As a corollary of this proposed general duality and eq. (3.5), the relative BPS invariants
NGU(1);C

0(1, r), where C0 is the fiber of the P1-fibration B3, must agree with the chiral index of
states of the F-theory compactification, and thus

NGU(1);C
0(1, r) = NGU(1)

(C f
r) = χGU(1),r . (3.8)

We will demonstrate this identity in the examples of Section 5, via explicit computations in
mirror symmetry.

3.2 Modular Properties of Four-Dimensional Elliptic Genera

The elliptic genus has supposedly distinguished modular properties, which reflect its definition
as a chiral partition function of a string wrapped on a torus T2 with modular parameter τ . For
example, the elliptic genus of a perturbative heterotic string in d = 6 dimensions with a single
U(1) gauge group factor is a meromorphic Jacobi form of weight w = −(d− 2)/2 = −2 [26], as
recalled in Section 1.1. For more general solitonic strings in six dimensions the elliptic genus is
a meromorphic quasi-modular Jacobi form of weight w = −2 (see Appendix A). This applies in
particular to solitonic strings that are dual to fundamental heterotic strings in the presence of 5-
branes [4]. Such modular behaviour is in general agreement with the relation between the elliptic
genus and the BPS invariants on elliptic Calabi-Yau threefolds, whose modular properties have
been analyzed in [25,82,83,104–106].

One might expect that this simple pattern carries over to the strings obtained by wrapped
D3-branes in F-theory compactifications to d = 4 dimensions that we consider here. The
expectation would be that the elliptic genus should be a meromorphic quasi-modular Jacobi
form of weight w = −(d− 2)/2 = −1.

As noticed in [6] for the special case of a heterotic string, this is not necessarily the case.
Rather, for some explicit examples studied in that work, it was found that the elliptic genus
(3.1) can in general also receive contributions which are not given by modular or quasi-modular
forms. One of the main observations of the present work is that these contributions, while
not modular by themselves, can actually be written as derivatives of modular or quasi-modular
Jacobi forms; recall the symbolic representation (1.9) given in the Introduction. Such objects are
special examples of so-called quasi-Jacobi forms as defined in Appendix A. What we encounter is
in fact a concrete realisation of the mathematical conjecture of [25] that relative GW invariants
of elliptic fibrations generally assemble into generating functions with values in the ring of quasi-
Jacobi forms. In Section 3.3 we will in addition assign a specific geometrical meaning to the
(quasi)-modular Jacobi forms whose derivative appears in the elliptic genera, namely in terms
of BPS invariants of certain embedded threefolds.

Extrapolating from these observations we make the following general proposal:
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Conjecture 2 The four-dimensional, U(1) refined elliptic genus (3.1) can be written as a sum
of meromorphic modular and quasi-modular Jacobi forms of weight w = −1 and fugacity index
m = 1

2
b ·Cb, where b is the height-pairing divisor (2.13), plus derivatives of modular and quasi-

modular Jacobi forms of weight w = −2 and the same fugacity index. More precisely,

ZGU(1);Cb
(q, ξ) = gMZM

−1,m(q, ξ)+gQMZQM
−1,m(q, ξ)+gM∂ ξ∂ξZ

M
−2,m(q, ξ)+gQM∂ ξ∂ξZ

QM
−2,m(q, ξ) , (3.9)

where gM , gQM , gM∂ , and gQM∂ are flux-dependent coefficients and

Z
M/QM
−1,m (q, ξ) =

Φ
M/QM
w,m (q, ξ)

η(q)12Cb·K̄B3

, Z
M/QM
−2,m (q, ξ) =

Φ
M/QM
w−1,m (q, ξ)

η(q)12Cb·K̄B3

(3.10)

with q = e2πiτ and ξ = e2πiz. Here, the numerators Φ
M/QM
w,m (τ, z) denote generic (quasi-)Jacobi-

forms of indicated weight and (integer) index given by

w = −1 + 6(Cb · K̄B3) , m =
1

2
(b · Cb) . (3.11)

As mentioned in the Introduction, the novel (quasi-)modular partition functions Z
M/QM
−2,m of

weight w = −2 have the properties characteristic of elliptic genera of chiral, six-dimensional
theories. Indeed, we will argue that they encode the relative BPS invariants of certain elliptic
three-dimensional sub-manifolds, Y3, of Y4. In special cases, when the elliptic threefolds Y3

are themselves Calabi-Yau spaces, this assertion can be verified explicitly by mirror symmetry.
More generally, we will provide various general consistency checks which support this claim also
when Y3 is not a Calabi-Yau space. As we will demonstrate in Sections 5 and 6, the general
structure we propose can be verified for a variety of examples, in particular for all the three
different basic types of base curves, Cb, as characterised in Section 3.1.

Let us illustrate at this point the structure for the important example of the solitonic het-
erotic string. To this end consider a base B3 of Y4 which is the blow-up of a rational fibration
(2.27), and for simplicity assume that the blow-up has been performed only over a single curve
Γ in the base, B2, of this rational fibration. Our notation for this type of geometries has been
introduced in Section 2.3. Again we take the gauge group to be G = U(1), so that the only
fluxes satisfying the transversality condition (2.18) are the U(1) fluxes (2.19) given by

G = GU(1) = σ ∧ π∗(F ) . (3.12)

In this concrete situation, as exemplified in Section 5, one can write the elliptic genus of the
heterotic string in the following geometric, closed form:

ZGU(1);C
0 = g0 Z0

−1,m + gE ZE
−1,m +

∑
i

gi
1

2m
ξ∂ξ Z

i
−2,m , (3.13)

with flux-dependent coefficients explicitly given by

g0 = F · C0 , gE = F · C1
E , gi = F · b · p∗(Ci) . (3.14)

Here C0 and C1
E denote the curves defined around equation (2.29), the divisor b is the height-

pairing as given in (2.13), and the set {Ci} is a suitable basis of curves on the base B2 of B3.
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The latter point will be explained in more detail in Section 3.3. Mathematical and physical
constraints restrict the (quasi-) modular forms in (3.13) as follows:

Z0
−1,m(q, ξ) =

1

η24(q)
φ−1,2(q, ξ) Φ0,M

12,m−2(q, ξ) ,

ZE
−1,m(q, ξ) =

1

η24(q)
φ−1,2(q, ξ)

[
ΦE,M

12,m−2(q, ξ) + φ−2,1(q, ξ)E2(q)ΦE,QM
12,m−3(q, ξ)

]
, (3.15)

Zi
−2,m(q, ξ) =

1

η24(q)

[
Φi,M

10,m(q, ξ) + E2(q)Φi,QM
8,m (q, ξ)

]
.

As always, Φ
∗,(Q)M
w,m denotes a generic weak Jacobi form of specified weight and index, which can

be written as a polynomial in the generators of the ring J
∗,(Q)M
w,m of (quasi-)modular Jacobi forms

(see Appendix A.1).
Note that since the weight of the Z∗−1,m is odd, these objects are necessarily proportional to

the unique odd-weight generator φ−1,2 of the ring of Jacobi forms. Furthermore, since φ−1,2 ∼ z,
they vanish identically unless we refine the elliptic genus with regard to at least one U(1) factor.
Note also that there cannot be a 1/q pole in Z∗−1,m because the left-moving ground state is
uncharged and so cannot be multiplied by z. Thus the Z∗−1,m are actually holomorphic in q and
take a very restricted form, as indicated.

In summary, the relationship (3.13)–(3.15) between flux-dependent geometric intersection
data on the one hand, and modular, quasi-modular and derivative sectors on the other, is one
of the main results of the present work, and is a concrete manifestation of the map (1.10)
mentioned in the Introduction.

3.3 Geometric Interpretation of the Derivative Sector of Z−1,m(q, ξ)

We now point out an intriguing interpretation of the derivative contributions, Zi
−2,m(q, ξ), to

the elliptic genus, namely in terms of BPS invariants of certain threefold geometries, Y3, which
are embedded in the given elliptic fourfold, Y4. For the example of the heterotic string, we will
be able to explain this interpretation based on our understanding of the moduli space of at least
some of the curves whose BPS invariants enter the elliptic genus. The relation between the
derivative contributions and certain threefold invariants is, however, not restricted to heterotic
strings, as we will show explicitly in Section 6.

To understand the heterotic setup, let us first assume that the Mori cone of effective curves
on B2 is simplicial and identify its generators with the basis {Ci} on which the coefficients in
the sum (3.13) depends via (3.14). We will drop the assumption of a simplicial Mori cone at
the end of this section. The curve classes b · p∗(Ci) in (3.13) can be written as

b · p∗(Ci) = 2mCi + (curve in the fiber of B3) . (3.16)

To see this, note that we can parametrise the height pairing divisor as b = 2mS− + bEE +∑
i bi p

∗(Ci), in agreement with b · C0 = 2m. Then (3.16) follows from the fact that S− · p∗(Ci)
gives back the curve class Ci on B2, while the intersection of p∗(Ci) with the divisors E and
p∗(Cj) lie entirely in the fiber of the rational fibration B3.

Since the curves Ci are the generators of the Mori cone of B2, the dual curves Ci on B2 are
generators of the Kähler cone of B2, whose closure is contained in the closure of the cone of
effective curves. We assume for simplicity that the Ci are integral, leaving the discussion of a
much more general setting to the end of this section. They are given by

Ci = ηijCj , where ηij = Ci ·B2 Cj , (3.17)
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and have the important property, characteristic of generators of the Kähler cone, that

Ci ·B2 C
j ≥ 0 . (3.18)

In particular, since Ci ·B2 C
i ≥ 0, each curve Ci moves in a family on B2.

Now, from (3.16) we infer that the dual of the component of b · p∗(Ci) on B2 is the curve
Ci/2m. To arrive at integral classes, let us factor out 1/2m and consider the pullback p∗(Ci)
as a divisor on B3. Since each Ci moves in a family on B2, so does the divisor p∗(Ci) on B3.
We can then define a collection of elliptic threefolds, Yi

3, by restricting the elliptic fibration of
Y4 to the a generic member of this family of divisors:

Yi
3 = Y4|p∗(Ci) . (3.19)

Any single such threefold is by construction an elliptic fibration with projection

πi : Yi
3 → Bi2 , Bi2 = p∗(Ci) . (3.20)

In fact, the base p∗(Ci) is a P1-fibration over Ci with generic fiber C0 (blown up at the inter-
section of Γ with Ci). See Figure 2 in the Introduction for an illustration.

Depending on whether Ci ·B2 C
i = 0 or Ci ·B2 C

i > 0, the anti-canonical bundle of Yi
3 is

either trivial or negative. This follows from the adjunction formula:

c1(K̄Yi3) = c1(K̄Y4 |Yi3)− c1(NYi3/Y4) = −π∗i (p∗(Ci)|p∗(Ci)) ≤ 0 . (3.21)

Even if Yi
3 is by itself not Calabi-Yau, we can consider the relative BPS invariants with respect

to C0 on Yi
3, denoted by N i

C0(n, r), and package them into a generating function, F iC0(τ, z). We
propose that these invariants determine the derivative pieces in the elliptic genus (3.13):

Zi
−2,m(τ, z) = −1

q
F iC0(τ, z) = −1

q

∑
n,r

N i
C0(n, r)qnξr . (3.22)

The N i
C0 are not to be confused with the invariants NG;C0 of the fourfold Y4 discussed before,

which were defined relative to a transversal four-form flux GU(1). Rather, we claim that they are
relative BPS invariants of a generic member, Yi

3, of the family of elliptic threefolds embedded
inside Y4 as in (3.19).

If we assume this, the general considerations of [25] imply that the generating function
Zi
−2,m(τ, z) should be a (quasi-)modular form of weight w = −2, regardless of whether Yi

3 is
itself Calabi-Yau or not. In physics terms this can be equivalently understood by first assuming
that Yi

3 is Calabi-Yau and considering F-theory on Yi
3 as an auxiliary, chiral theory in six

dimensions. With our assumption on the nature of the N i
C0(n, r), the object Zi

−2,m(τ, z) is then
simply the elliptic genus of the N = (0, 4) supersymmetric string obtained by wrapping a D3-
brane on C0 within Yi

3. As such, Zi
−2,m(τ, z) is (quasi-)modular of weight w = −(d−2)/2 = −2.

In fact, if c1(Yi
3) = 0, the fourfold Y4 is expected to admit a fibration over the curve Ci whose

fiber is a generic member of the family Yi
3.12 That is, there exists a projection

12This natural expectation is the direct analogue of the existence of a K3/T 4-fibration for Calabi-Yau threefolds
according to Ooguiso’s criteria [107]. Consistently, note that since Yi

3 is defined as the restriction of Y4 to p∗(Ci),
where Ci is the curve dual to Ci on B2, the intersection product yields Ci◦Yi

3 = 1, in agreement with the fibration
structure (3.23).
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ρi : Yi
3 → Y4

↓
Ci (3.23)

The underlying six-dimensional theory naturally arises in the decompactification of the base
curve Ci and so is well-defined by itself.

By contrast, if Ci · Ci > 0, which implies c1(K̄Yi3) < 0, we can view Y4 only locally as a

fibration with fiber Yi
3 over the normal direction to the divisor p∗(Ci) in B3. Since the normal

bundle to p∗(Ci) is in this case non-trivial, even in the decompactification limit we cannot define
a bona-fide six-dimensional theory by restricting F-theory to Yi

3. It is even more intruiging to
find that nevertheless Zi

−2,m(τ, z) behaves in many respects like the elliptic genus of a six-
dimensional string even in this case, as will be discussed further in Section 4. In particular, one
can formally associate Zi

−2,m(τ, z) to an elliptic surface with (24 + 12n) singular fibers, where
n = Ci ·B2 C

i. An example will be presented in Section 5.2. In the sequel we will formally
relate the Zi

−2,m(τ, z) to such six-dimensional sectors, with the understanding that a direct
interpretation as elliptic genera in six dimensions is possible only if Yi

3 is Calabi-Yau.
Let us now turn to the crucial claim that Zi

−2,m(τ, z) encodes the BPS invariants N i
C0(n, r)

pertaining to the threefolds Yi
3 as shown in (3.22). In the remainder of this section we will prove

this assertion at level n = 1. To this end we interpret the expression (3.13) for the elliptic genus
as a statement about the decomposition of the moduli spaces of curve classes C = C0 +nEτ +C f

r

into various components. For the special case where n = 1 this will allow us to deduce that the
multiplicities N i

C0(n = 1, r) are indeed BPS invariants on Yi
3. Extrapolating this observation to

all n then leads to (3.22).
To arrive at this picture, we first define the following generating functions associated with

the non-derivative contributions to the elliptic genus (3.13):

F0
C0(τ, z) = −qZ0

−1,m =
∑
n,r

N0
C0(n, r)qnξr , (3.24)

FEC0(τ, z) = −qZE
−1,m =

∑
n,r

NE
C0(n, r)qnξr . (3.25)

This is analogous to (3.22), but with the important difference that, unlike the invariants
N i
C0(n, r) which appear in (3.22), the invariants N0

C0(n, r) and NE
C0(n, r) do not correspond

to BPS invariants of some auxiliary elliptic threefolds. Expanding both sides of (3.13) order by
order in q and ξ then gives a relation between the BPS invariants NG;C0(n, r) in ZG;C0 on the
left hand side, and the invariants N0

C0(n, r), NE
C0(n, r) and N i

C0(n, r) on the right.
Recall next that the quantities on the left hand side, NG;C0(n, r), are the flux dependent,

relative Gromov-Witten invariants, as defined in (2.1), for the curve C = C0 + nEτ + C f
r .

According to (2.1),

NGU(1);C
0(n, r) =

∫
Σ̂n,r

ev∗GU(1) , (3.26)

where we denote by Σ̂n,r the class of the moduli space of stable holomorphic maps at genus
g = 0 and with one point marked associated with C = C0 + nEτ + C f

r. When both sides are
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expanded in qnξr, the relation (3.13) therefore boils down to the statement that∫
Σ̂n,r

ev∗GU(1) = (F · C0)N0
C0(n, r) + (F · C1

E)NE
C0(n, r) +

∑
i

(F · b · p∗(Ci))
1

2m
rN i

C0(n, r) ,

(3.27)

where the extra factor of r in front of the N i
C0(n, r) is caused by the derivative in (3.13).

To interpret (3.27) further, we note that while for general n the moduli spaces Σ̂n,r are
difficult to construct, we are in a comfortable situation when n = 1 and C0 is the rational
fiber of B3: The moduli space Σ̂1,r is equal to the moduli space of stable holomorphic maps
of genus zero for the purely fibral curve C f

r, up to terms orthogonal to any transversal flux
satisfying (2.18). This follows from the identity (3.8), which in turn is a consequence of the
duality between F-theory and the heterotic string. Since the moduli space for C f

r is the surface
Σ̂r given in (2.20) with base Σr, we know that for transversal flux∫

Σ̂1,r

ev∗GU(1) =

∫
Σ̂r

GU(1) = r (F · Σr) . (3.28)

Plugging this into (3.27), which must hold for any element F ∈ H1,1(B3), yields

Σr =
1

r
N0
C0(1, r)C0 +

1

r
NE
C0(1, r)C1

E +
∑
i

1

2m
N i
C0(1, r) (b · p∗(Ci)) . (3.29)

The point is now that, at least for n = 1, we can understand why the N i
C0(1, r) are invariants

of the embedded threefolds Yi
3: Suppose first that a given threefold Yi

3 is by itself a Calabi-Yau
space. In this case, Y4 admits a fibration with fiber Yi

3 over the curve Ci of the form (3.23), see
Figure 3. The invariant N i

C0(1, r) appearing in (3.29) can thus be interpreted as the multiplicity
of the base curve Ci of this fibration as a component of the matter curve Σr.

13 In other words

Σr =
∑
i

N i
C0(1, r)Ci + (curve classes in the fiber of B3) . (3.30)

The multiplicity N i
C0(1, r) in the above decomposition is simply given by the number of points

on Yi
3 over which the elliptic fiber degenerates such as to support a state of charge r. Indeed,

N i
C0(1, r) = Σr · p∗(Ci) , (3.31)

where we used that p∗(Ci) does not intersect with fibral curves and that p∗(Ci) ·Cj = δij, which
follows from the fact that Ci is the curve class dual to Ci on B2. But the intersection of Σr with
the base Bi2 = p∗(Ci) of Yi

3 gives exactly the locus on Bi2 where the fiber of Yi
3 supports the

fibral curve C f
r. Under the present assumption that Ci are the generators of the simplicial Mori

cone, the intersection number Σr · p∗(Ci) is non-negative and counts the number of points on
Bi2 where the degeneration occurs, in codimension-two on Bi2. This identifies N i

C0(1, r) with the
BPS invariant for the curve C f

r viewed as a curve inside the threefold Yi
3. The same argument

leading to (3.8), now applied to threefolds, shows that this in turn agrees with the BPS invariant
of the curve C0 + Eτ + C f

r as a curve inside Yi
3. Hence we have shown that the N i

C0(1, r) are
indeed relative BPS invariants of Yi

3.

13To see this, note that N i
C0(1, r) is the multiplicity of the component 1

2mb ·p
∗(Ci) = Ci + . . . within Σr, where

we used (3.16).
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}}}
Figure 3: This figure shows the component of the matter curve Σr (drawn in red) along a base
curve Ci. It refers to a geometry where the fourfold Y4 is fibered over Ci with generic fiber Yi

3.
The issue is to determine the multiplicity N i(C f

r) of Ci in the decomposition (3.30), and from
the picture we see that it coincides with the number of points on Yi

3 over which the elliptic fiber
Eτ degenerates. The remaining components of Σr in the decomposition (3.30) lie within special
fibers of the fibration ρi (3.23) and are not depicted.

These considerations continue to hold if Yi
3 is not a Calabi-Yau space itself, as the argument

was purely intersection theoretic. Indeed, the general formalism of [108] implies that the virtual
class of the moduli space of curves C0 + nEτ + C f

r on Yi
3 is related to the class of the moduli

space on Y4 by restriction. Our elementary considerations for the special curves above are a
manifestation of this.

While it is harder to make this explicit for general wrapping numbers n from first principles,
we can at least translate the relation (3.27) into the following geometric statement: Up to terms
orthogonal to the transversal subspace of H2,2

vert(Y4) defined in (2.18), Σ̂n,r is equivalent to the
class of a fibration of C f

r over a curve ΣC0,n,r which is given by

ΣC0,n,r =
1

r
N0
C0(n, r)C0 +

1

r
NE1

C0 (n, r)C1
E +

∑
i

1

2m
N i
C0(n, r) (b · p∗(Ci)) . (3.32)

Indeed, integrating GU(1) = σ ∧ π∗(F ) over such a fibration would give a factor of r from the
fibral piece along with the class F , precisely as reflected in (3.27).

The crucial claim here, proven above only for n = 1, is that the integral numerical coefficients
N i
C0(n, r) are by themselves BPS invariants of the threefolds Yi

3 embedded in Y4. This implies
that the objects Zi

−2,m(τ, z) in (3.22) are modular or quasi-modular Jacobi forms of weight
w = −2, while the extra factor of r obtained by integration of GU(1) explains why the Zi

−2,m(τ, z)
appear with a derivative in (3.13). It would be extremely interesting to establish a geometric
proof of this interpretation of the N i

C0(n, r) also for n > 1.
We have been assuming that the basis {Ci} corresponds to the generators of the simplicial

Mori cone of B2, so that they are effective and their dual curves satisfy (3.18). However the
results do not depend on this restriction. More generally, it suffices to pick a basis of effective
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curves Ci defining the threefold geometries Yi
3 as in (3.19), and to take Ci as the dual basis of

2-cycle classes on B2. In general this may imply, first, that not all Ci are effective, and second
that Ci ·Ci may be negative. The intersection theoretic argument why N i

C0(1, r) describes BPS
invariants on Yi

3 does not hinge upon effectiveness of Ci, however, since we can view N i
C0(1, r)

simply as the coefficient in the expansion (3.30) in terms of curve classes. In this more general
situation, N i

C0(1, r) may in particular be negative. This is to be interpreted in such a way that
the degeneration locus in Yi

3 where the fiber contains the curve C f
r occurs in codimension-one

on Bi2. Note also that if Ci ·Ci < 0, the curve Ci is rigid and hence also Yi
3 is rigid as a divisor

in Y4, but this does not invalidate our arguments either.
The discussion in this section was tailor-made for the special case of heterotic elliptic genera.

For non-critical strings the derivative terms in the elliptic genus encode the relative BPS numbers
of embedded threefolds sometimes constructed in a slightly different way. For this we refer to
Section 6.

3.4 Elliptic Holomorphic Anomaly Equation

So far we have focused in this section on the properties of the relative BPS invariants in trans-
versal flux backgrounds, which were defined via eq. (2.18). This is required for having a four-
dimensional interpretation within F-theory on Y4, and a meaningful elliptic genus in the first
place. We have seen that in general derivative contributions to the elliptic genus appear, such
as indicated in (3.13). These take the form of derivatives of Jacobi forms, Zi

−2,m(q, ξ), which
encode relative BPS invariants associated with the embedded threefolds, Yi

3, of Y4.
As previewed in Section 1.2, this results not only in a violation of modular invariance (A.1),

but also of the invariance under the transformations z → z + λτ in (A.2), which can be inter-
preted as spectral flow in the U(1) subsector.14 From the point of view of the four dimensional
elliptic genus, the derivative terms inflict an anomaly on these symmetries, and turn it into a
quasi-Jacobi form. However, in analogy to the treatment of the quasi-modular form E2, one can
cancel these anomalies by trading the derivative terms in ZGU(1);Cb

(q, ξ) against non-holomorphic
derivatives as in (1.12). This means that we pass from the holomorphic, but non-modular el-
liptic genus ZGU(1);Cb

(q, ξ) to the almost holomorphic, but modular quantity ẐGU(1);Cb
(q, ξ), for

which we replace the derivatives ξ∂ξ ≡ 1
2πi
∂z as follows (see Appendix (A.1)):

ξ∂ξ →
1

2πi
∇z,m :=

1

2πi

(
∂z + 4πim

Imz

Imτ

)
. (3.33)

The resulting non-holomorphicity of ẐGU(1);Cb
(q, ξ) is characterised by the equation

d

dα
ẐGU(1);Cb

(q, ξ) = (2m)g∂Z−2,m(q, ξ) , α ≡ Imz

Imτ
, (3.34)

where we parametrise the elliptic genus as in (3.9) and have abbreviated gM∂ Z
M
−2,m(q, ξ) +

gQM∂ ZQM
−2,m(q, ξ) =: g∂Z−2,m(q, ξ). This equation is a version of the elliptic holomorphic an-

omaly equation which was introduced in the context of generating functions for relative BPS
invariants of elliptic fibrations in [25]. Compared to elliptic genera in six dimensions, which are

14Originally spectral flow was understood [37] as a property of an N = 2 superconformal symmetry on the
worldsheet, hence the name, but in essence this notion applies to any U(1) current algebra associated with a
free compact boson. We reiterate again that it is not an automatic symmetry of the theory.

26



lacking a derivative contribution, we see that the appearance of such an elliptic holomorphic
anomaly equation is a genuinely new feature in four dimensions.

The elliptic holomorphic anomaly equation admits a beautiful geometric interpretation. Re-
call that the right-hand side of (3.34) consists of the (quasi-)modular objects, Z−2,m(q, ξ), that
encode the relative BPS invariants of the threefolds Y3. Remarkably, as we explain now, the same
threefold invariants appear also as fourfold invariants for a suitable choice of non-transversal
background flux G−2 ∈ H2,2

(−2)(Y4,R), as defined in (2.17). We will refer to such non-transversal

fluxes as “(−2)-fluxes” for brevity.15

In fact, it has already been observed in [76, 77] that the generating function for certain
relative genus-zero BPS invariants in a (−2)-flux background is a meromorphic (quasi-)modular
form of weight w = −2. Such invariants are non-vanishing even in absence of a refinement by an
extra gauge symmetry (in F-theory language). This is to be contrasted with the relative BPS
invariants for the transversal flux backgrounds that were considered in the previous sections.
The important point is that the elliptic holomorphic anomaly equation in its form (3.34) admits
a representation in terms of the generating function for a specific type of (−2)-flux. More
precisely we have

d

dα
ẐGU(1);Cb

(q, ξ) = ZG−2;Cb
(q, ξ) , (3.35)

where the (−2)-flux associated with GU(1) = σ ∧ π∗(F ) is given by

G−2 = π∗(F ) ∧ π∗(b) . (3.36)

Here b is the height pairing associated with the U(1), and, as always, we have defined

ZG−2;Cb
(q, ξ) = −q−

1
2
Cb·K̄B3FG−2;Cb

(q, ξ) . (3.37)

The specific form of G−2 that appears in (3.35) can be deduced from the general consider-
ations of [25] applied to our situation. Alternatively, we can arrive at the same conclusion via
more elementary geometric observations based on the results of Section 3.3, which are supported
by our detailed analysis of examples in Sections 5 and 6.

For illustration, consider the relative BPS invariants associated with a curve C0 with zero
self-intersection, which figures as the fiber of some rational fibration, B3 ⊂ Y4, see (2.27); recall
that this is the situation where a solitonic heterotic string appears. In this case the elliptic
holomorphic anomaly equation for the elliptic genus (3.13) takes the form

d

dα
ẐGU(1);C

0(q, ξ) =
∑
i

F · b · p∗(Ci)Zi
−2,m(q, ξ) = ZG−2;C0(q, ξ) , (3.38)

for ZG−2;Cb
(q, ξ) as in (3.37). While the first equality follows immediately from (3.13), the second

equality is non-trivial and rests on the following geometric considerations: First introduce a
convenient basis for the space of non-transveral (−2)-fluxes in H2,2

(−2)(Y4,R):

Gi = π∗(S−) ∧ π∗(p∗(Ci)) ,

GE = π∗(E) ∧ π∗(p∗(CΓ)) , (3.39)

G0 = π∗(p∗(Ci0)) ∧ π∗(p∗(Ci0)) .
15We reiterate from the discussion in Section 2.2 that such fluxes do not admit a lift to F-theory, but define

bona fide Type IIA/M-theory backgrounds.
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In the notation of Section 2.3, CΓ denotes a curve class on B2 with CΓ · Γ = 1, and we have
picked a pair of dual curves Ci0 and Ci0 on B2. The classes GE and G0 are hence dual to the
curves C2

E and C0 in the fiber of B3, while Gi is dual to the curve Ci on B2.
The important claim is that the contributions Zi

−2,m(q, ξ) to the elliptic genus (3.13) can be
computed as

Zi
−2,m(q, ξ) = −1

q
FGi(q, ξ) , (3.40)

while the remaining two basis elements lead to the following vanishing BPS invariants,

FGE(q, ξ) = 0 , FG0(q, ξ) = 0 . (3.41)

We will provide arguments for these assertions below. Assuming (3.40) and (3.41) for now, we
proceed by expanding (3.37), viewed as class of the (−2) flux, in the above basis as

G−2 =
∑
i

(F · b · p∗(Ci)) Gi − (F · b · E) GE + (F · b · S+) G0 . (3.42)

Hence by linearity of the BPS invariants, together with (3.40) and (3.41), it is obvious that

ZG−2;C0(q, ξ) =
∑
i

(F · b · p∗(Ci))Zi
−2,m(q, ξ) . (3.43)

This explains also the second equality in the elliptic holomorphic anomaly equation (3.38).
It remains to justify (3.40) and (3.41). While we cannot give formal proofs beyond the

non-trivial checks in the examples of Section 5, we provide instead some intuition why (3.40)
should hold. To this end, consider the relative BPS invariants NGi;C0(n, r) for n = 0 and r = 0.
According to our claim, these invariants should agree with the threefold invariants N i

C0(n, r) for
n = 0 and r = 0 in the expansion (3.22) of Zi

−2,m(q, ξ). Our starting point to verify this is the
definition of NGi;C0(n, r) as the overlap of the flux Gi with the virtual fundamental class of the
moduli space of the curve C0 in Y4 with one point fixed. Since C0 is fibered over B2, this class
can be identified with the class of the surface obtained by fibering C0 over the canonical divisor
KB2 ;

16 that is, with the class inside Y4 given by

µ = S0 ∧ π∗(p∗(KB2)) . (3.44)

Here S0 is the zero-section of the fourfold Y4. This allows us to compute NGi;C0(0, 0) as

NGi;C0(0, 0) =

∫
µ

Gi = S0 ◦ π∗(p∗(KB2)) ◦ π∗(S−) ◦ π∗(p∗(Ci)) = p∗(KB2) · S− · p∗(Ci)

= Ci ·B2 KB2 , (3.45)

where we have used the fact that S0 is a section on Y4 and S− is a section on the P1-fibration
B3.

The expression for NGi;C0(0, 0) in (3.45), in fact, can be seen to exactly agree with the
invariants N i

C0(n, r) for n = r = 0. To see this, suppose first that the curve Ci is a rational
curve with Ci ·B2C

i = 0. According to the discussion in Section 3.3, in this case the threefold Yi
3

16 To understand this claim in physics terms, recall, for instance, how in F-theory on elliptic fourfolds one
computes the BPS invariants for the rational fibers of the exceptional divisors appearing in codimension-one:
These are obtained by integrating the flux over the restriction of the rational fiber to the canonical class, KD.
Here D is the divisor over which the rational curve is fibered. See for example eq. (9.43) in [97].
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is a Calabi-Yau space which is K3-fibered over Ci. The invariant N i
C0(n, r) for n = r = 0 is then

simply the BPS invariant for C0 within the Calabi-Yau threefold Yi
3, and hence N i

C0(n, r) = −2.
This is because within Yi

3, C0 is fibered over the rational base curve Ci and the (signed) Euler
character of its moduli space is the integral

∫
Ci
KCi . By the adjunction formula∫

Ci
(KCi − Ci) = Ci ·B2 KB2 , (3.46)

we see that
∫
Ci
KCi agrees with Ci ·B2 KB2 for the rational curve Ci with Ci · Ci = 0.

More generally, even if Yi
3 is not Calabi-Yau, N i

C0(0, 0) = Ci ·B2 KB2 nonetheless holds. As
noted already before, this reflects the fact that, by the results of [108], the virtual class for
the moduli space of the curve C0 on Yi

3 is related to the class of its moduli space on Y4 by
restriction.

In the examples of Sections 5 and 6, we will indeed observe a precise match between the
NGi;C0(n, r) and the invariants N i

C0(n, r) for zero, but also for non-zero, values of n and r.
Beyond such explicit examples it is much harder to make a direct argument for general values,
based on the moduli space of curves. At any rate, we will explain the analogue of (3.45) for
the elliptic genera also for other types than heterotic strings in four dimensions. Furthermore,
it is clear that NG0;C0(0, 0) = 0 and NGE ;C0(0, 0) = 0, because the overlaps in (3.45) vanish
geometrically. The vanishing of the invariants at all levels, as claimed by (3.41), will be explicitly
verified for the examples further below.

4 Elliptic Genera, Anomalies and Modularity

The observation of the previous sections was that the four-dimensional elliptic genus need not be
modular or quasi-modular in the usual sense. Once applied to heterotic strings, this raises the
question how this phenomenon is compatible with the structure of anomaly cancellation. In this
section we first review the well-known interplay [26,27] of the elliptic genus of the heterotic string
with the structure of 1-loop anomalies and their cancellation by the Green-Schwarz mechanism.
We then explain how four-dimensional anomaly cancellation works even when the elliptic genus
is not modular but rather has a derivative component, and also discuss the situation when it is
quasi-modular rather than fully modular.

In d = 2n + 2 dimensions, the 1-loop gauge and gravitational anomalies are characterized
by the anomaly polynomial

Id+2 =
∑
R,s

ns(R)Is(R)
∣∣∣
d+2

, (4.1)

where we sum over all massless particle species of multiplicity ns(R) in representation R of the
gauge group and with spin s. The (d + 2)-form Is(R)|d+2 is formed by products of the gauge
field strength F and the curvature 2-form R. For example, a complex chiral Weyl fermion
contributes to (4.1) with

I1/2(R) = trR e
F Â(T ) , (4.2)

where Â(T ) is the A-roof genus.
In the following we will focus on the gauge anomalies associated with a single U(1) gauge

group and define

Id+2,U(1) = A(d) F
d+2
2 . (4.3)
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Based on the above expressions, the anomaly coefficients A(d) in d = 6 and d = 4 dimensions
are given by:

A(6) =
1

4!

∑
r

n1/2(r) r4 =
1

4!

∑
r

nhalf−hyper(r) r
4 , (4.4)

A(4) =
1

3!

∑
r

(
n1/2(r)− n−1/2(r)

)
r3 =

1

3!

∑
r

χr r
3 . (4.5)

Here we sum over the Weyl fermions of U(1) charge r. In d = 6 dimensions, if we consider a
theory with minimal N = (1, 0) supersymmetry, the number of charged Weyl fermions agrees
with the number of half-hypermultiplets of corresponding charge. In d = 4 dimensions, the
anomaly coefficient involves the chiral index χr, i.e., the number of chiral minus anti-chiral
Weyl fermions of charge r.

4.1 Modular Elliptic Genera

We will first review anomaly cancellation in the more familiar case of a modular invariant het-
erotic string elliptic genus. In the present context, this primarily concerns flux compactifications
that are dual to perturbative heterotic strings.

Let us recall that the U(1)-refined elliptic genus Z−n,m(q, z) of a perturbative, d = 2n + 2
dimensional heterotic string is expected to be a weak Jacobi form [33] of modular weight w = −n
and some indexm (in this work, n = 1, 2 will be relevant). As we have seen, this is not necessarily
true in d = 4 and so the statements that follow will eventually be adapted to the more general
situation. Let us however for the moment assume that Z−n,m(q, z) is a weak Jacobi form, and
turn later to the required modifications. See also the remarks in the Introduction and the
defining modular transformation properties of Jacobi forms given in (A.1) and (A.2).

From a weak Jacobi form one can always strip off the quasi-modular Eisenstein series E2 by
writing

Z
(d)
−n,m(q, ξ) = e

m
12
E2ẑ2Ž

(d)
−n,m(q, ẑ) , where ξ = e2πiz ≡ eẑ , (4.6)

so that the remainder,

Ž
(d)
−n,m(q, ẑ) = ẑn(mod 2)

∞∑
k≥0

M2(k−[n
2

])(q)ẑ
2k, (4.7)

is modular invariant term by term. It involves meromorphic modular forms M2l of weight 2l
which lie in the ring generated by E4 and E6, divided by 1/η24. The idea of how this modular
structure implies the Green-Schwarz anomaly cancellation goes back to [26,27] and rests on two
properties of the elliptic genus:

1) The anomaly coefficient (4.4) is the coefficient of ẑn+2 of the elliptic genus at q0. More
precisely:

A(d) = −1

2

1

(n+ 2)!

[
∂ẑ
n+2Z

(d)
−n,m(q, ẑ)

]
ẑ0q0

(4.8)

= −1

2

[
M2(q) +

m

12
E2M0(q) +

1

2
(
m

12
E2)2M−2(q) + ....

]
q0
.

Key is the observation that due to well-known properties of modular forms, M2(q) cannot have
a constant piece and therefore does not contribute. Thus all contributing terms must involve
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E2’s from the exponential, which brings down powers of ẑ2 ∼ TrF 2. This is tantamount to
saying that the anomaly polynomial must necessarily factorize. This in turn implies that the
anomaly can be cancelled; that is, in familiar terms: I2n+4(F ) ∼ TrF 2 ∧X2n(F ).

2) The Green-Schwarz anomaly cancelling term is given by SGS ∼
∫
B ∧ X2n(F ), and its

numerical coefficient,
A

(d)
GS ≡ X2n(F )

∣∣
Fn
, (4.9)

is computed as a one-loop amplitude in the heterotic string [30, 31]. The integrand is given by
the modular invariant coefficient of ẑn in the elliptic genus. More precisely, what enters is the
modified, almost holomorphic elliptic genus, Ẑ−n,m(q, ẑ), for which all occurrences of E2’s are

replaced by their modular invariant, but non-holomorphic version, Ê2 = E2 − 3
πImτ

. Explicitly:

A
(d)
GS = − 1

n!

[
∂ẑ
n 1

16π

∫
Fτ
dτ Ẑ

(d)
−n,m(q, ẑ)

]
ẑ0

= − 1

16π

∫
Fτ
dτ
[
M0(q) +

m

12
Ê2M−2(q) + ...

]
(4.10)

= − 1

24

[
Ê2M0(q) +

1

2

m

12
Ê2

2
M−2(q) + ...

]
q0
,

where the integration is performed via the formula [31]∫
F
dτÊ2(q)

k
M−2k(q) =

2π

3

1

k + 1
E2(q)k+1M−2k(q)

∣∣
q0
. (4.11)

Therefore one finds
mA

(d)
GS = A(d) , (4.12)

which expresses that the Green-Schwarz term precisely cancels the anomaly. The extra factor
of m arises from the Chern-Simons term to which the other leg of the B-field couples, as we will
show later.

We can be more explicit if we specify the dimension. In d = 6, the scarcity of independent
modular forms, plus the requirement that the left-moving ground state be uncharged, implies
that the elliptic genus up to order ẑ4 is fixed up to one model dependent parameter besides m,
which we denote by c:

Z
(6)
−2,m(q, ẑ) =

1

η24
e
m
12
E2ẑ2

[
2E4E6−

mẑ2

12

(
2E2

6 + c
(
E2

6 − E3
4

))
+

(
mẑ2

12

)2

E2
4E6 +O(ẑ6)

]
. (4.13)

This then leads to
A(6) = mA

(6)
GS = −6(1 + c)m2 . (4.14)

For reference, examples of elliptic genera that we will meet again further below are given by

Z
(6)
−2,m(q, z) =

1

12

∑
k

nk
η24

E4,µk1
E6,µk2

, m = µk1 + µk2 ,
∑
k

nk = 24 , (4.15)

where Ew,m = Ew,m(q, z) are the Eisenstein-Jacobi forms17 defined in Appendix A. This bilinear
form of elliptic genera naturally appears in perturbative heterotic strings compactified on K3,

17 Strictly speaking we use for higher levels m here and in the following the integral expansions (A.32-A.34).
However their parametric ambiguities do not project down to order ẑ4, and therefore do not contribute to the
anomaly.
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with bundles switched on such as to leave a single U(1) unbroken. In this case c is fixed such
that

A(6) = mA
(6)
GS = −

∑
k

nk

4
((µk1)2 − (µk2)2) . (4.16)

Analogous statements apply to perturbative heterotic strings in d = 4. Given the various
constraints, we find for the modular part of the elliptic genus:

Z
(4),M
−1,m (q, ẑ) =

1

η24(q)
φ−1,2(q, ẑ) ΦM

12,m−2(q, ẑ) ' ẑe
m
12
E2ẑ2

[
1 +O(ẑ4)

]
, (4.17)

up to an overall numerical factor c. The actual elliptic genus is then obtained by multiplying
this with gM as in (3.9), which depends on the four-form flux that needs to be switched on. The
two overall factors fix the elliptic genus up to order ẑ3 and we thus have

A(4) = mA
(4)
GS = − c

24
gMm. (4.18)

A four-dimensional analog of (4.15) in terms of natural building blocks of the heterotic string
can be written as

Z
(4),M
−1,m (q, ẑ) =

1

12

1

η24

[ 1

µ1

(∂ẑE4,µ1)E6,µ2 −
1

µ2

E4,µ1(∂ẑE6,µ2)
]
, m = µ1 + µ2 , (4.19)

which by virtue of the relations (A.37) is a Jacobi form proportional to φ−1,2(q, ẑ) and thus a

special case of (4.17). Including the flux dependent pre-factor, it leads to A(4) = mA
(4)
GS =−gMm.

Obviously, if several such terms appear, they can simply be summed over.
The structure of derivatives as exhibited in (4.19) points to a deeper rôle derivatives play

for four-dimensional elliptic genera. One can view (4.19) as a special linear combination that
happens to be modular, while the other natural combination is precisely of the form of the
non-modular, derivative piece of the elliptic genus:

Z
(4),∂
−1,m(q, ẑ) =

1

η24
∂ẑ(E4,µ1E6,µ2(q, ẑ))

= ∂ẑZ
(6)
−2,m(q, ẑ) . (4.20)

Of course, in the physical partition function one needs to equip this with an additional flux-
dependent prefactor, which we denote by gM,∂.

This leads us to discuss the derivative elliptic genera Z
(4),∂
−1,m(q, ẑ) more generally, and in par-

ticular to the question how anomalies can be cancelled in view of the fact that the Z
(4),∂
−1,m(q, ẑ)

are not modular invariant, while modular invariance was instrumental in proving anomaly can-
cellation in the first place.

Note, however, that because of the derivative relationships between the elliptic genus and the
anomaly polynomial (4.8) on the one hand, and the anomaly cancelling term (4.10) on the other,
it follows that the factorization of the anomaly in 4d is inherited from the six-dimensional one,
even though the 4d elliptic genus Z

(4),∂
−1,m(q, ẑ) does not transform as a Jacobi form. Neverthless,

as already noticed in [6], it has good quasi-modular properties at any given fixed order in the
ẑ-expansion so that a well-defined modular integration, as required in (4.10), can be performed.

More precisely, for a four-dimensional elliptic genus of the derivative form (4.20), expressions
(4.8) and (4.10) evaluate to

A(4),∂ = −∂ẑ4 1

12
Z

(6)
−2,m(q, ẑ)

∣∣
ẑ0q0

= 4A(6) = 4mA
(6)
GS , (4.21)

A
(4),∂
GS = −∂ẑ2 1

16π

∫
F
dτẐ

(6)
−2,m(q, ẑ)

∣∣
ẑ0

= 2A
(6)
GS . (4.22)
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We can understand the relative factor of 4 between A(4),∂ and A(6) diagrammatically, in that it
corresponds to the 4 choices of one of the 4 external legs to be given a VEV in the transition from
the quartic six-dimensional anomaly to the cubic four-dimensional anomaly. Similarly the factor
of 2 relating A

(4),∂
GS and A(6) originates in the choice of two external legs in the six-dimensional

Green-Schwarz terms, as compared to the single external leg in its four-dimensional analogue.
The mismatch by a factor of two in the derivative sector,

A(4),∂/(mA
(4),∂
GS ) = 2, (4.23)

indicates that the anomaly is not cancelled by the standard Green-Schwarz term involving the
universal B-field. Rather, as we will argue later in Section 4.3, the hidden six-dimensional
geometry of the derivative sector will always correlate with the correct number of additional
B-fields and their couplings, such that in the end all such anomalies will be cancelled.

Before discussing this point, however, we turn to the other subsector of the d = 4 elliptic
genus, namely the one for which the elliptic genus is quasi-modular rather than modular.

4.2 Quasi-Modular Elliptic Genera

We have indicated before that for certain fluxes “non-perturbative” elliptic genera can arise that
are only quasi-modular, which means that E2 pieces can appear in Ž

(d)
−n,m(q, ẑ) even after strip-

ping off the exponential prefactor as in (4.6). For these fluxes the arguments about factorization
of the anomaly polynomial do not hold. Moreover the one-loop computation of the standard
Green-Schwarz term that involves the universal B-field will in general not be applicable, as it
can possibly capture only the perturbative piece of the anomaly, and so further Green-Schwarz
terms that involve extra B-fields will necessarily come into play.

Let us be more specific and consider first six-dimensional theories for which the non-pertur-
bative, quasi-modular piece of the heterotic elliptic genus has the form:

ZQM
−2,m(q, ẑ) =

1

12
E2(q)ZE

−2,m1
(q, ẑ)ZE

−2,m2
(q, ẑ) , m = m1 +m2 . (4.24)

It arises whenever the curve C0 associated with the heterotic string splits into to two curves
Ci
E, each associated to an E-string. In this case, the U(1) indices m1 and m2 are determined

geometrically as

m1 =
1

2
b · C1

E , m2 =
1

2
b · C2

E . (4.25)

This is precisely what is reflected by the two factors ZE, each of which can be associated to the
partition function of a non-critical E-string [39]. In fact, its form (up to order ẑ6) is completely
fixed by the decomposition (4.6) and by requiring that the ground state is uncharged (no ẑ-
dependence of the 1/q term):

ZE
−2,m(q, ẑ) =

1

η12
e
m
12
E2ẑ2

[
E4(q)− m

12
ẑ2E6 +

1

2

(m
12
ẑ2
)2

E2
4 −

1

6

(m
12
ẑ2
)3

E4E6 +O(ẑ8)

]
.

(4.26)
As a consequence we can compute the anomaly (4.8) and the putative Green-Schwarz term
(4.10) in closed form:

A(6),QM = −1

4
(m1

2 +m2
2) , (4.27)

mA
(6),QM
GS = − 1

12
(m1 +m2)2 . (4.28)
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Note that the anomaly nicely separates into independent pieces related to the two individual
E-strings, and in particular that cross terms of the form (∂ẑ

4−kZE
4,m1

)(∂ẑ
kZE

4,m2
), k = 1, 2, 3,

vanish. This fits the Hořava-Witten picture where the gauge symmetry is localized on two
end-of-the-world branes.

More importantly, note that the putative Green-Schwarz term (4.28) does not cancel the
anomaly (4.27). Rather, this anomaly is supposedly cancelled by the Chern-Simons terms
localized on the heterotic M5-branes that are necessarily present in this situation. Clearly
this is a non-perturbative sector of the theory that cannot be captured by any perturbative
calculation of the Green-Schwarz term, so that this is entirely as expected.

We now turn to the four-dimensional version of the story. From general properties (such
as having no charged ground state) we can infer a priori that the quasi-modular piece of the
elliptic genus and must be of the highly restricted form

ZQM
−1,m(q, ẑ) = φ−1,2φ−2,1E2 Φ0,m−3

[
E4, E6, φ0,1, φ−2,1

]
' ẑ3me

m
12
E2ẑ2

[
1 +O(ẑ4)

]
, (4.29)

up to an overall numerical factor, c. Again we should here keep in mind that for the actual
elliptic genus, this expression needs to be multiplied with a flux factor, gQM .

The overall factor of ẑ3 arises from the Jacobi forms of negative weight. An immediate
consequence of this is that the naive, perturbative Green-Schwarz term vanishes identically,
because according to (4.10) it is determined by a single derivative with respect to ẑ. On the
other hand, the cubic anomaly will in general be non-zero:

A(4),QM = − c

12
mgQM , (4.30)

A
(4),QM
GS = 0 . (4.31)

This shows even more clearly than in six dimensions that the quasi-modular part of the anomaly
must be cancelled by other, non-perturbative contributions.

In a spirit similar to eq. (4.19) for fully modular elliptic genera, we can write ZQM
−1,m in a

suggestive form which naturally makes contact to the underlying heterotic/E-string geometry:

Z
(4),QM
−1,m (q, ẑ) =

1

12

1

η24
E2

[ 1

m1

(∂ẑE4,m1)E4,m2 −
1

m2

E4,m1(∂ẑE4,m2)
]
, (4.32)

where m = m1 + m2. This being proportional to φ−1,2φ−2,1 (as per (A.37)) is a special case of
(4.29) and leads to

A(4),QM = (m2 −m1)gQM . (4.33)

Recall that the mi are determined in terms of intersection numbers of the E-string geometry as
shown in (4.25), which we will derive in the next section.

By considering the other natural combination of the derivatives, we can capture the quasi-
modular, derivative sector as well:

Z
(4),∂,QM
−1,m (q, ẑ) = ∂ẑZ

(6),QM
−2,m (q, ẑ) =

1

12

1

η24
E2 ∂ẑ(E4,m1E4,m2) , m = m1 +m2 . (4.34)

Here we get

A(4),∂,QM = −(m1
2 +m2

2)gQM , (4.35)

mA
(4),∂,QM
GS = −1

6
(m1 +m2)2gQM .

The quadratic dependence on the indices reflects the six-dimensional origin of the derivative
sector. Again, the naive perturbative Green-Schwarz term, A

(4),∂,QM
GS , does not cancel the an-

omaly.
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4.3 Effective Field Theory and Anomaly Cancellation from Flux
Geometry

We now match the Green-Schwarz (GS) terms, as computed from the elliptic genus of F-theory
compactifications, with the anomaly cancelling terms that arise in the effective field theory from
geometry, The point is to understand how the different modular properties of the various con-
tributions to the elliptic genus reflect the different geometrical origins of the anomaly cancelling
terms.

For four-dimensional perturbative heterotic string compactifications on smooth Calabi-Yau
spaces with general abelian gauge groups, the Green-Schwarz terms have been analyzed in [85]
and extended to non-perturbative models with heterotic 5-branes in [109]. The perturbative GS
mechanism does not only involve the universal heterotic 2-form field B0, but in general also the
2-form fields dual to the axionic scalars that are obtained from B0 by dimensional reduction. In
the presence of heterotic 5-branes, additional counterterms are induced by the self-dual tensor
fields coupling to the 5-branes (see [110–112] for their M-theory origin). This feature is present
already in compactifications to six dimensions [113].

In this sub-section we will analyze the field theoretical realization of these Green-Schwarz
terms in terms of the elliptic genera discussed in previous section. Our main results can be
summarised as follows. Let us first recall how we have determined, in Section 4.1, the 1-loop
anomaly coefficients (4.8) in six and four dimensions, via the elliptic genus of the heterotic string.
In general, the anomaly coefficients decompose according to the modular and the quasi-modular
contributions to the elliptic genus:

A(d) = A(d),M + A(d),QM , (4.36)

and we have established, for the modular contributions, that

A(6),M = mA
(6),M
GS , A(4),M = m (A

(4),M
GS + 2A

(4),∂,M
GS ) . (4.37)

Here the 1-loop Green-Schwarz term, A
(d),M
GS is computed from the modular part of the elliptic

genus, and in four dimensions we have indicated that there can be an additional derivative
part (recall in particular eq. (4.23)). We will find, as expected, that these “modular” Green-
Schwarz terms perfectly match the perturbative Green-Schwarz terms in the effective action
that involve the universal heterotic B-field and, in four dimensions, also the dual axions which
relate to the derivative part. Moreover, a possible deficit between this perturbative Green-
Schwarz mechanism and the total anomaly will be attributed to the quasi-modular part of the
anomaly, A(d),QM . This deficit needs to be cancelled via non-perturbative Green-Schwarz terms
involving the 5-brane tensor fields as discussed in [109,113].

Now let us go into the details. In order to avoid the complication of finding heterotic duals
[114–117] for F-theory models with abelian gauge groups, we will first perform the computation
in the Type IIB/F-theory duality frame. In this way we will arrive at an intersection theoretic
interpretation of the Green-Schwarz terms that we computed from the elliptic genus in the
previous sections. The form of the Green-Schwarz mechanism in this duality frame has been
derived in detail in the literature, beginning with [118] and substantially extended in [119–125].
We can hence be brief and focus on comparing the results of the elliptic genus to the anomaly
of the effective action.

In F-theory compactified to d dimensions, the Green-Schwarz counterterms are encoded in
the Chern-Simons-type couplings of the Ramond-Ramond 4-form C4 to the 7-branes,

SCS−7 = −2π

2

∫
R1,d−1×DA

C4 ∧ tr eFA
√
Â(R) . (4.38)
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Here we are assuming that a stack of 7-branes wraps a divisor DA on the internal space and
carries a gauge group GA. Our conventions for the normalization of the action follows the
discussion in [125]. To avoid clutter of notation, we will right away specialise to the situation
where the gauge group is given by G = U(1), with field strength F . In this case, the divisor
DA is to be identified with the height-pairing b defined in (2.13) on the internal space. We will
furthermore focus purely on gauge anomalies, neglecting gravitational ones. The relevant part
of the Cherns Simons couplings then reads

SCS−7 = −2π

2

∫
R1,d−1×b

C4 ∧
1

2
(F ∧ F ) + . . . (4.39)

We will first discuss the implications of this Chern-Simons coupling in comparison with the
elliptic genus of the dual heterotic string for compactifications to six dimensions. Most of this
material is well known.

4.3.1 GS Mechanism in Six Dimensions in Relation to (Quasi-)Modularity

The compactification space of a Type IIB/F-theory in six dimensions is given by the base, B2,
of an elliptic Calabi-Yau threefold, Y3. Let us fix a basis for its (co-)homology,

ωα ∈ H2(B2) , ωα ∈ H2(B2) , (4.40)

with intersection form

Ωαβ =

∫
B2

ωα ∧ ωβ =: ωα · ωβ . (4.41)

The intersection form on H2(B2) is determined by the inverse matrix, Ωαβ. In terms of the basis
of H2(B2) we expand the Ramond-Ramond 4-form field as

C4 = Bα ∧ ωα . (4.42)

Note that a D3-brane wrapping some curve CI = CI
αω

α gives rise to a string that couples locally
to the combination

BI = CI
αB

α . (4.43)

By dimensional reduction of the 7-brane Chern-Simons couplings (4.39), we obtain the following
Green-Schwarz interactions:

SGS = −2π

2
θα

∫
R1,5

Bα ∧ F ∧ F , θα =
1

2

∫
B2

b ∧ ωα , (4.44)

where b is the height-pairing associated to the U(1) gauge group. By standard arguments these
couplings lead to a gauge variation of the effective action which is encoded in an anomaly
eight-form, Ieff = A(6)

eff F
4. This then cancels the 1-loop anomaly via:

A(6)
eff = −A(6) . (4.45)

This tree-level contribution from the exchange of the various B-fields from the effective action
is given by

A(6)
eff = −1

2
θα Ωαβθβ . (4.46)
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We will now separate the different contributions to A(6)
eff as based on their respective geomet-

ric origin (and later, modularity properties). For this we consider a simplified but prototypical
situation that captures all relevant contributions. Following the general philosophy of Sec-
tion 2.3, we specialise to an F-theory base B2 which is by itself a P1 fibration. While every
F-theory base with a standard heterotic dual is a blow-up of a rational fibration, the simplific-
ation we are going to make is to consider only a single blowup over a point on the base of this
fibration; this of course is easily generalised to an arbitrary sequence of blowups. This means
that we consider the blowup of a Hirzebruch surface, which we denote by B2 = Bl1Fn. For this
the homology group of curves is spanned by the classes of the generic fiber f , the exceptional
section S− = h and an exceptional curve C2

E. A consequence of the blowup is that the generic
fiber splits over a point into two effective curves:

f = C1
E + C2

E = (f − C2
E) + C2

E . (4.47)

The non-zero intersection numbers between f , h, and C2
E are:

f · h = 1 , h · h = −n , C2
E · C2

E = −1 . (4.48)

As will become clear momentarily, a convenient choice of basis for H2(B2), which is adapted
to the duality with the heterotic string, is given by

{ωα} = {C0, C̃0, CE} , (4.49)

where
C0 = f , C̃0 = n f + 2h− C2

E , CE = C1
E − C2

E = f − 2C2
E . (4.50)

The intersection form for this basis is

Ωαβ =

0 2 0
2 −1 0
0 0 −4

 . (4.51)

To understand the significance of this basis, note first that the dual basis of H2(B2) is given
by {ωα} = {Ωαβω

β} with ΩαβΩβγ = δγα. It reads explicitly:

ω0 =
1

4
(C0 + 2C̃0) , ω̃0 =

1

2
C0 , ωE = −1

4
CE . (4.52)

The point is now that a D3-brane wrapping the curve class C0 with C0 · C0 = 0 gives rise to
a heterotic string, which can become asymptotically tensionless if the volume of C0 shrinks to
zero size. Moreover this curve class can split further into effective classes as C0 = C1

E +C2
E, and

a D3-brane wrapping the two classes gives rise to two non-critical E-strings, respectively. If we
correspondingly expand the RR 4-form in the dual divisor classes given in (4.52),

C4 = B0 ∧ ω0 + B̃0 ∧ ω̃0 +BE ∧ ωE , (4.53)

it follows from the intersection form (4.51) that the 2-form field B0 couples only to the heterotic
string, and is hence identified with the universal perturbative heterotic B-field.

On the other hand, the 2-form field BE maps to the anti-self-dual tensor field associated
with a heterotic 5-brane that is located at the point on the base of the Hirzebruch surface over
which the blowup has been performed. Indeed, we will see that this tensor field couples to
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Figure 4: Contributions to the Green-Schwarz mechanism of a six-dimensional F-theory com-
pactification on B2 = Bl1Fn. Only the leftmost contribution is perturbative from the perspective
of the dual heterotic string, and matches the fully modular contribution from the elliptic genus.

the linear combination of E-strings from CE = C1
E − C2

E in the right way to be identified with
the tensor field on the heterotic 5-brane. While BE is anti-self-dual, the perturbative universal
B-field B0 is neither self-dual nor anti-self-dual but can rather be written as a sum of a self-dual
and anti-self-dual tensor field. The field B̃0 is related to the field dual to B0. More precisely, if
we were to consider just the Hirzebruch surface B2 = Fn without a blowup, the dual heterotic
string compactification would be purely perturbative. The analogue of C̃0 on Fn would then be
C̃0

pert = nf + 2h with C̃0
pert · C̃0

pert = 0, and the associated field B̃0
pert is the dual of B0. It is this

property that has motivated the choice of basis (4.50).
In terms of the decomposition (4.53), we can now read off the Green-Schwarz couplings

defined in (4.44) as follows:

θ0 =
1

2
ω0 · b =

1

4
m+

1

4
C̃0 · b , (4.54)

θ̃0 =
1

2
ω̃0 · b =

1

4
C0 · b =

1

2
m, (4.55)

θE =
1

2
ωE · b = −1

4
(m1 −m2) . (4.56)

Here we have defined

m =
1

2
C0 · b , m1 =

1

2
C1
E · b , m2 =

1

2
C2
E · b, (4.57)

with m = m1 +m2.
As shown in Figure 4, the couplings θα give rise to the following tree-level contributions to

the anomaly coeffcient (4.46):

A(6)
eff = −1

2
θαΩαβθβ = AB̃0−B0 +AB̃0−B̃0 +ABE−BE , (4.58)

where

AB̃0−B0 = −2θ̃0 θ0 = −m (
1

4
m+

1

4
C̃0 · b) , (4.59)

AB̃0−B̃0 =
1

2
θ̃0 θ̃0 =

1

2
(
1

2
m)2 , (4.60)

ABE−BE = 2θE θE =
1

2
(
1

2
(m1 −m2))2 . (4.61)

On the other hand, recall from the previous section that the anomaly (4.8) as encoded in
the elliptic genus can be written as a sum of two pieces

A(6) = A(6),M + A(6),QM , (4.62)
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which are associated with the modular and the quasi-modular parts of the elliptic genus, re-
spectively. The quasi-modular part of the six-dimensional anomaly has been computed in full
generality in (4.27), and is cancelled by the sum AB̃0−B̃0 + ABE−BE . This then provides the
following match between couplings of the effective action and the modular and quasi-modular
parts of the elliptic genus:

AB̃0−B0 = −A(6),M , (4.63)

AB̃0−B̃0 +ABE−BE = −A(6),QM . (4.64)

Moreover, from (4.12) we recall that

A(6),M = mA
(6),M
GS . (4.65)

By comparison with the above expression for AB0−B̃0 , this then identifies the field theoretic
coupling θ0 with the modular contribution to the Green-Schwarz term,

A
(6),M
GS = θ0 =

1

4
m+

1

4
C̃0 · b . (4.66)

In turn, these identifications also allow to link the “quasi-modular” pieces of the anomaly,
A(6),QM , to the presence of non-perturbative heterotic 5-branes [113] as follows: The Green-
Schwarz term θ0 is, up to overall normalization, the Green-Schwarz term of the perturbative het-
erotic B-field, as obtained by standard dimensional reduction of the perturbative 10-dimensional
Green-Schwarz terms. The analogue of this term is present also in heterotic backgrounds without
heterotic 5-branes, and consequently is determined by the purely modular piece of the elliptic
genus.

By contrast, the anomaly cancelling contributions AB̃0−B̃0 +ABE−BE are non-perturbative
from the heterotic point of view: The first term, AB̃0−B̃0 , arises from the exchange of the dual

of the heterotic B-field, B̃0. This coupling is absent in the perturbative cousin of this geometry
where there is no blowup and the base B2 is given by the Hirzebruch surface, Fn. As noted
above, in this case we have C̃0

pert · C̃0
pert = 0 and hence the coupling of B̃0

pert to itself in (4.78)
vanishes. Thus the origin of such a term must be attributed to non-perturbative heterotic
5-branes in the dual heterotic picture, as explained in [113].

Similarly, the second term, ABE−BE , must originate from couplings that involve the extra
anti-symmetric tensor field BE living in the worldvolume of the 5-brane. The form of these
anomalies likewise matches the results in [113].

In summary, eq. (4.64) shows that the two non-perturbative contributions to the anomaly
are beautifully matched by the quasi-modular part of the anomaly, precisely as encoded in the
elliptic genus. On the other hand, the corresponding Green-Schwarz terms, θ̃0 and θE, are not
reproduced by A

(6),QM
GS from the elliptic genus, as the latter is a one-loop quantity that is agnostic

about the non-perturbative sector. Only the perturbative, modular contribution A
(6),M
GS of the

elliptic genus matches, as per (4.66), the Green-Schwarz term θ0 in the effective action.

4.3.2 GS Mechanism in Four Dimensions versus Modularity and Derivative Terms

After this preparation, we now turn to the Green-Schwarz mechanism in four dimensions. The
new ingredient, in line with the main theme of this paper, will be the derivative sector of the
elliptic genus. As we will see, it encodes the Green-Schwarz mechanism associated with extra,
non-universal 2-form fields Bi which arise from the perturbative B-field in ten dimensions by
dimensional reduction.
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In four dimensions, we reduce the Ramond-Ramond four-form field, C4, into 2-form fields
Bα and their dual, zero-form axions cα by expanding

C4 = Bα ∧ ωα + cα ω
α . (4.67)

Here {ωα} is a basis of H1,1(B) and {ωα} the dual basis of H2,2(B3), which are defined such
that ∫

B3

ωα ∧ ωβ =: ωα · ωβ = δβα . (4.68)

Plugging this expansion into the 7-brane action (4.39), we can read off the Green-Schwarz terms
involving the 2-form fields Bα and the Chern-Simons terms involving their dual axions cα as
follows:

SCS−7 = SGS + SCS (4.69)

SGS = −2π

2
θα

∫
R1,3

Bα ∧ F , θα = b · F · ωα , (4.70)

SCS = −2π

2
mα

∫
R1,3

cα F ∧ F , mα =
1

2
b · ωα . (4.71)

The tree-level exchange of the B- and c-fields then gives rise to a gauge variation of the effective
action, with anomaly six-form given by Ieff = A(4)

eff F
3, where

A(4)
eff = −mα θα . (4.72)

This precisely cancels the field theoretic 1-loop anomaly A(4) as normalised in (4.4):

A(4)
eff = −A(4) . (4.73)

As in the six-dimensional setting, we now specialize to a prototypical example that captures
all variants of anomaly cancellation. For this we consider a fourfold base, B3 ⊂ Y4, which is by
itself a P1-fibration over some base space B2, and for simplicity of presentation we assume here
again that there is only one blow-up divisor, E. We refer to Section 2.3 for our notation for this
type of geometries. A basis of H2(B3) that is convenient for comparison with the dual heterotic
geometry is given by

{ωα} = {ω0 := C0 , ωE := C1
E − C2

E , ωi := S+ · p∗(Ci)} , (4.74)

where {Ci} is a basis of divisor classes on B2. A D3-brane along the rational fiber C0 of B3,
or along the exceptional curves C1,2

E , gives rise to a heterotic string or two copies of E-strings,
respectively. The 2-form fields coupling to these strings are obtained by expanding C4 with
respect to the basis of dual divisors:

{ωα} = {ω0 := S− −
1

2
E , ωE :=

1

2
E , ωi := p∗(Ci)} . (4.75)

Here, S− is the exceptional section of the P1-fibration, E is the blowup divisor, and {Ci} is a
basis of H1,1(B2) related to {Ci} via

Ci ·B2 Cj = δij . (4.76)
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The corresponding expansion

C4 = Bα ∧ ωα = B0 ∧ (S− −
1

2
E) +BE ∧ (

1

2
E) +Bi ∧ p∗(Ci) + . . . (4.77)

then defines the various 2-form fields that are relevant for us. First, the field B0 maps to the
perturbative heterotic B-field in four dimensions. Furthermore BE represents the 2-form field
in four dimensions which lives on the worldvolume of the spacetime-filling heterotic 5-brane,
which is the geometry that is dual to the blowup on the F-theory side. Finally, the 2-form fields
Bi correspond to the 2-forms obtained on the heterotic side by expanding the ten-dimensional
magnetic dual six-form, B6, on 4-forms p∗(Ci), which are the pullbacks of the 2-form divisor
classes on B2.

In the basis (4.75), the coefficient of the anomaly (4.72) induced by the Green-Schwarz terms
then reads:

A(4)
eff = −(F · b · (S− −

1

2
E))m− (F · b · 1

2
E) (m1 −m2)− (F · b · p∗(Ci))m(i) , (4.78)

where

m =
1

2
(b · C0) ,

m1 −m2 =
1

2
(b · (C1

E − C2
E)) , (4.79)

m(i) =
1

2
(b · S+ · p∗(Ci)) .

Now our task is to compare A(4)
eff with the various modular/quasi-modular/non-modular com-

ponents of the anomaly A(4), as encoded in the decomposition (3.13) of the elliptic genus. For
this we rewrite the latter in terms of a new basis (signified by a tilde) that is adapted to (4.78).
This geometrically motivated basis is however not well aligned with modularity, and thus will
generically mix the various components of the elliptic genus. Concretely, in our specific proto-
typical example, and also in all other examples studied in this work, we find that the elliptic
genus can be equivalently written as

ZG,C0 = g̃0 Z̃0
−1,m + g̃E Z̃E

−1,m +
∑
i

g̃i
(
Z̃i
−1,m +

1

2m
ξ∂ξZ̃

i
−2,m

)
, (4.80)

with the following flux-dependent coefficients:

g̃0 = (F · b · (S− −
1

2
E)) , g̃E = (F · b · 1

2
E) , g̃i = (F · b · p∗(Ci)) . (4.81)

Here, Z̃0
−1,m is a modular Jacobi form of weight −1 and index m which is necessarily of the

form (4.17), while the remaining contributions mix both modular and quasi-modular pieces.
Following our previous notation, we can thus write:

Z̃0
∗,m = Z̃0,M

∗,m ,

Z̃E
−1,m = Z̃E,M

−1,m + Z̃E,QM
−1,m , (4.82)

Z̃i
∗,m = Z̃i,M

∗,m + Z̃i,QM
∗,m .
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After these preparations we can now easily compare the various terms of A(4)
eff in (4.78) with

the coefficients (4.80) of the elliptic genus, ZG,C0 , by filtering the individual Z̃∗∗,m through the
formula (4.8). This leads to the following decomposition of the total anomaly:

A(4) =: g̃0AZ̃0
−1,m

+ g̃EAZ̃E−1,m
+
∑
i

g̃i(AZ̃i−1,m
+ AZ̃i−2,m

) . (4.83)

Imposing A(4)
eff = −A(4) we can thus identify18

g̃0AZ̃0
−1,m

= (F · b · (S− −
1

2
E))m, (4.84)

g̃EAZ̃E−1,m
= (F · b · 1

2
E) (m1 −m2) , (4.85)

g̃iAZ̃i−1,m
+ g̃iAZ̃i−2,m

= (F · b · p∗(Ci))m(i) . (4.86)

This generic match between geometric, flux dependent quantities pertaining to the effective
action on the one hand, and the various contributions to the elliptic genus on the other, is a
central point of the present paper. While we have worked it out here for a prototypical situation
which is dual to a heterotic string, it applies also to much more general geometries. However it
is difficult to refine these statements without specifying more data explicitly, and this is why we
will present in Section 5 some detailed computations for explicit examples. Most importantly,
we will see directly how the derivative part of the elliptic genus, encoded in the Z̃i

−2,m, relates
to the Green-Schwarz mechanism involving the additional four-dimensional 2-form fields Bi.

Before concluding this section, let us present some further remarks about the Green-Schwarz
terms, which are determined by the 1-loop computation shown in eq. (4.10). Like the anomaly
(4.83), also the Green-Schwarz terms receive contributions from both the modular and the
quasi-modular parts of the elliptic genus:

A
(4)
GS = A

(4),M
GS + A

(4),QM
GS .

By (4.12), the Green-Schwarz terms computed from the purely modular contributions are guar-
anteed to match the field theoretic Green-Schwarz terms, which are perturbative in the sense
that they are independent of the heterotic 5-branes. Indeed, in the present context, where ZG,C0

is written in the special basis (4.80), anomaly cancellation in the perturbative sector takes the
form:

A(4),M = m

(
g̃0AGS

Z̃0
−1,m

+
∑
i

g̃i(AGS
Z̃i,M−1,m

+ 2AGS
Z̃i,M−2,m

)

)
. (4.87)

From the perspective of the dual heterotic string, this equation comprises the complete perturb-
ative part of the anomaly cancellation mechanism, involving the universal B-field B0 in the first
term and the additional four-dimensional 2-form fields Bi, which are obtained by dimensional
reduction of the ten dimensional six-form field, B6.

Note the factor of 2 in the last expression, which reflects the relation (4.22) for the derivative
part of the elliptic genus. Note also that in (4.87) we did not write any modular contributions
from Z̃E,M

−1,m, because they must vanish anyway:

AZ̃E,M−1,m
= 0 , AGS

Z̃E,M−1,m

= 0 . (4.88)

18Note that one can write the flux-dependent triple-intersections on B3 directly on Y4 by exploiting the identity
−
∫
Y4

G ∧ σ ∧ π∗D = F · b ·D for G = σ ∧ π∗F .
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This is because a fully modular contribution will always produce both the anomaly and its
acompanying Green-Schwarz term at the same time, but the latter cannot arise in perturbation
theory from the elliptic genus, since it is localized on the brane and thus cannot be captured by
the bulk theory. We will find this general expectation confirmed in the computation of explicit
examples, in particular by equation (5.92) below.

Similar to the anomalies discussed before, we can also match the Green-Schwarz terms as
computed in (4.10) explicitly in terms of the flux geometry, as long as we stay in the fully
modular sector. Concretely we find

g̃0AGS
Z̃0
−1,m

= (F · b · (S− −
1

2
E)) . (4.89)

The right-hand side is the coefficient of the standard Green-Schwarz term that involves the
universal B0-field of the heterotic string.

More interesting are the Green-Schwarz terms associated with the derivative, secretly six-
dimensional subsector of the theory whose properties are encoded in the embedded threefolds, Yi

3.
These terms, as computed from the elliptic genus, are expected to agree with the actual coun-
terterms in the effective theory, as long as Z̃i

−1,m and Z̃i
−2,m are both fully modular. Following the

same line of arguments as before, we find the following identifications between the Green-Schwarz
terms as computed from the modular expressions in (4.10) with the intersection numbers of the
F-theory flux geometry:

g̃i(AGS
Z̃i,M−1,m

+ 2AGS
Z̃i,M−2,m

) =
m(i)

m
(F · b · p∗(Ci)) . (4.90)

Note that this identification follows from the requirement of anomaly cancellation, i.e., from (4.86)

and imposing A(4)
eff = −A(4). It does not prove that the anomalies are actually cancelled. To

complete a proof, one would need to show that in general the value for AGS in (4.90) as computed
from the elliptic genus does actually come out right such as to match the m(i) as determined in
(4.79) from the flux geometry in the effective action. While we do not have a general proof for
this, we have checked this to be true for the examples presented in the next section. Turning
tables round, assuming anomaly cancellation gives a prediction for the modular part of AGS in
terms of the geometric intersection numbers m(i).

Note that these considerations, and in particular the relation (4.90), do not hold if the
elliptic genus has quasi-modular contributions, Z̃i,QM

∗,m 6= 0: In this case the left-hand side of
(4.90), which depends only on the modular parts, is still expected to yield the perturbative
Green-Schwarz terms for the fields Bi, but there will be in general additional non-perturbative
contributions from the heterotic 5-branes.

In this case, the quasi-modular part of the anomaly, A(4),QM , will be non-zero and generically
receive two types of contributions:

A(4),QM = g̃EAZ̃E,QM−1,m
+
∑
i

g̃i(AGS
Z̃i,QM−1,m

+ 2AGS
Z̃i,QM−2,m

) . (4.91)

The first term encodes the part of the anomaly which is cancelled by the Green-Schwarz
mechanism involving the B-field BE from the heterotic 5-branes. From (4.85) we see that the
anomaly associated with Z̃E,QM

−1,m is proportional to m1 −m2. This agrees beautifully with the

form of the anomaly computed from the elliptic genus in (4.33), provided Z̃E,QM
−1,m is of the form

(4.32). In a sense this predicts that it must be possible to write Z̃E,QM
−1,m must be as in (4.32), as

far as its expansion up to order ẑ3 is concerned.
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The second type of contributions in (4.91) must be cancelled by non-perturbative contri-
butions to the Green-Schwarz terms for the additional Bi-fields in four dimensions. Note that
Z̃i,QM
−1,m and Z̃i,QM

−2,m are non-zero only if the threefold Yi
3, whose BPS invariants are encoded in

Z̃i
−2,m, contains the exceptional fibral curves C1

E and C2
E. This is the case if the class of the

blowup curve Γ, when expanded with respect to a chosen basis {Cj}, has a non-trivial contri-
bution from Ci. In fact, we may assume without loss of generality that Γ is proportional to Ci.
By construction this curve maps to the curve wrapped by the NS5-brane on the dual heterotic
3-fold. We can thus conclude a bit more sharply that:

A(4),QM = (F · b · 1

2
E) (m1 −m2) + (F · b · p∗(Γ))mΓ , (4.92)

where mΓ is a parameter which we cannot determine from the above considerations alone.
However it is reassuring that the general structure of these terms indeed matches the architecture
of the abelian heterotic Green-Schwarz mechanism in the presence of 5-branes, as was discussed
in [109].

5 Elliptic Genera of 4d Heterotic Strings

So far we have presented generic and prototypical results concerning the modularity of elliptic
genera in relation to the background fourfold geometries, Y4, and flux configurations, G. This
general structure will now be illustrated by detailed computations for a few examples, for which
sharper statements can be made, in particular concerning the structure and rôle of the embedded
six-dimensional, derivative sector.

We begin in this section with the elliptic genus of four-dimensional heterotic strings. In
the example of Section 5.1, the embedded threefolds that encode the derivative sector are by
themselves Calabi-Yau spaces, while in Section 5.2 we discuss an example where the derivative
sector encodes the relative BPS numbers of a non-Calabi-Yau threefold.

We will label the examples by the geometry of the base, B3, of a given elliptic fourfold
fibration, Y4. In order to curb mathematical overload of this section, we have relegated further
details about the geometry to Appendix B.

5.1 Example 1: B3 = dP2 × P1
l′

As our first example we consider F-theory on an elliptic fibration Y4 whose base B3 is given by
the blow-up

B3 = dP2 × P1
l′ , (5.1)

of the rational fibration F1 × P1
l′ , where the del Pezzo surface dP2 is viewed as the blow-up of

the Hirzebruch surface F1 in one point: Since the Hirzebruch surface is a rational fibration with
generic fiber C0 = P1

f and base P1
h, we can view B3 as the blowup of the rational fibration over

the base B2 = P1
h × P1

l′ ,

p : C0 −→ B3

↓
P1
h × P1

l′ (=: B2) , (5.2)

where the blowup locus is homologous to P1
l′ in B2. This type of base spaces fits into the class

of geometries described in Section 2.3. In particular, the rational fibration has an exceptional
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section S−, which embeds B2 into B3 and which satisfies the relation

S− · S+ = 0 , S+ = S− + p∗(P1
l′) . (5.3)

As a result of the blow-up inherited from dP2, the generic rational fiber C0 splits into a sum
of two exceptional curves C1

E + C2
E, where C1

E and C2
E are distinguished by their intersection

numbers with S− as in (2.30). The splitting occurs over a point on P1
h within B2. The exceptional

divisor E associated with this blowup is thus a fibration of C2
E over P1

l′ , and since the rational
fibration of B3 is trivial over P1

l′ , it is in fact a direct product:

E = C2
E × P1

l′ . (5.4)

As a convenient basis for H2(B3) we pick the curve classes

C0 = P1
f , CE = C1

E − C2
E , C1 = P1

l′ , C2 = P1
h . (5.5)

Since we will also need the curve classes dual to C1 and C2 on B2, note that the only non-zero
entries of the intersection form ηij = Ci ·B2 Cj are η12 = η21 = 1, so that the dual curves
Ci = ηijCj on B2 are

C1 = C2 , C2 = C1 . (5.6)

The choice of basis {C1, C2} for H2(B2) made here corresponds to the generators of the simplicial
Mori cone of B2, which was advertised as a basis with special properties in Section 3.3; the dual
curves, C1 and C2, hence generate the Kähler cone of B2. As basis for the divisor group on B3

we introduce {Dα}4
α=1, which are defined as

D1 = p∗(C1) , D2 = S− , D3 = p∗(C2) , D4 = p∗(C1) + S− − E . (5.7)

In terms of these basis elements Dα, the intersection polynomial and the anti-canonical class
are

I(B3) = D1D2D3 −D2
2D3 +D1D3D4 , (5.8)

K̄B3 = 2D1 +D2 + 2D3 +D4 . (5.9)

Having specified some properties of the base, B3 = dP2 × P1
l′ , we now turn to the structure

of the elliptic fibration Y4. It has an additional rational section in addition to the zero-section.
As reviewed in Section 2.2, this leads to gauge group G = U(1). Moreover we choose a specific
fibration [126,127] for which the height-pairing is given by

b = 2K̄B3 . (5.10)

Further details of the fibration are provided in Appendix B. The massless matter spectrum
comprises states of charge r = ±1 , which are localised in the fiber along the curve Σr=1 of class

Σr=1 = 12K̄B3 · K̄B3 = −84C0 + 21(b · p∗(C1)) + 24(b · p∗(C2)) . (5.11)

Furthermore we note that the U(1) flux in H2,2
vert(Y4,R) can be expanded into the divisors Dα

as follows:

G ≡ GU(1) = σ ∧ π∗F , where F =:
4∑

α=1

cαDα . (5.12)

With respect to this flux, given the matter curve (5.11) the chiral index of massless chiral
spectrum evaluates to

χG,r=1 = F · Σr=1 = 96c1 + 48c2 + 84c3 + 96c4 . (5.13)
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5.1.1 Relative BPS Invariants and Elliptic Genus

As outlined in Section 2.2, we can use mirror symmetry, suitably adapted to fourfolds [90, 128,
129], to compute a finite number of relative BPS invariants NG;C0(n, r). Recall from (5.2) that
C0 is the fiber of B3 which is wrapped by a D3-brane such as to produce the solitonic heterotic
string. These invariants can then be packaged into the elliptic genus and extrapolated to all
orders by modular completion.

The results of this computation are sketched in Appendix B. We list here just the lowest
order in q:

ZG;C0 = −1

q

∑
n,r

NG;C0(n, r)qnξr

= −[96c1ξ
±1̄ + 48c2ξ

±1̄ + 84c3ξ
±1̄ + 96c4ξ

±1̄] + O(q), (5.14)

where ξ±n̄ := ξn − ξ−n. Comparing to (5.13), we confirm the advertised relation (3.8) between
the relative BPS invariants at level one, NG;C0(1, r), and the chiral index χG,r=1.

Moreover, following the discussion in Section 3.2, we aim to identify the BPS invariants
NG;C0(n, r) as expansion coefficients of Jacobi or quasi-modular Jacobi forms (or their derivat-
ives) of U(1) fugacity index

m =
1

2
C0 · b = 2 . (5.15)

Given a sufficient number of known NG;C0(n, r), we can uniquely determine the elliptic genus
as follows:

ZG;C0 = (F · C0)Z0
−1,2 + (F · b · p∗(C1))

1

4
ξ∂ξZ

1
−2,2 + (F · b · p∗(C2))

1

4
ξ∂ξZ

2
−2,2 , (5.16)

where

Z0
−1,2 ≡ Z0,M

−1,2 = 84φ−1,2 (5.17)

Z2
−2,2 ≡ Z2,M

−2,2 =
1

12

1

η24
(14E4E6,2 + 10E4,2E6) (5.18)

Z1
−2,2 ≡ Z1,M

−2,2 + Z1,QM
−2,2 , where (5.19)

Z1,M
−2,2 = Z2

−2,2 −
1

12

1

η24
E4,1E6,1 , Z1,QM

−2,2 =
1

12

1

η24
E2E4,1

2 .

For the definition of the Eisenstein and the Eisenstein-Jacobi forms, recall Appendix A. Moreover
the flux dependent coefficients in (5.16) evaluate to

(F · C0) = c2 + c4 ,

(F · b · p∗(C1)) = 4(c2 + c3 + c4) , (5.20)

(F · b · p∗(C2)) = 2(2c1 + c2 + 2c4) .

Thus the elliptic genus ZG;C0 in (5.16) does have the general form as advertised in (3.9), or
more specifically in (3.13) and (3.14), with the special feature that for the example at hand
there happens to be no four-dimensional quasi-modular term, ZE

−1,m. This, in fact, mirrors the
absence of a term proportional to C1

E in (5.11).
Let us now take a closer look at the derivative sector, ie., at the Zi

−2,2 for i = 1, 2. Acccording
to the arguments given in Section 3.2, the Zi

−2,2 are generating functions for the relative BPS
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invariants of certain elliptic threefolds Yi
3 within Y4. To verify this in the present example, we

follow the general prescription of Section 3.2 and consider the threefolds

Y1
3 = Y4|p∗(C1) , Y2

3 = Y4|p∗(C2) , (5.21)

where, according to (5.6), C1 = C2 and C2 = C1. Both threefolds are elliptically fibered with
respective base spaces

B1
2 = p∗(C1) ' dP2 , B2

2 = p∗(C2) ' C0 × P1
l′ . (5.22)

Note that only B1
2 contains the blowup locus of B3, whereas the rational fiber of B2

2 never splits
into two exceptional curves.

Furthermore, the normal bundles of both Yi
3 happen to be trivial:

NYi3/Y4 = OYi3 . (5.23)

This is a consequence of the fact that the Yi
3 are simply the restriction of the elliptic fibration

to p∗(Ci), which in turn have vanishing self-intersection on B3 and hence trivial normal bundle:

NBi2/B3
= OBi2 . (5.24)

By the adjunction formula this implies that

c1(K̄Yi3) = c1(K̄Y4|Yi3)− c1(NYi3/Y4) = 0 , (5.25)

and therefore both threefolds are themselves Calabi-Yau spaces; we emphasize that this is
a special property of the example at hand. Following the discussion in Section 3.3, we can
therefore view Y4 as a fibration in two ways, namely with generic fiber given by either Yi

3 over
its respective base Ci, for i = 1, 2. Furthermore we can conclude from the adjunction formula
that the anti-canonical bundle of the base spaces of Yi

3 is simply the restriction of K̄B3 :

K̄Bi2 = K̄B3|Bi2 ⊗N
−1
Bi2/B3

= K̄B3|Bi2 . (5.26)

The structure of the elliptic fibration of Yi
3 is inherited by restriction from Y4. This means that

both threefolds are fibrations with an extra section whose height-pairing is simply given by the
restriction of b = 2K̄B3 to the respective bases. See Appendix B for details.

With this preparation we can now compare the expressions Zi
−2,2 given in eqs. (5.18) and

(5.19) with the elliptic genera of the heterotic strings that are dual to six-dimensional F-theory
compactifications on the Calabi-Yau threefolds Yi

3. In more detail, the first terms in the expan-
sion of Zi

−2,2 are

Z1
−2,2 =

2

q
−
(
252 + 84ξ±1

)
− q

(
116580 + 65164ξ±1 + 9448ξ±2 + 84ξ±3 − 2ξ±4

)
+ ...(5.27)

Z2
−2,2 =

2

q
−
(
288 + 96ξ±1

)
− q

(
123756 + 69280ξ±1 + 10192ξ±2 + 96ξ±3 − 2ξ±4

)
+ ..(5.28)

We have checked by direct computation in Appendix B that these expansions perfectly match
the low-lying relative BPS invariants for C0, for the elliptic Calabi-Yau threefold fibrations Yi

3

over dP2 and F0, respectively. This explicitly demonstrates how the six-dimensional structure
encoded in the flux-dependent, four-dimensional elliptic genus (5.16) manifests itself, here in
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terms of two embedded Calabi-Yau geometries that can be independently controlled by dialing
the flux background.

Alternatively, in terms of the dual heterotic language, one can recognize from (5.18) that
Z2
−2,2 is nothing but the modular, U(1) refined elliptic genus of a perturbative heterotic string

compactification on K3 (with some specific bundle background turned on such that only the
U(1) gauge symmetry is unbroken). This is most visible when switching off the background
gauge field:

Z2
−2,2(q, ξ = 1) =

2

η24
E4E6 ≡ ZK3(q) . (5.29)

On the other hand, note that Z1
−2,2 is only quasi-modular, in agreement with the above obser-

vation that Y1
3 contains the blowup locus. In the dual heterotic language, this corresponds to a

non-perturbative background. More precisely, the difference,

Z1
−2,2 − Z2

−2,2 =
1

12

E2E
2
4,1

η24
− 1

12

E4,1E6,1

η24
, (5.30)

is suggestive of a transition where a small instanton has been traded against a heterotic NS5-
brane.

Finally, we note that the decomposition of the matter curve Σr=1 defined in (5.11) perfectly
reproduces the general pattern advertised in eq. (3.29), i.e.,

Σr=1 = N0
C0(1, 1)C0 +

1

4
N1
C0(1, 1) (b · p∗(C1)) +

1

4
N2
C0(1, 1) (b · p∗(C2)) , (5.31)

with N1
C0(1, 1) = 84 from (5.27), N2

C0(1, 1) = 96 from (5.28) and N0
C0(1, 1) = −84. The latter

follows from Z0
−1,m=2 = 84φ−1,2 = −1

q

∑
N0
C0(n, r)qnξr = 84(ξ − ξ−1) + . . ..

Let us close this part of the discussion by demonstrating the claim of Section 3.4 that the em-
bedded threefold invariants relative to C0 have another interpretation in terms of non-transversal
(−2)-fluxes. This allows us to explicitly verify the special form of the elliptic holomorphic an-
omaly equation as given in (3.35). Recall that the non-transversal (−2)-fluxes lie in the space

H
(2,2)
(−2) (Y4,R) defined in (2.17), and do not lift to fluxes in F-theory. We first need to fix a

concrete basis (3.39) for it. Out of the set of all products of elements {S−, E, p∗(C1), p∗(C2)},
the following four non-vanishing fluxes can be taken as a maximal linearly independent set:

G1 = π∗(S−) ∧ π∗(p∗(C1)) , G2 =π∗(S−) ∧ π∗(p∗(C2)) ,

GE = π∗(E) ∧ π∗(p∗(C1)) , G0 =π∗(p∗(C1)) ∧ π∗(p∗(C2)) .
(5.32)

By performing analogous computations in mirror symmetry as sketched in Appendix B, we can
compute the relative BPS invariants with respect to C0 in each of these backgrounds. The result
is

FG1;C0 =− qZ1
−2,2 , FG2;C0 = −qZ2

−2,2 ,

FGE ;C0 = 0 , FG0;C0 = 0 ,
(5.33)

where the Zi
−2,2 encode the relative BPS invariants for C0 as a curve within the Calabi-Yau

threefolds Yi
3, as displayed in (5.27) and (5.28). This confirms the claims stated in eq. (3.40)

and (3.41). In particular we confirm the relation (3.45) for the lowest degeneracies in Zi
−2,2,

because Ci ·B2 KB2 = −2 for both base curves.
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5.1.2 Anomalies and Counterterms

We now show explicitly how the general structure of the U(1) gauge anomaly and its coun-
terterms, as laid out in generality in Section 4, works in this example. First we rewrite the
elliptic genus in (5.16) in the form (4.80) as

ZG;C0 =: g̃0 Z̃0
−1,2 +

2∑
i=1

g̃i
(
Z̃i
−1,2 +

1

4
ξ∂ξZ̃

i
−2,2

)
, (5.34)

where the flux dependent parameters

g̃0 = (F · b · (S − 1

2
E)) = 4c1 − 4c2 + c3 − 2c4 , (5.35)

g̃1 = (F · b · p∗(C1)) = 4(c2 + c3 + c4) , (5.36)

g̃2 = (F · b · p∗(C2)) = 2(2c1 + c2 + 2c4) (5.37)

multiply the modular Jacobi forms

Z̃
∗

−1,2 ≡ Z̃
∗,M
−1,2 with

Z̃0,M
−1,2 = −12φ−1,2 , Z̃1,M

−1,2 = 3φ−1,2 , Z̃2,M
−1,2 = 12φ−1,2 .

(5.38)

Moreover we write
Z̃2
−2,2 = Z2,M

−2,2 , Z̃1
−2,2 = Z1,M

−2,2 + Z1,QM
−2,2 , (5.39)

as defined in (5.19).
In line of what we pointed out before, the inherently four-dimensional contributions to the

elliptic genus are all proportional to the modular Jacobi form φ−1,2. The anomaly and Green-
Schwarz term associated with φ−1,2 follow from (4.18) and are given by:

φ−1,2 : A(4) = −1

6
, A

(4)
GS = − 1

12
. (5.40)

Anomaly cancellation, A = mAGS, is of course automatic as a consequence of modularity.
Consider next the more interesting derivative contributions to the elliptic genus. We have

seen that we can formally associate six-dimensional anomalies and Green-Schwarz terms with
them. The contributions to the four-dimensional anomaly and GS terms then follow from these
via (4.21) and (4.22).

Specifically, recall that Z2
−2,2, associated with the embedded threefold Y2

3, is purely modular.
Consistent with this, we obtain, by direct evaluation of (4.8) and (4.10), for

Z̃2
−2,2 = Z2,M

−2,2 : A(6),M = 4 , A
(6),M
GS = 2 (5.41)

in agreement with the general formula (4.16). By contrast, Z1
−2,2, which is associated with Y1

3,
receives both a modular and a quasi-modular contribution. The modular part works out along
the same lines as for Z2

−2,2. The quasi-modular anomaly and Green-Schwarz terms follow from
(4.27) and (4.28), and altogether we find:

Z̃1,M
−2,2 : A(6),M = 4 , A

(6),M
GS = 2 ,

Z̃1,QM
−2,2 : A(6),QM = −1

4
(m2

1 +m2
2) = −1

2
, A

(6),QM
GS = − 1

12m
(m1 +m2)2 = −1

6
,

(5.42)
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where we used m1 = m2 = 1 and m = m1 +m2 = 2.
With everything combined and recalling in particular (4.21), the four-dimensional anomaly

thus evaluates to

A(4) = A(4),M + A(4),QM (5.43)

A(4),M = (F · b · (S − 1

2
E))m+ (F · b · p∗(C2))(m2 −m) + (F · b · p∗(C1))(m2 − m

4
)

A(4),QM = (F · b · p∗(C1))(−1

2
) .

In total, when all variables are substituted by their definite expressions, this indeed correctly
reproduces the 1-loop anomaly:

A(4) = 16c1 + 8c2 + 14c3 + 16c4 =
1

3!
χG,r=1 , (5.44)

where χG,r=1 is given in (5.13).
Let us now have a closer look at the Green-Schwarz terms and check anomaly cancellation

in particular for the derivative terms of the elliptic genus. We mentioned already that in the
fully modular, non-derivative sector, the Green-Schwarz terms are guaranteed to cancel the
perturbative anomaly from the perspective of the heterotic string. Indeed the relation (4.89) is
obviously satisfied by means of (5.40):

g̃0AGS
Z̃0
−1,m

=
12

12
(F · b · (S− −

1

2
E)) = (F · b · (S− −

1

2
E)) . (5.45)

A bit less trivial is the anomaly cancellation in the derivative, but modular subsector. This
sector is associated just with Y2

3, since Y1
3 involves a quasi-modular piece. Let us thus check the

relation (4.90) which arises from Z̃2
−1,2 and Z̃2

−2,2 in the elliptic genus. Explicitly, (5.40), (5.41)
and (4.22) when taken together yield

g̃2(AGS
Z̃2,M
−1,m

+ 2AGS
Z̃2,M
−2,m

) = (−12

12
+ 2× 1

4
× 2× 2) (F · b · p∗(C2)) = (F · b · p∗(C2)) . (5.46)

To compare this to (4.90), which posits that

g̃2(AGS
Z̃2,M
−1,m

+ 2AGS
Z̃2,M
−2,m

) =
m(2)

m
(F · b · p∗(C2)) , (5.47)

we need to know the parameter m(2). While we could not offer in Section 4.3.2 an a priori
argument why it always takes the correct value, we find here in the current example by direct
computation that

m(2) =
1

2
(b · S+ · p∗(C2)) = 2 . (5.48)

Hence indeed the anomaly is cancelled as expected.
By contrast, for the Green-Schwarz terms derived from Z̃1

−1,m and Z̃1
−2,m, which exhibit a

quasi-modular contribution, we find, using among others, (4.22),

g̃1(AGS
Z̃1
−1,m

+ 2AGS
Z̃1
−2,m

) = (− 3

12
+ 2× 1

4
×2×(2− 1

6
)) (F · b · p∗(C1)) =

19

12
(F · b · p∗(C1)) (5.49)
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while

m(1) =
1

2
(b · S+ · p∗(C1)) = 3 . (5.50)

Therefore we get a mismatch as compared to (5.49):

m(1)

m
(F · b · p∗(C1)) =

3

2
(F · b · p∗(C1)) , (5.51)

which reflects that further Green-Schwarz terms, localized on the heterotic NS5-branes, are
needed to fully cancel the anomaly. Nevertheless, the quasi-modular contribution to the anomaly
as such, AQM , is of the general form given in (4.92). In our specific example, where m1 = m2 = 1,
the first term in (4.92) actually vanishes.

5.2 Example 2: B3 = Bl1H1

As our second example we take the base of the F-theory elliptic fourfold Y4 to be a blowup of
the space H1, which is defined as a P1-fibration over B2 = P2 with twist bundle L = O(p∗H).
Here H is the hyperplane class on B2. Since this geometry was discussed already in detail in [6],
we can be brief in explaining it.

The blowup is performed over a curve in the class C1 = H on B2 and leads to a splitting of
the rational fiber C0 into two exceptional curves, C1

E and C2
E. As in the case study of Section 2.3,

the blowup divisor E is given by a fibration of C2
E over C1. For our basis of divisors on B3 we

pick
D1 = S− − E , D2 = p∗(C1)− E , D3 = E . (5.52)

In this basis, the anti-canonical bundle reads

K̄B3 = 2D1 + 4D2 + 5D3 , (5.53)

and the intersection form becomes

IB3 = 4D3
1 − 3D3

2 − 2D2
1D3 + 2D2

2D3 +D1D
2
3 −D2D

2
3 . (5.54)

The elliptic fibration over the base B3 is chosen as in the example of Section 5 of [6], to which we
refer for further details. It leads to a gauge group G = U(1), and the associated height-pairing
takes the form

b = 6K̄B3 − 2β = 8D1 + 20D2 + 22D3 , (5.55)

where β = 2D1 + 2D2 + 4D3. Moreover its intersection numbers with the rational fiber and the
exceptional curves are as follows:

m =
1

2
b · C0 = 4 ,

m1 =
1

2
b · C1

E = 1 , (5.56)

m2 =
1

2
b · C2

E = 3 .

This fibration gives rise to two types of charged massless matter fields, namely of charges
r = 1 and r = 2. The matter excitations are localised on two curves on B3 in the respective
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classes
Σr=1 = 3(6K̄B3 − 2β) · (6K̄B3 − 2β)− 16(2K̄B3 − β) · (3K̄B3 − β)

= −123C0 − 87C1
E +

45

2
(b · p∗(C1)) ,

Σr=2 = (2K̄B3 − β) · (3K̄B3 − β)

= −33

2
C0 +

3

2
C1
E +

15

4
(b · p∗(C1)) .

(5.57)

Geometrically, the elliptic fiber over these two curves degenerates such as to contain the rational
curves C f

r=1 and C f
r=2, respectively. Switching on a general transversal U(1) flux in H2,2

vert(Y4),

G = GU(1) = σ ∧ π∗F , F =:
3∑

α=1

cαDα , (5.58)

produces a chiral spectrum with indices in the respective charge sectors given by

χr=1 = 12c1 + 132c2 + 48c3, (5.59)

χr=2 = 12c1 + 12c2 + 48c3 .

5.2.1 Relative BPS Invariants and Elliptic Genus

After this preparation we turn to discussing the elliptic genus for the heterotic string that arises
from wrapping a D3-brane on C0 in presence of the U(1) flux, G. The relative BPS invariants
NG;C0(n, r) for small values of n have already been computed by mirror symmetry in [6]. It was
noted there that for the most general choice of U(1) flux, the elliptic genus is neither modular
nor a quasi-modular meromorphic form. This observation was in fact the motivation for the
present work.

The new ingredient, according to the general discussion in Section 3.2, is that the “non-
modular” component of the elliptic genus is actually a derivative of a quasi-modular form. More
specifically, the relative invariants NG;C0(n, r), as computed in [6], allow to uniquely determine,
by modular completion, the elliptic genus as follows:

ZG;C0 = g0 Z0
−1,m + gE ZE

−1,m + g1 1

2m
ξ∂ξ Z

1
−2,m , (5.60)

where the index is, as per (5.56), given by m = 4. Here the flux-dependent coefficients are

g0 = F ·C0 = c1 , gE = F ·C1
E = −c2 + c3 , g1 = F · b · p∗(C1) = 6c1 + 2c2 + 6c3 (5.61)

and the quasi-modular or modular forms are given by

Z0
−1,4(q, ξ) =

1

16
φ−1,2(21φ2

0,1 − 23E4φ
2
−2,1 + 2E2φ0,1φ−2,1)

= 123ξ±1̄ + 33ξ±2̄ + q(981ξ±1̄ + 144ξ±2̄ − 423ξ±3̄) +O(q2) (5.62)

ZE
−1,4(q, ξ) =

1

16
φ−1,2(9φ2

0,1 + 13E4φ
2
−2,1 − 22E2φ0,1φ−2,1)

= 87ξ±1̄ − 3ξ±2̄ + q(2169ξ±1̄ − 1584ξ±2̄ + 333ξ±3̄) +O(q2) (5.63)

Z1
−2,4(q, ξ) =

1

12 η24
(10E4,3E6,1 + 6E4,1F6,3 + 19E4,1G6,3 + E2E4,1E4,3)

=
3

q
− 30 (8 + 6ξ±1 + ξ±2) +O(q) . (5.64)
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As always, ξ±n̄ := ξn − ξ−n, ξ±n := ξn + ξ−n and the Jacobi forms are defined in Appendix A.
The form (5.60) of parametrizing the elliptic genus is tuned to mirror the decomposition

(5.57) of the matter curves Σr=1 and Σr=2 in terms of C0, C1
E and (b · p∗(C1)), and follows the

general pattern advertised in (3.29). The BPS invariants entering this latter equation are of
course defined in terms of the partition functions (5.62), (5.63) and (5.64) via

Z∗w,m = −1

q
N∗C0(n, r)qnξr . (5.65)

Of particular interest for us is the quasi-Jacobi form Z1
−2,4 which appears with a derivative in

the elliptic genus. In line with our general arguments, we expect that it encodes the relative BPS
invariants with respect to C0 viewed as a curve within an elliptic threefold, Y1

3, in Y4. Recall
from Section 3.3 that this threefold is constructed as the restriction of the elliptic fibration of
Y4 to the divisor p∗(C1) = p∗(C1) on B3, which in the present example is topologically a del
Pezzo surface, dP2. The threefold is therefore elliptically fibered with base B1

2 = p∗(C1), and we
denote the projection by

π1 : Y1
3 → B1

2 . (5.66)

By the adjunction formula we find that Y1
3 has a non-zero first Chern class:

c1(K̄Y1
3
) = c1(K̄Y4|Y1

3
)− c1(NY1

3/Y4
) = −π∗1(p∗(C1)|p∗(C1)) , (5.67)

because the divisor p∗(C1) has non-vanishing self-intersection on B3.
From the point of view of the elliptic fibration, this can also be seen as follows. The anti-

canonical class is related to the pullback of the discriminant of the fibration from the base, ∆Y1
3
,

via the relation

c1(K̄Y1
3
) = π∗1(c1(K̄B1

2
))− 1

12
∆Y1

3
. (5.68)

The discriminant ∆Y1
3

in turn is inherited from the discriminant of the fibration of the ambient
space Y4,

∆Y1
3

= ∆Y4|Y1
3

= 12π∗1(c1(K̄B3)|B1
2
) . (5.69)

By the adjunction formula we have

c1(K̄B1
2
) = c1(K̄B3 |B1

2
)− c1(NB1

2/B3
) , (5.70)

where c1(NB1
2/B3

) = p∗(C1)|p∗(C1). Thus altogether we have

∆Y1
3

= 12π∗1(c1(K̄B1
2
)) + 12π1(p∗(C1)|(p∗(C1))) , (5.71)

rather than just ∆Y1
3

= 12π∗1(c1(K̄B1
2
)) which would be required for a Calabi-Yau threefold.

Even though Yi
3 has a negative anti-canonical bundle, the concept of relative Gromov-Witten

invariants still makes sense. Unlike for Calabi-Yau spaces, however, we cannot as easily compute
BPS invariants via mirror symmetry and compare them to the invariants N1

C0(n, r) that are
encoded in the expansion of Z1

−2,4(q, ξ).
Despite this technical complication, we can provide some evidence for our conjecture that

Z1
−2,4 encodes the relative invariants for Yi

3. The following discussion is an illustration of the
general arguments in Section 3.3. Recall first that since the elliptic fibration of Y1

3 is inherited
from Y4, we know that it exhibits an extra rational section and that the height-pairing associated
with this section is the restriction of the height-pairing b to p∗(C1). The elliptic fiber of Y1

3
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degenerates over a number of points on p∗(C1) in such a way as to contain rational curves C f
r of

U(1) charges r = 1 and r = 2. Recall Figure 3 for a visualization. The number of points where
this happens equals the number of holomorphic fibral curves in class C f

r on Y1
3, which in turn is

computed by the Gromov-Witten invariants N(C f
r). For Calabi-Yau threefolds whose base is a

rational fibration with fiber C0, these invariants N(C f
r) agree with the relative BPS invariants

at level n = 1 , i.e.,
N1
C0(n = 1, r) = N(C f

r) . (5.72)

This is the threefold analogue of the relation (3.8) and follows from F-theory–heterotic duality.
While strictly speaking we cannot invoke this duality for non-Calabi-Yau threefolds, it is reas-
onable to assert that (5.72) holds more generally whenever the base of the elliptic threefold is
a rational fibration. If we assume this, we have a simple means to test the hypothesis that the
invariants defined by Z1

−2,m compute the relative BPS invariants of the non-Calabi-Yau threefold
Y1

3, at least at level n = 1. This is because the number of degeneration points and hence the
BPS invariants N(C f

r) are easy to determine.
Concretely, as explained in Section 3.3, the number of degeneration points on Y1

3 leading to
fibral curves C f

r is simply given by the number of intersection points between the corresponding
degeneration locus of Y4 on B3, i.e., the curves Σr, and the base of Y1

3, i.e., the divisor p∗(C1).
This yields the BPS invariants

N(C f
r=1) = Σr=1 · p∗(C1) = 180 , (5.73)

N(C f
r=2) = Σr=2 · p∗(C1) = 30 . (5.74)

These values are in perfect agreement with the relative invariants N1
C0(n = 1, 1) = 180 and

N1
C0(n = 1, 2) = 30 which appear in the expansion (5.64) of Z1

−2,4. We can also reproduce
the remaining invariant, N1

C0(n = 1, r = 0), which according to our conjecture must coincide
with the Gromov-Witten invariant for the fibral class Eτ . For an elliptic Calabi-Yau threefold,
this in turn would be given by the negative of the Euler characteristic of the threefold, i.e.
by −χ(CY3) = −

∫
CY3

c3(CY3) = −2 ch3(CY3), where the Chern character is given by ch3 =
1
2
c3 − 1

2
c1c2 + 1

6
c3

1. For our non-Calabi-Yau threefold Y1
3 at hand, we find explicity that

N1
C0(n = 1, r = 0) = −2 ch3(Y1

3) = −
∫
Y4

c3(Y4) ∧ π∗(p∗(C1)) = 240 , (5.75)

which indeed matches the index of the uncharged states in (5.64).
Thus, all in all we have verified that the identity (5.72) holds for our example, and this lends

further support to the conjecture that all invariants in Z1
−2,4 match the relative BPS invariants

of the non-Calabi-Yau threefold, Y1
3.

Let us present yet another, more speculative perspective on the significance of the partition
function Z1

−2,4. Recall that the non-Calabi-Yau space Y1
3 is elliptically fibered over the base

B1
2 = p∗(C1), which in turn is the blowup of a Hirzebruch surface F1 at one point, with its own

base C1 and generic fiber C0. This implies that Y1
3 also admits a K3-fibration over C1,

ρ : K3F → Y1
3

↓
C1 (5.76)

whose fiber K3F is elliptically fibered over C0.
Let us formulate a Weierstrass model for this fibration, and introduce the notation [a′1 : a′2]

for the homogenous coordinates on the base C1, and [a1 : a2] for the coordinates on C0. Then
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a Weierstrass model for the elliptic fibration of Y1
3 can be written, away from the exceptional

curve of the blown up Hirzebruch surface, as

y2 = x3 + f(ai, a
′
j)x z

4 + g(ai, a
′
j) z

6 , (5.77)

where f(ai, a
′
j) is a section of ∆

1/3

Y1
3

and g(ai, a
′
j) is a section of ∆

1/2

Y1
3

. The degrees of the discrim-

inant ∆Y1
3

on the base and fiber of B1
2 follow from (5.71) as

∆Y1
3
|B1

2
= 48C0 + 24C1 . (5.78)

Taking into account that C0 is fibered over C1 with twist 1 (which is the case for the Hirzebruch
F1), this means that we can expand f and g as

f(ai, a
′
j) =

∑
k

f12−k(a
′
1, a
′
2) a4−k

1 a4+k
2 , (5.79)

g(ai, a
′
j) =

∑
k

g18−k(a
′
1, a
′
2) a6−k

1 a6+k
2 , (5.80)

where the subscripts denote the degrees of the polynomials on the fiber coordinates.
Let us pause for a moment and consider instead an elliptic fibration over B1

2 which is Calabi-
Yau. For this we would have polynomials given by f8−k(a

′
1, a
′
2) and g12−k(a

′
1, a
′
2), respectively.

This Calabi-Yau threefold could serve as a standard F-theory compactifiation space to six di-
mensions. This theory would in turn have a six-dimensional heterotic dual defined in terms of
an elliptic surface, K3het, with base C1. A Weierstrass model for K3het would then be obtained
by keeping the polynomials f8−k(a

′
1, a
′
2) and g12−k(a

′
1, a
′
2) for k = 0 [130,131], i.e.,

K3het : y2 = x3 + f8(a′1, a
′
2)xz4 + g12(a′1, a

′
2)z6 . (5.81)

Now we return to our presently considered geometry, where we deal with the non-Calabi
Yau threefold, Y1

3. A priori, F-theory on this space is not well-defined. Let us nonetheless
formally define a dual heterotic background, by keeping the middle polynomials in analogy to
the well-established Calabi-Yau case. This leads to the following Weierstrass model

E : y2 = x3 + f12(a′1, a
′
2)xz4 + g18(a′1, a

′
2)z6 , (5.82)

which is an elliptic fibration with 36, rather than 24 singular fibers. This defines an elliptic
surface E with

K̄E = −Eτ , (5.83)

where Eτ is the fiber.
It is tempting to interpret Z1

−2,4(q, ξ) as a generalized, refined elliptic genus associated with
this elliptic surface. More specifically, if we switch off the U(1) background field, we find

Z1
−2,4(q, ξ = 1) =

1

12η24
E4(E2E4 + 35E6) =

3

η24
E4E6 +

1

12η24
(E2E

2
4 − E4E6) , (5.84)

which is suggestive of a non-perturbative instanton/NS5 brane transition of such a geometry.
Let us come back to a more concrete, definite property of Z1

−2,4(q, ξ) as given in (5.64).
Recall the general relationship between the derivative part of the elliptic genus and the partition
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functions associated to non-transversal (−2)-fluxes, which was proposed in Section 3.4. If we

take as basis for the fluxes in H
(2,2)
(−2) (Y4,R)

G1 = π∗(S−) ∧ π∗(p∗(C1)) ,

GE = π∗(E) ∧ π∗(p∗(C1)) ,

G0 = π∗(p∗(C1)) ∧ π∗(p∗(C1)) ,

(5.85)

then the associated BPS invariants assemble into the generating functions

FG1;C0 =− qZ1
−2,4 , FGE ;C0 = 0 , FG0;C0 = 0 . (5.86)

Thus we can indeed confirm the purported relationship between the two partition functions,
which are associated with transveral U(1) flux and non-transversal (−2) flux, respectively.
Moreover, while the vanishing of the last two generating functions is clear on general grounds
as for the previous model, it is noteworthy to mention that the lowest BPS number in Z

(1)
−2,m,

as read off from (5.64), perfectly matches the intersection theoretic expression (3.45) because
C1 ·B2 KB2 = −3.

5.2.2 Anomalies and Green-Schwarz Terms

In order to discuss the anomalies in a U(1) flux background, we rewrite the elliptic genus (5.60)
into the form (4.80), which is more suitable for comparison with the Green-Schwarz mechanism
in the heterotic duality frame. Concretely,

ZG;C0 =: g̃0 Z̃0
−1,m + g̃E Z̃E

−1,m + g̃1

(
Z̃1
−1,m +

1

2m
ξ∂ξZ̃

1
−2,m

)
, (5.87)

for m = 4, with the flux dependent coefficients:

g̃0 = F · b · (S − 1

2
E) = −9c1 + 9c2 , g̃E = F · b · (1

2
E) = 3c1 + 9c2 − 6c3 , (5.88)

g̃1 = F · b · p∗(C1) = 6c1 + 2c2 + 6c3 . (5.89)

Moreover each term, Z̃
∗
w,m ≡ Z̃

∗,M
w,m + Z̃

∗,QM
w,m , generically splits into a modular and quasi-modular

piece. Explicitly:

Z̃0,M
−1,4 = − 1

12
φ−1,2(φ2

0,1 − E4φ
2
−2,1) , Z̃0,QM

−1,4 = 0 ,

Z̃E,M
−1,4 = −1

6
φ−1,2φ

2
−2,1E4 , Z̃E,QM

−1,4 =
1

6
φ−1,2φ−2,1E2φ0,1 ,

Z̃1,M
−1,4 =

1

32
φ−1,2(3φ2

0,1 − E4φ
2
−2,1) , Z̃1,QM

−1,4 = − 1

16
φ−1,2φ−2,1E2φ0,1 ,

Z̃1,M
−2,4 =

1

12 η24
(10E4,3E6,1 + 6E4,1F6,3 + 19E4,1G6,3) , Z̃1,QM

−2,4 =
1

12 η24
E2E4,1E4,3 .

(5.90)
Note that all these partition functions have, depending on their modularity properties, the
respective general form as advertised in (3.15).

Let us first discuss the anomalies and Green-Schwarz terms derived from the non-derivative
(quasi) modular forms in ZG;C0 . These receive contributions only from three independent build-
ing blocks, which are readily computed following the general prescription outlined in Sections 4.1
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and 4.2:

φ−1,2φ
2
−2,1E4 : A(4),M = 0 A

(4),M
GS = 0

φ−1,2φ
2
0,1 : A(4),M = −48 , A

(4),M
GS =

1

m
A(4),M = −12

φ−1,2φ−2,1E2φ0,1 : A(4),QM = 6(m1 −m2) = −12 , A
(4),QM
GS = 0 .

(5.91)
Recall that the values m = 4 and m1 = 1, m2 = 3 were determined from the geometry in (5.56),
but we leave the values sometimes unassigned in order to exhibit the structure of the various
terms.

Note also in passing that the modular component related to the exceptional curve, Z̃E
−1,m, is

proportional to
φ−1,2φ

2
−2,1E4 = O(ẑ5) , (5.92)

and therefore contributes neither to the anomaly nor to the Green-Schwarz term, in line with
an argument made after equation (4.88).

Now we turn to the derivative sector. From Z̃1
−2,4 we first compute the contributions to the

six-dimensional anomaly as follows:

Z̃1,M
−2,4 : A(6),M = 30 , A

(6),M
GS =

1

4
A(6),M ,

Z̃1,QM
−2,4 : A(6),QM = −1

4
(m2

1 +m2
2) = −5

2
, A

(6),QM
GS = − 1

12m
(m1 +m2)2 = −1

3
.

(5.93)
This then determines, via (4.21) and (4.22), the contributions ξ∂ξZ̃

1
−1,4 to the four-dimensional

anomaly and Green-Schwarz terms.
Altogether, the complete anomaly becomes

A(4) = A(4),M + A(4),QM

A(4),M = m (F · b · (S − 1

2
E)) + (

30

2
− 48

3

32
) (F · b · p∗(C1)) (5.94)

A(4),QM = (m1 −m2) (F · b · (1

2
E)) + (−1

8
(m2

1 +m2
2)− 6

16
(m1 −m2)) (F · b · p∗(C1))

and this correctly reproduces the 1-loop anomaly as required:

A(4) = 18c1 + 38c2 + 72c3 =
1

3!

2∑
r=1

r3χr . (5.95)

Here χr refers to the chiral index in the charge sector r as given in (5.59).
The structure of the anomaly reflects the Green-Schwarz mechanism in the dual heterotic

frame explained in Section 4.3.2. In particular, the purely modular contribution from Z̃0
−1,m,

g̃0AZ̃0
−1,m

= m (F · b · (S− −
1

2
E)) , (5.96)

maps to the part of the anomaly that is cancelled by the perturbative universal Green-Schwarz
term. Moreover, the quasi-modular contribution to the anomaly, AQM , turns out to be of the
expected form (4.92). For the derivative terms, the analogue of this would be the relation (4.90),
but this can be checked not to hold due to the quasi-modular contributions, in line with general
expectations.
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6 Elliptic Genera of 4d Non-Critical Strings

Our conjecture of Section 3.2 on the form of four-dimensional elliptic genera is supposed to
hold not only for heterotic strings, but more generally also for other, in particular non-critical
solitonic strings. In this section we illustrate this by presenting the elliptic genus of two different
types of non-critical strings in four dimensions. We begin by discussing the four-dimensional
E-string in the next section, followed by a non-critical string obtained in F-theory compactified
on B3 = P3 in Section 6.2.

6.1 Four-Dimensional E-Strings

The six-dimensional non-critical E-string [39, 40, 80, 101–103, 132, 133] arises in F-theory by
wrapping a D3-brane on a rational curve CE of self-intersection −1 which lies in the base B2

of some elliptic Calabi-Yau threefold, Y3. Such curves have normal bundle NCE/B2 = OCE(−1)
and can arise in two different settings: Either CE is the exceptional section of a Hirzebruch
surface B2 = F1, or it appears after blowing up a general Hirzebruch surface at a point. After
the blowup the rational fiber over the point in the base splits into two exceptional curves C1

E

and C2
E with normal bundle NCiE/B2

= OCiE(−1).
We can generalise the notion of an E-string to F-theory compactifications to four dimensions

by wrapping a D3-brane on a curve with normal bundle

NCE/B3 = OCE(−1)⊕OCE . (6.1)

In this paper we will call the strings obtained from D3-branes that wrap such curves four-
dimensional E-strings and study their elliptic genera. Aspects of four-dimensional analogues of
E-string have previously been considered in [91] (see also [134] and [135]). Clearly such strings
are special cases of a multitude of non-critical strings that can arise from much more general
types of curves. More recently, the compactification of six-dimensional N = (1, 0) SCFTs on
Riemann surfaces with fluxes has been a subject of intense study [84,136–151], and it would be
worthwhile to relate our setup to the field theoretic approach, though this will not be the focus
of this paper.

The trivial summand OCE in (6.1) implies that the curve CE is fibered over a distinguished
normal direction within B3, thereby tracing out a rationally fibered divisor which we call DE.
The four-dimensional geometry probed by the E-string is hence a fibration at least locally,
where the fiber CE is either the base of a Hirzebruch surface F1 or one of the blowup curves in
a rational fibration. We will exemplify both types of geometries and their associated E-string
elliptic genera.

From the perspective of geometry alone, one might think that the properties of the resulting
four-dimensional E-string are entirely inherited from the six-dimensional E-string which is locally
fibered. According to the logic of this paper, this would mean that the four-dimensional E-string
elliptic genus would be a derivative of the six-dimensional E-string elliptic genus. This, however,
is in general not the case. The definition of the model requires specifying the background
flux, and we will see that the latter can introduce genuinely four-dimensional, non-derivative
contributions to the elliptic genus, precisely as expressed in the most general form of Conjecture 2
in Section 3.2. This phenomenon is independent of the geometric realisation of the E-string
curve, either as the base of a locally fibered Hirzebruch surface or due to a blowup in the fiber
of the rational fibration.
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6.1.1 E-Strings of Six-Dimensional Origin

As our first example we consider an F-theory compactification for which the base space, B3, is
of the type introduced in Section 2.3, namely it is a rational fibration by itself: p : B3 → B2.
After we perform a blowup over a curve Γ on the base B2, the rational fiber C0 over Γ splits
into two exceptional curves C1

E and C2
E. Each of the two Ci

E is therefore fibered over the curve
Γ and the fibration defines two divisors, Di

E, of the following form:

piE : Ci
E → Di

E

↓
Γ (6.2)

Note that in Section 2.3 we had called the divisor D2
E =: E. Furthermore, as long as we perform

only one blowup, which is what we assume from now on, we have D1
E +D2

E = p∗(Γ).
For simplicity we now take the gauge group in four dimensions to be U(1) and consider a

background with transversal flux, G = GU(1) ∈ H2,2
vert(Y4). We will discuss an example with non-

abelian gauge group later in Section 6.1.2. We claim that for such a setup, the elliptic genus of
the E-string associated with either C1

E or C2
E can be brought into the following universal form:

ZGU(1);C
i
E

(q, ξ) =
1

2mi

(F · b ·Di
E) ξ∂ξZ−2,mi(q, ξ) , mi =

1

2
b · Ci

E , (6.3)

where Z−2,mi is the elliptic genus [39,40] of a six-dimensional E-string with U(1) fugacity index
mi, i.e.:

Z−2,mi(q, ξ) =
1

η12(q)
E4,mi(q, ξ) . (6.4)

Furthermore, the degeneracies contained in Z−2,mi(q, ξ) are the relative BPS invariants for the
curve Ci

E within an elliptic threefold embedded into Y4.
Let us illustrate this general formula for the E-strings that arise (besides the heterotic

string) in the two examples that were discussed in Sections 5.1 and 5.2. First, consider the
base B3 = dP2 × P1

l′ . In the notation of Section 5.1, the two divisors Di
E defined via (6.2) are

immediately identified as

D1
E = p∗(C1)− E = D4 −D2 , D2

E = E = D1 +D2 −D4 , (6.5)

with
F · b ·D1

E = 4c2 + 2c3 , F · b ·D2
E = 2c3 + 4c4 . (6.6)

We recall furthermore that in this geometry the geometric intersection numbers mi = 1
2
b·Ci

E = 1
for both i = 1, 2.

As detailed in Appendix B, we can compute by mirror symmetry the lowest-lying relative
BPS invariants NCiE ;G(n, r) and the associated elliptic genera

ZGU(1);C
i
E

= −q−1/2
∑
n,r

NGU(1);C
i
E

(n, r)qnξr (6.7)

as follows:

ZGU(1);C
1
E

(q, ξ) = −(2c2 + c3)q−1/2
(

(56ξ±1̄ + 2ξ±2̄) + q(1248ξ±1̄ + 276ξ±2̄) +O(q2)
)

(6.8)

ZGU(1);C
2
E

(q, ξ) = −(c3 + 2c4)q−1/2
(

(56ξ±1̄ + 2ξ±2̄) + q(1248ξ±1̄ + 276ξ±2̄) +O(q2)
)
.
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These are uniquely completed into the exact expressions:

ZGU(1);C
i
E

(q, ξ) =
1

2
(F · b ·Di

E)
1

η12(q)
ξ∂ξE4,1(q, ξ) , (6.9)

which are in perfect agreement with general pattern (6.3). The threefold whose relative BPS
invariants are contained in ZCiE ;G(q, ξ) is the Calabi-Yau Y1

3 = Y4|p∗(C1) introduced already in

(5.21). Note that C1 is the curve dual on B2 to C1, whose class in turn corresponds to the class
of the curve Γ over which the E-string curves are fibered as in (6.2). Formula (6.3) is hence very
much analogous to the derivative contributions to the heterotic string elliptic genus (5.16) in
the same geometry. The difference is that the E-string curves Ci

E are fibered only over Γ, and
hence there appears only a single derivative contribution. For the heterotic string, on the other
hand, the curve C0 is fibered over all of B2 so that we must sum over several contributions, each
corresponding to one basis element Ci of H2(B2).

As for the example of Section 5.2, we consider the two E-strings in the geometry B3 = Bl1H1

with
D1
E = p∗(C1)− E = D2 , D2

E = E = D3 , (6.10)

and
(F · b ·D1

E) = −16c2 + 18c3 , (F · b ·D2
E) = 6c1 + 18c2 − 12c3 . (6.11)

The geometric intersection numbers are m1 = 1 and m2 = 3. By application of mirror sym-
metry, we have computed the lowest relative BPS numbers, which assemble into the following
expansions:

ZGU(1);C
1
E

(q, ξ) = (−8c2 + 9c3)q−1/2
(

(56ξ±1̄ + 2ξ±2̄)

+ q(1248ξ±1̄ + 276ξ±2̄) (6.12)

+ q2(13464ξ±1̄ + 4716ξ±2̄ + 168ξ±3̄)

+ q3(103136ξ±1̄ + 46008ξ±2̄ + 3744ξ±3̄ + 4ξ±4̄)

+ O(q4)
)
,

ZGU(1);C
2
E

(q, ξ) = (c1 + 3c2 − 2c3)q−1/2
(

(54ξ±1̄ + 54ξ±2̄ + 6ξ±3̄)

+ q(1080ξ±1̄ + 1188ξ±2̄ + 504ξ±3̄ + 108ξ±4̄) (6.13)

+ q2(11016ξ±1̄ + 13122ξ±2̄ + 7350ξ±3̄ + 2376ξ±4̄ + 270ξ±5̄ + 6ξ±6̄)

+ q3(81216ξ±1̄ + 102060ξ±2̄ + 66264ξ±3̄ + 26244ξ±4̄ + 5400ξ±5̄ + 516ξ±6̄)

+ O(q4)
)
.

These uniquely determine the elliptic genera as follows:

ZGU(1);C
1
E

(q, ξ) =
1

2
(F · b ·D1

E)
1

η12(q)
ξ∂ξE4,1(q, ξ) , (6.14)

ZGU(1);C
2
E

(q, ξ) =
1

6
(F · b ·D2

E)
1

η12(q)
ξ∂ξE4,3(q, ξ) , (6.15)

which again illustrates the general claim (6.3). We expect that the invariants encoded in
ZG;CiE

(q, ξ) are the relative BPS invariants with respect to Ci
E within the non-Calabi-Yau

threefold Y1
3, which was discussed around eq. (5.66) in the context of the heterotic string.
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The two examples discussed so far are special to the extent that the four-dimensional E-
string is completely determined by its six-dimensional cousin, as reflected in the purely derivative
structure of the elliptic genus. As we will see in the next section, this is no longer the case if
the E-string curve lies inside a 7-brane and is threaded by gauge flux.

Before coming to this point, however, we take a brief digression to understand the invariants
encoded in Z−2,mi(q, ξ) via (6.3) also in terms of non-transversal (−2) fluxes, analogous to what
we found for the heterotic string. Irrespective of the details of B2, we can give the general
pattern by first considering the relative BPS invariants for the E-string curves C1

E and C2
E at

n = 0 and r = 0. The curves C1
E and C2

E are each fibered over the curve Γ on B2. The class of
the moduli space of both curves with one point fixed is hence the surface Di

E on B3 traced out
by this fibration, i.e.

µ(Ci
E) = S0 ∧Di

E , i = 1, 2 . (6.16)

A non-vanishing BPS number for Ci
E is only possible in a flux background which intersects this

surface. It is easy to see which types of 4-form fluxes on B3 have this property, because the
fibration structure of B3 implies that the only non-vanishing intersections with Di

E are

D1
E · S− · p∗(C) = C ·B2 Γ , Di

E ·D
j
E · p

∗(C) = (1− 2δij)C ·B2 Γ . (6.17)

Here C represents some curve class on B2, and we used the fact that only C1
E is intersected

by S−. Whenever C intersects Γ transversally, it is natural to infer from the local nature of
the fibration that the 4-forms S− · p∗(C) and Di

E · p∗(C) restrict the moduli space of the more
general curve Ci

E + nEτ + C f
r in Y4 to Y4|p∗(C). Hence up to normalisation, which is given by

the intersection numbers (6.17), we expect to exactly reproduce the BPS numbers as encoded
in Z−2,mi(q, ξ).

This general expectation is perfectly confirmed by computation. For the two E-strings of
the model with base B3 = dP2×P1

l′ of Section 5.1 we find, for the basis (5.32) of non-transversal
(−2) fluxes

FG1;C1
E

=− q1/2 1

η12(q)
E4,1(q, ξ) , FG2;C1

E
= 0 ,

FGE ;C1
E

=− q1/2 1

η12(q)
E4,1(q, ξ) , FG0;C1

E
= 0

(6.18)

and
FG1;C2

E
= 0 , FG2;C2

E
= 0 ,

FGE ;C2
E

= + q1/2 1

η12(q)
E4,1(q, ξ) , FG0;C2

E
= 0 .

(6.19)

The extra sign in in the expression for FGE ;C2
E

reflects the fact that E · C2
E = D2

E · C2
E = −1.

Similarly, for B3 = Bl1H1 of Section 5.2 for the basis (5.85) of non-transversal (−2) fluxes we
have

FG1;C1
E

=− q1/2 1

η12(q)
E4,1(q, ξ) ,

FGE ;C1
E

=− q1/2 1

η12(q)
E4,1(q, ξ) , FG0;C1

E
= 0

(6.20)

and
FG1;C2

E
= 0 ,

FGE ;C2
E

= + q1/2 1

η12(q)
E4,3(q, ξ) , FG0;C2

E
= 0 .

(6.21)
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Hence again certain threefold BPS invariants - here of the E-string curves Ci
E within Y1

3 - are
obtained as fourfold invariants in suitable, non-transversal (−2) flux backgrounds. This does
not mean, however, that all relative BPS invariants within a given threefold are generated by
one and the same (−2) flux. For instance, the flux G1 reproduces the relative BPS invariants
of C0 and C1

E within Y1
3, but not of C2

E, and GE gives the relative BPS invariants for C1
E and

C2
E in Y1

3, but not of C0, as comparison with (5.86) and (5.33) shows.

6.1.2 Genuinely Four-Dimensional E-String

While in the previous class of constructions the E-string genera are entirely of six-dimensional
origin, we now present an example where one finds in addition a genuinely four-dimensional
contribution. The E-string lives inside a stack of 7-branes carrying a gauge sector with G =
SU(2). The background geometry, B3 = F1 × P1, is detailed in Appendix C. The base is
rationally fibered with projection p : B3 → B2 over B2 = CE × P1, where CE is the base of
F1. A D3-brane wrapping CE gives rise to a four-dimensional E-string. The E-string curve is
trivially fibered over the extra P1, and this fibration traces out the divisor DE = CE × P1 on
B3.

The elliptic fibration Y4 over B3 models a stack of 7-branes with gauge group G = SU(2)
wrapped on the divisor

b = CE × P1 . (6.22)

Since the E-string curve CE lies inside the 7-brane divisor b, its intersection number with b is
negative,

b · CE = −1 . (6.23)

In the elliptic fibration over B3, the elliptic fiber over b splits into two rational curves which
intersect like the nodes of the affine Dynkin diagram of SU(2). Fibering both curves over b
defines two exceptional divisors e0 and e1 with e0 +e1 = π∗(b), where the fiber of e0 is associated
with the affine node. The generator of the Cartan U(1) within SU(2) can be identified with the
divisor −e1. To understand the normalisation, note that matter excitations in the fundamental
representation arise from M2-branes wrapping a curve C f in the fiber over a curve on b. The
holomorphic curve C f satisfies −e1 ◦C f = 1, so that matter excitations from an M2-brane along
C f have charge r = 1 under the U(1) generated by −e1.

For this geometry we consider a transversal flux background of the form

G = (−e1) ∧ π∗(F ) , F = c1D1 + c2D2 + c3D3 , (6.24)

which corresponds to the Cartan U(1) of SU(2). Here

D1 = C0 × P1 , D2 = C0 × P1 + CE × P1 , D3 = p∗(CE) . (6.25)

As before, we determine via mirror symmetry a number of relative BPS invariants NCE ;G(n, r)
and so obtain the first terms in the expansion of the elliptic genus. While we refer to eq. (C.11)
in the Appendix for more data, we present here just the lowest order in q:19

q1/2 ZCE ;G(q, ξ) = q[c1(16ξ−2 − 160ξ−1 + 768− 2400ξ + 5616ξ − 10752ξ3 + 17920ξ4

−27136ξ5 + 38400ξ6 − 51712ξ7 + 67072ξ8 + · · · ) (6.26)

+c3(6ξ−2 − 40ξ−1 − 472ξ + 2042ξ2 − 4608ξ3 + 8192ξ4 − 12800ξ5

19Note that the flux labelled by c2 does not contribute.
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+18432ξ6 − 25088ξ7 + 32768ξ8 + · · · )] +O(q2) .

The noteworthy feature is that at any given order of q there is an infinite series in ξ. This points
to the expansion of a ξ-dependent denominator. Such behaviour is expected from experience
with non-critical strings of six-dimensional N = (1, 0) SCFT’s with nontrivial gauge symmetry
[43,44,49,55,58–60,65,67–69,72], which are obtained when D3-branes wrap a curve that is also
wrapped by 7-branes. In six dimensions, such strings are interpreted as instanton strings with
respect to the non-abelian gauge group localized on the stack of 7-branes. The point is that
for a coincident 7-brane/D3-brane system, the open strings in the 3-7 sector lead to massless
charged chiral fields the N = (0, 2) supersymmetric worldsheet theory, and in turn to charged
bosonic excitations in spacetime. These are responsible for the appearance of an ξ-dependent
denominator in the elliptic genus.

Our goal is to understand the four-dimensional elliptic genus as the derivative of a six-
dimensional elliptic genus, possibly augmented by a genuinely four-dimensional piece. To find
the six-dimensional contribution, recall that the curve CE is trivially fibered over the P1 factor
in B3, thereby tracing out the divisor DE within B3. This suggests that we must consider the
E-string within a threefold, Y3, obtained by restricting Y4 to the fiber of this fibration. This
threefold is simply

Y3 = Y4|D3 , (6.27)

where the divisor D3 cuts out the Hirzebruch surface F1 on B3. This threefold happens to be
a Calabi-Yau space, and thus we can easily compute the relevant BPS invariants via mirror
symmetry. The first terms in the expansion of the elliptic genus for the six-dimensional E-string
in Y3 leads to the BPS numbers presented in (C.13). These BPS numbers can be identified as
the expansion coefficients of

Z−2,−1(q, ξ) = − 1

η(τ)12

4∑
i=2

θi(0, τ)10

θi(2z, τ)2
. (6.28)

In accord with our expectations, this coincides with the elliptic genus of an instanton string of a
six-dimensional N = (1, 0) SCFT with SU(2) gauge symmetry and SO(20) flavor symmetry [58],
in the limit where the chemical potentials of its SO(20) flavor symmetry have been switched off
and the only nonvanishing chemical potential is the one for the Cartan generator of SU(2).

While we expect (6.28) to contribute to the elliptic genus of the four-dimensional E-string
with a derivative, it turns out that for general Cartan flux G, the four-dimensional elliptic
genus receives in addition a fully modular, non-derivative contribution without a six-dimensional
origin. In fact, the elliptic genus of our four-dimensional E-string can be brought into the
following form, in full agreement with Conjecture 2 in Section 3.2:

ZCE ;G(q, ξ) = (F · CE)Z−1,m(q, ξ) +
1

m
(F · b ·DE)ξ∂ξZ−2,m(q, ξ) , (6.29)

where20

m = b · CE = −1 (6.30)

20Note that in the definition of m we have not included a factor of 1
2 . This reflects the different normal-

isation of the U(1) as Cartan subgroup of SU(2), as compared to the non-Cartan U(1)’s studied in the other
examples in this work. The value of m defined in this way gives the U(1) fugacity index of the modular forms.
Correspondingly, the prefactor of the derivative term in (6.29) is 1

m , rather than 1
2m .
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and the flux-dependent parameters are

F · CE = c1 , F · b ·DE = −c3 . (6.31)

Note again that the flux labelled by c2 does not contribute. The first term,

Z−1,−1(q, ξ) = 16 i
θ1(z, τ)10

θ1(2z, τ)3η(τ)9
, (6.32)

represents a genuinely four-dimensional contribution to the elliptic genus. Evidently, fluxes for
which F · CE 6= 0 affect the spectrum of the solitonic string in a more drastic way if the string
lies inside a 7-brane stack, and as a result the four-dimensional E-string can no longer simply
be viewed as a fibered version of a six-dimensional E-string. The final expression (6.29) then
nicely disentangles via the fluxes the universal six-dimensional contribution and the genuinely
four-dimensional contribution to the elliptic genus.

6.2 Four-Dimensional String on B3 = P3

As our final example, we present the elliptic genus of a non-critical string that probes a base
geometry without any fibration structure. Nonetheless, we will be able to write the elliptic
genus in the general form advertised in Section 3.2.

We will consider the simplest possible elliptic fourfold fibration, namely where the base is
given by B3 = P3. We will focus on the elliptic genus of the non-critical string obtained by
wrapping a D3-brane along some curve Cb, whose class is given in terms of the hyperplane class
by

Cb = H ·H . (6.33)

To keep things simple, we engineer a gauge group G = U(1) with associated height-pairing
b = 2K̄B3 = 8H. The details of the geometry can be found in Appendix D. The transversal
U(1) flux is of the form

GU(1) = σ ∧ π∗(F ) , with F = cH . (6.34)

The elliptic genus of the non-critical string is expected to encode the relative BPS invariants
NCb;G(n, r) via

ZGU(1);Cb
(q, ξ) = − 1

q2

∑
n,r

NGU(1);Cb
(n, r)qnξr , (6.35)

where the prefactor q−2 = q−E0/2 reflects the vacuum energy E0 = Cb·K̄B3 = 4 on the string. The
lowest invariants can be computed by mirror symmetry as discussed in Appendix D. Exploiting
modularity, we can completely determine the elliptic genus as

ZGU(1);Cb
(q, ξ) = (F · Cb)Z−1,m(q, ξ) +

1

2m
(F · b ·H)ξ∂ξZ−2,m(q, ξ) , (6.36)

where Z−1,m(q, ξ) and Z−2,m(q, ξ) are meromorphic Jacobi forms for which explicit expressions
are presented in eqs. (D.11) and (D.12). Moreover, the U(1) fugacity index is given by

m =
1

2
b · Cb = 4 , (6.37)
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while
F · Cb = c , F · b ·H = 8 c . (6.38)

Recall that the single flux parameter c is defined in (6.34); since h1,1(B3) = 1 there is not enough
room for different types of U(1) fluxes to separate out the modular and derivative components,
so that just a single linear combination appears.

We conclude from this example that the four-dimensional elliptic genus can receive a de-
rivative contribution even if the base, B3, is not a fibration. Nonetheless one can consider the
divisor H dual to the curve Cb on B3, which parametrises the direction normal to Cb on the
base. Restricting Y4 to the pullback of this divisor cuts out a non-Calabi-Yau elliptic threefold

Y3 = Y4|H , (6.39)

which is an elliptic fibration over B2 = H ' P2 with discriminant ∆Y3 = 12K̄B3|H = 48H|H .
The base of this elliptic threefold contains the curve Cb, and in line with the general theme

of this paper we conjecture that

Z−2,4(q, ξ) = − 1

q2

∑
n,r

NCb
(n, r)qnξr (6.40)

encodes the relative threefold BPS invariants NCb
(n, r) of precisely this Y3.

While we cannot prove this assertion, we close by observing that the same invariants once
more appear in the background of a non-transversal (−2) flux. In the present case, the only
non-trivial (−2) flux is of the form

GH = π∗(H) ∧ π∗(H) . (6.41)

For an elliptic fibration over P3 without U(1) gauge group, such fluxes were investigated in [76,
77]. As we show in Appendix D, the generating function for the BPS invariants in this flux
background precisely encodes the invariants contained in Z−2,4(q, ξ), i.e.

FGH ;Cb
= −q2Z−2,4(q, ξ) . (6.42)

This highly non-trivial match illustrates that the relation between the embedded threefold
invariants entering the elliptic genera in the presence of transversal fluxes on the one hand, and
of non-transversal (−2) flux invariants on the other, does not depend on any fibration structure
on the base B3.

7 Conclusions and Outlook

In this work we have investigated the rich interplay between the modular properties of elliptic
genera, the enumerative geometry of genus zero relative BPS invariants on elliptic fourfolds
with background fluxes, and the structure of U(1) anomalies for effective field theories in four
dimensions. Our analysis has been distilled to Conjecture 2 in Section 3.2, which disentangles
the flux-induced elliptic genus in four dimensions into a sum of modular Jacobi forms, quasi-
modular Jacobi forms, and derivatives thereof. Our conjecture applies in particular to critical
heterotic strings and to non-critical solitonic strings in four dimensions with N = (0, 2) world-
sheet supersymmetry. Such theories can be engineered in F-theory as worldvolume theories of
D3-branes compactified on curves which lie in the base, B3, of an elliptic fourfold Y4.
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That the elliptic genus in four dimensions is not necessarily a (quasi-)modular Jacobi form per
se had been explicitly observed already in [6], and is in agreement with the general results of [24]
and with the conjecture [25] that the generating functions of BPS invariants of elliptic fibrations
are captured in terms of quasi-Jacobi forms. According to Conjecture 2 of the present paper, the
non-(quasi-)modular components of the elliptic genus are, in fact, of a simple derivative form.
Apart from breaking modular invariance, they also break the elliptic shift symmetriy which
corresponds to spectral flow in the U(1) current algebra. These anomalies can be remedied at
the cost of introducing a non-holomorphic derivative as in (1.12). This results in eq. (1.13),
which can be seen as a concrete realization of the elliptic holomorphic anomaly equation that
was proposed in [25], thereby giving further support of it.

Our arguments are based on a central observation of this paper, namely that the derivative
contributions to the elliptic genus in the presence of transversal flux can be obtained in two
a priori independent ways: First, they arise from the partition function of BPS invariants in
the background of non-transversal fluxes. This is in accordance with the elliptic holomorphic
anomaly equation that was introduced in [25]. A main result in our work concerns a second,
novel interpretation of these invariants, namely as BPS invariants of certain threefolds Yi

3 that
are embedded in Y4. Taking the second point of view in fact allowed us to independently derive
the elliptic holomorphic anomaly equation.

In special cases, the threefolds Yi
3 are themselves Calabi-Yau manifolds and their BPS invari-

ants can easily be computed by means of mirror symmetry. By analysing a variety of examples,
we find that these BPS invariants indeed match the derivative sector of elliptic genera. This
lends strong support to our claims. More generally, the concept of relative BPS invariants is
well-defined also for non-Calabi-Yau geometries, and we gather circumstantial evidence that
the observed pattern persists for such Yi

3. It would be intriguing to develop techniques to com-
pute these invariants more directly, from first principles, in order to compare them with our
predictions.

In the special case of a heterotic string, we have been able to prove the geometric interpret-
ation of the BPS invariants in the derivative sector, at least at the first energy level n = 1 of
the elliptic genus. This rests on the geometric interpretation of the fourfold BPS invariants in
terms of the moduli space of curves in the fourfold. It would be desirable to extend this proof
to all levels n. This would open up the fascinating possibility of using mirror symmetry on
Calabi-Yau fourfolds to determine relative BPS invariants of non-Calabi-Yau threefolds.

From a physics perspective, the embedded threefolds Yi
3 can be thought of as formally

defining six-dimensional sectors in the following sense. If the Yi
3 are Calabi-Yau manifolds, the

derivative part of the elliptic genus can be literally interpreted as a collection of six-dimensional
elliptic genera. For instance, for the case of a heterotic solitonic string, we can go to the
dual weakly coupled eigenframe which describes a compactification on a K3 surface with gauge
bundle. In this case the six-dimensional elliptic genus we talk about is precisely the elliptic
genus of such a compactification. We have also discussed the more generic situation where Yi

3

is not Calabi-Yau: while the arguments are not as sharp, we can still make a formal analogy
and consider a dual heterotic geometry associated with some elliptic surface, which however is
not a K3 surface any longer.

We have illustrated Conjecture 2 by a number of examples covering a variety of four-
dimensional, critical as well as non-critical strings, and their elliptic genera. For the special
case of the critical heterotic string, the modular properties of the elliptic genus reflect the in-
tricacies of the Green-Schwarz anomaly cancelling mechanism in four dimensions. As described,
contrary to what happens in six dimensions, the elliptic genus in four dimensions is not ne-
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cessarily a (quasi-)modular Jacobi form, and we show in detail how this ties in with anomaly
cancellation involving extra B-fields. Specifically, the modular part of the elliptic genus is linked
to the universal B-field, while the other sectors reflect the presence of further B-fields, in general
of both perturbative and non-perturbative nature.

We have furthermore analysed two types of examples of non-critical strings in four dimen-
sions. The first is a generalisation of the concept of an E-string to four dimensions: Its elliptic
genus is generally the sum of a derivative piece (which is related to the familiar six-dimensional
E-string), plus a genuinely four-dimensional contribution, whose details depend on the flux
background. While the E-strings are special in that they can be decoupled from gravity in
four dimensions, we have tested Conjecture 2 also for a non-critical string which is associated
with a non-shrinkable curve in P3, so that gravity cannot be decoupled. Clearly the handful of
prototypical examples provided in this work only form the beginning of a much more systematic
study of elliptic genera of strings in four dimensions.
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A Modular Forms

A.1 Rings of Jacobi (J∗,∗), Quasi-Modular Jacobi (JQM∗,∗ ), and Quasi-
Jacobi (JQJ∗,∗ ) Forms

Jacobi forms [152], as holomorphic functions of two variables, Φ(τ, z) : H×C→ C, are primarily
characterized by their simple transformation properties under the modular group:

Φw,m

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)we2πi mc

cτ+d
z2Φw,m(τ, z) for

(
a b
c d

)
∈ SL(2,Z), (A.1)

Φw,m (τ, z + λτ + µ) = e−2πim(λ2τ+2λz)Φw,m(τ, z) , λ, µ ∈ Z . (A.2)

They possess a Fourier expansion

Φw,m =
∑
n≥0

∑
r2≤4mn

c(n, r) e2πi(nτ+rz) , (A.3)

and are the natural building blocks [33–35] of elliptic genera (1.1) that are refined by an extra
U(1) current. There exists an extensive literature about Jacobi forms (for example, besides the
original work [152], also [36, 153, 154]), so we can be brief. We just mention here some aspects
that are important in this work. A Jacobi form Φw,m(τ, z) is called

• a holomorphic Jacobi form if c(n, r) = 0 unless 4mn ≥ r2,

• a Jacobi cusp form if c(n, r) = 0 unless 4mn > r2,

• a weak Jacobi form if c(n, r) = 0 unless n ≥ 0 .
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One furthermore defines a weakly (or nearly) holomorphic Jacobi form by requiring c(n, r) = 0
unless n ≥ n0 for a negative integer n0.

Jacobi forms form a bi-graded ring which we denote by

J∗,∗ = ⊕w,mJw,m . (A.4)

For even weight and integer index, J2k,m is freely generated by φ0,1 and φ−2,1 with coefficients
given by polynomials in the Eisenstein series E4 and E6. The Eisenstein series, as well as
the generators φ0,1 and φ−2,1, can be expressed in terms of the Dedekind function η(τ) =

q
1
24

∏∞
n=1(1− qn) and the familiar Jacobi theta functions as follows:21

E4(τ) =
1

2

4∑
`=1

ϑ`(τ, 0)8, (A.5)

E6(τ) =
1

2

(
ϑ2(τ, 0)8(ϑ3(τ, 0)4 + ϑ4(τ, 0)4) + ϑ3(τ, 0)8(ϑ2(τ, 0)4 − ϑ4(τ, 0)4) (A.6)

−ϑ4(τ, 0)8(ϑ2(τ, 0)4 + ϑ3(τ, 0)4)
)
,

φ−2,1(τ, z) = −ϑ1(τ, z)2

η6(τ)
, (A.7)

φ0,1(τ, z) = 4

(
ϑ2(τ, z)2

ϑ2(τ, 0)2
+
ϑ3(τ, z)2

ϑ3(τ, 0)2
+
ϑ4(τ, z)2

ϑ4(τ, 0)2

)
. (A.8)

For odd weight and integer index, J2k+1,m has a single extra generator

φ−1,2(τ, z) =
iϑ1(τ, 2z)

η3(τ)
, (A.9)

which implies that any odd-weight Jacobi form of integer index must be proportional to φ−1,2.
This is of great significance in the present work, since the relevant elliptic genus of four-
dimensional theories has weight w = −1 and integer m. Note that the odd generator obeys the
relation

432φ2
−1,2 = φ−2,1

(
φ3

0,1 − 3E4φ
2
−2,1φ0,1 + 2E6φ

3
−2,1

)
(A.10)

so that effectively it appears at most linearly. So altogether the ring of weak Jacobi forms is
generated by

J∗,∗ : {E4, E6, φ0,1, φ−2,1, φ−1,2} , (A.11)

modulo the relation (A.10).
For reference, we define q = e2πiτ , ξ = e2πiz, ξ±n = ξn + ξ−n, ξ±n̄ = ξn − ξ−n, and ẑ = 2πiz,

and list the following expansions:

φ0,1(τ, z) = 10 + ξ±1 + (108− 64ξ±1 + 10ξ±2)q + ... (A.12)

= 12 + E2ẑ
2 +

1

24
(E2

2 + E4)ẑ4 + ...,

φ−2,1(τ, z) = −2 + ξ±1 − (12− 8ξ±1 + 2ξ±2)q + ... (A.13)

= ẑ2 +
1

12
E2ẑ

4 +
1

1440
(5E2

2 − E4)ẑ6 + ...,

φ−1,2(τ, z) = ξ±1̄ + (3ξ±1̄ − ξ±3̄)q + ... (A.14)

21Note that we adopt conventions different to those of [6].
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= 2ẑ +
1

3
E2ẑ

3 +
1

180
(5E2

2 − 2E4)ẑ5 + ... .

Moreover, an important rôle is played by holomorphic quasi-modular forms. The ring of
such forms is generated by the Eisenstein series E4 and E6 plus

E2(τ) =
1

2πi

∆′(τ)

∆(τ)
= 1− 24q − 72q2 +O(q3) , (A.15)

where ∆ = η24 = 1
1728

(E3
4 − E2

6). As is well-known, it is not fully modular but transforms with
an extra piece

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ)− 6i

π
c(cτ + d) . (A.16)

This modular anomaly can be remedied at the expense of holomorphicity by defining

Ê2(τ) = E2(τ)− 3

πImτ
. (A.17)

In this paper we consider two extensions: a simpler one and a more complicated one which
contains the first.22 The simple one is what we call the ring JQM∗,∗ of quasi-modular Jacobi forms.
It is defined similar to J∗,∗ except that the coefficients are polyomials in E2 as well as in E4 and
E6. That is, its generators are

JQM∗,∗ : {E2, E4, E6, φ0,1, φ−2,1, φ−1,2} . (A.18)

The more complicated extension is obtained by first defining an “almost holomorphic” function
on H× C of the form

Φ(τ, z) =
∑
i,j≥0

Φi,j(τ, z)

(
1

Imτ

)i(
Imz

Imτ

)j
, (A.19)

where the sum runs over finitely many terms and the Φi,j(τ, z) are holomorphic (and appropri-
ately convergent). If the non-holomorphic function Φ(τ, z) obeys the transformation laws of a
Jacobi form as given in (A.1) and (A.2), then the holomorphic first term in the sum is defined
to be a quasi-Jacobi form:

Φ0,0(τ, z) ∈ JQJ∗,∗ . (A.20)

Note that JQM∗,∗ ⊂ JQJ∗,∗ as it corresponds to the special case of almost holomorphic Jacobi forms
(A.19) for which j ≡ 0. For more thorough definitions, see [23–25].

Summarizing, quasi-modular Jacobi forms can be made modular by reparing the anomalous
transformation behaviour of the generator E2 in (A.16) by adding a non-holomorphic piece as
in (A.17). This has many known manifestations in the physics literature.

On the other hand, quasi-Jacobi forms have a worse transformation behaviour that cannot
be remedied in this simple way, and needs extra treatment in the form of Imz

Imτ
. The quasi-Jacobi

forms that appear in this paper all arise as z-derivatives of modular or quasi-modular Jacobi
forms. More precisely, if we start from a Jacobi form Φw,m(τ, z) ∈ Jw,m with given weight and
index, then

Φw+1,m(τ, z) = ∇z,mΦw,m(τ, z) , (A.21)

22An even more drastic extension would be in terms of more general mock-modular Jacobi forms, see for
example ref. [36]. However this appears not to be relevant for the compact geometries we consider.
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∇z,m := ∂z + 4πim
Imz

Imτ
, (A.22)

is almost holomorphic while modular with weight w + 1 under the transformations (A.1) and
(A.2). This follows from the transformation property of α ≡ Imz

Imτ
:

α

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)α(τ, z)− c z , (A.23)

α (τ, z + λτ + µ) = α(τ, z) + λ . (A.24)

It then follows that by definition ∂zΦw,m ∈ JQJw+1,m. Analogous arguments apply if Φw,m ∈ JQMw,m .

A.2 Eisenstein-Jacobi Forms

In this section we identify a set of Jacobi forms which are closely related to the Eisenstein series
E4(τ) and E6(τ). This parametrization of the ring of Jacobi forms, J∗,∗, is naturally adapted
to the geometries we consider, and makes certain properties more manifest. Specifically, we are
interested in holomorphic Jacobi forms Φw,m(q, ξ) = Φw,m(τ, z), of weight w = 4 or 6 and index
m characterized by the following properties:

• Φw,m(q, ξ = 1) ≡ Φw,m(τ, z = 0) = Ew(τ),

• Φw,m(q, ξ) =
∑

n≥0

∑
r∈Z c(n, r)q

nξr, where c(n, r) ∈ Z and c(0, r) = δ0,r.

We further restrict our attention to Jacobi forms with index m ≤ 4 and integral expansion
coefficients which are relevant to the examples that appear in this paper. It is straightforward
to construct explicitly all such forms within the ring J∗,∗. Specifically, for any w = 4,m ≤ 3, as
well as for w = 6,m ≤ 2, there is a unique such form, which coincides with the Jacobi-Eisenstein
series Ew,m of [152]. These are given by:

E4,0 = E4 = 1 + 240q +O(q2), (A.25)

E4,1 =
1

12
(E4φ0,1 − E6φ−2,1) = 1 + (ξ±2 + 56ξ±1 + 126)q +O(q2), (A.26)

E4,2 =
1

122

(
E4φ

2
0,1 − 2E6φ0,1φ−2,1 + E2

4φ
2
−2,1

)
= 1 + (14ξ±2 + 64ξ±1 + 84)q +O(q2), (A.27)

E4,3 =
1

123

(
E4φ

3
0,1 − 3E6φ

2
0,1φ−2,1 + 3E2

4φ0,1φ
2
−2,1 − E4E6φ

3
−2,1

)
(A.28)

= 1 + (2ξ±3 + 27ξ±2 + 54ξ±1 + 74)q +O(q2) ,

and

E6,0 = E6 = 1− 504q +O(q2), (A.29)

E6,1 =
1

12

(
E6φ0,1 − E2

4φ−2,1

)
= 1 + (ξ±2 − 88ξ±1 − 330)q +O(q2), (A.30)

E6,2 =
1

122

(
E6φ

2
0,1−2E2

4φ0,1φ−2,1+E4E6φ
2
−2,1

)
= 1− (10ξ±2+128ξ±1+228)q +O(q2). (A.31)

On the other hand, for w = 4,m = 4 and for w = 6,m = 3 and 4, the sought-after Jacobi forms
cannot be Jacobi-Eisenstein series, as the latter do not have integer coefficients. For each of
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these cases there is a one parameter family of Jacobi forms with the required properties, which
we denote by Ew,m,t, t ∈ Z:

E4,4,t=
1

124

(
E4φ

4
0,1−4E6φ

3
0,1φ−2,1+6E2

4φ
2
0,1φ

2
−2,1−4E4E6φ0,1φ

3
−2,1+(9E3

4 − 8E2
6)φ4
−2,1

)
−t∆φ4

−2,1

= 1 + (ξ±4 + 56ξ±2 + 126ξ±1 − t(1− ξ)
8

ξ4
)q +O(q2), (A.32)

E6,3,t =
1

123

(
E6φ

3
0,1 − 3E2

4φ
2
0,1φ−2,1 + 3E4E6φ0,1φ

2
−2,1 − E2

6φ
3
−2,1

)
− t∆φ3

−2,1

= 1− (ξ±3 + 27ξ±2 + 135ξ±1 + 178 + t
(1− ξ)6

ξ3
)q +O(q2), (A.33)

E6,4,t =
1

124

(
E6φ

4
0,1−4E2

4φ
3
0,1φ−2,1+6E4E6φ

2
0,1φ

2
−2,1−4E2

6φ0,1φ
3
−2,1+E2

4E6φ
4
−2,1

)
−t∆φ0,1φ

3
−2,1

= 1− (4ξ±3 + 44ξ±2 + 124ξ±1 + 160 + t
(1− ξ)6

ξ3
(ξ±1 + 10))q +O(q2). (A.34)

In the paper, we employ these forms to express the U(1) dependence numerator of the heterotic
string elliptic genus on K3, which in the limit z → 0 reduces to 2E4(τ)E6(τ). In fact, in the
examples we make a further specialization and write the elliptic genera in terms of the following
set of Jacobi forms:

F6,3 := E6,3,9, G6,3 := E6,3,−3, F4,4 := E4,4,1, G4,4 := E4,4,0, F6,4 := E6,4,0, G6,4 := E6,4,−1,
(A.35)

together with the Eisenstein-Jacobi forms (A.25-A.31).

We note that there exist a number of bilinear relations among this set of Jacobi forms:

E4,0F4,4 − 4E4,1E4,3 + 3E2
4,2 = 0,

E4,0E6,2 + E4,2E6,0 − 2E4,1E6,1 = 0,

E4,0F6,3 + 3E4,1E6,2 − 9E4,2E6,1 + 5E4,3E6,0 = 0,

E4,0G6,3 − 3E4,1E6,2 + 3E4,2E6,1 − E4,3E6,0 = 0, (A.36)

E4,1F6,3 − 3E4,3E6,1 + 2F4,4E6,0 = 0,

E4,1G6,3 − 3E4,2E6,2 + 3E4,3E6,1 − F4,4E6,0 = 0,

E4,0F6,4 − 3E4,2E6,2 + 2E4,3E6,1 = 0,

E4,0G6,4 − 2E4,1G6,3 + 2E4,3E6,1 −G4,4E6,0 = 0.

Moreover we find that the following relations hold:

E4,1∇̂E4,2 = 12∆φ−1,2φ−2,1,

E4,1∇̂E4,3 = 2∆φ−1,2φ0,1φ−2,1,

E6,1∇̂E4,1 = 144∆φ−1,2,

E6,1∇̂E4,2 = E6,2∇̂E4,1 = 12∆φ−1,2φ0,1, (A.37)

E6,1∇̂E4,3 = ∆φ−1,2(φ2
0,1 + E4φ

2
−2,1),

E6,2∇̂E4,2 = ∆φ−1,2(φ2
0,1 − E4φ

2
−2,1),
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νx0 νx1 νz0 νz1 νz2 νz3 νz4 νu νv νw νs

f − E 0 0 1 1 1 0 0 0 3 6 0
h 0 0 0 1 0 1 0 0 2 4 0
E 0 0 1 0 0 0 1 0 2 4 0
l′ 1 1 0 0 0 0 0 0 2 4 0

S0 0 0 0 0 0 0 0 1 1 2 0
S 0 0 0 0 0 0 0 0 1 1 1

Table B.1: GLSM charges of the toric coordinates of the Bl1P2
112 fibration over B3 = dP2×P1

l′.
The upper-left part, as separated by the horizontal and the vertical double lines corresponds to
the description of the base B3 alone.

F6,3∇̂E4,1 = ∆φ−1,2(φ2
0,1 + 9E4φ

2
−2,1),

G6,3∇̂E4,1 = ∆φ−1,2(φ2
0,1 − 3E4φ

2
−2,1).

The operator ∇̂ acts on a pair of Jacobi forms Φw1,m1 , Φw2,m2 of nonzero index to produce the
a Jacobi form of weight w1 + w2 + 1 and index m1 +m2, and has the following definition:

Φm1,k1∇̂Φm2,k2 =
1

m2

Φm1,w1(ξ∂ξ)Φm2,w2 −
1

m1

φm2,w2(ξ∂ξ)Φm1,w1 . (A.38)

B 4d Heterotic and E-Strings for B3 = dP2 × P1
l′

Here we will provide details of the geometry of the elliptic Calabi-Yau fourfold, Y4, and of the
embedded threefolds Yi

3, as discussed in Section 5.1.
The toric coordinates of the threefold base

B3 = dP2 × P1
l′ (B.1)

are listed in the upper-left part of Table B.1, in terms of the U(1) charges of a gauged linear
sigma model (GLSM).

As a basis of H1,1(B3) we take

D1 = νz0 = f = p∗(C1) ,
D2 = νz3 = h = S− ,
D3 = νx0 = l′ = p∗(C2) ,
D4 = νz1 = f + h− E = p∗(C1) + S− − E .

(B.2)

The notation f and h refers to the pullback to B3 of the respective classes of the fiber and
base of the Hirzebruch surface F1 whose blowup constitutes dP2; that is, f ' C0 × P1

l′ and
h ' P1

h × P1
l′ . The rest of the notation has been introduced in Section 5.1.

We now turn to the geometry of the elliptic fibration π : Y4 → B3. The elliptic fiber
is constructed as a general hypersurface of degree 4 in Bl1P2

112, which is a convenient way of
realising a U(1) gauge symmetry via a rank-1 Mordell-Weil group of rational sections [127].
Specifically, the fourfold Y4 is obtained by the vanishing locus of

PMP := sw2 + b0s
2u2w + b1suvw + b2v

2w + c0s
3u4 + c1s

2u3v + c2su
2v2 + c3uv

3 , (B.3)
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where u, v, w and s are the four homogeneous coordinates of the ambient space Bl1P2
112 of the

fiber. The coefficients bi and ci are sections of appropriate line bundles on B3, whose degrees
are parametrized by a cohomology class β ∈ H2(B3,Z) as follows:

Sections b0 b1 b2 c0 c1 c2 c3 c4

Classes β K̄B3 2K̄B3 − β 2β K̄B3 + β 2K̄B3 3K̄B3 − β 4K̄B3 − 2β

If we denote by Lu and Ls the line bundles of which the coordinates u and v are sections, the
remaining fibral ambient coordinates w and s are in turn sections of the bundles,

v ∈ H0(Y4,Lu ⊗ Ls ⊗O(β − K̄B3)) , (B.4)

w ∈ H0(Y4,L2
u ⊗ Ls ⊗O(β)) ,

which can be seen from the defining polynomial (B.3). For the concrete fibration Y4 we make
the following choice:

β = 4D1 + 2D2 + 4D3 + 2D4 (B.5)

= 2K̄B3 ,

which leads to the toric description for Y4 as described in Table (B.1).
Moreover, note that the height pairing divisor b of the section S, defined as the image σ(S)

under the Shioda homomorphism σ [121],

b := −π∗(σ(S) · σ(S)) , (B.6)

takes, taking into account (B.5), the form:

b = 6K̄B3 − 2β = 2K̄B3 . (B.7)

Given this toric data for Y4, upon performing appropriate combinatorial computations, e.g.,
by making use of PALP [155, 156] and SAGE [157], we can easily extract the generators l(a) of
the Mori cone, M(Y4):

l(1) = ( 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, −1) ,
l(2) = ( 0, 0, 0, 0, 0, 0, 0, −1, 1, 0, 2) ,
l(3) = ( 0, 0, 1, 0, 1, −1, 0, −1, 0, 0, 0) ,
l(4) = ( 0, 0, 0, 0, −1, 1, 1, −1, 0, 0, 0) ,
l(5) = ( 0, 0, 0, 1, 1, 0, −1, −1, 0, 0, 0) ,
l(6) = ( 1, 1, 0, 0, 0, 0, 0, −2, 0, 0, 0) .

(B.8)

These generators are described in terms of their intersection numbers with the toric divisors
dρ := {νρ = 0}, for ρ = x0, x1, . . . , w, s, as ordered in Table B.1. The quartic intersection
numbers of Y4 can be obtained via combinatorial computations as well, and we endode them in
the following intersection polynomial:

I(Y4) = 1302J1
4 + 672J1

3J2 + 336J1
2J2

2 + 168J1J2
3 + 84J2

4 + 120J1
3J3 + 64J1

2J2J3

+ 32J1J2
2J3 + 16J2

3J3 + 180J1
3J4 + 96J1

2J2J4 + 48J1J2
2J4 + 24J2

3J4

+ 14J1
2J3J4 + 8J1J2J3J4 + 4J2

2J3J4 + 14J1
2J4

2 + 8J1J2J4
2 + 4J2

2J4
2

+ 120J1
3J5 + 64J1

2J2J5 + 32J1J2
2J5 + 16J2

3J5 + 14J1
2J3J5 + 8J1J2J3J5

73



+ 4J2
2J3J5 + 14J1

2J4J5 + 8J1J2J4J5 + 4J2
2J4J5 + 105J1

3J6 + 56J1
2J2J6 (B.9)

+ 28J1J2
2J6 + 14J2

3J6 + 14J1
2J3J6 + 8J1J2J3J6 + 4J2

2J3J6 + 21J1
2J4J6

+ 12J1J2J4J6 + 6J2
2J4J6 + 3J1J3J4J6 + 2J2J3J4J6 + 3J1J4

2J6 + 2J2J4
2J6

+ 14J1
2J5J6 + 8J1J2J5J6 + 4J2

2J5J6 + 3J1J3J5J6 + 2J2J3J5J6 + 3J1J4J5J6

+ 2J2J4J5J6 ,

where Ja are the generators of the Kähler cone that obey∫
l(a)

Jb = δab . (B.10)

Equipped with the topological data listed above, we can compute the BPS invariants,
NG;Cb

(n, r), to any given order for curves of the form

C = Cb + nEτ + C f
r , (B.11)

with respect to the transversal U(1) flux

G ≡ GU(1) = σ ∧ π∗F , where F =:
4∑

α=1

cαDα . (B.12)

The base curves, Cb, that are of interest in our examples are

Cb =
{
C0, C1

E, C
2
E

}
. (B.13)

These correspond respectively to the heterotic string featuring Section 5.1, and to the two types
of E-strings discussed in Section 6.1.

The computation of the BPS invariants proceeds by mirror symmetry, in practice using A.
Klemm’s Mathematica package inst.m and extensions thereof. For this purpose we need to
expand the various curves appearing on the RHS of (B.11) over the Mori cone generators. This
is achieved by making use of the explicit form for the curves (B.8), as well as of the intersection
data (B.9). This leads to the identification

C0 = l(4) + l(5) , (B.14)

C1
E = l(4) , (B.15)

C2
E = l(5) , (B.16)

Eτ = 3l(1) + 2l(2) , (B.17)

C f
r=1 = l(1) + l(2) . (B.18)

We have calculated the relative BPS invariants up to certain finite degrees, and list them below
in terms of the generating functions

FG;Cb
=
∑
n,r

NG;Cb
(n, r)qn ξr . (B.19)

Concretely, for each of the three base curves (B.13) under consideration, we get

FG;C0 = q[96c1ξ
±1̄ + 48c2ξ

±1̄ + 84c3ξ
±1̄ + 96c4ξ

±1̄]

+ q2[c1(69280ξ±1̄ + 20384ξ±2̄ + 288ξ±3̄ − 8ξ±4̄)
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+c2(99552ξ±1̄ + 29088ξ±2̄ + 480ξ±3̄ − 12ξ±4̄) (B.20)

+c3(65164ξ±1̄ + 18896ξ±2̄ + 252ξ±3̄ − 8ξ±4̄)

+c4(134192ξ±1̄ + 39280ξ±2̄ + 624ξ±3̄ − 16ξ±4̄)]

+O(q3) ,

FG;C1
E

= q[c2(112ξ±1̄ + 4ξ±2̄) + c3(56ξ±1̄ + 2ξ±2̄)]

+ q2[c2(2496ξ±1̄ + 552ξ±2̄) + c3(1248ξ±1̄ + 276ξ±2̄)] (B.21)

+ q3[c2(26928ξ±1̄ + 9432ξ±2̄ + 336ξ±3̄) + c3(13464ξ±1̄ + 4716ξ±2̄ + 168ξ±3̄)]

+O(q4) ,

FG;C2
E

= q[c3(56ξ±1̄ + 2ξ±2̄) + c4(112ξ±1̄ + 4ξ±2̄)]

+ q2[c3(1248ξ±1̄ + 276ξ±2̄) + c4(2496ξ±1̄ + 552ξ±2̄)] (B.22)

+ q3[c3(13464ξ±1̄ + 4716ξ±2̄ + 168ξ±3̄) + c4(26928ξ±1̄ + 9432ξ±2̄ + 336ξ±3̄)]

+O(q4) .

Here, the coefficients cα parametrise the four-form flux G as in (B.12).
In the main text of the paper we argue that the derivative part of the elliptic genera is given

by a formally six-dimensional structure, which manifests itself in terms of the threefolds

πi : Yi
3 → Bi2 , i = 1, 2 , (B.23)

whose two-fold bases are given by
Bi2 = p∗(Ci) . (B.24)

Here we will provide some relevant details of these, for the sample geometry we consider. Con-
cretely, we have C1 = C2 and C2 = C1 and the respective bases are thus given by

B1
2 ' dP2 , (B.25)

B2
2 ' C0 × C2 ' F0 . (B.26)

Since the self-intersections of p∗(Ci) vanish on B3, the normal bundles NBi2/B3
are trivial and

hence so are NYi3/Y4 . This implies that the induced fibrations Yi
3 are Calabi-Yau threefolds, once

again defined by the polynomials of the form (B.3). For the geometries under consideration, the
restrictions preserve the arithmetic structure of the sections and are described by the classes of
the height-pairings by

bi := b|Bi2 = 2K̄Bi2 , (B.27)

where, in the second step, we have used b = 2K̄B3 and NBi2/B3
= OBi2 .

As both of the induced fibrations, Y1
3 and Y2

3, are torically constructed, they admit a de-
scription in terms of an abelian GLSM, analogous as for Y4 in Table B.1. The most general
such descriptions for the bases (B.25) and (B.26) can be found, for instance, in [4] (see Table
4.2, as well as Table 4.1 with a = 0); for the specific fibrations Y1

3 and Y2
3 under scrutiny, we set

(x, y1, y2) = (6, 2, 2) in the former case and (x, y) = (4, 4) in the latter. By determining their
Mori cones and intersection rings, we can calculate the BPS invariants, N i

Cb
(n, r), for the curve

classes of the form (B.11) on Yi
3, just like it was done for the fourfold Y4. As result we present

these invariants via their generating functions of the form,

F iCb
=
∑
n,r

N i
Cb

(n, r)qn ξr , (B.28)
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νx νy νz νe1 νe0 νz1 νz2 νz3 νz4 νz5
Z 2 3 1 0 0 0 0 0 0 0
e1 −1 −1 0 1 −1 0 0 0 0 0

h 4 6 0 0 1 0 1 0 0 0
f 6 9 0 0 0 1 1 1 0 0
l′ 4 6 0 0 0 0 0 0 1 1

Table C.1: GLSM charges of the toric coordinates of the su(2)-enhanced E-string model on
F1 × P1

l′.

for each of the two geometries and base curves (B.13). For Y1
3 we get for the heterotic base

curve and for the two E-string curves, respectively:

F1
C0 = −2 +

(
252 + 84ξ±1

)
q +

(
116580 + 65164ξ±1 + 9448ξ±2 + 84ξ±3 − 2ξ±4

)
q2 (B.29)

+
(
6238536 + 3986964ξ±1 + 965232ξ±2 + 65164ξ±3 + 252ξ±4

)
q3 +O(q4) ,

F1
Ci=1,2
E

= 1 + (138 + 56ξ±1 + ξ±2)q + (2358 + 1248ξ±1 + 138ξ±2)q2 (B.30)

+ (23004 + 13464ξ±1 + 2358ξ±2 + 56ξ±3)q3 +O(q4) .

On the other hand, since Y2
3 does not contain (−1)-curves in its base B2

2 ' F0, all we get is
invariants for Cb = C0:

F2
C0 = −2 +

(
288 + 96ξ±1

)
q +

(
123756 + 69280ξ±1 + 10192ξ±2 + 96ξ±3 − 2ξ±4

)
q2 +O(q3) .

C Non-Abelian 4d E-String for B3 = F1 × P1
l′

Here we present some details on the geometry that underlies the four-dimensional E-string model
presented in Section 6.1. The base space of the elliptic fourfold Y4 is given by B3 = F1 × P1

l′ ,
which is related to the base dP2 × P1

l′ discussed before in Appendix B by a simple blowdown.
Hence

H1,1(B3) = Span 〈l′, f, h〉 , (C.1)

with triple intersections
I(B3) = l′(fh− h2) (C.2)

and anti-canonical class
K̄B3 = 2l′ + 3f + 2h . (C.3)

We construct an elliptic fibration Y4 with base B3 and design an SU(2) gauge symmetry over
the divisor b = h. The model is obtained as the resolution of an SU(2) Tate model [158]. For a
flat fibration Y4 over B3, one finds two phases that are related via a flop transition. Both phases
lead to the same elliptic genus and in the following we present our analysis for just one phase
of our choice. The GLSM data can be found in Table C.1. The Mori cone is generated by the
following curves,

l(1) = ( 1 1 0 −1 1 0 0 0 0 0),
l(2) = ( 0 0 −2 0 1 0 1 0 0 0),
l(3) = ( −1 0 1 3 −3 0 0 0 0 0),
l(4) = ( 0 0 −1 0 −1 1 0 1 0 0),
l(5) = ( 0 0 −2 0 0 0 0 0 1 1),

(C.4)
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and the intersection polynomial reads

I(Y4) = 3576J1
4 + 324J1

3J2 + 18J1
2J2

2 + 1236J1
3J3 + 108J1

2J2J3 + 6J1J2
2J3

+ 424J1
2J3

2 + 36J1J2J3
2 + 2J2

2J3
2 + 144J1J3

3 + 12J2J3
3 + 48J3

4 + 188J1
3J4

+ 18J1
2J2J4 + 68J1

2J3J4 + 6J1J2J3J4 + 24J1J3
2J4 + 2J2J3

2J4 + 8J3
3J4

+ 200J1
3J5 + 27J1

2J2J5 + 3J1J2
2J5 + 70J1

2J3J5 + 9J1J2J3J5 + J2
2J3J5 (C.5)

+ 24J1J3
2J5 + 3J2J3

2J5 + 8J3
3J5 + 16J1

2J4J5 + 3J1J2J4J5 + 6J1J3J4J5

+ J2J3J4J5 + 2J3
2J4J5 ,

where Ja are the Kahler cone generators. As a basis of H1,1(B3), we can pick

D1 = νz1 = J4,
D2 = νz2 = J2,
D3 = νz4 = J5.

(C.6)

In terms of these, we take b = D2−D1, and furthermore the zero-section of the elliptic fibration
and the exceptional divisor for the U(1) ⊂ SU(2) subgroup are

Z = −2J2 + J3 − J4 − 2J5,
e1 = −J1 + 3J3 .

(C.7)

Matter of U(1) charge r = 1 arises from an M2-brane wrapping the fibral curve C f
r=1 = l(1).

The latter has the following intersection numbers

Z ◦ C f
r=1 = 0 , (−e1) ◦ C f

r=1 = 1 . (C.8)

The U(1) ⊂ SU(2) flux is then of the form

G = π∗F ∧ (−e1) , F = c1D1 + c2D2 + c3D3 . (C.9)

The four-dimensional non-critical E-string in question arises as soliton from a D3-brane that
wraps the curve CE = l(4). By mirror symmetry we find that the first terms in the expansion
of its elliptic genus

ZCE ;G(q, ξ) = −q−1/2
∑
n,r

NCE ;G(n, r)qnξr (C.10)

are given by

q1/2 ZCE ;G(q, ξ) = q[c1(16ξ−2 − 160ξ−1 + 768− 2400ξ + 5616ξ − 10752ξ3 + 17920ξ4

−27136ξ5 + 38400ξ6 − 51712ξ7 + 67072ξ8 + · · · )
+c3(6ξ−2 − 40ξ−1 − 472ξ + 2042ξ2 − 4608ξ3 + 8192ξ4 − 12800ξ5

+18432ξ6 − 25088ξ7 + 32768ξ8 + · · · )]
+q2[c1(48ξ−4 − 640ξ−3 + 3936ξ−2 − 15360ξ−1 + 44032− 101376ξ

+198816ξ2 − 345472ξ3 + 546768ξ4 − 804864ξ5 + 1120256ξ6 + · · · )
+c3(20ξ−4 − 240ξ−3 + 1188ξ−2 − 2640ξ−1 − 11696ξ + 56156ξ2

−128784ξ3 + 229356ξ4 − 358400ξ5 + 516096ξ6 + · · · )]
+q3[c1(96ξ−6 − 1440ξ−5 + 10272ξ−4 − 47040ξ−3 + 158592ξ−2
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−427872ξ−1 + 975360− 1946784ξ + 3487872ξ2 + · · · )
+c3(42ξ−6 − 600ξ−5 + 3960ξ−4 − 15840ξ−3 + 40854ξ−2 − 57432ξ−1

−154536ξ + 807018ξ2 + · · · )]
+q4[c1(160ξ−8 − 2560ξ−7 + 19776ξ−6 − 99840ξ−5 + 376480ξ−4

−1146240ξ−3 + 2958848ξ−2 − 6680192ξ−1 + 13473792 + · · · )
+c3(72ξ−8 − 1120ξ−7 + 8316ξ−6 − 39600ξ−5 + 136180ξ−4

−353808ξ−3 + 671876ξ−2 − 740096ξ−1 + · · · )]
+O(q5) .

(C.11)

We can interpret the elliptic genus as the derivative of a formal six-dimensional elliptic genus,
possibly augmented by a genuinely four-dimensional piece. The curve CE is trivially fibered over
the P1

l′ factor in B3, thereby tracing out the divisor DE = h = D2−D1 within B3. This suggests
that we should consider the E-string within the threefold defined by

Y3 = Y4|π∗(l′) , (C.12)

where the divisor l′ = D3 cuts out the Hirzebruch surface F1 of B3.
The relative BPS invariants for CE on Y3 can be computed via mirror symmetry as well and

be packaged into the partition function

Z−2,m(q, ξ) = −q−1/2

−
(
3ξ−2 − 40ξ−1 + 198 + 472ξ − 1021ξ2 + 1536ξ3 − 2048ξ4 + 2560ξ5

−3072ξ6 + · · ·
)
q1/2

−(5ξ−4 − 80ξ−3 + 594ξ−2 − 2640ξ−1 + 5788 + 11696ξ

−28078ξ2 + · · · )q3/2

−(7ξ−6 − 120ξ−5 + 990ξ−4 − 5280ξ−3 + 20427ξ−2 + · · · )q5/2 +

−(9ξ−8 − 160ξ−7 + 1386ξ−6 + · · · )q7/2 +O(q9/2) . (C.13)

This can be recognised as the series expansion in q = e2πiτ and ξ = e2πiz of the following
meromorphic Jacobi form of weight w = −2 and U(1) fugacity index m = −1:

Z−2,−1(τ, z) = − 1

η(τ)12

4∑
i=2

θi(0, τ)10

θi(2z, τ)2
. (C.14)

As discussed in Section 6.1.2, this has the interpretation as the elliptic genus of an instanton
string of the six-dimensional SCFT with SU(2) gauge symmetry.

D Non-Critical String for B3 = P3

In this Appendix we provide some of the technical details that underlie the example of Sec-
tion 6.2. It is devoted to a non-critical string obtained by wrapping a D3-brane on the curve
Cb = H ·H on the base B3 = P3 of an elliptic fibration.

The model without U(1) gauge symmetry has been discussed in much detail in [75–77]. Here
we consider an extension of this model in order to support a transversal flux in conjunction with
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a chiral U(1) gauge symmetry, which allows for a nontrivial elliptic genus. For this we implement
the gauge symmetry associated with the height-pairing given by b = 2K̄B3 = 8H. The fourfold
Y4 we thus consider is characterized by the Mori vectors

l(1) = ( −1, −1, 0, 0, 0, 0, 0, 1, 1),
l(2) = ( −2, 2, 1, 0, 0, 0, 0, 0, −1),
l(3) = ( 0, 0, 0, 1, 1, 1, 1, 0, −4) .

(D.1)

The intersection polynomial, in terms of the dual basis of Kähler cone generators, reads

I(Y4) = 1984J1
4 + 512J1

2J2
2 + 128J2

4 + 28J1
2J3

2 + 8J2
2J3

2 + 256J2
3J1 + 3J3

3J1 (D.2)

+ 1024J1
3J2 + 2J3

3J2 + 16J3
2J1J2 + 240J1

3J3 + 32J2
3J3 + 64J2

2J1J3 + 128J1
2J2J3 .

Moreover we define the following curve classes

Cb = l(3) (D.3)

Eτ = 3l(1) + 2l(2)

C f = l(1) + l(2) ,

and determine the BPS invariants, NG;Cb
(n, r), for the curves of the form

C = Cb + nEτ + C f
r , (D.4)

with respect to fluxes G ∈ H2,2
vert(Y4). As a basis of fluxes we pick

GU(1) = σ ∧ π∗(F ) with F = cH ,

=
1

1441

[
−156

(
4J1

2 + J1J3

)
+ 115

(
4J2

2 + 8J1J2 − 2J1J3 + J2J3

)]
,

GH = π∗(H) ∧ π∗(H) = J3
2 , (D.5)

G0 = −8J3
2 +

1

1441

[
316

(
4J1

2 + J1J3

)
− 196

(
4J2

2 + 8J1J2 − 2J1J3 + J2J3

)]
.

Above, H denotes the hyperplane class on P3 and c a numerical constant. Moreover, as always,
σ denotes the Shioda map associated with the U(1) symmetry. This basis leads to a convenient
block-diagonal intersection form on H2,2

vert(Y4) given by

Ω =

 −8c2 0 0
0 0 4
0 4 0

 . (D.6)

We now perform a standard mirror symmetry computation to obtain the Gromov-Witten in-
variants and assemble them, for each of the above fluxes, into the following partition function23

ZG;Cb
(q, ξ) := − 1

q2

∑
NG;Cb

(n, r)qnξr . (D.7)

The fluxes GH and G0 are the fluxes considered in [76,77] and are associated with meromorphic
modular forms of weight w = −2 and w = 0, respectively. These are non-transversal fluxes which

23We have factored out 1/q2 in order to account for the vacuum energy of the string.
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do not admit a lift to four-dimensional F-theory. On the other hand, the transversal flux GU(1)

leads to the U(1)-refined elliptic genus we are interested in, with modular weight w = −1.
In terms of ξ±r = ξr + ξ−r, ξ±r̄ = ξr − ξ−r, the first few terms of the expansions take the

form

1

c
ZGU(1);Cb

(q, ξ) = −1152

q
ξ±1̄ + 576

(
380ξ±1̄ + 127ξ±2̄

)
(D.8)

−384q
(

90633ξ±1̄ + 53472ξ±2̄ + 7825ξ±3̄
)

+ ...

ZGH ;Cb
((q, ξ) =

20

q2
− 1536

q
(3 + ξ±1) + 192

(
4161 + 2264ξ±1 + 343ξ±2

)
(D.9)

−1024q
(
99294 + 65817ξ±1 + 18666ξ±2 + 1805ξ±3

)
+ ...

ZG0;Cb
(q, ξ) = −160

q2
+

7680

q
(3 + ξ±1)− 768

(
4179 + 2248ξ±1 + 305ξ±2

)
(D.10)

+512q
(
393396 + 257535ξ±1 + 68112ξ±2 + 5405ξ±3

)
+ ...

Matching against Ansaetze of Jacobi forms yields an overdetermined system of equations, and
in this way we find the following closed expression for the weight w = −2 flux:

ZGH ;Cb
(q, ξ) =

4

124η48

[
− 5

72

(
35E4

4E6 + 37E4E
3
6

)
φ4

0,1

− 1

432

(
835E6

4E6 + 1252E3
4E

3
6 + 73E5

6

)
φ4
−2,1

+
1

864

(
2173E7

4 + 12406E4
4E

2
6 + 2701E4E

4
6

)
φ3
−2,1φ0,1

− 1

12

(
191E5

4E6 + 169E2
4E

3
6

)
φ2
−2,1φ

2
0,1 (D.11)

+
1

864

(
2281E6

4 + 13342E3
4E

2
6 + 1657E4

6

)
φ−2,1φ

3
0,1

]
.

Moreover we find for the elliptic genus:

ZGU(1);Cb
(q, ξ) = (F · Cb)Z−1,4(q, ξ) +

1

8
(F · b ·H)ξ∂ξZ−2,4(q, ξ), (D.12)

where

Z−2,4(q, ξ) = ZGH ;Cb
(q, ξ) (D.13)

and

Z−1,4(q, ξ) =
1

124η48
φ−1,2

[
64E2

4E6

(
E3

4 − E2
6

)
φ−2,1φ0,1+

1

6

(
134E4

4E
2
6 + 29E4E

4
6 − 163E7

4

)
φ2
−2,1 (D.14)

− 1

6

(
13E6

4 + 166E3
4E

2
6 − 179E4

6

)
φ2

0,1

]
are weak Jacobi forms. In (D.12) we used the fact that F · Cb = c and F · b · H = 8c.
Notably, (D.13) states that the very same function Z−2,4(q, ξ) figures both as generating function
ZGH ;Cb

(q, ξ) for the (−2)-flux, and in the derivative part of the elliptic genus (D.12) associated
with the transversal flux GU(1). This confirms again our expectations.
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