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INTRODUCTION

RF beam control systems for hadron synchrotrons have evolved over the
past three decades[1-6] into an essentially standard design. The key difference
between hadron and lepton machines is the absence of radiation damping and
existence of significant frequency variation in the case of hadrons. Although the
motion of the hadron in the potential well of the rf wave is inherently stable it is
not strongly damped. Damping must be provided by electronic feedback through
the accelerating system. This feedback is typically called the phase loop.
Frequency variation is usually accomplished by a combination of an open-loop
approximation to the frequency, based on a measurement of the magnetic rigidity,
and closed-loop feedback, based on a measurement of a beam parameter, such as,
radius, frequency, or phase.

The technology of the rf beam control system for the AGS Booster
synchrotron is described. First, the overall philosophy of the design is explained
in terms of a conventional servo system that regulates the beam horizontal
position in the vacuum chamber. The concept of beam transfer functions is
fundamental to the mathematics of the design process and is reviewed. The beam
transfer functions required for this design are derived from first principles. An
overview of the beam signal pick-ups and high level rf equipment is given.

The major subsystems, the frequency program, the heterodyne system, and
beam feedback loops, are described in detail in Chapters 2, 3, and 4.

Beyond accelerating the beam, the rf system must also synchronize the
bunches in the Booster to the buckets in the AGS before transfer. The technical
challenge in this process is heightened by the need to accomplish synchronization
while the frequency is still changing. Details of the synchronization system are
given in Chapter 5.

This report is intended to serve two purposes. One is to document the
hardware and performance of the systems that have been built. The other is to
serve as a tutorial vehicle from which the non-expert can not only learn the
details of this system but also learn the principles of beam control that have led
to the particular design choices made.



1. GENERAL DESCRIPTION

1.1 Philosophy of the Design

The Beam Control System is essentially a servo loop that keeps the beam
at a prescribed radius. The reference input into the servo is a time-domain
function specifying the desired radius. In servo language the loop suffers one
main disturbance, that is, the magnetic field in the synchrotron changes. If the
magnetic field increases the beam momentum must also increase if the radius is
to remain at the specified value. Viewed in this light the entire acceleration
system is simply a slave to the magnet. 4 priori, no assumptions are made about
how the magnetic field will change with time. The central benefit of this
philosophy of design is operational stability and convenience.

While on one hand the conceptual view of the system is that of a tracking
servo, on the other hand most of the technical details of system are in place in
order to compensate, in a open-loop or feedforward sense, any disturbance of the
servo loop. For example, the accelerating frequency is approximated very
accurately from a direct measurement of the magnetic field. Also, the drive
power needed to attain a certain accelerating voltage is determined off-line and
embodied in a non-linear function in the rf drive chain. The imperfections of
these approximations are corrected by the servo system.

Unburdened of making first order corrections to the system the servo
system is able to do a better job of its essential chores, that is, correcting
uncontrollable inaccuracies in the feedforward systems (e.g., one does not
measure the actual average magnetic field around the whole ring) and modifying
the dynamics of beam response to the accelerating voltage.

The system operates in a Pulse by Pulse Modulation mode. Therefore,
parameters that are required for making open-loop adjustments to the system

(e.g., the revolution frequency as a function of magnetic field) must be stored and -

retrievable within the 40 ms between the time that the next mode is specified and
the time the rf system turns on for the new pulse.



1.2  General Configuration of the System

1.2.1 Feedback Loops and System Variables. The general configuration of the
system is described by figure 1.1. The elements of the diagram do not correspond
directly to hardware components but show the sense of signal flow through the
system. The elements of the diagram are: 1. the acceleration cavities (details
related to the actual number of cavities, their relative phases, and regulation of
the accelerating voltage are given below), 2. beam transfer functions, relating
responses of the beam phase, frequency, and radius to modulations of the rf
frequency, 3. longitudinal beam pick-up, 4. transverse beam pick-up, 5. Voltage
Controlled Oscillator, used to modulate the rf frequency of the cavities, 6. phase
detector, used to detect changes in the relative phase of the beam with respect to
the accelerating voltage, 7 and 8. feedback amplifiers for phase and radial
feedback, 9. voltage controlled phase shifter driven by the radial feedback, 10.
phase shifter, used to feedforward the synchronous phase angle from a
measurement of the accelerating voltage and the rate of rise of the magnetic field,
11. delays in the signal path (about 4 microseconds).

The key dynamical variables of the system are indicated the figure. They

are:

¢, - the phase of the beam bunch with respect to the net effective rf
voltage per turn. Careful matching of cable lengths from the beam pick-up
(3) and the cavity voltage pick-up (1) is necessary in order for the
observed phase to have absolute meaning as the rf frequency changes.

¢, - the synchronous phase angle. This is calculated from on-line
measurements to the dB/dt and rf voltage.

¢ - the instantaneous phase deviation of the bunch from the synchronous
phase. This is the variable of the linearized model of the coherent bunch
motion developed below.

¢, - the phase correction introduced by the radial feedback. The nominal
value of this variable is zero. It will differ from zero momentarily while
a radial change is being made. When the new radius is stable it returns to
zero. Its small dc (low frequency) value compensates for errors in; the
synchronous phase calculation, dc errors in the feedback amplifier and
VCO, and miss-matches in cable lengths.

¢. - the phase error. The feedback loop has very high gain at low
frequency in order to keep this variable equal to zero.
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Figure 1.1. The concept of the beam control system. Because the
two phase shifters, numbers 9 and 10, are before the phase
detector, number 6, its nominal output is zero. See text for
detailed description of the numbered components and labeled
variables.



AWyrogram - this represents the errors in the frequency program. Since the
program changes in discrete steps, there will always be errors in the
program at least as large as half the step size.

dwyco - modulations in the output frequency of the VCO, caused by the
action of the feedback loops.

dw, - modulations in the frequency of the drive signal to the power
amplifiers and cavities. The actual frequency felt by the beam is further
modified by the cavity response function, C(s).

SR - variations of the beam radius from the center line of the transverse
pickups.

Figure 1.1 is redrawn in Figure 1.2 as a classical servo system with R(t),
the reference value for the beam radius, as the main input. The output is the
beam frequency, proportional to radius. One can see from this configuration that
the phase correction, ¢,, serves as a reference to the embedded loop, the phase
loop.

Consider the quiescent state, the low frequency gain of the phase loop
amplifier is high, which implies the phase error ¢, is zero. If the beam is being
accelerated ¢, is not zero but under the assumption that the calculation of ¢, and
the o, phase shifter are accurate then the phase shifter ¢, is zero. The actual beam
radius, 8R, equals the reference radius, R(t), and the phase correction, ¢, is
Zero.

The system is disturbed from equilibrium by a change at any of the inputs:
the reference radius, R(t), the frequency program, Awygam. the accelerating
voltage, V, or the magnetic field rate of rise, dB/dt. In each case ¢, will deviate
from zero causing the VCO to go to a new frequency. The loops close through
the response of the beam to the change in accelerating frequency. Ultimately the
beam phase, ¢,, will change in such a way to return ¢, to zero.
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Figure 1.2. The beam control system seen as a classical servo
system. The phase loop, with feedback via the beam transfer
function By, is nested within the radial loop which gets feedback
via B;. ’




1.2.2 Beam Transfer Functions. The key to understanding why the feedback
loops are configured in the manner shown is to examine the beam response
functions. I make the approximation that the beam can be considered a single
macro-particle and that the motion can be linearized by treating small oscillations
about the stable synchronous phase angle. These approximation describe well the
behavior of the beam when the loops are regulating. One defines three response
functions which give the changes in beam parameters, phase, frequency, and
radius as a result of a change in the frequency of the accelerating voltage.

ng = B‘pawrf
6(l)b = Bwaw,f

The response functions can be derived from the basic first order equations

of the synchrotron motion:

d 1 . .

— (0E) = eV . {sin -

i (OE) T ¢V [sin(p; + ¢) - sing]
d 1 ot
— (o) = [Qr — + bw,r T,,,]
dt T, T, e

where:
@ is the synchronous phase angle;
V¢ is the voltage of the accelerating cavities;
T,ey is the revolution period;
ot is the deviation in revolution period of the macro-particle from
the synchronous particle;
dw,¢ is the deviation of the rf frequency from the bunch frequency
of the synchronous particle;
and
OE is the energy deviation of the macro-particle from the
synchronous energy (synchronous energy =energy of the particle
that returns to same phase, ¢, each revolution);
¢ is the deviation of the phase of the macro-particle from ¢,.



The first equation can be linearized by expanding the sine function. One
gets,

eV

d - o
E(aE) [T

rey

cos <p5] @ .

The second equation contains §E through ét. The relationship can be found
from,

27(R + OR)

T +6np=""—~ -,
Too + 00 = 550 ¢

and
§_§_ 1 O6F . §= 1 E
B R g E
One gets,

1.2
4 (o) = 22T 5E + ba,,
dt B’E

Where:
1 1

n = .
Yo Y

The term with dw, is the key term here. It expresses the rate of phase slip
between the rf voltage and the beam revolution period. It is a driving term in this
system of first order differential equations. To obtain the beam response functions
take the Laplace transforms, assume zero initial conditions, and solve
algebraically for ¢ to get,

o(s) =

- - 5w,f ),
5%+ w;



where:

w; = (heV)

s

2
W, In| cose,
B8 27E
h = harmonic number, v /w,, .

The other response functions are obtained by solving for 6E, and recalling
that frequency and radius deviations are proportional to 6E through,

R _ 1 OFE
R g E
and
5% . OE
Wy g E
One gets,
b c eV cos ¢
6R(s) = duw, (5) ; = 3
s+ W 27ByLE
ow,(s) = 6w,f ) .
s+ W,



The three beam response functions then are:

B(s) = — : 1.3

1§

Bg(s) = ———— 1.4

— . 1.5

B,(5)

These are response functions of pure, undamped, sines and cosines (the
poles are on the imaginary axis).

Feedback through radial response will not change this in a fundamental
way. To see this, write the closed loop response for radial feedback only.
Consider Figure 1.2 and neglect the inner loop via Be.

kBpg

6R = — —__
1 + kBg

where k represents the gain through the whole loop,
except for the beam response.

Using Equation 1.4 gives,
kb

oR = > R .
s+ w; + kb

If one only had feedback on the radius the closed loop response would not
be fundamentally different from the open loop response. The characteristic

frequency of the system would be shifted up by «; - w? + kb , but the motion
would still be fundamentally undamped.
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The phase feedback loop, however, changes the basic character of the
motion. The closed loop response of the phase loop is (the inner loop of Figure
1.2, not the same k as above)

Using Equation 1.3 gives,

¢ = ks @
s+ ks +wf

This corresponds to damped motion. The linear term in s gives damping,
as in viscosity, friction, or resistance. The poles of this function are complex,
with negative real parts (depending on the sign of k). The phase loop tames the
beam response through this damping so that the radial servo can be a well-
damped system.

The phase loop is the heart of the Beam Control system. As will be shown
below the choice of radius as the main controlled parameter of the machine is
somewhat arbitrary. In certain cases it is advantageous to regulate the frequency
or the absolute phase of the beam, in favor of the radius. But in these cases also
the phase loop still operates to modify the basic beam response to that of a well-
damped second-order system.

The penalty for not damping the beam response with the phase loop goes
beyond its effect on the other loops. They could, in principle, be stabilized with
some sort of loop compensation. It is the beam itself that would be adversely
affected by under-damped, oscillatory motion in the longitudinal phase space of
the synchrotron. The approximation of small oscillations would break down and
non-linear effects from the rf waveform would drive filimentation, emittance
growth, and ultimately beam loss.

- 11 -



1.3 Beam Observation, the Pick-Ups

The key to successful beam control is quality beam observation. There are
two observation systems. One picks up the transverse position of the beam in the
vacuum chamber, and the other picks up its longitudinal position with respect to
the rf accelerating wave. The choice of the technology for these pick-up systems
was driven by the requirements that the outputs should be correct over a wide
range in beam intensity, rf frequency, and bunch shape.

The transverse position (radius) is given by processing circuits employing
the AM-to-PM technique.[7] These circuits are fed by signals from front-end
amplifiers of the Beam Position Monitoring system, which are connected to pairs
of split-cylinder pick-up devices.[8] The AM-to-PM technique is intrinsically self-
normalizing with respect to beam intensity, giving an output that is proportional
to the ratio of the two inputs. Bench measurements have shown the ratio to be
independent of the average signal level over more than three decades. Frequency
independence is achieved by shifting the frequency of the beam signal to a fixed
intermediate frequency of 10.7 MHz before processing. Sensitivity is enhanced
by employing narrowband filters at the intermediate frequency to improve the
signal-to-noise ratio. The processing circuits are located in the ring, and are
electrically connected to the beam pipe at the pick-ups. The output, processed,
position signals are sent to the rf control electronics via fiber optic cables,
operating in a voltage-to-frequency/frequency-to-voltage encoding scheme. The
carrier frequency is 9 + 1 MHz, and the system bandwidth is 50 kHz.

Two pick-ups are used and their average value is taken as the measure of
the radius of the beam orbit. The locations for the two pick-ups are chosen to be
approximately one-half a betatron wave length apart at the nominal tune of the
machine. In this way one gets a first order cancellation of orbit distortions, which
otherwise would be interpreted as changes in the average orbit. The cancellation
of the orbit distortions relies on the assumption that the point of orbit perturbation
does not lie between the two pick-ups. In the Booster the locations A2 and A8
were chosen because there are no intentional orbit bumps between them. In
addition the lattice beta and dispersion functions are approximately equal at these
locations.

The longitudinal position signal is taken from a resistive wall gap type
detector (Wall Current Monitor).[9, 10] This is a passive device and thereby
capable of a very wide dynamic range in beam intensity. It is low impedance
device ( 3 1/8 Ohms) and therefore inherently low noise. The bandwidth of the
pick-up is also very wide, 20 kHz to more than 1 GHz. An important feature of
this type of pick-up is its tolerance to beam lost in the vacuum chamber. This
comes from its large physical size and low impedance (3 1/8 Ohm within its
bandwidth and zero Ohms at dc). The output signal from the Wall Current
Monitor is sent to the rf control electronics via a low-loss (7/8 inch diameter)

- 12 -



semi-rigid coaxial cable. The pick-up is a current measuring device so even for
a fixed amount of beam charge in the machine the magnitude of the signal may
change over a wide range during the acceleration cycle as the beam speed
increase implies a current increase.

- 13 -



1.4 The High Level System

1.4.1 Cavities. Four ferrite-tuned rf cavities are available in the Booster. Two
of the cavities operate over the frequency range 0.6 to 3.0 MHz, supplying 17 kV
each and the other two cavities operate from 2.3 to 5.0 MHz, supplying 45 kV
each. The wide frequency range is provided to accommodate heavy ions pre-
accelerated in the Tandem Van de Graaff, giving ion speeds as low as 0.04c. The
higher frequency cavities are used to accelerate protons from the 200 MeV H-
linac, through the frequency range 2.5 to 4.1 MHz. The 90 kV of total voltage
in this frequency range provides a longitudinal acceptance at injection of 1.5 eV's
in each of three bunches.

1.4.2 AGC Loop. The power amplifiers for the cavities operate in class AB and
are drive modulated. They are capable of over 30 dB of dynamic range. The
overall gain of the power chain is not linear however, due for the most part to rf
level-dependent loss factors in the tuning ferrites. The ferrite losses also depend
strongly on the rf frequency, and in the case of the higher frequency cavities, on
the time rate of change of frequency, df/dt. In order to attain stability and
precision of the cavities’ voltage a feedback system is required. This system is
called the AGC circuit (Automatic Gain Control).

A basic feature of the AGC system is careful limiting of its compliance
while maintaining high feedback gain for precision. Compliance refers to the
range through which the feedback is allowed to modify the drive power to the
cavities in order to maintain the desired voltage. A typical failure mode of high
power AGC systems is an over-power situation (often to the damage level) when
the requested cavity voltage cannot be attained, or worse, the measurement of the
voltage fails and the AGC system runs up the drive power to its maximum
compliance.

In this AGC system the compliance is controlled in the following way. An
operating point adjustment sets the factor by which the AGC system is allowed
to increase the drive power, typically a factor of two (+3dB). The same factor
applies no matter what is the absolute level. In this way it is impossible to get a
high drive power when a low value of cavity voltage is requested, irrespective of
whether the AGC feedback is satisfied or not. On the power decreasing side, the
range is not restricted, it is always at least -60 dB.

Since the range of power excursions allowed to the AGC system is
limited, a programmed feedforward circuit automatically sets the nominal value
of the drive power from a measurement of the requested cavity voltage and
frequency. A "personality” curve has been measured for each cavity and is stored
in a look-up PROM. The PROM is addressed by a digitized value of the
requested cavity voltage. The data in the PROM scale the drive power. The
PROM holds families of gain curves for different rf frequencies. The data in the
PROM is addressed in a two-dimensional fashion, with one axis being voltage and
the other axis being frequency.

- 14 -
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Figure 1.3. Block diagram of the Automatic Gain Control (AGC)
system. The system has limited compliance via block b, and
feedback loop gain independent of rf level via block d. The
magnitude circuit, block e, calculates the rf magnitude directly as
shown and does not use rectifier diodes and a low pass filter which
would limit its bandwidth.
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Figure 1.3 shows the components of the AGC system; a. the power

amplifier and cavity (VSt . is the total voltage of the cavity, as distinguished

ation . .
from the voltage per gap or net voltage per turn around the ring), b. a section of
the output mixer (see Section 3 below, Heterodyne System), c. the cavity level
controller, with PROM, d. the loop amplifier, e. and the rf magnitude calculating
circuit. The symbols indicating addition, multiplication and division are to be
taken literally.

The output level of the output mixer is set by two linear modulators in
cascade. The first sets the nominal drive level from data in the PROM. The
second modulates the drive level to implement the AGC function. Indicated in the
figure is the limiter that sets the operating point and determines the output level
when the AGC error is zero, and also the range through which the drive may be
increased. The figure shows that when the AGC error is negative the drive power
can be decreased to zero. Operationally one chooses an operating point with the
feedback loop open and then adjusts the rf gain of the power chain to get
agreement between the actual cavity voltage and the requested voltage, Vyp.

The effect of the linear modulators in cascade is to make the loop gain of
servo system proportional to the rf voltage level in the cavity. Since the maximum
gain is limited (by time delays and cavity response time) the loop’s performance
would be poor at low cavity voltage. To see why the loop gain would scale with
rf level one calculates the loop gain by considering the result of a modulation
injected into the loop at the switch, in Figure 1.3(d).

Let V, be the injected signal and V,'be the resulting output of the loop
amplifier. (G is the gain of the loop amplifier). Bold symbols represent the
magnitude of rf signals.

\A = G(Vemp - Vad = G(Vemp - HY),
Vs = k(Vop + Ve)VdVrf
=V, = G Veyp - GHK(V,, + VJV,V,,

Loop Gain = dV.'/0V, = -GHkV,V,,

whenV, = 0=V, = kV_ V.V,

that is k = V,/V, VeV,

Therefore, Loop Gain = - GH V/V,.
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To offset this effect, the loop amplifier contains a scaling circuit that
adjusts its gain according to

Ges) = G(s) |

CMD

Since V¢yp is nominally equal to HV, the overall loop gain is therefore
independent of cavity voltage level. Using Vg, is preferable to V, because V, is
affected by the loop amplifier gain and so an unintended feedback loop would be
created if V, were used.

~ From the diagram of Figure 1.3 one sees that the scaling is done in a two
step process. First, 0.25 Volts/Vyp is calculated with an analog divider. The
numerator is set, via a stable reference, to 0.25 volts. The denominator is taken
from the reference input and limited via a precision clamp circuit to 0.25 <
V denominator < 3.0. This gives a 20 to 1 dynamic range over which the AGC loop
gain is constant. The maximum cavity voltage of 50 kV/Station limits the Vyp
to less than 5 volts. Below Vyp= 0.25 Volts (Vg,i0n = 2.5 kV/Station) the loop
gain falls, but the loop stability is not compromised by the reduced gain.

After the divider, a linear multiplier scales the gain by (0.25/Vyp). The
process is done in two steps (first divide and then multiply) because the
bandwidth of a multiplier is much greater than a divider (a divider has a feedback
loop within it). In this way the divider is not in the path of the AGC feedback
loop and only has to handle the relatively slow variations of Vyp. The multiplier
bandwidth exceeds 300 kHz.

The cavity voltage, V, is measured with capacitive dividers, attached
directly to one of the acceleration gaps. Scale factors are set to 5 kV/gap/volt for
Band III cavities and 10 kV/gap/volt for Band II. Since there two gaps per station
for Band III and one gap per station for Band II this gives 10 kV/station/volt in
both cases so that the signals can be combined directly to get the total voltage per
turn.

The magnitude circuit does not use a diode detector. Instead it uses fast,
four-quadrant, linear multipliers to compute V> and V2, where V, and V, are
obtained from a quadrature hybrid transformer. Adding V.? and V.2 and
calculating the square root via a high performance square rooter (Analog Devices
AD 538) gives an output linearly proportional to the cavity voltage level. The
calibration of the circuit is adjusted to 10 kV/Station per volt out. The advantages
of this technique are linearity over a wide dynamic range and high detection
bandwidth, irrespective of rf frequency (no filtering of a rectified sinewave is
required).
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The dynamics of the AGC loop are controlled by the loop amplifier, G(s)
in Figure 1.3. Two effects have to be accommodated: one is the delay between
loop amplifier output and magnitude circuit output, and the other is the frequency
response of the cavity rf resonance to amplitude modulations of the drive signal.

There are two sources of delay. Cable delays amount to approximately 1.4
microseconds. The magnitude circuit has an inherent delay of approximately 1.5
microseconds due to the square rooter.

The cavity amplitude modulation frequency response was measured with
the Dynamic Signal Analyzer HP3562A at various rf levels and frequencies.
Figure 1.4 is an example at 30 kV/station in a Band III cavity. The response was
found to be well characterized by a single pole roll-off with a corner frequency
in the neighborhood of 30 kHz, and depending relatively weakly on rf frequency
and voltage. The near independence of rf frequency may seem surprising at first
thought since the time constant of the rf resonance decreases with frequency
according to, 7 = (2 Q/w). However, in the first approximation (constant loss
factor of the ferrites) Q increases with frequency, Q = wRC, canceling the
frequency dependence.

Performance specifications for the AGC system are given by the following
considerations. (1) Good dc accuracy for control of the cavity voltage. This
would be very important, for example, in a cavity counter-phasing operation. A
value of 40 dB (1% error) at dc was taken. (2) Significant loop gain at twice the
synchrotron frequency. This is important for the stability of high intensity beams.
Bunch quadrupole mode oscillations can be driven by beam loading perturbations
of the cavity voltages at twice the synchrotron frequency. The AGC system
should suppress these perturbations by at least a factor of 10. This implies a loop
gain of >10 dB at 14 kHz. (3) Overshoot and ringing on the step response of
cavity voltage should be minimized since fast variation of the cavity voltage can
be non-adiabatic and lead to emittance growth. This suggests a conservative phase
margin of 45 degrees or greater.

Meeting these specifications requires a loop compensator with a low
frequency pole and a high frequency zero. The AGC compensator was
implemented with the conventional PID (Proportional plus Integral plus
Derivative) characteristic. Roughly speaking the derivative term gives a zero to
offset the cavity pole and delay. The integral term provides the high gain at dc,
and the proportional term is used to set the gain around twice the synchrotron
frequency.

Figure 1.5 is Bode plot of a measurement of the open loop gain for the
system with a PID compensator given by,

1
k(1 + L ,
G(s) = k,(1 + s + Tp)

where k, = 40, 7; = 8 x 10%, 75 = 2 x 10%5s,
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system. PID constants are given in the text.
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1.4.3 Phasing of the Cavities. Table 1.1 gives the angular locations () of the
four cavities on the ring with respect to the longitudinal pick-up (wall current
monitor at D6). The rf phase difference, modulo 2w, at various harmonic
numbers is also shown.

TABLE 1.1
" Cavity Frequency Angle (°) Phase (°)
(MHz) )

h=1 h=3 h=6 | h=24 | h=48
E6 2.3-50 58.02 174.1 | 348.1 | 312.5 | 265.0
A3 0.6-3.p 155.15 105.4 | 210.9 | 123.6 | 247.2
A6 2.3-5.0 177.39 172.2 | 344.3 | 297.4 | 234.7
B3 0.6-3.0 214.72 284.2 | 208.3 | 113.3 | 226.6

From Table 1.1 one can see that the relative rf phase of each cavity with
respect to the pick-up is unique and furthermore that it changes significantly with
rf harmonic number. To accommodate this effect each cavity drive circuit
contains a fixed, frequency-independent phase shifter to set the drive phase for
h=3, and a digitally programmed phase shifter whose phase changes with
harmonic number, according to ¢, = hé.
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1.4.4 Cavity Tuning Servos. The cavities are tuned to resonance by biasing the
ferrites. Cavities A6 and E6 require 1200 A for the maximum frequency, and
cavities A3 and A8 require 200 A. Each cavity has its own dc power supply and
series-pass transistor bank for regulating the tuning current. Feedback regulates
the tuning current as the rf frequency changes.

Figure 1.6 is a block diagram of the tuning system. The feedback consists
of three nested loops. The first loop, labeled LEM1 (LEM is the trade name of
the dc-coupled current transformer used to sense the current), regulates the
current into the driver stage of the transistor bank. The second loop, labeled
LEM2, regulates the current out of the bank.

The third loop regulates the rf phase of the voltage at the anode of the
final power tube compared to the voltage at the grid of the tube. The voltage at
the grid is in phase with the current at the anode so that requiring these two
voltages to be in phase is equivalent to requiring that the current and voltage at
the anode are in phase. This is equivalent to requiring that the load of the tube
is real. Without beam loading this insures that the cavity is on resonance. Under
beam loaded conditions this will miss-tune the cavity such that the reactive
component of the beam current will cancel the imbalance of circulating current
between the inductive and capacitive branches of the cavity resonance. The power
amplifier will be able to deliver its maximum power when its load appears real.

The benefit of the two inner loops is increased bandwidth and smaller
residual tuning error. Feedback on the current has the effect of making the
transistor bank a better current source, that is, a higher output resistance. Since
the load is essentially inductive the higher output resistance leads to a lower L/R
time constant and greater bandwidth. The load is, in fact, not pure inductive. RF
bypass capacitors in the cavity circuit appear in parallel with the inductance and
cause a resonance at about 20 kHz. This resonance in the load circuit complicates
the servo design.

The block diagram shows two "shapers". These are feedforward inputs to
the system that approximate the tuning current from a measurement of the rf
frequency, f-to-V, and frequency change rate, df/dt. The cavity shaper realizes
a parameterization of the cavity tuning curve, and so it is a reference to the
LEM2 loop, which controls current out of the transistor bank. The bank shaper
accommodates the non-linear characteristic of the current out of the transistor
bank as a function of the driver current into the bank. It therefore is a reference
to the LEM1 loop. The shapers minimize the error signals within the loop due to
non-linearities and therefore provide more compliance in the error signals for
beam related corrections.

A "ramp-down" circuit is shown, triggered by three possible events; end
of the rf cycle, a system fault indication, and preparation for a switch of
harmonic number. When triggered, the ramp-down circuit holds the level of the
command to the current source and sums with it a decreasing linear ramp to zero.
The rate of the ramp is set to match the maximum allowable L dI/dt voltage for
the transistor bank.
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2. THE FREQUENCY PROGRAM

2.1  Revolution Frequency Table

The frequency program is the best estimate of rf frequency as function of
the dipole magnetic field in the ring. The magnetic field is measured continuously
throughout the acceleration cycle to the precision of 0.1 Gauss with the "Gauss
Clock".[11] The measurement is made with a long search coil inside the vacuum
chamber of a special, reference magnetic, that is in series with the string of all
the magnets in the ring. Since the reference magnet is not in the ring the search
coil can be placed in the same volume of the magnet aperture that the beam
occupies. This constitutes a very good sample of the average dipole magnetic field
that the beam feels. The absolute accuracy of the Gauss Clock is better than
0.05%.

From the measurement of the average magnetic field the average
momentum of the beam can be calculated, according to,

cP = 0.29979 gBp

where p is dipole magnet bending radius, meters;
B is dipole magnetic field, Tesla;
q is the beam charge;
cP is beam momentum, GeV.

The momentum determines the speed, through,

1
B =
J1 + (E,/cP)?
where E, is beam rest energy.

The path length of the orbit then determines the revolution frequency. The path
length, C, is parameterized by the effective radius of the orbit, R; C = 2#R. To
a very good approximation R equals the physical average radius of the orbit, even
though the orbit is not strictly a circle. The inaccuracy of the approximation is
compensated in the running machine by the radial position feedback loop.

The radius of the orbit, R, and the Gauss Clock calibration coefficient, k,
are not single numbers, however. They are functions of the magnetic field itself,
R(B), and k(B). In this way one anticipates the desire to change the orbit radius
during the acceleration cycle, and allows for the compensation of non-linearities
in the Gauss Clock calibration. The functions, R(B) and k(B), are created via the
interactive graphics function editor program. Figure 2.1 is sample of computer
screen used to specify the functions in the rf Beam Control program.
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The functions are used, off-line, to calculate a table of the revolution
frequency as a function of magnetic field. The table is calculated to an accuracy
of 24 bits and loaded into a Random Access Memory. As the magnetic field goes
through its cycle the Gauss Clock sends a pulse every time the field increases (up-
counts) or decreases (down-counts) by 0.1 Gauss. The up-counts and down-counts
are used to increment and decrement a pointer to the RAM locations which store
the revolution frequencies. This on-line tracking of changes in the magnetic field
keeps the frequency program within a few kiloHertz or the actual beam
frequency.

When the table is calculated it is assumed that location zero corresponds
to zero magnetic field. This means that some locations in the table are never
addressed, but on the other hand, no assumptions need to be made when the table
is calculated about the value of the magnetic field when the beam is injected.

Two run-time adjustments are provided for making small corrections to
the Gauss Clock calibration. A rate multiplier scales the frequency of pulses from
the Gauss Clock before they increment(decrement) the pointer to the RAM. It is
a 12-bit device, of which the 8 least significant bits are adjusted, giving a range
from one to (212 - 28)/212 = 0.9375. The rate multiplier is a pulse swallower that
spaces out the swallowed pulses (up to 256 out of 4096 ) to minimize the effect
on the duty factor of the pulse train. This effectively modifies the average value
of the Gauss Clock calibration coefficient, k.

The second run-time adjustment changes the effective zero of the Gauss
Clock calibration curve. Sine the Gauss Clock is an integrating device
(incrementing and decrementing a pointer), it must be re-zeroed periodically. This
is done by down loading a pre-set value to the RAM pointer at the beginning of
each machine cycle. The Gauss Clock pulses are not allowed to increment
(decrement) the RAM pointer until at trigger (RF_TRACK) arrives from the
machine absolute magnetic field measuring system (Gauss Time Line), indicating
that the magnetic field equals the value pre-set in the pointer register. After that
the pointer will follow changes in the magnetic field until the end of the machine
cycle. By changing the pre-set value of the pointer ("Bgrarr’) one effectively
changes the zero value of the Gauss Clock calibration curve.

The nominal value of the Gauss Clock calibration is 0.1 Gauss per pulse.
The RAM has 64K locations giving a range of 6.4 KGauss in the frequency
program table. To go beyond 6.4 kGauss the Gauss Clock pulse train can be
divided by 2, 4, or 8. The divide ratio is specified before the table is calculated
with the graphic function shown in Figure 2.1. When the table is calculated the
incremental value of magnetic field for each location is calculated from
k(B)x(divide ratio), and the divide ratio is stored in two bits at that location. At
run-time the two bits are used to control a divider circuit on the incoming Gauss
Clock. The divide ratio can be specified in eight equal regions in the range of the
magnetic field. The maximum magnetic field is calculated from the maximum
expected beam momentum, an input parameter to the frequency program
calculation code.
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2.2 RF Frequency Generation

The revolution frequency is a fundamental property of the beam, but the
rf frequency can be chosen to accommodate the capabilities of the high level rf
system by choosing the harmonic number. In fact the system provides for the
possibility of two different harmonic numbers operating simultaneously. This is
useful for various rf gymnastics such as bunch coalescing or bucket shape
manipulations. Two Direct Digital Synthesizers can generate two RF frequency
programs from the same revolution frequency table with different harmonic
numbers. Two four-byte registers hold up to four harmonic numbers each, these
can be selected during the cycle by timing triggers. The revolution frequency data
are multiplied by the harmonic numbers (8 bits) to produce the rf frequency data
which are sent to the two synthesizers. The synthesizers are controlled with a 24
bit word, giving a frequency resolution of 3.75 Hz.

2.3 Cavity Band Control

The high level rf system comprises two pairs of cavities, operating in two
frequency bands, 0.6 to 3.0 and 2.3 to 5.0 MHz. As the tf frequency crosses
from one band to the other, one pair of cavities must be ramped down in voltage
while the other is ramped up. This ramping is naturally a function of frequency,
not of time, because the frequency is determined by the magnetic field whose
time dependence is arbitrary. Data from the frequency program is used to control
the voltage of each cavity.

For each cavity there is a look-up table that is addressed with the 12 most-
significant bits of the rf frequency data. The 8-bit words at each location are sent
to the Cavity Level Control circuit where the are used in a multiplying DAC to
scale the Voltage Command function. The Voltage Command function specifies
the desired total rf voltage supplied by all cavities and is a function of time. The
scaling coefficients stored in the table are constrained to sum to one so that the
sum of all cavity voltages equals the Voltage Command function.

V.= a( Vo

where V, is the AGC reference for cavity i and a(f) is the band
control coefficient.

> aff) =1

i=1
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In this way the operator need only specify the desired rf voltage as function of
time and the circuitry automatically allocates the proper fraction to the total
among the individual cavities as the frequency changes.

The eight most-significant bits of the rf frequency word are sent to the
Cavity Level Controller where they address the frequency coordinate of cavity
personality PROM (see Section 1.4.2).

2.4  The Local Oscillator Frequency

Before the rf frequency data are sent to the synthesizers a fixed number
corresponding to 10.700000 MHz is added to the digital word. This causes the
synthesizers outputs to be always 10.7 MHz above the actual rf frequency
program. The signal then serves as the local oscillator in the hetrodyning system
described below in Section 3.
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3. HETERODYNE SYSTEM

3.1 Motivation

The successful operation of the beam control system depends on
effectively damping the coherent synchrotron oscillations. This requires a high
quality measure of the phase of the beam bunches with respect to the total rf
voltage. Since the details of the bunch shape can vary greatly during acceleration,
the meaning of the "phase" of bunch signal can be ambiguous. Operationally,
some definition of the phase of the beam must be taken, and some definitions are
more effective than others. For example, such definitions as the time of the peak
of the pulse or the time of the zero crossing of the derivative of the pulse can
change their significance as the bunch shape changes.

To arrive at a useful definition the first point to realize is that there must
necessarily be some delay. It is impossible to make a signal that indicates
promptly when the average of the bunch is occurring because the average is
determined in part by signal from the bunch that occurs after the average. Delay
on this time scale (1/fy), however, is not detrimental to the capabilities of the
phase feedback loop. The beam cannot respond faster than a time on the order of
the synchrotron period.

The definition used in this system is, the phase of the beam is the phase
of the single Fourier component of the bunch signal at the fundamental rf
frequency. Since the Fourier spectrum of the bunch signal is a discrete-line
spectrum, this definition amounts to filtering the spectrum such that only one line
remains and then measuring the phase of the resulting pure sine wave (with
respect to the phase of the pure sine wave of the cavities’ voltage). The
bandwidth of the filter used determines the effective averaging time over which
the phase measurement is made. As long as only one line of the spectrum is
selected the details of the bunch shape will not affect the phase measurement.

The choice of the filter bandwidth (averaging time) depends on the
revolution frequency and the bunch pattern in the ring. If the ring is full of
evenly-spaced equal bunches then the spectrum will have lines only at the
harmonics of the rf frequency. If the bunch populations are not equal or not all
rf buckets are filled then the line spacing will be the revolution frequency. In the
Booster we have a wide range of revolution frequencies (60 to 930 kHz for Gold
ions and 800 to 1370 kHz for protons) but the line spacing in the beam spectra
are not very different. This is because for heavy ions the ring is always full of
equal bunches (line spacing = f; > 800 kHz) while for protons we may have
one, two, or three bunches but the revolution frequency is > 800 kHz. For this
reason we take a filter bandwidth of 300 kHz for all beams. This bandwidth
brings a averaging time on the order of 3 microseconds and is a significant
component of the total delay in the phase feedback loop (see below, Section
4.1.2).
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The motivation for using the heterodyne technique is so that a simple filter
with fixed center frequency can be used, even though the rf frequency sweeps
over a wide range. The heterodyne technique continuously shifts the beam signal
and the signal from the cavities into a fixed-frequency band, centered at the filter
center frequency.

3.2 Hardware

3.2.1 Principle of Operation. Figure 3.1 shows the principle of operation of the
heterodyne system. A Local Oscillator signal is generated in a direct digital
synthesizer with frequency 10.70000 MHz above the frequency given by the
frequency program (see above, Section 2.4). A signal from a Voltage Controlled
Oscillator whose nominal frequency is 10.70 MHz is subtracted from the LO
signal in an "output mixer".

The resulting frequency is the rf frequency which drives the cavities. The
return signal from the cavities, which monitors the actual net cavity voltage, is
combined in the "input mixer" with the LO to produce the Intermediate
Frequency, according to IF = LO - RF. The beam pick-up signal is mixed with
the LO also to produce another signal at the IF frequency. These two IF signals
are then filtered with the filters described above and their relative phase is
measured with the phase detector working at 10.7 MHz.

The feedback loop of the beam control system is closed by passing the
phase detector output through the appropriate loop amplifier, whose output
controls the frequency of the VCO. This makes small deviations of the cavity
frequency with respect to the frequency program and the instantaneous beam
frequency. On the average the beam frequency equals the cavity frequency so that
the two input signals to the phase detector are the same frequency.

The details of the output mixers and the input mixers are different. Their

functions differ in two important ways: signal amplitude dynamic range and
output signal frequency range. The signal levels of the output mixer are
essentially fixed, (a linear modulator follows the output mixer to control cavity
voltage). The frequency of the output signal, however, varies over a factor of ten,
0.5 to 5.0 MHz. On the other hand for the input mixer, the signal in from the
beam varies over a very wide amplitude range, from up to 3 V,, to below 1
mV,,, while the output frequency is essentially constant, 10.7 MHz.
3.2.2 Input Mixer. The input mixer is implemented with a diode ring double-
balanced mixer (Mini-circuits TAK-3) used in the single sideband configuration.
The TAK-3 is a high level mixer with a +17 dBm LO drive, giving a maximum
of +14 dBm level at the rf port. Some pre-filtering is done before the mixer to
reduce harmonics of the beam and cavity signal at the intermediate frequency,
10.7 MHz. Otherwise, some fraction of the 10.7 MHz signal would couple
directly through the mixer and beat with the desired 10.7 MHz signal to cause
distortion. The unwanted sideband is 2f,; (> 1 MHz) away and is easily rejected
by the narrowband filter.
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Figure 3.1. The principle of operation of the heterodyne system. This technique
allows the phase detector and filters to operate at a single frequency, 10.7 MHz.
LO stands for Local Oscillator. IF stands for Intermediate Frequency. DDS
means Direct Digital Synthesizer.
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3.2.3 Output Mixer. For the output mixer spectral purity is important. The
output frequency can be as high as 5 MHz but the unwanted sideband can be as
low a 22 MHz (when LO = 11.2 MHz and IF = 10.7 MHz). A filter that
strongly rejected 22 MHz, by 40 dB for example, would have an important effect
at 5 MHz, amplitude and phase. For this reason the output mixer uses the double
sideband technique implemented with active four-quadrant analog multipliers
(Analog Devices AD834).

Performance of the double sideband mixing is enhanced by the capabilities
of the direct digital synthesizer that generates the Local Oscillator signal. Because
the LO is generated by direct synthesis it is possible to create both orthogonal
components (sine and cosine). The two components remain equal in amplitude
and at 90 degrees throughout the frequency range of the LO, a property very hard
to achieve with analog techniques. The result of high quality LLO and the linear
multipliers is that the unwanted sideband is down by more than 40 dB and the
intermodulation products are much less than double-balanced mixers would give.
A final filter, lowpass with corner frequency (3 dB) at 10 MHz cleans up the
debris at high frequencies. Some spectra of the output signal of the output mixer
are shown in Figure 3.2 One can see that the unwanted spectral lines are down
by more than 50 dB from the desired output.

The AD834 is also used as a linear modulator in the output stage of the
output mixer. The range of the modulator can be seen in Figure 3.2 to be greater
than 80 dB at 4.1 MHz and 60 dB at 0.5 MHz. Figure 3.3 illustrates the linearity
of the modulator and the magnitude circuit that detects the cavity voltage.

3.2.4 Voltage Controlled Oscillator. The VCO must be fast in order that it not
introduce unnecessary delays into the phase feedback loop. The unavoidable
delays in the phase loop are in the order of 4 microseconds (cable length, cavity
response, filter group delay). Speed of response (control bandwidth) in a VCO
is a compromise with stability. The VCO used here, the Vectron Model VC372
was chosen for very high bandwidth, > 300 kHz. Figure 3.4 shows a measure-
ment of the step response of the VCO. The rise time for a 7.2 kHz step (large
signal) is less than 1.0 microsecond. The stability, on the other hand, is not good
enough to control the RF frequency at beam injection to a small fraction of the
bucket height, especially for heavy ions. To retrieve stability a 10.7000 MHz
crystal oscillator is used to simulate the beam signal before injection. The phase
loop then drives the VCO to exactly the crystal frequency, causing the rf
frequency to follow precisely the value of the frequency program. To avoid a
transient when switching from the crystal to the beam signal, a second phase
detector is used and it is the output of the phase detectors that is switched into the
phase loop amplifier.

3.2.5 Phase Shifters. Figure 1.1 shows two phase shifters before the phase
detector, one for the stable phase angle, ¢, and one for the radial loop, ¢,. The
phase shifters are situated at this point in the circuit because the IF frequency is
essentially constant, 10.7 MHz, and phase shifter performance is generally better
at fixed frequency.
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Figure 3.2. Some spectra of the output signal of the Output Mixer. In a. and b.
the output frequency is 4 MHz, in c. and d. it is 2.4 MHz, and in e. and f. it is
0.5 MHz. In a., c., and e. the output is maximum and one sees that the spurious
components are more than 50 dB below the fundamental. In b., d., and f. the
output in turned off by the linear modulator. One sees that the range of the
modulator is more than 80, 70, 60 dB at 4, 2.4 and 0.5 MHz respectively.
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Figure 3.3. Performance of the linear modulator in the Output
Mixer and the Magnitude circuit. The top trace is the control input
to the modulator. The bottom trace is the rf output. Superimposed
on the positive envelope of the rf output is the output of the
magnitude circuit.
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Figure 3.4. The step response of the Voltage Controlled Oscillator
(VCO), measured with the HP5372A Frequency and Time Interval
Analyzer. By averaging 100 measurements a frequency resolution
of 1 kHz is obtained with a time resolution of 200 ns. This step
response implies a bandwidth of over 500 kHz.
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The phase shifter modules have three modes for determining their phase
shift. For mode one, a front panel pot sets the operating point, or dc phase shift.
It has a range of + 200°. The operating point adjustment is used to accommodate
the rf phase difference between the longitudinal pick-up and the rf cavities.

One of the other modes can be summed with the dc phase shift, providing
an additional + 200°, so that there is always a > 360° range about the operating
point.

Mode two is an external voltage control with 50°/Volt sensitivity and
> 100 kHz bandwidth. Conformance to linear control is + 4° over the whole
operating range. External voltage control is used in the ¢, phase shifter and
driven by the radial loop amplifier, see Figure 1.1.

Mode three gives a phase shift whose sine is proportional to the ratio of
two inputs. The angle in this case is limited to the first and fourth quadrant and
saturates to + 90° when the magnitude of the ratio becomes greater than one.
This mode is used in the phase shifter for ¢,.

The phase shifter for ¢, is a feedforward function. Since the phase
feedback loop keeps the output of the phase detector zero, the phase between the
bunch and the cavities’ voltage will be the negative of the phase shift from the ¢,
phase shifter (assume for the moment that the ¢, phase shifter is at zero, its
nominal value). The phase shifter, therefore, generates a phase shift equal to the
negative of ¢,. The angle is calculated with analog circuits (Analog Devices
ADG639 universal trigonometric converter) within the phase shifter module,
according to the relation,

Sin ¢, = 2wRo(B/V,) 3.1
where Bis the time derivative of the average magnetic field
[Tesla/second];

V is the magnitude of the total rf voltage per turn [Volts];
R is the average orbit radius;
p is the bending radius to the dipole magnets.

Note that neither the charge nor the mass of the particle being accelerated
appear in this relation. This means that the hardware that computes the angle does
not need information about species or charge state, q, of the particle. This comes
about because the relation for ¢, expresses a balance between the rate of energy
gain from the rf cavities,

L - 2 qv, Sine,

rev
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and the rate of momentum gain necessary to match the increasing magnetic field
strength,

P, B
dt dt

The two are connected by the differentials of energy and momentum, dE =
Bd(cP). The charge cancels out and the mass is implicit in the momentum. The
beam speed and revolution period are related by T,, = (27R)/8c.

The B signal is obtained from a single turn winding on the pole tip of the
reference dipole magnet. The calibration of this signal is 0.275 volts/(Tesla/sec-
ond). A low-pass filter with a corner frequency of 500 Hz eliminates high
frequency noise (presumably electric coupling between the pole winding and the
main magnetic current bus).

The magnitude to the rf voltage is taken from the command to the cavity
level control system. It has a calibration constant of 10 kV per turn/Volt. The
command signal is used, as opposed to a measurement of the actual magnitude of
the vector sum of the cavities’ voltage, because under beam-loaded conditions the
angle could affect the voltage and if the voltage affected the angle then the
possibility of an instability would exist. With these calibration constants the phase
shifter realizes Equation 3.1 with R = 32.1 m and p = 13.7 m.

The benefit from this feedforward function is that the other phase shifter,
¢., will have a small typical value. Since the value of the ¢, phase shifter is
determined by the radial error times the gain of the radial loop, and the gain of
the radial loop cannot be made arbitrarily large (see below), a small ¢, means
small radial error.

3.2.6 LO for Radius Measurement. As mentioned above, the circuit that
processes the pick-up electrode signals, to produce a measurement of the beam
position, also operates at 10.7 MHz. This is done for the same reason as in the
phase measurement, so that the particulars of the bunch shape do not influence
the result. A narrow-band filter at 10.7 MHz averages out the details of the bunch
shape. The same LO used in the output mixers is sent to the radius processing
circuits (located in the Booster tunnel) and used to convert bunch signal to the IF
frequency before filtering. Pre-filtering is also used here, see Section 3.2.2
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4. BEAM CONTROL FEEDBACK LOOPS

4.1 Phase Loop

4.1.1 Principle of Operation. The function of the phase loop is to modify the
dynamics of the beam response to modulations in the rf frequency and amplitude
in such a way that the other loops, radius, synchronization and frequency, can
perform effectively. In Section 1 we examined the beam transfer function relating
variations of beam phase to variations in rf frequency and found that radial
feedback applied directly to the rf frequency would result in an undamped type
behavior. Damped behavior is obtained through the phase feedback loop and the
other loops then regulate the well-damped system. _

To see how damping is achieved combine Equations 1.1 and 1.2 by
differentiation.

d*e _ 2 d
ar e gler)

where wy is the synchrotron frequency.

The system will be damped if the first derivative term operates on ¢,
which we can realize by feedback. When the rf frequency deviation is made
proportional to the phase, éw = -Ke, then we have the equation of motion of
a damped harmonic oscillator,

iz_‘f+[(£d_f+w2¢=0_ 4.1

dt2 dt d
By making K large, we can control the damping rate. When K = 2w, the motion
is critically damped and no oscillatory behavior occurs. For the phase loop we
want to make K as large as possible, much larger than the value for critical
damping, not because this highly over-damped motion is "sluggish" but on the
contrary, because it will make the value of ¢ return quickly to zero after being
perturbed by an input. It is important to remember that ¢ is the phase of the
bunch with respect to the instantaneous stable phase angle. We want the system
to be "sluggish" with regard to changes in the stable phase angle or frequency,
and this will be the case when ¢ is forced by strong damping to be always close
to zero.

Figure 1.1 shows the implementation of this concept. The phase error, ¢,
is amplified ("K") and applied to the frequency control input of the VCO (6w,g).
The technical challenge then in making a well functioning phase loop is to make
the proportionality constant, K, as large as possible at high frequency. The
practical limitations to this come from the speed of response of the rf cavities, the
delays in cables to and from the tunnel, and the group delay in the narrowband
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filter of the phase measuring circuit. The actual phase detector circuit itself and
the VCO have been made very much faster than these other components and do
not enter into the analysis.

The design process consists of obtaining the best transfer function for the
loop amplifier, D (s) in Figure 1.1. The constant K, above, is the product of
D,(s), the VCO constant, k,, and the phase detector constant, k..

4.1.2 Design of the Phase Loop. Figure 1.2 shows the phase loop regarded as
a servo system. The inner loop is the phase loop with reference input ¢, and
output dw,. The phase detector constant k, characterizes the summing junction
where the beam phase is compared to the reference phase input ¢,. In the more
literal diagram of Figure 1.1, ¢, is the value of the phase shifter controlled by the
radial feedback amplifier.

The open loop transfer function for the system, in the Laplace transform
variable, s, is,

G(s) = kk, C(s) D(s)B(s)e ™ 4.2

where C(s) is the transfer function of the cavities’ frequency modulation

response;

74 is the total delay;

B,(s) is the beam transfer function, Equation 1.3;

D,(s) is the transfer function of the loop amplifier (loop
compensator), to be determined below;

k, is the phase detector constant, 0.5 Volt/radian;

k, is the VCO constant, 2.5 x 10° s'/Volt.

We can modify the open loop transfer function by selecting the characteristics of
D (s). The connection between the system’s behavior and G(s) can be seen by
considering the closed loop transfer function,

bw,(5) ) k k, C(s) D (s)e e .

®.(5) 1+ G(s)

The roots of the characteristic equation,
1+G(s)=0
are the poles of the closed loop system and determine the dynamics of the motion.

This follows from the fact that the inverse Laplace transform of dw.{s)/¢.(s) is
given by the sum of the residues at these poles.
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The root locus technique is beneficial in visualizing how the poles depend
on the gain of the feedback loop, that is, the magnitude of K in Equation 4.1.
Root locus is formulated by writing G(s) as the quotient of two functions and
scaled by the gain parameter, g,

- o, N
G(s) g—D—(S—)' .

The characteristic equation is then
D(s) + gN(s) = 0.

The roots of this equation depend on g, and the root locus is a map of loci
of the roots as the gain varies from zero to infinity. The roots will range from the
poles of G(s) (D(s) = 0, g = 0) to the zeros of G(s) (N(s) = 0, g = infinity).

The root loci of Figure 4.1 illustrate the importance of the cavity
response, C(s), and the time delay, 74. In Figure 4.1(a) C(s) = 1, 7, = 0, and
k kD (s) = g.

G(s) = g B(s) = § ——; .

5%+ W]

In this case we have zeros at the origin and infinity and a pair of poles on
the imaginary axis at + jw,. Critical damping occurs when the poles coming from
the + jw, converge on the negative real axis. As g increases the roots split, one
going to the origin and the other going to negative infinity as g goes to infinity.
In this over simplified case one would make g (K above) arbitrarily large (until
the model broke down due to saturation effects).

To see the significance of these two roots consider the closed loop transfer
function for the frequency change resulting from a input at ¢,.

60)’1(3) - g
e(s) 1+ gBJs) 4.3
g(s? + o)) '

2
52+ g5 + W,
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Figure 4.1. Root loci of the phase loop, a. without including cavity
response and time delay, and b. cavity response and time delay
included. In b. the poles of the synchrotron motion never reach the
negative real axis. Instead, they turn and go into the right half-
plane at high gain, implying instability.

- 41 -



For large g (compared to the synchrotron frequency) the inverse Laplace
transform for dw,(s) in response to a step in ¢ (s) = @ /s is

bw,s /o, = w?t +ged .

The first term, due to the pole near the origin, is not very interesting. It
gives the linear ramp in frequency that results from a change in the energy gain
per turn that occurs when the bunch moves to a new phase of the rf wave. The
ramp rate depends on the synchrotron frequency only and not the gain. This slow
signal will generally be the error signal to one of the other feedback loops,
radius, frequency, synchronization.

The second term shows the action of the fast phase feedback. A step on
the ¢, input will instantaneously change the rf frequency by an amount given by
the forward gain and the VCO’s control constant, dw,{0) = g¢,. The feedback
will then force the rf frequency deviation back to zero with a time constant
inversely proportional to the gain. This has made the rf frequency a slave to the
beam, and the greater the gain the tighter the coupling between the beam
frequency and the frequency of the rf cavities.

Unfortunately, neglecting the cavity response time and the time delays in
the hardware is not a practical approximation.[12] Figure 4.1(b) shows the root
locus when these effects are included. The model of the cavity frequency
modulation response is a single pole at s, = 27 20 kHz, augmented with a delay
of 7 = 2.0 us.

e =75

O = s

The cavities’ modulation response was measured at various rf frequencies
and voltage levels. The measurements were made by driving the VCO with the
output of a Dynamic Signal Analyzer, HP3562A, and detecting frequency
variations returning from the cavity with a fast frequency discriminator. The full
cable lengths and narrowband IF filter were included in the measurement. Figure
4.2 shows a typical result, part a is the magnitude and part b is the phase. The
frequency axis spans 125 Hz to 100 kHz. The magnitude plot shows the typical
6 dB/octave roll-off of a single pole response, with a break frequency at 20 kHz.
The phase is plotted against a linear frequency axis. One can see that the phase
depends linearly on frequency, in the high frequency range above 50 kHz,
indicating a pure delay of 6.5 us. See Section 1.4.2 for a similar discussion of
the cavities’ amplitude modulation response.

To resolve how much of this delay comes from the cavity and how much
from the cables and filter, the cavity was jumpered out of the measurement setup.
The result is shown in Figure 4.3 where the shape of the phase plot is linear over
the whole frequency range. The delay in this case is 3.9 us, which agrees with
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Figure 4.3. The same setup as in figure 4.2 except that the cavity
is jumpered out of the measurement. The remaining delay of 3.9
microseconds is due to cable delays and filter group delay.
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group delay measurements of the filter and cable lengths. The residual delay of
2.6 microseconds is a property of the cavity. The total delay is used in the root
locus analysis.

For the root locus analysis one needs an expression for the time delay with
a finite number of pole and zeros. The exponential function has been
approximated with a third order Padé approximation,

o - 1 = (@92 + (1910 - (75)*/120
1+ (79)/2 + (15)%/10 + (75)*/120

The root locus of Figure 4.1(b)is qualitatively different from 4.1(a). Case
a has no unstable roots for any value of the gain, and with sufficient gain the
roots are pure real. Unfortunately in case b the roots become unstable at some
gain and there is no gain when all the roots are real. The property of no
oscillatory response cannot be achieved.

4.1.3 Phase Loop Compensator. To achieve an acceptable phase loop response
the loop amplifier, D (s), was built to have the PID characteristic (Proportional,
Integral, Derivative). Integral improves the gain at low frequency. Proportional
improves the speed of response. And derivative provides lead to offset the cavity
contribution of phase shift at high frequency where loop stability is determined.
Low frequency gain is important in this system because the arrangement of the
phase shifters shown in Figure 1.1 requires that the phase, ¢,, is near zero in
order for the ¢, feedforward and radial feedback to work as designed.

Three constants, k;, 71, and 7p, characterize the PID controller. These
constants correspond directly to the parameters of the op amp circuits of the loop
amplifier. The transfer function is

1
D (s) = kp(1 + E + TpS) .

For analysis, it is more convenient to rewrite this as product of a pole at
the origin and two zeros on the negative real axis,

k !
Do(s) = L (p's + 1) (s + 717) , 4.4
I
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where the parameters of the compensator are:

k' =0.32 7, = 2.5 X 107 7, =3.7 X 107

The transformation between the two parameter sets is straightforward,

T, + 7 1 1 1
D 1
k =kn(2__ 1y L =2 v 1 p =gt q
14 P T' T TI 7! 1 D 1
I D D I

giving hardware values:

k, = 0.53, 7, = 1.5 X107, 7, =62 X 107 .

Written in this form, it is easy to see the effect of each of the parameters
in a asymptotic Bode plot. In Figure 4.4 the open loop transfer function of beam,
cavity, and delay is plotted together with the Bode plot of D¢(s), Equation 4.4.
One sees that the pole at zero gives high low-frequency gain but a phase shift of
90°. In the region near the synchrotron frequency, the 90° lead from the first
zero cancel with this shift, and makes the magnitude of the gain frequency
independent. This situation is maintained across the band of frequencies in which
the synchrotron frequency may move (1 to 7 kHz). The second zero adds lead
that improves the phase margin when the loop gain reaches one between 10 and
20 kHz.

With this compensator included, the root locus is plotted in Figure 4.5.
The poles from the synchrotron motion converge and end up at the zeros of the
PID compensator. The cavity pole and a pole from the Pade approximation to the
delay converge and then move toward the positive half-plane. These roots
determine the maximum gain for stability. The system is normally operated with
the gain such that the poles are at 30° to the imaginary axis, giving a peak
overshoot in the step response of 15% and a settling time to 1% that is about 130
microseconds.

The actual hardware of the loop amplifier differs somewhat from the ideal
PID equation above. The pole is not exactly at zero (the gain does not go to
infinity). It is at -1/(277,). A spurious pole and zero appear at high frequency,
-1/(2w7)) and 1/(2nt,), respectively, due to the op amps’ finite gain-bandwidth.

Figure 4.6 is a measurement of the PID loop amplifier. These curves are
fit well with two poles and three zeros,
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Figure 4.5. Root locus of the phase loop with the PID compensator included.
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Figure 4.6. A measurement of the PID loop amplifier. The curves
are well fit with two poles and three zeros, see text.
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k)(ry's + 1)(s + Ur)1s - 1)

D (s) = 4.5
¢ At )7, + D(zs + 1)
where 7, = 0.010 sec.
7, = 3.3 x 10 sec.
7, = 7.7 x 107 sec.

The open loop transfer function for the phase loop with cavity response,
delay, and equation 4.5 for the PID amplifier is

Gy - K O's + DG + Ur)rs - 1)e ™

, 4.6
(2 + DU Yrs + Dsls, + 1)(rs + 1)

This is plotted in Figure 4.7 (solid line) together with Equation 4.5 for the loop
amplifier (dashed line). This can be compared to a measurement of the actual
phase loop operating with beam which is shown in Figure 4.8. The poles due to
the synchrotron oscillation are clearly evident in the peak of the amplitude plot
and the discontinuity in the phase plot. The measurement was taken with the
magnetic field held constant and the radial loop open.

As an aside, this measurement can be very useful as a determination of the
total effective voltage seen by the beam, because from a determination of the
synchrotron frequency one can deduce the rf voltage seen by the beam. This
measurement calibrates the cavity voltage monitor.

The complete closed loop response of the phase loop, considering ¢, as the
input and ¢ as the output (see Figure 1.2) is then

e _ G

e, 1 +G(s)

This is plotted in Figure 4.9 and the measurement with beam is shown in Figure
4.10.
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Although the plot of Figure 4.8 shows the open loop transfer function, the
measurement was actually carried out with the loop closed, Figure 4.10. It is
important that the loop remain closed so that the beam’s coherent motion is well
damped. Otherwise the small amplitude approximation used in this analysis may
become invalid. It is possible to deduce the open loop transfer function from a
measurement of the closed loop operating system. The HP3562A Dynamic Signal
Analyzer is equipped with a facility to perform the mathematical operation
needed,[13] and the loop amplifier was built with the required monitor port and
summing junction.

The significance of the integral term in the PID compensator can be seen
by considering the open loop transfer function, Equation 4.6, in the frequency
decade 100 Hz to 1 kHz, see Figures 4.7 and 4.8. There

TS + 1 - T8
s + UUr) = Ut/
s +1 -1
75 -1—-> -1

-y

-1

4

N
S W W

Then

Gls) > -k koj,'(22) L
i
s

which is a constant on the order of one (=-0.84 @ f;=5.7 kHz, as shown). The
beam transfer function Be(s), which determines the frequency dependence at low
frequencies, is essentially a differentiator at low frequencies (s <wy). [Intuitively,
the beam transfer function should behave like a differentiator because a slow
ramp in rf frequency corresponds to a constant shift in beam-to-rf phase, and the
output of the beam transfer function, which is phase, should go like the derivative
of its input, which is rf frequency.] The pole near zero of the PID compensator
has canceled the zero of the beam transfer function. The result is a loop gain that
is essentially constant at low frequencies, as one sees in Figure 4.9.
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The benefit of this cancellation pertains to the radial loop. For the radial
loop the closed loop response of the phase loop becomes just another block in the
forward gain path. See Figure 1.2. Considering the radial loop phase shifter ¢,
as an input, the closed loop transfer function of the phase loop is

By _ (52 + WDk F K, (1p's + 1)(s + Ure ™

1

Cro sl(s? v WD(sls, + 1)+ kkk,) (rp's + (s + Urde ]

where Equation 4.4 has been used for Dy(s).
For the open loop transfer function of the radial loop, we multiply this by
Bgr(s) to get

ga_ =( 1) bksokokp,(TDl s+1)(s+1/1/)e “Tal

2 @.7)
Or S [s2 v aD)(sls + 1)tk kK, (Tp' s + 1)(s + 17 )e ]

This function is plotted in Figure 4.11.

So the constant gain around the phase loop provides an integrator type
response (1/s). The benefit of the 1/s behavior will become evident later when the
low frequency errors of the radial loop are examined (Section 4.2.3).

The transient response of ¢, to an input at ¢, has also been calculated and
is shown in Figure 4.12. A measurement of the transient response, Figure 4.13
was made by disabling the phase loop for 0.5 ms at injection and injecting the
proton beam away from the stable phase angle. When the loop is closed it goes
through its transient response. One can see the transient settles in less than one
synchrotron period.
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4.2  Radial Loop

4.2.1 Principle of Operation. In Figure 1.1 one sees that the beam position is
measured with a transverse pick-up and compared to the reference function, R(t)
(see Section 1.3 for details). The difference between the measured beam position
and the reference function is amplified in the radial loop amplifier and applied to
the ¢, phase shifter. A change in ¢, will cause ¢, to deviate from zero and the
phase loop will quickly act to return ¢, to zero by changing the cavity phase with
respect to the beam, ¢,. The beam’s rate of energy gain (loss) from the rf cavities
will change. If the beam’s rate of energy gain is now less than the rate of rise of
the magnetic field, then the beam will begin to move toward a smaller radius.
The phase ¢, controls the rate of change of the radius. If the reference function
is a constant then eventually the radius will equal the reference function and the
phase ¢, will become zero, then the system will assume its quiescent state with
¢, equal to ¢,

The radial loop is called into action in basically four different situations:
(1) the beam position is made to follow changes in the reference function; (2) the
calculated angle ¢ is not exact and ¢, is made equal to the negative of the error
in ¢g; (3) the apparent value of ¢, is not equal to the actual value because of
different phase shifts in the cables that bring the cavity voltage and beam
longitudinal pick-up signal to the phase detector, A¢ (this frequently happens if
the cable lengths are not exactly matched and the rf frequency changes); (4) any
finite dc offset in the phase detector or phase loop amplifier causes ¢, to be not
exactly zero. Irrespective of number 1, numbers 2, 3, and 4 imply that the radial
loop must always be functioning in order that beam control system operate stably.

One might observe that the radial loop would function as well if the output
of the radial loop amplifier was subtracted from the output of the phase detector
before going to the phase loop amplifier. The essential difference is that the phase
error, ¢,, would then not be always zero on the time scale of the radial loop. It
is a technical point and somewhat a matter of taste as to whether the phase shift
caused by the radial loop is introduced in a phase shifter (as it is here) or in a
phase detector.

Because the phase detector is at the heart of the phase loop and should be
as fast as possible, the choice was made to keep it as simple as possible and not
to optimize for a linear transfer curve (it is a double balanced mixer operating at
10.7 MHz, see Section 3.2.1) On the other hand, one can readily make a phase
shifter with a control bandwidth much faster than the radial loop and a linear -
range greater than + 2#. This means that the control signal into the ¢, phase
shifter is an absolutely calibrated signal (50°/Volt) and is very useful for detecting
and correcting errors 2 to 4 listed above.
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4.2.2 Dynamics of the Radial Loop. High gain is desirable in the radial loop
so that the beam radius closely follows the reference function. However, high
gain in the radial loop generally reduces the stability of the system. The fact that
the radial loop gain cannot be made arbitrarily large is the main reason for
implementing the feedforward system for the stable phase angle, ¢,. If the radial
loop had to provide all the phase shift for ¢, then the beam position would differ
from the reference function by ¢/k (k = the radial loop gain), which we shall
soon see may not be small.

Seen from the perspective of the radial loop depicted in Figure 1.2, the
phase loop is just another block in the forward signal path. This block has,
however, rather complicated internal dynamics, as described above. We examine
now the behavior of the system of the combined radial and phase feedback.

In the first case consider the simplified phase loop, where we ignore the
cavity response, the delays, and the PID loop compensator. Equation 4.3 gives
the transfer function of the phase loop as it would appear to the radial loop. From
Figure 1.2, the complete open loop transfer function for the radial loop is

Gw,f

G(s) = D,()(—2)Bg(s) .

r

Using the beam transfer function for rf frequency to radius from Equation 1.4,
one gets for the closed loop transfer function for the radial loop

6_R ) D gb

. 4.8
R 52 4 g5+ (Dgb + &)

Comparing Equation 4.8 to 4.3, we see that the two equations have
basically the same form, but the constant term in equation 4.8 has been increased
by (D,gb). The coefficient of the linear term in s remains the same. Recall that
the linear term provides the damping. The constant term affects the frequency of
oscillation, for under damped motion. In a general sense, the radial feedback has
de-stabilized the system by increasing its natural frequency and without increasing
its damping.

One can see this more formally by re-writing the denominator of Equation
4.8,

st +gs + (Dgb+ &) =(s+ g2 +w - (g/2?+Dgb .

In this form one can read directly the real and imaginary parts of the complex
conjugate pair of roots of this expression. The quantity in the squared term with
s is the real part of the roots. The constant term gives the imaginary parts. Figure
4.14 illustrates this point.
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Figure 4.14

For the phase loop we chose a large value of the gain, g, so that the
imaginary part of the roots would be zero, to get no oscillation. The new term
from the radial loop adds to the value of the imaginary part, it counteracts the
damping and can cause an oscillation frequency even higher than the synchrotron
oscillation frequency. For this reason, we must always make a compromise
between high gain in the radial loop and stability.

The conclusions are qualitatively the same when the full complexity of the
phase loop is included in the analysis. One important difference that does arise
in a realistic analysis is that in addition to limitations on the gain, some
compromise must also be made in the bandwidth of the radial loop. A simple
compensator is used in the radial loop amplifier with a single-pole roll-off at 1
kHz. A measurement of the radial loop amplifier is shown in Figure 4.15

Combining this with the closed loop transfer function for the phase loop,
we show the open loop transfer function of the radial loop in Figure 4.16. The
gain increases as 1/f at low frequency to give good tracking of the reference
function. At about 3.5 kHz the gain reaches one, while the phase margin is about
35°. As we expect the system is not highly damped. Figure 4.17 shows a
measurement of the loop operating with 1 GeV protons on a magnetic field
flattop.
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- Figure 4.15. A measurement of the frequency response of the
radial loop amplifier, showing a single-pole roll off at 1 kHz.
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Figure 4.18 shows the calculated closed loop transfer function, and Figure
4.19 shows the measurement with beam. The peaking in the closed loop gain is
characteristic of a system that is optimized for bandwidth (about 6 kHz) in favor
of damping. The calculated step response of the radial loop, shown in Figure 4.20
at two values of the synchrotron frequency, indicates the extent of the ringing due
to under-damping. Ultimately, the effect on the beam depends on excursions of
the bunch-to-bucket phase as a consequence of the radial step. Excessive
oscillations here will have the detrimental effects of longitudinal emittance
dilution or even particle loss. Figure 4.21 is a calculation of the bunch-to-bucket
phase caused by a radial step. Since the deviation of this phase from zero is
proportional to the rate of change of frequency, the area under this curve is
proportional to the change in frequency (radius). One can see from the figure that
the ringing is damped in about 400 us.
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Figure 4.20. A calculation of the step response of the radial loop
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4.2.3 Low Frequency Errors. An important measure of the performance of the
radial loop is the error in the beam position from the reference value. To see how
this error depends on the parameters of the system, we use the final value
theorem with the closed loop transfer function to find the response, 6R, to a step
function for the reference radius. In the low frequency limit we can neglect the
cavity response, the differentiator in the PID controller, the spurious high
frequency pole and zero of the phase loop amplifier, and delays. With these
approximations the transfer function for the PID controller becomes (see Equation
4.5),

D) = kS )

il 4 4.9
g P+ 1m)

where ﬁ,l is the measured low frequency pole of the loop
amplifier.

The Laplace transform of a step function input on the reference radius is R(s) =
R,/s. The 1/s here cancels with the s of the final value theorem (see Appendix
7.1),
limit f(t) = limit sF(s) .
t—> o s—=>0

To find the relative position error, we need the limit of the open loop
transfer function as s goes to zero to evaluate

R, -8R(®) G 4.10
R 1+G6® 1+GO

o

where G,(s) is the open loop transfer function of the radial loop

6wrf

G(s) = kD, (s)( Y

)BR(S)k,, | 4.11

where kg is the phase shifter constant, 50 degrees/Volt,
k,, is the radius pick-up constant, 1.0 Volt/cm,
D,(s) is the transfer function for the radial loop amplifier,
(bw/ ¢,) is the closed loop transfer function of the phase
loop,
B, is the beam transfer function, see Equation 1.4,
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The transfer function of the radial loop amplifier, D,(s) shown in Figure 4.15, is
given by,

k"
Ds) + —
(s/s, +1)

where k., = 4
s, = 2w x 1 kHz.

The closed loop transfer function for the phase loop,dw /¢, with Equation 4.9 for
D (s) is given by,

by kK, (s + Ut/)s? + wf)

' (s + l/Tp)(S2 + “’?) + kwkokp'(s + Ur/)s) |

Recalling the beam transfer function from Equation 1.4,

ceV cos
Bas) = — 2, b= 7%
5° 0+ W 2nPy,E
Combining and taking the limit we find
limit _ kbkok, gk ok, (L))
G/(s) =
s—>o0 2
wS/Tp
T
= 4.4(-2) ~ 1200
7
where k, = 4, dc gain of radial loop Amp,

blw® =3x 104 mm/s’!
k, = 0.87 radian/Volt, phase shifter constant,

k. = 0.1 Volt/mm, radial pick-up constant,

k¢ = 0.53 Volt/radian, phase detector constant,

k, =2.5x10° s//Volt, VCO constant,

kr; = 0.32, phase loop PID gain.
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Then,
R, - 8 R(~) B 1

R 1 + 1200

[}

As long as the low frequency pole of the phase loop amplifier, 1/7,, is
well below its first zero, 1/1; , the phase loop appears to the radial loop as a

pure integrator, as described in Section 4.1.3, Equation 4.7. The radial loop,
then, behaves essentially as a type one servo, with negligible error in response

to a step input. The ultimate error is set by the ratio T, /r} and, in this system,

the tracking error given by Equation 4.10 is less than 0.1%.

Unfortunately, other types of errors can occur with significant size. One
of practical importance is an error in the stable phase program or in mismatched
cables for the beam and cavity pick-up signals. In this case a non-zero value of
the phase shift ¢, must be maintained, see Figure 1.1. In the formalism that we
are using here this implies the beam phase is not zero. This is because the model
is based on an expansion of the synchrotron equations about the stable phase
angle. If the beam phase is not zero (the model does not know about errors in
hardware) then we are considering a case when the beam is being accelerated or
decelerated with respect to the synchronous particle, that is, the radius is
changing. This then is a velocity type error and one order higher than the error
to a step calculated above, and so the final value of the error may not be small.

It is straightforward to find the radius error when phase shift ¢, is known,

¢, = kkok, (R - 6R) .

The beam position error is then 0.05 mm/degree.

It should be noted that the grossest error in the stable phase angle program
that is likely to occur happens when the rf harmonic number changes during the
acceleration cycle. From Table 1.1 one sees that the electrical phase between the
longitudinal beam pick-up and the cavities can change by many degrees,
especially when the harmonic number changes from an even to an odd number.
For this reason the harmonic number dependence is included in the stable phase
angle feedforward system.
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4.3  Frequency or Phase Control

4.3.1 Frequency Loop. Sometimes it is desirable to use something other than
the radius as the reference for the beam control servo loop. The frequency of the
beam or the phase of the beam with respect to reference oscillator, for example,
can be used. These references are used in the process of synchronization to the
rf cavities in the AGS before bunch-to-bucket transfer between machines. The
details of synchronization are presented in Chapter 5.

When the reference for the beam control system is a signal specifying the
beam frequency as a function of time we say that the beam is controlled by a
frequency loop. Frequency control and radial control are mutually exclusive. At
a given magnetic field, the beam momentum can be adjusted by the beam control
system but variations in frequency and radius are constrained according to

2 2, 6R

dw
2 - 'Ytr) T

Y— + (v =0.
w

It is clear that one cannot specify magnetic field, radius, and frequency
independently.

If one then specifies frequency as a function of time, it is necessary that
the magnetic field as a function of time is known to insure that the resulting
radius is acceptable. Since one of the basic assumptions of the design of the beam
control system is that the magnetic field is an independent parameter, not known
a priori, then clearly frequency feedback will be used only in special situations.

One special case is during synchronization. Another case is during certain
experimental exercises when the beam frequency must be highly stabilized to
facilitate measurements of the beam spectra. Also there can be times when very
weak beams need to be accelerated that are below the sensitivity of the radius
measuring electronics. The phase pick-up electronics has higher sensitivity
because it uses the whole signal from the beam, whereas the radius electronics
must use the difference in signals from two pick-ups. The frequency can be
obtained from the phase pick-up signal. Using frequency loop control to
accelerate weak beams requires a very good measurement of the magnetic field
as a function of time, and inevitably some trial and error.

The dynamics of a frequency loop are same as a radial loop as long as the
frequency measurement is at least as fast as the radius measurement. The beam
transfer functions relating beam frequency to rf frequency and beam radius to rf
frequency are proportional, see Equations 1.3 and 1.5. The proportionality
constant depends on the rf frequency, w,, the machine radius, R,, and the
frequency slip parameter, 7 = (y?- 'y}%).

BR = (_.o.i—-)Bw .
wrf Yer M
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The only adjustment that is required in changing from radius control to frequency
control is to properly scale the dc value of the loop gain.

Figure 4.22 shows a block diagram of the beam control system including
the equipment needed for frequency and phase control, and switching between
from one to the other. The three beam transfer functions, Bw B,, and B are
shown. The inner feedback loop is the phase loop and is always running. Which
one of the three outer loops is operating is controlled by the position of the
indicated switches. Each one of the three outer loops has its own reference input,
R(), Wreference> ¥Psync

Feedback for the radial loop is indicated in the block labeled k. It has
a sensitivity of 1 volt/cm. Feedback for frequency is block k. Its sensitivity is
1 volt/kHz. Feedback for the synchronization loop, k/s, is described below.

One sees that the compensators for the three loops, D;, D, and Dy are
arranged in cascade. This is done because the compensator for the radial loop is
implemented with one of the standard loop amplifiers of the beam control system
and is always operating in the loop. While the compensators for the other loops
are simpler, special purpose circuits.

The compensator for the frequency loop is just a frequency-independent
attenuator. Its value can be found from

k R
D, = 2y (—2 )
kw w 2
rf 'Ytr n

= -20 dB, for 200 MeV protons,
-10 dB, for 1.5 GeV protons.

A measurement of the compensator, D (s), for the frequency loop is
shown in Figure 4.23.

When the switch between radius and frequency feedback is made and the
reference frequency corresponds to a new radius, then the frequency loop will
respond with its characteristic step response. This is plotted in Figure 4.24. The
bunch-to-bucket phase will experience a much faster transient, because of the
phase loop. This is the same as shown in Figure 4.21.
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Figure 4.22. Block diagram of the beam control system showing
the equipment needed for frequency and phase control. The phase
loop is always closed and the switches change from radial to
frequency control and from frequency to external phase
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Figure 4.24. A calculation of the step response of the frequency
loop for two different synchrotron frequencies, 1 kHz (solid line),
7 kHz (dashed line).
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4.3.2 Synchronization Loop. The term "synchronization loop" refers to the case
when the reference radius is replaced with a measurement of the phase of the
beam with respect to some external reference oscillator. Because the phase of the
beam is held constant with respect to the reference oscillator, it follows that the
frequency of the beam must be equal to reference oscillator frequency. The radial
position is then controlled by the reference oscillator frequency.

This loop is used in the Booster before the beam is extracted and
transferred to the AGS. The vector sum of the cavities’ voltage in the AGS is the
reference oscillator, so that the bunches will arrive into the AGS buckets at the
desired phase, typically zero degrees. The synchronization process is required
because of the batch filling of the AGS. Once the first batch has been transferred
then the phase of the AGS buckets is no longer arbitrary and the Booster bunches
must be adjusted in phase to accommodate the AGS buckets.

The dynamics of the synchronization loop are somewhat different from the
radius and frequency loop. This is because the phase measurement process incurs
delay. When the beam control system makes an adjustment to the frequency of
the beam the change in phase is not instantaneous, the phase accumulates in
proportion to the integral of the frequency difference,

!

Sp(t) = l 8ypm(E)dE -

The Laplace transform of this equation,

Be(5) = < BapnS) |

and the sensitivity constant of the phase detector, k; (= 1.0 Volt/radian), are
indicated with the block labeled k/s in the block diagram of Figure 4.22

The integration inherent in the phase measurement affects the loop stability
fundamentally. In fact, the loop would be unstable at any gain if some
compensation were not employed. The instability arises because with the phase
measurement in the loop we have two integrators in cascade. One is from the
phase loop itself, as described above in Sections 4.1.3 and 4.2.3, and the other
is from the phase measurement. The total phase shift from the two integrators is
180° and the system is exactly at the limit of stability. The motion would be
completely undamped and with any finite phase shift it would be unstable.
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Formally, this can be seen by considering the open loop transfer function
for the synchronization loop. From figure 4.22 we can write the transfer function,

’f)BE.
@ s

ow
DDDKy (-

r

The frequency loop and radial loop compensators, D, Dy, are essentially
constant in the relevant frequency range, i.e., w < w,.

The closed loop phase loop, (dw./¢,), behaves basically as a pure
integrator, as stated above. This follows from the fact that the phase loop imposes
the reference phase, ¢,, on the bunch-to-bucket phase, see Figures 4.9 and 4.10.
A deviation of ¢ from zero will cause an energy gain per turn not matched to
dB/dt, and the beam frequency will deviate from the ideal frequency according
to (see Equation 1.1),

t

Swy(f) = W} Lmz) df .

This integration and the integration from the phase measurement, ky/s,
appear in cascade and will lead to an unstable closed loop unless Dy(s), the
synchro loop compensator, is chosen judiciously. It must provide phase lead in
the frequency region where the open loop gain crosses one.

For the Booster case,

60),1‘

% B, ~ . 5=

s s

2
wg  ky 1.0 Volt/radian
S

r

D, =1/7; kg = 0.87 radian/Volt

8.5
sls. + 1

r

D/s) = ; s, =2m X 1 kHz .
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The cross-over frequency is about 2 kHz. The compensator shown in
Figure 4.25 has a zero at 330 Hz and poles at 18 kHz and 66 kHz. The transfer
function for the compensator is

1
Dys) = 0.080 1S+ D
(1,8 + D(1;s + 1)
7, = 4.8 x 107,
7, = 9.0x 107,
7, = 2.4 x 10%s.

The high frequency pole is due to the finite bandwidth of the amplifiers
but does not enter into the analysis.

The effect of the compensator can be seen in Figure 4.26 which is a
Nyquist plot of a calculation of the open loop gain. The calculation uses the
detailed fits to all the transfer functions of the system. One can see that when the
lead-lag compensator is included the critical point, (-1,0), is not encircled by the
gain curve, implying stability.

It is often important to know how long it will take to change the phase of
the beam with respect to an external reference. The minimum time will be limited
by the maximum allowed phase and frequency deviation, and the synchrotron
frequency.

For a rough estimate, assume the phase deviation is limited to less than
w/2, which would be appropriate for a stationary bucket. This is the typical case
for synchronization but is not a requirement (see Section 5.3). The beam
frequency will follow a linear ramp,

dw,(f) = wft .

The phase of the beam will increase quadratically with time,

T

_ - = o
o, - ref. ‘[wa(é) dg = = T
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10 Nyquist plot of Synchro loop without compensation
B : : : : : H cC

QI =

4.26 a

1 10 Synchro loop with lead—lag compensation
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Figure 4.26. Nyquist plots of the synchronization loop. The
calculation uses fits to the measured components of the phase and
radial loops. Top is without compensation, the critical point is
encircled. Bottom is with compensator of figure 4.25, the point is
not encircled.
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If we require a phase change of w, then the time required is
r-_L 1
= ——=— “synchrotron *
27

It should be pointed out that this is not the same operation as shifting the
phase of the rf voltage by #/2, in an open loop fashion. In the open loop case the
beam will carry out a phase oscillation along the separatrix and continually
change phase with respect to the rf voltage. The motion along the separatrix is
very slow. With the phase loop and synchro loop operating the beam remains at
the desired phase of the rf waveform. The rate of change of phase is faster.
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5. SYNCHRONIZATION AND COGGING

5.1 Overview

Bunch-to-bucket transfer of the beam from the Booster to the AGS
requires coupling the rf systems of the two machines, so that the bunches will
arrive in the AGS buckets at the proper phase. Figure 5.1 shows the arrangement
of the coupling between the two machines. The AGS rf system provides a fixed
frequency voltage at the cavities. This is done either by deriving the low level
drive signal from a fixed-frequency oscillator or by virtue a frequency loop acting
on the bunches already present in the AGS.

The figure shows that the reference signal is taken from the vector sum
of the cavity voltage pick-up signals. This insures that the effective voltage that
the beam will see is used as the reference, as opposed to a drive signal to the
cavities, which may differ in phase with respect to the actual voltage due to phase
shifts in the power amplifier or miss-tuning of the cavities. A phase shifter in the
path of the reference signal adjusts the phase to which the Booster will be locked.
This phase is not compensated for variations in phase with changes in frequency
or changes in beam time-of-flight between the two machines which changes with
beam energy. Since such variations seldom occur, the proper setting of the phase
shifter in found empirically by observing the behavior of the bunches in the AGS.

The figure indicates two blocks called "Synchronization" and "Cogging".
Synchronization refers to the matching of the rf phases of the Booster bunches to
the AGS buckets. Cogging refers to the process of triggering the extraction and
injection kickers at the proper times such that the bunches are transferred into
pre-selected, empty buckets in the AGS.

The two processes are distinct in function and purpose but do have a
common point. That is, they both derive their reference from the AGS rf buckets.
A basic difference between them is that synchronization is defined over only one
period of the rf frequency, whereas, cogging is defined over the one revolution
period of the AGS. They are independent in the sense that the cogging system
triggers the injection kicker when the buckets are properly aligned with respect
to the kicker, and it is implicitly assumed that the synchronization system has
phased the Booster bunches with respect to the AGS rf voltage. It follows then
that the bunches must be aligned with respect to the Booster kicker at the same
moment that the AGS kicker is triggered. Therefore the two kickers are triggered
simultaneously. Fixed delays accommodate the time of flight between the two
kickers.
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5.2  Cogging

Figure 5.1 shows where the cogging circuit fits within the rf controls
systems of the AGS and Booster. Its input is the vector sum signal of the AGS
cavity voltages. Its output is trigger pulses to the fast Kickers in the AGS and
Booster.

The input signal, which is nominally 4 MHz,is used as the clock input
of a Programmed Logic Device (22V10). The PLD has been programmed to
implement two state machines. Figure 5.2 shows the concept of these state
machines. One has 12 states, one for each AGS bucket. When the
AGS_RF_READY input trigger occurs (when the rf input is known to be stable)
the state machine goes to state 1 and advances one state at each rf period
thereafter. It thus implements a divide by 12 function with each count (state)
identified by a separate variable. States one, four, seven, and ten are marked as
lead buckets for the four possible batches of bunch triplets that will be transferred
from the Booster to the AGS.

The second state machine has four branches with two states each.
AGS_RF READY puts the state machine into state one. It waits there for an
input trigger called ARM. Upon arrival of ARM it goes to state two and waits
there for the first state machine to reach state one. When that occurs it outputs
a trigger to the kickers. Next it will advance to one of the other three branches.
Branch two, for example, which contains states three and four will output a
kicker trigger when the first state machine reaches state (bucket) four. Branch
three corresponds to bucket seven, branch four to bucket ten.

State machine two does not necessarily go sequentially from branch one
to four. From state two it can go to states three, five, or seven. From state four
it can go to five, seven, or one, etc. This sequence determines the filling pattern
of batches into the AGS. The pattern is controlled by three switches on the front
panel of the cogging circuit. Table 5.1 gives the correspondence between switch
positions and the filling pattern.

TABLE 5.1
Switch Positions Bucket Triplets
000 1-2-3->4
001 1-2->4->3
010 1-3-24->2
o1 1-3-2->4
100 1-4->3->2
101 1-4-52->3
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AGS_ RF_READY

KICKER
TRIGGERS

Figure 5.2. State machine diagram of the cogging circuit. The
outside state machine counts and labels the AGS buckets. The
inside state machine waits in states 1,3,5, or 7 until the ARM
trigger occurs. It then moves to states 2,4,6, or 8 and waits for the
outside state machine to arrive at the appropriate bucket. It then
sends out the kicker triggers.
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5.3  Moving Reference Frame

The principles of adjusting the phase of the beam to an external reference
were described in the previous section on synchronization. A very important
practical detail that was not treated in that section is the fact the Booster
frequency is not constant at the moment of extraction or before it, when the
synchronization operation takes place.

We spoke of measuring the phase of the beam with respect to an external
oscillator. Implicit in that discussion is the assumption that the Booster frequency
can be made equal to the reference oscillator before the phase adjustment occurs.
If the Booster frequency is linearly approaching the reference frequency then the
relative phase (modulo 2#) is a sawtooth waveform whose frequency linearly
descends through zero. If this phase were used as the feedback signal to the
synchronization loop the loop would try to hold the phase constant and equal to
the synchro reference value. The result would be that the beam frequency would
try to go the AGS frequency as soon as the loop is closed. The resulting radial
excursion would drive the beam out of the machine.

This problem is solved by creating a "moving reference frame" in which
the synchronization takes place. In the moving reference frame the beam
frequency has been translated to a new fixed frequency that is nominally equal to
the AGS frequency.

Sur = BFO) * fooum = Jaos -

The amount by which the Booster frequency is translated is a time-dependent
difference frequency, Af(t), that is zero at the moment of extraction and equal to
the difference frequency, AGS - Booster, at the time the synchro loop closes. The
phase detector of the synchro loop operates in this moving reference frame where
its two input frequencies are nominally equal. Hence, the synchronization process
proceeds as if the Booster frequency were equal to the AGS frequency. Figure
5.3 shows a measurement of the Booster beam frequency superimposed with the
moving reference frame frequency, which operates for the last 10 ms of the
cycle.

When the synchro loop operates, radial control is relinquished in favor of
frequency control. The difference frequency, Af{(t), becomes the determinate of
the beam radius. Changes in the magnetic field are not tracked and good
reproducibility of the magnetic field is required. In practice this is not a problem.
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Figure 5.3. Frequency of the Booster during the last 10 ms of the
cycle. Also shown is the Booster frequency translated to the
moving reference frame frequency.
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5.3.1 Generation of the Moving Reference Frame. The function, Af(t), is
obtained in practice by measuring the beam frequency when the beam is
controlled by the radial loop for the whole cycle. Extraction and transfer to the
AGS are suspended for the measurement (the beam is decelerated to injection
energy). Data are taken with the HP5372A Frequency and Time Interval analyzer
which measures the rf frequency. The instrument measures the frequency every
2.0 us for exactly 10.0 ms. The measured data are subtracted from the target
AGS frequency and stored in a fast RAM. The Af(t) data are fetched from the
RAM and sent to a direct digital synthesizer using a precise clock at 1.0 MHz,
(each datum is used twice). Typically for proton operation, Af(t) begins at about
100 kHz and winds down to zero Hertz.

The generator that creates Af(t) must fulfill some demanding requirements.
First, it must be very precise so that the beam frequency, and hence radius,
which is now controlled by Af(t) and the reference from the AGS will be
reproducible. Second, it must actually be a vector signal, that is, it must provide
two components that are orthogonal. Furthermore the two components must
remain orthogonal for all frequencies, even dc. Third, the angle defined by the
two components must be the same at dc each time it runs, since this will
determine the angle between the Booster beam and the AGS reference signal.
Figure 5.4 shows Af, and Af,.

In order for the third requirement to be fulfilled, the Af(t) generator must
begin its sweep at the same phase each time and follow precisely the same
frequency each time. The final phase is given by

H

olt) = [ AREYE + o, .

The total accumulated phase over the 10.000 ms sweep is approximately 500
(27). By using a direct digital synthesizer to generate Af(t), the variations in the
accumulated phase are less than +1.3°. This follows from the frequency accuracy
of the synthesizer, +0.75 Hz, and the precision of the clock, < 0.1 ppm, that
advances the synthesizer through its program.

When a change to the Af(t) program is made (to accommodate a new
radial program or a change in the magnetic cycle of the machine, for example)
the accumulated phase will also change. In order to keep the same final phase
reference, an adjustment to the net phase is made by running the synthesizer for
a fixed time (10 us) at a fixed frequency, f,, to set the initial phase,

0, = f, X 10ps .

Once the new Af(t) table is obtained, the phase integral is calculated numerically
and the frequency f, is determined.
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Figure 5.4. The two orthogonal components of the Af(t) signal as
the frequency winds down to zero.
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5.3.2 Translation of the Beam Frequency to the Moving Reference Frame. The
process of translating the Booster beam frequency to the moving reference frame

frequency is essentially a time-dependent rotation of the beam signal vector.

X ax(t)y Ay ) | Xseam
) £ -Ay(f)  Ax(r) YBm

The elements of the rotation matrix are the two components of the Af(t)
generator. Since the matrix elements are functions of time, the phase angle of the
moving reference frame vector with respect to the beam vector increases
(decreases) at the frequency of Af(t). The result is that the moving reference
frame frequency is higher (lower) than the beam frequency. When Af(t) reaches
zero the angle between the beam and the moving reference is

Ay,

t, = 10.00ms) = Arc tangent
ot ) g A

The four products of the matrix multiplication are realized with four-quadrant
analog multipliers, AD834.

Figure 5.5 shows the block diagram of the components of the
synchronization system. The block labeled "synchro mixer" performs the matrix
multiplication.

The beam signal is conditioned before entering the synchro mixer. A low-
pass filter converts the bunch signals to a sine wave by removing all Fourier
components above the fundamental. A wide dynamic range AGC circuit creates
a fixed output level for a >40 dB range of beam intensity. A quadruture hybrid
transformer provides the orthogonal components of the beam signal.

The reference signal from the AGS is also conditioned. A low-pass filter
is used because the signal from the vector sum circuit at the AGS can be distorted
in a limiter. The voltage controlled phase shifter sets the phase to which the
Booster beam will be locked. An AGC circuit sets a fixed level of the signal sent
to the phase detector circuit.
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5.4  Frequency/Phase Detector

The phase is measured in the "Frequency/Phase Detector” module. The
moving reference frame components are mixed via double-balanced mixers with
the AGS reference signal, giving base-band (dc-coupled) sine and cosine
components of the phase angle. The Arc tangent function is approximated by an
analog divider realizing the equation

_ Yy
) = )
() —

The parameters a (=0.5) and b (=0.4) are adjusted as a compromise between
usable range (approximately +140°) and linearity near zero.
The frequency is calculated from the sine and cosine components by

w() =xy - Xy,
where: w(t) is the difference frequency between the
moving reference frame and the AGS
reference.

The frequency calculated in this way retains the sign of the frequency, w(t).
Because w(t) is a relative frequency it can meaningfully take on positive or
negative values.

The frequency and phase signals go into the "Synchro Controller" which
controls the way in which synchronization lock is acquired.
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5.5  Lock Acquisition in the Synchronization Loop

Section 4.3 described the dynamics of the synchronization loop. That
discussion was limited to the steady-state situation. A transient period must occur,
however, when the loop is first closed. The transient will involve the beam and
can easily be detrimental, causing emittance blow-up or beam loss. To avoid any
detrimental effects on the beam the lock acquisition proceeds in three steps.

Step 1. Radial control is switched off and a frequency loop is closed. In Figure
5.5 the "Transfer Switch" changes state. The regulated frequency in this loop is
the frequency of the moving reference frame with respect to the AGS reference
signal. That is the frequency measured in the Frequency/Phase Detector circuit
described above. The reference value of the frequency loop is a dc level, set via
a front panel pot on the Synchro Controller. A value for the reference is chosen
that creates a convenient beat frequency, on the order of -1 kHz.

The purpose of establishing a controlled beat frequency is two-fold. One,
since the output of the phase detector is a sawtooth wave, the sign of the beat
frequency determines whether the slope of the sawtooth is high or low when the
wave crosses zero with the correct sign for negative feedback (the gain of the
frequency loop is proportional to this slope). Second, the magnitude of the beat
frequency determines the time interval between zero crossing, that is, the time
one would have to wait before going to the next stage of acquisition. Although
a high beat frequency would mean a short time to wait it would also mean a large
change in the synchrotron’s synchronous phase angle when the synchro loop is
finally closed. A beat frequency of -1 kHz causes a change in the synchronous
phase of approximately three degrees.

Step 2. The dc reference for the frequency loop is replaced with a signal
proportional to the square root of the phase of the moving reference frame signal
with respect the AGS reference signal. See Figure 5.5. The switch in the
"Synchro Controller" between the dc reference (pot) and the square root of phase
circuit changes state. This is the phase measured in the Frequency/Phase Detector
circuit. The purpose of this step is to control the way the phase and frequency
approach zero. By applying the square root of the phase to the reference of the
frequency loop the loop will synthesize the equation

o) = f%’l - koD .
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If the coefficient k is fixed to be w(0)/ye¢(0) , where w(o) and ¢(0) are the
frequency and phase when the loop is closed, then the equation has the solution

o(t) = 12+ wo)t + ¢(0) ,

and the frequency is given by

2
W)

200) t + w(o) .

w() = _;.

Since w(0) was set to a negative value by the frequency loop the phase will
decrease quadratically to zero while the frequency increases linearly toward zero.
At t = -2¢(0)/w(0), the phase and frequency reach zero simultaneously and the
synchronization loop can be closed with no first order or second order transient.
In third order there is a transient, d’p/dt* # 0. This is the origin of the
approximately three degree change in the synchronous phase angle mentioned
above. Figure 5.6 illustrates the behavior of the frequency and phase during steps
one and two.

Step 3. The synchronization loop is closed. The other switch in the Synchro
Controller changes state. Note that the reference value for this loop is zero. The
actual phase between the bunches and the buckets is controlled via the phase
shifter in the Synchro-Phase Shifter module. See Figure 5.1. This assures that the
same point on the transfer curve of the phase detector’s approximation to the Arc
tangent will always be used, namely, y = sin(¢) = 0 and x = cos(e¢) = 1.

Once the synchronization loop is closed the phase of the bunches will be
controlled by the Af(t) synthesizer. Extraction could, in principle, take place at
any time after the synchronization loop is closed. As long as the time of
extraction repeats precisely with respect to the time the Af(t) synthesizer starts
running, then the phase of the beam will be reproducible.

Figure 5.7 shows the output of the phase detector during operation with
beam. Also shown in the figure are the beam radius signal and the triggers that
advance the process from steps one to two and two to three.

Figure 5.8 shows the details of the Synchro Controller. The switches can
be seen and also the logic circuits that control the states of the switches are
illustrated.
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The decision to switch to state two is based on determining when the phase
detector output is on the proper side of the saw tooth wave form. This is done by
calculating the derivative of the phase signal and detecting a negative value. This
derivative of phase is not actually frequency because of the approximation to the
Arc tangent. In Figure 5.6 the derivative of the phase signal is also plotted. The
point where the switch to step two occurs is indicated. An input trigger sets the
latch and the next time the derivative signal crosses the threshold in the proper
direction the switch state is changed. The input trigger is arranged to occur after
approximately two cycles of the beat frequency.

Once the first switch has changed state the second switch, to step three,
is ready to change as soon as the frequency reaches zero.

The proper value of the constant k is obtained from the running signals

w(®) and o) by track and hold (T & H in the figure) circuits. The signal
that then goes to the reference of the frequency loop is then scaled by the ratio
of these constants in an YZ/X analog multiplier. This insures that the proper

scaling constant will be used to make the phase signal continuous at the switch
to step two even if other adjustments are made. For example, adjustments could
be made to the beat frequency or threshold of the phase derivative detector.
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6. CONCLUSIONS

The beam control system for the AGS Booster has been described in detail
and analyzed from the viewpoint of a servo system with the beam radius as a
function of time being the reference input to the servo. In order to achieve
stability and good response characteristics, the inherent synchrotron oscillations
of the beam must be damped by feedback before the radius servo can operate.
This feedback is called the phase loop and is the most important loop of the
system. The performance of the phase loop is limited by time delays that originate
from three causes: cable delays to and from the rf cavities, response time of the
rf cavities, and time averaging of pick-up signals which measure the beam phase.

To minimize tracking errors in the servo, considerable use is made of
feedforward techniques. A very good approximation to the rf frequency is made
by a system called the frequency program. The frequency program comprises a
table of revolution frequency data, as a function of average magnetic field in the
ring magnets, and a direct digital synthesizer which produces the rf frequency for
any harmonic number plus 10.7000 MHz. The actual rf frequency is generated
in the heterodyne system that subtracts a nominal 10.7 MHz signal from the
synthesizer’s output. The exact value of the 10.7 MHz frequency is controlled by
the phase loop and the radius servo.

Other feedforward systems provide approximations to such quantities as
the synchronous phase angle as a function of acceleration rate and rf voltage, rf
drive power level for the rf cavities, ferrite bias tuning current to keep the rf
cavities in resonance.

When the Booster must be synchronized to the AGS for bunch-to-bucket
transfer, the servo on the radius is replaced with a servo of Booster beam phase
with respect to AGS rf voltage. The dynamics of the phase servo have been
analyzed with special consideration given to the techniques that allow the switch
over from radius to phase servo without destructive transients being introduced
in the beam dynamics.

Extraction from the Booster typically takes place at the full acceleration
rate, while the beam frequency is changing rapidly. This places special demands
on the synchronization system since the phase must be controlled between two
unequal and changing frequencies. The system that solves this problem is called
the moving reference frame system and is described in detail. It employs a direct
digital synthesizer to create a precise phase-resolved beat frequency between the
Booster and AGS rf systems. _

The Booster rf beam control system has worked successfully for many
months of production-running operation and has achieved the goal of requiring
very little operator adjustments. To a great extent, the only operator interaction
with the rf beam control system is to modify the radius as a function of time as
desired.
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8. APPENDIX

8.1 Final Value Theorem for the Radial Loop

In Section 4.2.3, we calculated the residual error in the radial loop using
the final value theorem by evaluating the transfer function for the radial error at
zero frequency. Here we show why that is correct for the special case when the
change in the reference to the radial servo is a step function.

If F(s) is the Laplace transform of f(t) and sF(s) has poles only in the left
half s-plane, then f(oo) is given by

limit f(t) = limit sF(s)
t > o s—=0

which is the final value theorem that follows directly from the definition of the
Laplace transform and the property

ot - [ df
sF(s) - f(07) J_e Edt.

In our case F(s) is the transfer function of the relative radial position
error, derived in Section 4.2. For the case of a step function input,

R(t) = R, u(t)

where u(t) is the unit step at t = O, the relative residual error,

limit | R(H) - OR(?)
t—> oo ‘_RO—
is given by
limit | R(s) - O6R(s)
S0 R, ’
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Using R(s) = R,/s and

we have

limit
{—> 0o

R(®) -6R(D)
R

(/]

OR(s) =

_ limit s
$=>0 )To

Gr(s)
1 + Gr(s)

R

o—-
A}

R(s),

Gr(s) R,
1+Gr(s) s
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8.2 Feedback Loop Calculations with Program CC

The numerical calculations for the control system design for this report
were performed with a commercial code named Program CC. It was produced
by the Systems Technology, Inc. Hawthorne, California. The program operates
either in the state-variable representation or the classical transfer function
representation. All calculations done here used the transfer function
representation to facilitate correspondence with laboratory measurements.

8.2.1 Sensitivity Constants. Table 8.1 lists the sensitivity constants of the
system used in the calculations. The names of the constants, corresponding to
symbols used in Figure 4.22, are given, together with the variable names used
in the program calculations. The description explains its function. Numerical

values are shown.

Table 8.1
Program
Constant Name Description Numerical Value
k, KPHI Bunch-to-bucket 0.53 Volts/radian
phase detector
K, KO VCO constant 2.3x10° s7'/Volt
Kpu KPU Radius pick-up 0.05 Volt/mm
K KSHIFT Phase shifter 0.87 radian/Volt
(50°/Volt)
k, KOMEGA Frequency 5.3x10% Volt/s™!
discriminator (10 Volts/3 kHz)
K KSYNC Synchro phase 1.0 Volt/radian
detector (3.1 Volts/180°)
b - Scale factor of 3x10° mm/s’!
radius beam transfer to
function 3x10* mm/s!
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8.2.2 Program CC Transfer Function Names. Program CC operates on objects
called transfer functions, which are complex-valued functions of the complex
Laplace transform variable s. There are no special objects to represent constants;
therefore, the constants of the system, such as the sensitivity constants listed in
Table 8.1 and the synchrotron frequency, are treated as transfer functions of
order zero in s.

Transfer functions that describe the components of the beam control
system are listed here. Refer to Table 8.1 for the sensitivity constants. Transfer
functions describing subsystems, such as the phase or radial loops, are created by
combining transfer functions of components. Subsystems are described below in
Section 8.2.3

1. e, ESTAU

Time delay, given by Padé approximation of order n to the complex
exponential for delay 7, PADE(n,7).

2. C(s), COFS
Delayed frequency modulation response of the cavities.
COFS = ESTAU/(s/(2w x 20 x 10%) + 1)
3. De(s), DPHI
The PID phase loop compensator. Its input comes from the bunch-to-

bucket phase detector. Its output goes to the VCO. See Figure 4.6 and
Equation 4.5

86(2.5¢-5s5 + 1)(3.7e-5s + 1)(-7.7e-7s + 1)
(0.01s + 1)(3.3e-6s5s + 1)

DPHI =

4. wg, WS1 and WS2

Maximum and minimum values of the synchrotron frequency.

WS1 = 27 x 7e3, injection
WS2 = 27 x le3, extraction
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B,(s), BIPHI and B2PHI

Beam transfer function of rf frequency modulations to bunch-to-bucket

phase, for maximum and minimum synchrotron frequencies, see Equation
1.3.

B1PHI
B2PHI

s/(s? + WS1?)
s/(s® + WS2?)

B,(s), BIW and B2W

Beam transfer function of rf frequency modulation to beam frequency, see
Equation 1.5.

B1W = WS1%/(s* + WS1?)
B2W = WS2%/(s? + WS2?%)

Bgr(s), BIR and B2R

Beam transfer function of rf frequency modulations to beam radius, see
Equation 1.4. The constant b in Equation 1.4 is evaluated for injection
and extraction energies, and used with the maximum and minimum

synchrotron frequencies, respectively.

BIR = -3e5/(s% + WS1?)
B2R = -3ed/(s2 + WS22)

D,(s), DROFS

The radial loop compensator, see Figure 4.15.
DROFS = 8/(s/(2m x 1e3) + 1)

D (s), DOMEGA

The frequency loop compensator. It works in cascade with the radial loop
compensator and is just a constant, see Section 4.3.1.

DOMEGA = 0.005
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10.  Dgs), DSYNC

The synchronization loop compensator, see Figure 4.25.

0.08(5e-4s + 1)
(9e-65 + 1)(2.4e-65 + 1)

DSYNC =

8.2.3 Program CC Transfer Function for Subsystems. The transfer functions

of the previous sections are combined to build transfer functions for subsystems.
Open loop subsystems, such as G(s), are comprised of strings of products.
Closed loop subsystems use a special syntax of the program called the feedback
operator, 1. It is a shorthand for the algebra

' _ o
(a|B) = T Fa

where o and 3 are functions of s.

1. Phase Loop

a. G(s) = kk,C()D (5B (s)e "= Eq. 4.2

GP10OFS = KPHI*KO*COFS*DPHI*B1PHI
GP20OFS = KPHI*K0*COFS*DPHI*B2PHI

k k C(s)D (s)e™®
b. Gl o Lo (D,(5) Section 4.1.2
@, 1 + G(s)
PRTOW1 = (KPHI*KO*COFS*DPHI) | B1IPHI
PRTOW2 = (KPHI*KO*COFS*DPHI) | B2PHI
C. Pl - & Section 4.1.1
@, 1 + G(s)

PRTPH1 = GP10OFS|1
PRTPH2 = GP20OFS|1
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2. Radial Loop

6w,f

a. Gr(s) = kekpuDr(s) Bp(s) Eq. 4.11

Pr

GRI1OFS = KSHIFT*KPU*DROFS*PRTOW1*B1R
GR20OFS = KSHIFT*KPU*DROFS*PRTOW2*B1R

b Closed loop radius servo
VR1 = GRIOFS|1
VR2 = GR20FS|1
3. Frequency Loop

a. Open loop

60) ff
Guw(s) = k kgD Dr(s)B (s)

r

GF10FS = KOMEGA*KSHIFT*DOMEGA*DROFS*B1W*PRTOW1
GF20FS = KOMEGA*KSHIFT*DOMEGA*DROFS*B2W*PRTOW2

b. Closed loop

VOMEG1 = GF10FS|1
VOMEG2 = GF20FS|1
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4. Synchronization Loop

a. Open loop

6w,f

k
G(s) = [?’] ksD ()D D (5)B,(s) [

r

GS10FS =KSYNC*(1/5)*KSHIFT*DSYNC*DOMEGA*DROFS*B1W*PRTOW1

GS20FS=KSYNC*(1/s)*KSHIFT*DSYNC*DOMEGA*DROFS*B2W*PRTOW?2

b. Closed loop

VSYNC1 = GS10FS|1
VSYNC2 = GS20FS|1

8.2.4 Calculation of Phase Response to Radial Step. In Section 4.2.2, we show

the bunch-to-bucket phase response to a step change in the reference function of
closed radial loop. This response is a transient that settles to zero when the beam
stabilizes at the new radius. The magnitude and duration of this transient are
illustrated in Figure 4.2.1

The formalism of the calculation is described here. First, write the
response of the phase correction, ¢,,

@, = kD ()(R() - dR).

But,

G
1 + GJs)
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So, ¢, as a function R(s) is

=k 1 - o R
¢r = ODr(s) 1+ Gr (s),
and we have
_ G
© -—————-1 TG0) (2=
so that
k
¢ = G(S) ODr(s) R(S) )

1L +G(s) 1+ GJs)

In terms of the Program CC transfer functions, this is easily written:
¢, = KSHIFT*DROFS*(1-VR1)*R
¢ = PRTPH1*¢,

P1BEAM = PRTPH1*KSHIFT*DROFS*(1-VR1)(R /s)
P2BEAM = PRTPH2*KSHIFT*DROFS*(1-VR2)*(R/s)
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