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The Correlated Hyperspherical Harmonic expansion method is used to calculate
a-particle properties with a realistic hamiltonian consisting of the Argonne V14 two
nucleon and Urbana model VIII three nucleon potentials. The calculated binding energy,
mass radius and wave percentages are close to the corresponding quantities obtained
with Green’s Function Monte Carlo and Faddeev-Yakubovsky techniques.

L INTRODUCTION

The bound and scattering states of the four-nucleon system have been the
object of a large number of theoretical and experimental studies. Among the
ground state properties experimentally accessible we can mention the binding
energy, the asymptotic normalization constants for the separation in 242 and
3+1 clusters and the structure functions. Scattering states are also of interest,
for istance in studying the reactions p+3H — n+3He or d4d — a + 7.

The four-nucleon problem with realistic interactions is quite involved and
until a few years ago only the Green’s Function Monte Carlo (GFMC) method
had been successfully applied [1,2]. More recently, the Faddeev-Yakubovsky (FY)
technique has reached a good numerical accuracy [3-5], too. The GFMC method
is based on the use of the evolution propagator in imaginary time exp[—7 H]. The
ground state expectation value of an operator O (for example the hamiltonian
H) is obtained from (¥Wr|exp[—7H]Oexp[—7H]|¥7) in the limit 7 — oco. In
principle, ¥t is an arbitrary trial wave function (w.f.). In numerical applications

it must represent a good variational choice in the description of the system in
order to ensure convergence. The FY technique, used in refs. [3,4] consists in
solving directly the four-body Schrodinger equation in momentum space after
the decomposition of the w.f. in partial waves. To compare the two methods,
for the Argonne V14 (AV14) potential [6] (including the Coulomb interactions),
the GFMC technique [2] provides a g.s. *He energy of —24.2 4+ 0.2 MeV and FY
gives —23.87 MeV (obtained by adding the mean Coulomb energy, assumed to
be 0.75 MeV, to the value of ref. [4]). The reason of the discrepancy could be
due 1) to the difficulties of GFMC in treating the L? and (LS)? components of
the two-body potential and ii) to an incomplete convergence of the partial wave
expansion in FY.

A sophisticated variational technique to describe the bound and scattering
states of three-nucleon systems has been developed by the authors in refs. [7,8].
The w.f. is expanded in channels, as in the Faddeev technique, and the ra-
dial amplitude of each channel is expanded in terms of correlated functions. Two
different types of correlations have been investigated. The Pair correlated Hyper-
spherical Harmonic (PHH) basis includes a pair correlation function per channel,
while the Correlated Hyperspherical Harmonic (CHH) basis uses a correlation
factor of the product (Jastrow) form. Such bases result to be well suited for
taking into account the correlations induced by the large repulsive terms of the
nucleon-nucleon (NN) potential. The technique was used in ref. [7] to calculate
the bound state w.f. of the triton, with the AV14 model NN interaction. In
ref. [8] the method has been extended also to include Three Nucleon Interaction
(TNI) terms, and to study the N-d scattering process below the break-up thresh-
old. The obtained results are in complete agreement with those given by the best
available methods [9-11].

The generalization of the CHH expansion method to the four-nucleon sys-
tem with “realistic” interactions is presented in this paper. The w.f. is expressed
as a sum over a number of channels having different angular-spin-isospin quan-
tum numbers. Each channel is then expanded by means of the CHH functions.
Due to the presence of the correlation factors, the number of expansion functions
per channel can be kept low and it has been possible, therefore, to perform accu-
rate calculations. The results obtained for the ground-state of the o -particle will
be given for the AV14 potential without and with the inclusion of the Urbana
VIII (UR) model of the TNI [12].

The paper is organized as follows. The expansion of the w.f. is outlined in
sec. II, while the choice of the correlation functions is discussed is sec. III. The
numerical results obtained for the ground state of the a-particle are reported
and discussed in section IV. The last section is devoted to the conclusions.



II. THE CHH EXPANSION

The wave function of a four-nucleon system with total angular momentum
J, J. and total isospin T, T, can be written as a sum of amplitudes

12
v = E ['l’A(xlp,xzp,xap) + ¢B(Y1p,Y2p,Y3p)] , (1)
p=1

where p denotes an even permutation of the particles. Through the present work
the permutation p corresponds to the order i, j, k, m of the particles. The
dependence of ¥4 and ¥p on the nucleon spin-isospin variables is understood.
The vectors x; 2.3 and y; 2.3 are the two possible sets of Jacobi vectors which

can be constructed for a system of four particles of equal masses, and they are
defined as

set A set B

X1p = \/'%—(rm_ﬁ_}g—ﬂ)y Yip= ¥ — T,
. +r;. (2
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X3p = Fj — I, Yp = Ij — K.

In the L-S coupling scheme the amplitudes ¢4 and Y are written as
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respectively. Here, z,, y, denote the magnitudes of the Jacobi vectors, and s;
(t;) denotes the spin (isospin) function of particle i. Each a—channel is specified
by the angle—spin-isospin quantum numbers £y4, 24, €34, 12¢ Lo, Saa, Sta, Sa,
Too and Tho. In eqs. (4) and (6) Lo and S, are coupled to give J, J, and the
functions F,, are correlation factors. In order to ensure the antisymmetry of
the w.f. the amplitudes ¥4 p must change sign under the exchange of particles
and j. Therefore, if the function Fop is even (odd) when ¢ « j, then the integer
I35 + Saa + Taa must be odd (even); moreover, £14 + €24 + €34 must be even or
odd number depending on whether the parity of the state considered is either
even or odd.

The functions F,, have been chosen to depend only on the interparticle
distances, i.e. Fop = Fop(rij, ik, Tjk, Tim, Tjm, Tem)- In the case of purely central
potentials, a simple product form for each radial function F,, allows for quite
an accurate description of the A = 4 ground state [13]. As an example, the
calculated binding energy with the Malfliet—Tjon V interaction (MTV) [14] and
an optimized trial w.f. of the Jastrow form ¥ = [], <j f(rij) is found to be
B = 31.32 MeV [13], very close the (presumably) exact value B = 31.36 MeV
obtained with a variety of different methods [3,9,16]. The inclusion of (non-
optimized) Jastrow factors significantly improves the convergence rate of the HH
expansion, as it has been shown in ref. [7] for the A = 3 system with realistic
interactions, and in ref. [15] for the A = 4 system with the MTV interaction. It
is therefore useful to incorporate such correlation factors in the present study of
the A = 4 ground state with realistic interactions. The correlation functions F,
in egs. (3) and (5) are taken of the form

Fap = faa(rij)fba(rik)fba(rjk)fca(rim)fca(rjm)fda(rkm) , (7)

where fao, foa, fea and fio are one-dimensional functions of the interparticle
distances. The choice of these functions will be discussed in section III. The
a—channels selected in our calculation are specified in table I together with the
corresponding choice of the radial functions f,, fi, f. and f4.

One can replace the magnitudes of the Jacobi variables with the hyperspher-
ical coordinates, given by the hyperradius [17]

p=\/(21)? + (225)? + (235)? = \/(!hp)2 + (y29)* + (v3p)? (8)

which turns out to be independent on p, and the “hyperangular” variables,

cos ¢3p = "’3p/P = y3p/P ,
cos 3, = Z3p/(psin dap) , (9)

cos #Z, = yzp/(psin g3,) .



Fach ®, function in eqgs. (3) and (5) is then expanded in terms of the HH basis
as

ul, (p
Paa(z1p, 22p,T3p) = Z —""'4( )zf;,"z;;"zé;" Y,,"m(¢§p,¢3p) ) (10)
n,m
w:m(p) tia, lza,lsaya B
(I’Ba(ylpy Y2p, Y3p) = Z p—4y1p Yap Ysp Ynm(¢2p’¢3p) ) (11)
n,m .

where
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Y, (B,7) = N& (sin )" Pa= ¥ (cos 28) PRt 1t (o 29) . (12)

In the last expression, P%® are Jacobi polynomials, the integers n and m range
from zero to infinity, K2o = f14 + f2o + 2m + 2 and N% . are normalization
factors. When the functions Y,%, are multiplied by the product of the spherical
harmonics Y, Yz, Ye,, as in egs. (3) and (5), the standard expression [17] of the
Hyperspherical Harmonic functions is recovered. It is convenient to rewrite the
w.f. given by eq. (1) as:

¥=3 y—ﬁ"TT(’L)u:m(p,Q), (13)

a,n,m

where U stands for u or w, depending on whether the channel a is constructed
with either set A or B of the Jacobi variables, and 2 denotes the hyperangular and
angular variables (the dependence of M on the variable p is due to the correlation
factor). The functions HZ, (p, Q) are explicitely given by

12
Ham(p, Q) = ) Fop zile 253 2800 V2 (64, $3p) VA, | (14)
p=1

if channel « is constructed with the set A of Jacobi vectors, and

12

HEn(0, ) =) Fap Utk ¥52 ¥50 Y2 (65, 63,)V5, (15)
p=1

if it 1s constructed with the set B of Jacobi vectors. The summation over n
and m in eq. (13) will be limited to include the CHH functions HZ,, with 0 <
2(n+m) < KM KM being a positive even integer. For a given KM | the number
M, of functions included in the expansion of channel a is given by

M, = (KM 4+ 2)(KM 4+ 4)/8 . (16)

However, we note that some of the functions M;,, are not linearly independent
from the other ones, and therefore should be removed from the expansion. In
general, it may happen that CHH functions constructed in terms of different
sets of Jacobi vectors but having the same quantum numbers are equal. As an
example, it can be verified that 'Hf’,%‘ = ﬁ,%B for all n. The values of M,, given
by eq. (16), will not be modified but the components in the w.f., involving linearly
depending functions H3,, in the following will be taken with zero amplitude.

The Rayleigh—Ritz variational principle is used to determine the functions
UZa(p). The functional derivative of the hamiltonian expectation value with
respect to each function U(p) is set zero,

<by¥|H-EN¥>=0, (17)

by ¥ denoting the change in the w.f. due to an infinitesimal variation of any of
the functions UZS, (p). The volume element d7 in the nine-dimensional space is
written as dr = p8dp df). After performing an integration over d2 in eq. (17)
and a summation over the spin—isospin variables, we obtain a set of coupled

second-order differential equations of the form

M 2 m
Z (Aqq'(l’):? + Byy (P)Ed; + Cyg(p) + EEE qu'(P)) Up(p)=0. (18)

¢'=1

E is the total energy of the system and the indices ¢ and ¢’ run over the channels
«a and the quantum numbers n, m. It 18 convenient to perform all the numerical
integrations with respect to the variables corresponding to a given set of Jacobi
vectors and a given permutation. In the following we will refer to the Jacobi set
A and the permutation p = 1, corresponding to the order 1234 of the particles
(hereafter, the index p will be omitted). The quantities to be calculated, as
functions of p, are the coefficients A, B, C and N in eq. (18) and this requires
the numerical integration over the hyperangular and angular variables. As a
first step, let us introduce the variables z = cos¢s, = cos ¢4, uy = %, - 3,
2 = Z9 - £3 and ¢, the angle between the projection of the vectors z; and £, in
the plane perpendicular to 3. The integration over €2 can be replaced by

1 1 +1 +1 2
/dQ—+87r2/ dr 1:2\/1-—.1:2/ dz 22(1-22)2/ dpl/ d’l?/ dy .
0 0 -1 -1 0
(19)



We now define a new set of variables ¢;, i = 1, 5, all ranging in the interval (0,1),
by means of the relations

1 1

=Ml a=221, 4=2 (21)
The integration over Q is reduced to the integration over the variables £; and
the corresponding numerical calculations have been done by means of the Quasi
Random Number (QRN) technique [18]. A good precision has been obtained by
using 50, 000100, 000 QRN integration points. The solution of eq. (18) is carried
out by standard numerical methods. The procedure we have adopted consists in
replacing the derivatives with finite differences and in solving the corresponding
eigenvalue problem with the Lanczos algorithm [19].

III. THE CORRELATION FACTOR

It is well known that the rate of convergence of the (uncorrelated) HH ex-
pansion results is very slow when the interparticle interaction is strongly repulsive
at short distances. As already pointed out in the Introduction, the role of the
correlation factors is to accelerate the convergence of the expansion by improv-
ing the description of the system when two particles are close to each other. In
such configurations, there are large cancellations between the contributions from
kinetic and potential energy terms, and therefore the w.f. must be very precisely
constructed. It is therefore convenient to include in the w.f. appropriate terms,
in order to describe these configurations. This has the advantage of reducing the
number of basis functions necessary to obtain a converged result.

The correlation factors in eq. (7) are of the Jastrow form, namely they are
product of correlation functions depending only on the interparticle distances.
In principle, these functions could be determined variationally, as was done in
ref. [13] for a simplified problem (central interaction). However, such an approach
would be numerically involved in the present case, and we have used the following
simpler procedure based on the observation that, in a generic nuclear system,
when a given pair is far away from all other particles, the dependence of the
total w.f. on the coordinates of these two particles is mainly determined by their
mutual interaction. Therefore, the radial w.f. pg(r;;) for the relative motion of
pair #,j in the angle-spin-isospin state 8 (= jg, £g, Sg, Ts), can be approximately
described by the solution of an equation of the form

RErd?  2d  fa(fp+1) _
%:{—n—l p+;$—r—2]5ﬁﬂ'+Vﬁﬂ'(r)+)\pﬂ'(f) ppr(r) =0, (22)

where Vag:(r) =< |V (3, )18 > (V(4, j) is the interparticle potential). Depend-
ing on the state 3, eq. (22) can be a single equation or two coupled equations.
The additional term Agg/(r) in eq. (22) takes into account the effect of the other
particles on the interacting pair. There is a large arbitrariness in the choice
of Agg:(r), since the relevant condition to be satisfied is |Agp:(r)| < |Vpgp:(r)]
at small r values. As in our previous study of the three-nucleon system, we
parametrize Agg:(r) as Agg:(r) = Agexp(—vyr)égg:. The 1/v value should be
greater than the range R of the potential Vgg:(r), but its precise value is found
to be unimportant (1/7 is taken to be 2.0 fm). The depth Ag is determined by
requiring that pg(r) satisfies some appropriate healing condition. In this paper
we impose the condition ¢g(r) = 1 when r > R.

It should be noted from eq. (7) that the function fyq(r) is related to the
reference pair (i, j), characterized by definite values of angular momentum, spin
and isospin for each channel. Therefore, these functions can be taken as solutions
of an equation of the form (22). Since the total w.f. has been constructed in the
LS coupling, in general the total angular momentum jg of the reference pair
does not have a definite value. However, for the first three channels (a = 1-
3) ¢, = £, = £,; = 0 and, since J = 0, one easily obtains J8 = Saa. As a
consequence, the correlation functions foo = fo, @ = 1-3, correspond to the
states 35}, 1Sy and 3D, respectively (of course, the functions f; and fs satisfy
two coupled equations).

The a > 3 channels are less important than the first three ones. Therefore,
the functions f,4(r), with @ > 3, have been determined by a simplified procedure:
we have used the function f; for the channels with £3 =0, S, =1, T, =0, f, for
those with £3 =0, S, = 0, T, = 1 and f3 for those with 3 =2, S, =1, T, = 0.
Finally, for the channels with f3 = 1, the function f,, calculated by considering
in eq. (22) only the central part of the pair potential in the state 3P;, has been
adopted.

Let us now discuss the choice of the functions fio(rit), fea(rim) and
faa(rem) with k, m different from the reference pair indices i, j (see eq. (7)).
These functions correlate pairs which are not in a definite angle-spin-isospin
state. For the correlations of the first channel listed in table I the following proce-
dure has been adopted: first of all, let us suppose in eq. (3) ®aa=1(Z1p, T2p, 23p) =
1 and moreover, let us consider a configuration where the particles 1 and 2 are
very close to each other and the others interparticle distances are very large, so
that the corresponding correlation functions have reached the asymptotic value
F(rij#12) = 1. In this case, the expression of channel a = 1 reduces to:



S Fuvt, ;f,,(r,z)[[[sis,],sk] o) [l Ton] %t,,,L L@

where ¥, stands for one of the fo1, fo1, fo1 or Ja1 functions, depending on the
permutation p. The spin-isospin states in the last equation can be expressed in
terms of the states constructed with the 1234 ordering of the particles, which are
given by

1S,T) = [ [ [slsgl'ss;g] %“L T[[tltz]Tt;;]%t.i] . (24)

0

Eq. (23) can be then explicitely written as

[ .
Z P, — Ja1(r12)]1,0) + fo1(r12) \/%II,O) - \/%IO, I)J
3 !

+fc1 (1'12) ’:J—I%II,O) - \/%IO, 1)} + fdl(rlg)ll,()) . (25)

From this expression, we see that the function Ja1 is associated to the same spin—
isospin state as the function fa1, so that fy = Ja1 = fi (we have previously
discussed how to determine f, ). Analogously, the functions fo1 and f.; are
taken to be equal (= ¢1). They have been calculated by using the potential
Vagi (1) = 1/2[V1((§)(r12) + Vo(f)(rlz)] In eq. (22), where Vé;,)(r) stands for the
projection of the central part of the two-body potential on the spin state S and
isospin state T' (= 0 or 1). We note that different averages of the spin—triplet

of the second channel functijons.

For the third channel any pair of particle is in a triplet spin state since
the total spin is 2, therefore the function fz = g2 has been calculated with the
potential V,((f ) (r). On the other hand, the functions fi3 and f.3 correlate particles
with a non definite angular momentum and isospin. For the sake of simplicity, we
take f3 = f.3 = g,. We have however checked that other choices of f,3 and Sea
(for example, different mixing of S—state and D-state functions) do not influence
the final results in a significant way.

A simpler procedure has been followed for the correlation functions of the
other channels constructed with the set A of the Jacobi vectors (@ =4+8 and
12 = 19, as listed in Table I). We have taken oo = fea = fia = g91- The
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correlation functions of the channels constructed with the set B of the Jacobij
vectors (&« = 9+ 11 and 20 +22) have been chosen in a similar way. In this case,
the functions correlating pairs with definite angle-spin-isospin quantum numbers
are faq and fiq and so, they have been chosen to be f1 or f3 depending on the
value of ¢3 and £, respectively. The functions Joa and f., have been chosen to
be g1, as in the other channels. A summary of the correlation factors used in the
various channels is given in table I.

IV. RESULTS AND DISCUSSION

The list of the channels included in the present calculation with the cor-
responding orbital angular momentum, spin and isospin quantum numbers is
reported in table I. The convergence of the correlated expansion for the four-
nucleon ground state has been studied by the authors in ref. [15] for the case of
semirealistic, purely central NN interactions, such as thosge given by Malfliet and
Tjon [14] and Afnan and Tang [20]. Since such interactions are spin-dependent,,
the first two channels listed in table I were considered. The conclusion was that
inclusion of these two channels leads to a very good convergence of the expansion
with a few (5 — 10) hyperradial components per channel.

However, for the case of realistic NN Potentials, it is more difficult to solve
the four-body problem with a satisfactory accuracy. In this section the results
obtained for the AV14 potential will be presented. All the 22 channels listed in
table I have been considered in the variational w.f. These turn out to be the most
important in describing both the p+3H (neutron+3He) and d+d configurations.
It is well known that realistic local interactions, which accurately reproduce NN
scattering data, underbind the 4 — 3, 4 nuclei. This discrepancy can be elim-
inated by including three-nucleon interactions in the hamiltonian. We use the
Urbana VIII (UR) model of TNI [12] in order to compare with results obtained
with different approaches.

The values obtained for the binding energy B and the mean value of the
kinetic energy T are reported in table I1. A few of the cases we have investigated
are presented in the table to show the convergence properties with respect to the
numbers M, of the HH expansion terms included in the various channels, and
the number N, of channels taken into account. As an example, when M, .5 is
increased from 10 to 21 (and M,53 = 0), the gain ABj in the binding energy
of the system is 0.22 MeV for the AV14 potential and 0.50 MeV for the full
hamiltonian including the TNI. This slow convergence is a consequence of the
non-orthogonality of the channels due ) to the presence of the correlation factors,
which produce a mixing of the orbital angular momenta of the channels and 1)

11



to the sum over the permutations of the Faddeev amplitudes. As a consequence,
when only very few channels are considered, the increase in the number of HH
components allows for a partial inclusion of higher order channels. This point
may be made clearer by comparing ABj3 with AB,, (the change in the binding
energy corresponding to N. = 22 when M,_3 is increased from 10 to 21). The
last three rows of table II can be used and the values ABj; = 0.06 MeV for the
AV14 and 0.11 for the AV144+UR models are obtained. They are appreciably
smaller than A Bj3. Therefore, the conclusion is that the number of HH functions
per channel can be kept sufficiently small (~ 10) when all the relevant channels
are taken into account.

As far as the channels with & > 4 are concerned, we see from inspection of
table II that a reasonable convergence is reached with a rather small numbers of
the CHH components (M3 = 3+ 10). Moreover, the values of M, can be taken
smaller for increasing values of a. This behavior should be a consequence of the
relative minor importance of these channels with respect to the first three ones.
This interpretation is also confirmed by the mean values of the kinetic operator
T given in table II. Indeed, for the AV14 + UR case, they increase by 10%, 5%
and 1% when the w.f. contains 8, 11 and 22 channels, respectively.

We will now try to estimate the contribution to the binding energy that is
not included in the present calculation. As it has been mentioned before, it is
difficult to estimate the convergence of the CHH expansion relative to channels,
due to the non-orthogonality among them. We have therefore ordered the HH
functions and their energy contributions according to their grand-angular quan-
tum number value G = ¢, + £3 + £3 + 2(n + m). The motivation lies in the fact
that the kinetic operator acting on a HH function with grand-angular number G
produces a “centrifugal” term equal to G(G +4)/p?. This term is more and more
repulsive as G increases, therefore it is useful to examine the convergence of the
expansion as function of G. In ref. [17] it has been shown that in the case of a
central Yukawa-type potential, the missing energy § B could be estimated as

ad 1

6B = const Z —
4 b
G=Gmext+2 (G/2 + l)

(26)

after the inclusion of the (uncorrelated) HH functions with G = 0,2, ... Gmax-
If the same formula for 6B is applied to the realistic interactions studied in this
paper, the corrections 6 B(AV14) = 0.09 MeV and §B(AV14 + UR) = 0.37 MeV
are obtained by means of the results shown in table IIl. However, it should be
observed that in the present calculations not all the HH functions with a given G
value have been included, but only those belonging to the channels specified in
table I. Nevertheless, we are sufficiently confident of the validity of the previous
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estimates for §B. We therefore conclude that the truncated CHH expansion
has reached a good convergence for the AV14 potential, whereas (a few) more
channels must be added for the AV14+UR potential.

The results obtained with the CHH technique are compared in table IV
with those from other methods. In the case of the AV14 interaction, the Faddeev—
Yakubovsky (FY) and the CHH estimates for the binding energy are rather close.
At present, also in the FY approach there are problems concerning the full con-
vergence in the channel expansion. The missing binding energy is evaluated [4]
to be about 0.1 MeV and the extrapolated B value is in agreement with the cor-
responding one given in the last row of table III. The binding energy estimates
from the previous two methods are consistent with that from the GFMC [2] once
the statistical error in the GFMC value is considered.

We have considered the same CHH channels as for the AV14 potential if
the TNI terms are included. However, in this case the B value obtained differs
from the GFMC one by approximately 0.8 MeV (reduced to 0.45 MeV for the
extrapolated CHH binding energy). A larger number of channels (perhaps also
of HH components per channel) should be presumably considered in order to
resolve this discrepancy.

In table IV the values obtained for the average kinetic and potential energies,
mass radius and percentages of various waves are shown. It is interesting to
compare the percentages with the corresponding ones for triton [7]; namely Pg: =
1.27, Pp = 0.076 and Pp = 9.962, in the case of the AV14 potential. From
table IV we see that the percentage of the mixed simmetry S-wave is noticeably
reduced. This should be due to the increase in binding energy, and, in fact, the
relation Ps/ oc 1/B? is essentially verified. On the other hand, the P- and D-
wave percentages are greater for the a particle, probably since there is a larger
number of channels with total orbital angular momentum L = 1 or 2. For
example, when A= 3 the most important contribution to the P wave comes
from the channel with two angular momenta £ = 2 coupled to give L = 1. For
A= 4, an important contribution comes from the 16-th channel of table I. The
corresponding state contains only angular momenta values ¢ = 1, and therefore it
should be preferred due to the smaller associated kinetic energy. The component
with a fully antisymmetric radial dependence gives negligible contributions for
both A=3 and 4.

In order to get an approximate estimate of the contribution due to higher
channels not included in the present calculation, we have included in the expan-
sion other channels to those listed in table I. In all cases, the gain in binding
energy obtained by including one more channel at a time was less than 0.02 MeV
for the AV14 potential. When the TNI terms are taken into consideration, the
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gains are slightly larger. The TNI strongly depends on the particle state, particu-
larly on the interparticle distances, so the channels with higher angular momenta
values can give appreciable contribution to the structure of the w.f. Moreover,
the correlation factors have been determined by using only the two-body NN
potential and no attempt has been made to improve them in the presence of
TNI.

It should be pointed out that when the CHH expansion is applied to the
study of the triton ground state, there are convergence problems similar to those
encountered for the alpha particle. For A=3, the CHH expansion gives satisfac-
tory results just with a small number of channels. However, after the inclusion
of the 12 channels, there is a missing binding energy of approximately 0.02 MeV
with respect to the (presumably) exact value obtained by a variety of different
methods [7,9-11] that results very difficult to be recovered by adding more chan-
nels. Once again, the problem is due to the mixing of orbital angular momenta
caused by the Jastrow correlation factor. In fact, this convergence problem has
been solved 7] by replacing the Jastrow factor with a simpler pair correlation
function f(r;) = f(p‘® cos ), where p® and ¢@ are the corresponding hy-
pervariables for A=3. Probably, similar considerations hold for the four-body
system too, and again a PHH expansion should allow for better results. Such
an expansion is obtained by simplifying the correlation factors discussed in sec-
tion I11, by taking fy = f. = f4 = 1in eq. (7). However the numbers of channels
to be included becomes larger, of the order N, = 100, a number comparable to
the one used in the FY approach. All these points require further investigation.

V. CONCLUSIONS

The use of suitable expansion bases has been shown to be a powerful tool in
the development of theoretical investigations of nuclear structure. However, such
an approach has been proven to be really successful only in the case of effective
interactions without large repulsions. On the contrary, the phenomenological NN
potentials are characterized by a strong state dependence and large repulsion at
small distances. When these potentials are used to study the structure of few—
nucleon systems, it is necessary to set-up new ad hoc devised expansion bases.
An expansion over a set of correlated Hyperspherical Harmonic functions was
proposed in ref. [7] and applied to the A=3 nucleus ground state. The conclusion
was that only a few correlated HH funtions per channel were sufficient to obtain
at least four correct figures for the quantities of interest. The correlation factors
were obtained in a simple way. However, if the correlation functions were taken
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to be equal to one, with the corresponding number of HH considered in ref. (7},
no binding at all would be found.

In the present paper the generalization of the CHH method to the four-
nucleon system has been discussed. For the ground state the convergence of the
expansion results to be more critical than in the A=3 case; this can be due to
the larger number 1) of expansion terms necessary for an accurate description
of each channel, and ii) of channels to be included. However, with a rather
small number (22) of channels and a limited total number (= 164) of expansion
functions, it is possible to obtain a satisfactory description of the ground state,
comparable to the one given by the GFMC or FY methods. It turns out that, in
the case of the AV14 potential, there are small differences between the results of
the three methods, whereas larger differences are present when also TNI terms
are taken into account. Such differences may be due to an incomplete convergence
of the partial wave expansion present in the CHH and FY calculations, or to an
underestimate of the statistical error in the GFMC technique.

It should be pointed out that the present Jastrow correlation factors have
not been optimized and that this could slow down the rate of convergence in
the expansion. Other types of correlation functions, as for example in the PHH
approach, could be perhaps more appropriate. However, to clarify these apects
of the problem further investigations are necessary.

In conclusion, it appears that at the present time the description of the
a-particle ground state, within the framework of the standard non relativistic
theory with realistic potentials, has reached a good accuracy.

The author would like to thank Profs. A. Fabrocini and R. Schiavilla for useful
discussions.
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Table Caption

Table I. Quantum numbers and correlation functions for the channels
a = 1+ 22 included in the partial wave decomposition of the w.f. given by
eq. 3 (set A) or eq. 5 (set B). The choice of the correlation factors f; and gi is
discussed in section III.

Table II. a-particle binding energy B and average kinetic energy T (in
MeV) for the AV14 and AV14 + UR interaction models, with Coulomb interac-
tion included, in correspondence to different values of M,, the number of CHH
functions in the channel o.

Table III. a-particle binding energy B and average kinetic energy T as
function of the grandangular quantum number G. The last row reports the
extrapolated binding energy calculated with eq. (26) by assuming Gmax = 8.
The missing energy 6B is then calculated by subtracting the binding energy
reported in the last row of table II from the extrapolated binding energy.

Table IV. a-particle energy breakdown for the AV14 and AV14 + UR
potentials. Energies are in MeV and radii in fm. Viyy is the mean value of the
two—nucleon potential energy and the various terms VX give the contributions
of the corresponding parts of the potential. Uz  is the mean value of the TNI
potential energy and U?* (UR) gives the contribution of the two-pion—exchange
(repulsive) term of the Urbana VIII model TNI. Finally, R is the mass radius and
Ps, Pp, Pp and Ps: are the wave percentages. For the sake of comparison also
the results obtained with the GFMC [2], VMC [12] and FY [4] techniques have
been reported. The numbers in parentheses give the statistical errors in the last
digit. The result denoted by (*) has been obtained by adding to the one reported
in ref. [4] the mean Coulomb potential, assumed to be 0.75 MeV.
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a | set
114
21 A
31 A
1 4
51 A
6| A
7] A
81 4
9B
10| B
11| B
12] A
13

0 0 o
0 0 o
0 2 o
2 0 2
2 2 2
2 2 2
2 2 2
2 2 2
6 2 2
0 2 2
0 2 2 9
I 1 1 9
I 1 1 1
I 1 1
I 1 1 9
I 0 0 o
I 0o 1
1 0 1
I 0 2 2
0 0 0 o
0 2 o0 2
0 0o 2 2

TABLE I.
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Sa S S|T, T T fo s fo fa
L 1/2 0j0 172 ¢ Hh o g f
0 172 0|1 172 ¢ f2 90 91 f
132 210 172 ¢ fso 91 g g
1 3/2 2010 172 ¢ h o ¢ g
1 1/2 ofo 172 0| f3 91 g1 ¢
1 172 1o 172 0 f3 g 9 g
132 110 172 ¢ s og g
1 3/2 200 172 ¢ fsonog g
11 0ofo o oy n oa fs
I 1 110 o ¢ 59 g fy
I 1 210 o o s g f3
I 172 01 /2 0] f, ¢ N oq
L2z alr 2 ofg 4 @
1 3/2 11 V2 0(f g 91 g
132 201 172 olf 4 o o
1 1/2 oo 1/2 ¢ h o ¢ 91
1 1/2 1|0 172 01 /i g ¢ 9
D32 100 172 0)f g 4 o
1 3/2 200 172 ¢ h g g g
L1 oo o o i ¢ £
11 2({0 o o fs.o0 0 g A
1 1 2(0 o o h o g f

AVl4 AV14 4 UR
b

Number of CHH functions
Mz Mg Mg 11 Mgy Moy B T B T
1 0 0 0 0 20.10 83.04 2092 85.16
3 0 0 0 0 2047 83.91 21.20 85.60
6 0 0 0 0 2084 8435 21.72 87.26
10 0 0 0 0 21.20 85.47 2234 8952
15 0 0 0 0 21.35 85.88 2269 90.85
21 0 0 0 0 2142 86.10 2284 91.33
28 0 0 0 0 21.47 86.22 2292  91.47
10 1 0 0 0 21.53 86.68 23.30  93.20
10 3 0 0 0 2261 90.34 2540 100.32
10 6 0 0 0 2270  90.46 2540 100.82
10 10 0 0 0 22.76  90.53 2566 101.25
10 10 1 0 0 23.67 94.09 26.99 105.86
10 10 3 0 0 23.69 94.10 27.03 105.93
10 10 6 0 0 2371 94.17 27.06 106.09
10 10 6 1 0 23.76  94.34 27.24  106.82
10 10 6 3 0 23.79 9439 2728 106.95
10 10 6 3 1 23.85 9460 27.34 107.03
10 10 6 3 3 23.87 9454 27.37  107.02
15 10 6 3 3 23.91 9965 2744  107.06
21 10 6 3 3 23.93 99.75 2748 107.09
T 3 |59 wn|ams i)



AVi4 AV14 + UR
G B T B T
2 20.60 84.18 | 21.45 86.36
4 23.12  92.72 | 25.67 102.27
6 23.71 94.45 | 2691 106.06
8 23.85 94.69 | 27.33 106.77

extr | 24.02 27.85
TABLE III.
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Potential AVi4 AV14 + UR

CHH FY(*) GFMC | CHH VMC GFMC
B 23.93 2387 24.2(2) | 2748 27.2(2) 28.3(2)
T 94.75 107.20 106.6(8) 113.3(20)
Ts 58.50 63.46
Tp 1.39 2.66
Tp 34.86 41.07
VNN -118.68 —-130.06 —129.7(7) —136.5(20)
VCENT —41.95 —44.92
Y TENS — 76.46 —85.35
viLs 1.28 1.75
4 13.26 15.60
yLs? ~15.56 ~17.93
ycouL 0.75 0.78 0.74(1) 0.75(1)
Urni —4.56 —4.84(9) —5.8(3)
v -9.09  —9.48(11) —10.8(3)
UR 4.53 4.73(8) 5.0(2)
R 1.53 1.46 1.47(1) 1.45(1)
Ps (%) 85.44 82.88
Pp (%) 0.35 0.64
Pp (%) 14.20 16.24 15.5(1) 16.6(2)
Ps: (%) 0.35 0.24

TABLE IV.
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