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1
I N T R O D U C T I O N

Particle accelerators and colliders are established as one of the major driving forces
in fundamental particle physics research. Particle colliders have over the past deca-
des led to the discovery of nearly all the particles in the Standard Model [6–20],
with the exception of the electron neutrino that was discovered using the neutrino
flux of a nuclear reactor [21], and the muon that was discovered from studies of
cosmic rays [22]. It is in the continuation of this success that the Large Hadron
Collider (LHC) [23] was built. The primary objective of the LHC, together with the
incorporated particle detectors (ATLAS [24], CMS [25], LHCb [26], and ALICE [27]),
is to provide experimental evidence to study the fundamental structure of the uni-
verse. This eventually led to the recent discovery of the Higgs boson [19, 20], which
forms the keystone of the Standard Model. The Standard Model of particle physics
has been instrumental at predicting new particles, and has proven to be a reliable
guide to predict the particle properties and interactions [28–30]. While it is widely
tested and benchmarked in a wide range of experiments, it does by no means form
the final answer in fundamental physics. Many currently open and unanswered
questions in fundamental physics lie beyond the Standard Model. With the discov-
ery of all the particles in the Standard Model, efforts now shift towards the study
of potential discrepancies between the Standard Model and experimental measure-
ments, as well as the discovery of new physical phenomena that lie beyond the
Standard Model.

There are currently two key areas that can improve the chances of new discover-
ies in particle physics using circular colliders. The first is known as the high-energy
frontier, where the aim is to increase the center-of-mass energy of the collisions to
allow the detection of particles and processes whose energies lie beyond the cur-
rent reach of the LHC. Such experiments pushing the energy frontier are the focus
of the proposed Future Circular Collider (FCC) [31]. The second field of study that
can lead to new discoveries is called the intensity frontier, and aims to increase the
generated luminosity in the detectors to improve statistics and allow the detection
of extremely rare processes and events. This has been the continuous effort of the
LHC and lies at the core of the High Luminosity LHC upgrade [32]. The luminosity
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upgrade aims to achieve a ten times higher integrated luminosity over its lifespan
by increasing the bunch intensity and reducing the beam size at the collision points
in the detectors.

In the search for higher luminosities, the design of the LHC pushes the particle
dynamics to ever more challenging regimes. Linear dynamics have been studied in
great detail since the emergence of synchrotrons providing a strong and well estab-
lished basis [33–36]. In the LHC continuous improvements and developments of
correction strategies have pushed the control of linear optics well beyond the estab-
lished design parameters of the LHC [37–39]. This success has allowed the study of
more challenging sources of perturbations. More recently, the nonlinear dynamics
in the LHC have been a limiting factor for both operation as well as performance.
Nonlinear magnetic errors arising from the magnetic field errors, magnet misalign-
ments, magnet rotations, or other possible sources, can greatly perturb the particle
motion in the collider, by causing particle orbits to become unstable, reducing the
dynamic aperture, and causing resonances in the beam motion, all of which can
critically reduce the luminosity. The correction of these magnetic errors has been
an integral part of the LHC commissioning in Run II, and is seen as a priority
for Run III. Furthermore, the design parameters for the High Luminosity LHC up-
grade are predicted to be unachievable by controlling the linear beam optics only.
It will be the first hadron collider where the accurate understanding and control of
the transverse nonlinear beam dynamics is necessary to operate the machine at the
design parameters. The measurement and correction of nonlinear magnetic sources
is thus critical to achieve the performance of future colliders.

measurements of transverse beam dynamics in the large hadron

collider

Measurements of beam optics and of nonlinear dynamics are done by generating
a large transverse beam oscillation that is typically much larger than the natural
beam size. The transverse beam position is measured at each turn at specific loca-
tions in the accelerator using Beam Position Monitors (BPM) [40, 41]. The spectral
content of this turn-by-turn position read out provides valuable insights in all the
modes contained in the particle motion at each BPM location. A few criteria can be
put forward that are important for good and accurate measurements of the beam
dynamics. Large oscillation amplitudes are necessary to provide clear signal-to-
noise ratios in the BPMs, as well as to increase the amplitudes of secondary modes
in the turn-by-turn data. Secondly, long lasting oscillations are beneficial to the
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spectral analysis of the turn-by-turn data as they increase the spectral resolution
and reduce the noise floor. Finally, the measurement technique should preferably
be non-destructive to the beam, i.e. the measurements can be repeated without
changing the state of the beam, such that it does not require injecting fresh beams.
The latter is especially true for the LHC, where destructive measurements at top
energy require a ramp down and ramp up cycle, taking up valuable LHC time.

The conventional method to excite the bunches in accelerator is to use a single
kick. This single kick changes the beam’s momentum and creates a free oscilla-
tion of the beam. Such types of kicks are widely used in synchrotrons, but are not
possible for the LHC at top energy. A single kick can create large transverse dis-
placements in a single turn, which is much too fast for machine protection feedback
systems in the LHC. As such, the kicker magnet in the LHC is only allowed to be
used at injection energy. Furthermore, such excitations are destructive in nature,
as the momentum distribution of the particles in a bunch will cause the particles
to decohere, resulting in incoherent oscillating particles. This not only makes the
bunch unrecoverable, but it also greatly impacts the BPM measurements, as the
measured centre of charge will gradually go to zero, as shown in Fig. 1.1.

The ac dipole was proposed for the first time in the AGS [42] to create large trans-
verse oscillations. The ac dipole, as the name suggests, consists of a dipole with an
oscillating field. By choosing this oscillation frequency to be close to the natural

Figure 1.1: Comparison between turn-by-turn data obtained from a single free kick (blue)
and an ac dipole excitation (red) at injection energy.
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tune of the accelerator the beams can be excited in the transverse planes. The ac
dipole field strength is ramped up adiabatically [43] to large beam oscillation am-
plitudes. Once large amplitudes are reached the ac dipole strength is held constant,
allowing for a long lasting coherent oscillation, also known as forced oscillations.
A typical ac dipole excitation is also shown in Fig. 1.1. The ac dipole strength can
be adiabatically ramped down during which the beam oscillation amplitude will
reduce to zero. This technique not only provides large amplitude oscillations, it
also manages to provide a long lasting coherent oscillation that is non-destructive
in nature.

These properties have turned the ac dipole into the single most critical measure-
ment tool for beam dynamics in the LHC. All linear, as well as nonlinear beam
dynamics measurement methods now make use of the ac dipoles. The nonlinear
forced motion can be used as a valuable observable to understand and control the
machine nonlinearities by probing different states of the accelerator and comparing
to particle tracking simulations.

The aim of this thesis is to develop the understanding of the nonlinear particle
motion under forced transverse oscillations with ac dipoles, especially of resonance
driving terms, in order to measure and correct nonlinear errors in the LHC. Fur-
thermore, the LHC is used as a test-bench for experiments to validate the methods,
and to continue towards the implementation of measurements and corrections of
nonlinear sources in the LHC in view of the High Luminosity LHC.

thesis outline

This thesis starts by introducing the linear beam dynamics and the theoretical struc-
ture for the analysis of resonance driving terms in the case of free transverse oscil-
lations in Chapter 2. The forced linear motion under the influence of ac dipoles is
subsequently introduced in Chapter 3.

Chapter 4 presents the study of forced resonance driving terms, by exploring the
normal form transformations in the forced parameters space. It further introduces
a new parametrization of the forced resonance driving terms, as well as the pertur-
bative second order cross-term between the ac dipoles and the resonance driving
terms.

Measurements and corrections of forced resonance driving terms are presented
in Chapter 5. The measurement methods are detailed, and a review of the measured
resonance driving terms is presented. The first ever measurement of resonance
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driving terms of decapolar order are presented. Lastly the first correction of skew
octupolar errors using forced resonance driving terms is presented.

Chapter 6 explores the effect of ac dipoles on the available dynamic aperture. A
new observable is introduced as the forced dynamic aperture. This new observable
can be used to study machine nonlinearities by comparing measurements to sim-
ulations. The first measurements of forced dynamic aperture in the LHC are also
presented and compared to particle tracking simulations.

Lastly the beam-beam perturbation is studied in Chapter 7. Derivations for free
and forced resonance driving terms as generated by the head-on beam-beam inter-
action are presented. A method is proposed to measure resonance driving terms by
characterizing the spectral line amplitudes as a function of the beam oscillation am-
plitudes. The first measurement of beam-beam generated resonance driving terms
as well as the first measurements of resonance driving terms of dodecapolar order
are presented.

the cern accelerator complex and the large hadron collider

The CERN accelerator complex consists of multiple linear and circular particle ac-
celerators serving a large variety of different experiments, as shown in Fig. 1.2.
Particles go through a chain of different particle accelerators before reaching their
final experimental destination. For protons, this starts at LINAC 4, a linear particle
accelerator that accelerates the protons to a kinetic energy of 160 MeV. The protons
are then injected into the Proton Synchrotron Booster (PSB), where the protons
are accelerated further to an energy of 1.4 GeV. The next stage is the Proton Syn-
chrotron (PS). There the protons reach an energy of 25 GeV before being injected
into the Super Proton Synchrotron (SPS). In the SPS the protons can be accelerated
up to 450 GeV, the energy required for the injection into the LHC.

The accelerator chain for heavy ions shares much of the proton chain, with the
exception of LINAC 2 and the PSB. Heavy ions are first accelerated in LINAC 3,
another linear accelerator, before being injected in the Low Energy Ion Ring (LEIR),
that prepares the heavy ion beams for injection into the PS. At each accelerator in
the injection chain, protons and heavy ions can be extracted for other experiments.
This provides a large range of particles with different kinetic energies that feed into
a wide selection of physics experiments.

At the core of the CERN scientific program lies the LHC, currently the largest
hadron collider in the world. The LHC is a synchrotron type accelerator accelerat-
ing two different beams in opposite directions. A schematic representation of the
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Figure 1.2: Schematic representation of the CERN accelerator complex [44].

LHC layout is presented in Fig. 1.3. Particles injected in the LHC propagate through
the arcs, where superconducting dipoles bend the trajectories of the charged parti-
cles, and long straight sections, known as the insertion regions (IR). The succession
of arcs and IRs form an almost eight-fold symmetric synchrotron. The IRs contain
most of the dedicated beam diagnostics, such as cleaning sections, instrumentation,
radio-frequency cavities, and the dump, as well as the experiments. The beams
travel through different apertures in most of the accelerator. At four locations in
the ring the beams share the same aperture and their trajectories intersect, result-
ing in high-energy particle collisions. Dedicated particle detectors are built at these
interaction points (IPs). The LHC contains two all-purpose particle detectors, AT-
LAS [24] that is located at IP1, and CMS [25] that is located at IP5. Two more
detectors are located at IPs with lower luminosities. The LHCb [26] detector that
is located in IP8 studies the possible asymmetries between matter and anti-matter,
while the ALICE [27] detector is located in IP2 and studies the quark-gluon plasmas
from heavy ion collisions.

The LHC receives the proton beams from the SPS at an energy of 450 GeV and
further accelerates them to an energy of 6.5 TeV for collisions with a total center-
of-mass energy of 13 TeV. Run III of the LHC will see the beam kinetic energy be
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Figure 1.3: Schematic representation of the layout of the LHC as viewed from above. Beam
1, shown in red, travels in the clockwise direction, while beam 2 is shown in blue and travels
in the anti-clockwise direction. The apertures are separate, except at the IPs were the beams
cross and collide [45].

increased to the design energy of 7 TeV. At top energy, the beam sizes at the collision
points are reduced to increase the local particle density. The separation between
the two beams is then reduced until the collision of the beams is obtained. The
luminosity is optimized by achieving the best possible overlap of the two beams.

Although the ultimate aim of the LHC is to provide sufficient luminosity to
the experiments, a lot of the commissioning and developments done in the LHC
are performed with different machine setups. Beam manipulations with a fully
filled LHC are considered delicate and potentially dangerous for the machine. As
such, measurements of transverse beam dynamics as presented in this thesis are
done with a single low intensity bunch. This allows for the large transverse beam
excitations needed to measure resonance driving terms and other nonlinear effects,
while operating at safe conditions. However, as the nonlinear effects studied in this
thesis are independent of the intensities of the probed bunch, the used experimental
setup offers a good representation of operational conditions.

7
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2
T H E O R E T I C A L C O N S I D E R AT I O N S

This chapter starts by introducing the linear and nonlinear single particle beam
dynamics in the free parameter space. It derives the turn-by-turn motion by intro-
ducing the formulation of transfer maps for each element, and is followed by the
normal form transformation to obtain the nonlinear motion. This forms but a con-
cise introduction to the field of single particle dynamics in synchrotrons. For a more
complete treatment of relevant accelerator physics the reader is best referred to text-
books by A. Wolski [33] as well as those of S.Y. Lee [34] and H. Wiedemann [35].
Relevant lectures on nonlinear beam dynamics are given by A. Chao [46].

This introduction is followed by the description of the forced linear motion under
the influence of ac dipoles in Chapter 3. It is an essential step to better frame the
following derivations presented in Chapter 4 for the forced motion.

introduction to transfer maps

Single particle dynamics in circular accelerators are described with respect to a
reference orbit. For synchrotrons this reference orbit usually refers to the closed
orbit. The closed orbit is defined as the trajectory along an accelerator for which
a particle with design energy p0 will return to its initial location with the same
conditions, and is determined by the bending of the main dipoles. All descriptions
of positions and momenta in the following work describe the motion around this
moving reference frame. Figure 2.1 shows the moving reference frame, also known
as the Frenet-Serret coordinate system, where the horizontal and vertical coordi-
nates are denoted by x and y respectively, and s is the longitudinal coordinate in
the direction of travel. When discussing the transverse dynamics, the longitudinal
coordinates (s, ps) are usually neglected, and so the particle state is fully deter-
mined by its horizontal and vertical physical coordinates z = {x, px, y, py} , where
px and py are the derivatives of x and y with respect to the path length s.

A particle travelling on the closed orbit at location s0 with coordinates zCO(s0),
will end up with the same position and momenta after a full revolution of the
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Figure 2.1: Frenet-Serret coordinate system where the transverse coordinates are given by
x and y for the horizontal and vertical planes respectively. The coordinate system moves
along the propagation direction given by s.

accelerator with circumference C,

zCO(s0 + C) = zCO(s0) . (2.1)

As a particle travels through the accelerator it will encounter various magnetic
elements and each of these magnets will change the particle’s coordinates and thus
affect its trajectory. The effect of the elements can be mathematically expressed as
maps. A map Mi of element i transforms the coordinates before the element (z1) to
those after the element (z2),

z2 = Miz1 . (2.2)

The most common maps are the maps of linear elements. Figure 2.2 shows a
schematic representation of a dipole and a quadrupole, both linear elements, as
well as a sextupole. The magnetic field of a sextupole changes quadratically in the
transverse coordinates, and thus forms the lowest order of nonlinear elements. For
linear elements the transfer maps take the form of simple matrices. To introduce
the practicality of maps, only the linear maps of drifts, dipoles and quadrupoles are
considered for now, as these form the fundamental building blocks of synchrotrons.
The transfer maps of drift spaces and dipoles are given by,
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N

S

N

N N

N

NS

S
S S

S

Field
Force

Dipole Quadrupole Sextupole

Figure 2.2: Schematic representation of a dipole (left), a focussing quadrupole (middle), and
a sextupole (right), with corresponding field lines and forces on a positively charged particle
moving into the paper. Both dipoles and quadrupoles are linear elements, while sextupoles
are the lowest order nonlinear elements.

Drift space :

 z

pz


L+s0

=

1 L

0 1

 z

pz


s0

, (2.3)

Dipoles :

 x

px


L+s0

=

 cos(L/ρ) ρ sin(L/ρ)

− 1
ρ sin(L/ρ) cos(L/ρ)

 x

px


s0

, (2.4)

where s0 indicates the longitudinal position in the accelerator at the start of the
element, L is the length of the element, ρ is the radius of curvature of the orbit,
and z ∈ {x, y} can either denote the coordinates of the horizontal (x) or vertical (y)
plane, and does not represent a third coordinate. Notice that only the x coordinate
is given for the dipole, indicating a horizontally bending dipole. Quadrupoles have
a focussing field in one plane and a defocussing field in the perpendicular plane.
The convention is to name a quadrupole with a focussing field in the horizontal
plane as a focussing quadrupole. A polarity change will turn it into a defocussing
quadrupole. For a focussing quadrupole, the transfer matrix for the focussing hori-
zontal plane is given by,
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 x

px


L+s0

=

 cos
√

K1L 1√
K1

sin
√

K1L

−
√

K1 sin
√

K1L cos
√

K1L

 x

px


s0

, (2.5)

and for the defocussing vertical plane by,

 y

py


L+s0

=

 cosh
√

K1L 1√
K1

sinh
√

K1L
√

K1 sinh
√

K1L cosh
√

K1L

 y

py


s0

, (2.6)

where K1 is the normalized gradient of a quadrupole that generates a linear field
that vanishes at the reference orbit, and is defined as,

K1 =
1

B0ρ

∂By

∂x
, (2.7)

where By is the vertical component of the magnetic field, and where the magnetic
rigidity B0ρ is defined using the charge of the particle q and the reference energy
p0 as,

B0ρ =
p0

q
. (2.8)

It is sometimes useful to approximate elements as thin lenses, where L → 0
and K1L → constant. In this case the transfer map for the focussing plane of a
quadrupole in the thin lens approximation becomes,

 x

px


L+s0

=

 1 0

−K1L 1

 x

px


s0

. (2.9)

One-turn map

As accelerators consist of thousands of elements, the interest lies not in the effect of
a single map, but in the combined effect of all these elements. Figure 2.3 shows a
schematic representation of an accelerator with linear elements interleaved by drift
spaces. All elements and drift spaces are represented by their corresponding linear
map Mi. The maps of linear elements are matrices and so can be easily combined
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Figure 2.3: Simplified layout of circular accelerator with linear elements. Magnets are por-
trayed as black blocks with drift spaces in between. All parts have a corresponding linear
map Mi attributed to it.

to obtain the coordinates after a full revolution of the machine through matrix
multiplications,

z(s0 + C) = MN ·MN−1 · . . . ·M2 ·M1 · z(s0)

= MOTM · z(s0) . (2.10)

This special map MOTM is called the one-turn map (OTM) and fully describes the
linear evolution of the coordinates of particles over one revolution of the accelerator.

Courant-Snyder parameters

Synchrotrons and synchrotron type colliders are specifically built with cells of alter-
nating focussing and defocussing quadrupoles. Such a cell consists of a focussing
quadrupole, a drift space followed by a defocussing quadrupole with a drift space.
This type of cell is called a FODO cell. A series of such cells forms a periodic lattice
as shown in Fig. 2.4. Synchrotrons are often built by combining FODO cells into
a periodic lattice. Such periodic lattices can be set up to enforce periodicity in the
beam optics. Indeed, even though the individual particles’ dynamics do not have
the same periodicity as the lattice, the envelope of oscillation amplitudes does show
this periodicity.

The phase space {z, pz} at a specific location in the lattice is described by an
ellipse, as shown in Fig. 2.5. The shape of the phase space ellipse will change as a
function of the longitudinal position in the lattice. For FODO cells, the phase-space
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Figure 2.4: Illustrative graphic of four FODO cells consisting of alternating focussing and
defocussing quadrupoles. Sample particle trajectories are shown as dotted lines. The oscilla-
tion amplitude of the particles is determined by the β-function βz(s), and the invariant Jz

that is introduced in Eq. (2.11), as shown in red.

ellipse will be the same at each focussing quadrupole and defocussing quadrupole
respectively. This ellipse is fully described by the Courant-Snyder parameters αz(s),
βz(s), and γz(s), also known as Twiss parameters [47] or the optics functions. The
ellipse equation that defines the phase-space is given by,

Jz =
1
2
(γzz2 + 2αzzpz + βz p2

z) , (2.11)

where the quantity Jz is the action variable and can be shown to be an invariant
of the motion for single particles when the reference energy p0 is constant. This

Figure 2.5: Courant-Snyder ellipse showing the phase-space in physical coordinates and the
characteristics of the ellipse as defined by the Courant-Snyder parameters αz, βz, γz, and
action Jz.
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means that as the particles’ phase-space coordinates change along the beam line,
the Courant-Snyder parameters will change as well to yield an invariant action Jz.
Note that the explicit s dependence of the optics functions is left out for clarity of
the notation.

The state of particles in phase-space can be fully described by the action variable
Jz and a corresponding phase variable φ. The phase variable can be defined as,

tan(φz) = −βz
pz

z
− αz . (2.12)

The inverse of Eqs. (2.11) and (2.12) yield very useful expressions for the phase-
space coordinates in terms of action-angle variables,

z =
√

2Jzβz cos(φz) ,

pz = −
√

2Jz

βz
[sin(φz) + αz cos(φz)] . (2.13)

The position z in Eq. (2.13) describes a harmonic oscillation, with an oscillation
energy that is represented by the action Jz. The parameter βz, referred to as the β-
function or betatron function, describes the envelope of local oscillation amplitude
of a particle at a given location due to the changing focussing and defocussing
strengths of the quadrupoles. This harmonic oscillation is a solution of Hill’s equa-
tions for uncoupled linear motion [48],

d2z
ds2 + K1(s)z = 0 (2.14)

where K1(s) is the quadrupolar focussing at each point along the accelerator and a
periodic function.

As a particle moves through a periodic lattice, its oscillation characteristics will
vary with the same periodicity as the lattice, due to the fact that the Courant-Snyder
parameters follow the lattice periodicity. The α-function (αz) and the evolution of
the phase can be obtained from Eq. (2.13), by taking the derivative of the position
coordinate to s,

dz
ds

=
1
2

√
2Jz

βz
cos(φz)

dβz

ds
−
√

2βz Jz sin(φz)
dφz

ds
. (2.15)
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By equating Eq. 2.15 to pz in Eq. 2.13 a few properties are found. Firstly, while
the β-function describes the envelope of oscillation around the accelerator, the pa-
rameter αz describes the change of βz with s, as given by,

αz = −
1
2

dβz

ds
. (2.16)

Secondly, the rate of change of the angle variable over longitudinal distances is
inversely proportional to the β-function as,

dφz

ds
=

1
βz

. (2.17)

This naturally leads to the definition of the tune as the total number of betatron
oscillations during a full turn around the circumference of the accelerator.

Qz =
1

2π

∮ 1
βz(s)

ds . (2.18)

The tune is the single most important design parameter in synchrotrons. The
tune can greatly affect the excitation of resonances, creation of instabilities, and
critically reduce the performance of the machine, or in some cases make machine
operation impossible. At the beginning of Run II, the tunes at injection in the LHC
were Qx = 64.28 and Qy = 59.31, which indicates that the beam performed 64 full
horizontal betatron oscillations. However, the more important part is the fractional
tune, as that determines the proximity to resonances, as will be shown later. In the
LHC, the fractional tunes at injection are Qx = 0.28 and Qy = 0.31, and currently at
collision the tunes are Qx = 0.27 and Qy = 0.295. During most of Run II, the tunes
at collision were Qx = 0.31 and Qy = 0.32, which is the more common working
point used in the measurements presented in this thesis.

Another valuable beam parameter for particle bunches can be obtained from
these functions. The emittance can be defined as the mean of all the individual
actions of the particles in the bunch as,

εz = 〈Jz〉 . (2.19)

The emittance is a measure of the area in phase-space that the particles in the
beam occupy, and it naturally follows from Eq. 2.19 that the emittance is invariant.
The beam size σz at a given location is related to the emittance and the local β-
functions as given by,

σz(s) =
√

εzβz(s) . (2.20)
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Normalized coordinates

In physical coordinates (z, pz), the linear one-turn map can be expressed in terms
of the Courant-Snyder parameters and the tune as [33],

MOTM =

cos(2πQz) + αz sin(2πQz) βz sin(2πQz)

−γz sin(2πQz) cos(2πQz)− αz sin(2πQz)

 . (2.21)

This transfer map describes the change of coordinates over a full revolution as a
function of the Courant-Snyder parameters at that specific location and the tune of
the machine. This is a rather elegant result, in which the tune is sufficient and the
optics functions around the rest of the machine are no longer needed. However, the
dependencies on the optics functions at the location of observation still complicate
calculations.

To further simplify the description of linear motion in a periodic lattice, a coor-
dinate transformation can be applied to obtain the linearly normalized coordinates
ẑ, p̂z, also known as the Courant-Snyder coordinates,

 ẑ

p̂z

 =

 1√
βz

0

αz√
βz

√
βz


 z

pz

 , (2.22)

where the normalized phase-space coordinates are given by,

ẑ =
√

2Jz cos(φz) ,

p̂z = −
√

2Jz sin(φz) . (2.23)

The major benefit of moving to this new coordinate space is that the linear trans-
formations from linear elements reduce to simple rotations. This difference between
the two coordinate spaces is shown in Fig. 2.6. A transformation to normalized coor-
dinates generates a circular phase-space, as shown in Fig. 2.6b. The linear one-turn
map then reduces to a rotation in phase-space with the tune that is given by,
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(a) Physical coordinates (b) Normalized coordinates

Figure 2.6: Illustrative representation of phase-space in physical coordinates (left) and
normalized coordinates (right) for an accelerator with linear elements only. The Courant-
Snyder transformation transforms the elliptical phase-space into a much simpler circular
phase-space where the motion is described by simple rotations.

M̂OTM =

 cos(2πQz) sin(2πQz)

− sin(2πQz) cos(2πQz)

 . (2.24)

nonlinear lattice

The previous section described the linear motion with the approach of linear maps,
and concluded with the introduction to the Courant-Snyder coordinates. In this sec-
tion, this approach is extended to the nonlinear regime and the transformation to
normal form coordinates will be introduced. The difficulty is that nonlinear maps
cannot be described in simple matrix form. Nonlinear magnetic elements have mag-
netic fields that do not depend linearly on the transverse position coordinates inside
the magnet.

The magnetic field of a sextupole, for example, increases quadratically with the
transverse coordinates, thereby making the sextupole the lowest order nonlinear
element. To simplify the transfer maps, multipoles are often assumed to be thin in
the longitudinal coordinate when the length of the element is small compared to
the focal length. In this thin lens approximation the transfer map of a sextupole is
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given by,


x

px

y

py


s1

=


x

px

y

py


s0

− 1
2

LK2


0

x2 − y2

0

−2xy

 , (2.25)

where L is the length of the sextupole, K2 is the strength of the sextupole, and the
coordinates of Eq. (2.25) are shown schematically with respect to the sextupole in
Fig. 2.7. The change of coordinates is now no longer linear, and a different approach
is needed to derive the particle dynamics.

Figure 2.7: Illustrative representation of coordinates through a sextupole with length L and
strength K2. The transfer map is defined in Eq. (2.25).

Hamiltonian of electromagnetic elements

To start, the Hamiltonian of a relativistic particle inside an electromagnetic field
can be given by,

H(~z,~pz, t) = c
√
(~p− q~A(~z, t))2 + m2

0c2 + qΦ(~z, t) , (2.26)

where ~z are the Cartesian positions, ~pz are the conjugate momenta, ~A is the mag-
netic vector potential, and Φ is the electric scalar potential. Several approximations
and canonical transformations can be used to simplify the Hamiltonian. The co-
ordinate system can be changed to the Frenet-Sernet system of Fig. 2.1, and the
independent time variable t can be changed to the path length s. Furthermore, the
electric field can be set to zero, and only static transverse magnetic fields can be
considered as the effect of longitudinal fields are negligibly small in the LHC. This
constraints the vector potential to only have a single component in the direction of
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the path length s as ~A = (0, 0, As). Lastly, the momentum can be rescaled and the
origin can be moved to the closed orbit. The resulting Hamiltonian is then given
by,

H(x, px, y, py, δp) = −
(

1 +
x
ρ

)
·
√
(1 + δp)2 − p2

x − p2
y +

x
ρ
+

x2

2ρ2 −
As(x, y)

B0ρ
,

(2.27)
where δp = (ps − p0)/ps is the relative momentum deviation, and As is the vector
potential in the direction of the path length s, as only transverse magnetic fields
are considered. Lastly, the transverse momenta can be assumed to be small, and
the horizontal coordinate to be much smaller than the bending radius x � ρ. In
that case the square root can be expanded. Furthermore, as only on momentum
particles are considered that are on the closed orbit, δp can be set to zero, and the
dipolar term x2

2ρ2 can be ignored. The Hamiltonian is then obtained as,

H =
1
2
(p2

x + p2
y)−

As(x, y)
B0ρ

. (2.28)

It is thus fully dependent on the kinematic part given in terms of p2
x and p2

y,
and the vector potential As(x, y). All elements act through the vector potential. By
knowing the magnetic field of an element, the Hamiltonian of that element can
thus be constructed.

Multipolar expansion and multipolar maps

The transverse magnetic field of multipoles can be constrained by a few conditions.
In a region of space that is free of currents and charges, as in the vacuum of the
beam-pipe of the LHC, the magnetic field must satisfy,

∇ · B = 0 , (2.29)

∇× B = 0 . (2.30)

These equations result in two more constraints on the magnetic field. First, Eq. (2.29)
implies that there exists a vector potential that satisfies,

B = ∇×A . (2.31)
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Secondly, Eq. (2.30) implies that the magnetic field can be written as the gradient
of a scalar potential V as,

B = −∇V . (2.32)

The relations between field components and potentials are obtained from the
previous equations as,

Bx = −∂V
∂x

=
∂As

∂y
, By = −∂V

∂y
= −∂As

∂x
. (2.33)

Equations (2.33) are the Cauchy-Riemann conditions for the real and imaginary
parts of an analytic function. From this, a complex potential function can be defined
as,

A(x + iy) = As(x, y) + iV(x, y) , (2.34)

=
∞

∑
n=1

Cn(x + iy)n , (2.35)

where the coefficients Cn are complex numbers. The magnetic field of a multipole
can then be expressed as an expansion of A using the complex notation for the
transverse position x + iy, and taking the derivative with respect to the horizontal
coordinate. The multipolar field expansions is then obtained as,

By(x, y, s) + iBx(x, y, s) = − ∂

∂x
A(x + iy) , (2.36)

=
∞

∑
n=1

[Kn−1(s) + i Jn−1(s)](x + iy)n−1 , (2.37)

where the coefficients Kn−1 and Jn−1 are defined as,

Kn−1(s) =
1

B0ρ

∂n−1By

∂xn−1

∣∣∣∣
(0,0;s)

, Jn−1(s) =
1

B0ρ

∂n−1Bx

∂xn−1

∣∣∣∣
(0,0;s)

, (2.38)

where n indicates the order of the component with 2n poles. The coefficients Kn−1

and Jn−1 represent the strengths of normal and skew multipoles respectively. Non-
linear fields correspond to orders where n ≥ 3. So n = 3 and n = 4 describe
sextupoles and octupoles respectively. A skew multipole is the same as a normal
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multipole but with a rotation over the longitudinal axis with half its geometric
symmetry angle, or 1

2
π
n , as shown in Fig. 2.8. Note that rotational errors can create

normal and skew field errors in any multipole.

N

N N

S S

S

N

N

NS

S

S

θs θr

Figure 2.8: Schematic graphic of a normal sextupole (left) and a skew sextupole (right). A
skew element is obtained by rotating a normal element with θr that is half the geometric
symmetry angle θs.

Since ~B = ∇× ~A, the Hamiltonian of magnetic elements can be derived from Eq.
(2.37). The explicit expression for the kick Hamiltonian and appropriate elements
is obtained by taking the real part of the primitive of Eq. (2.37),

H = <
[

∑
n>1

(Kn−1 + i Jn−1)
(x + iy)n

n!

]
= ∑

n>1
H(n) . (2.39)

As an example, the kick Hamiltonian for a normal sextupole can be expressed
as,

H(3) =
1
6

K2(s)[x3 − 3xy2] , (2.40)

and the kick Hamiltonian for a normal quadrupole is given by,

H(2) =
1
2

K1(s)[x2 − y2] . (2.41)

The full Hamiltonians can be obtained by adding the kinematic part of the Hamil-
tonian of Eq. (2.28).
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Nonlinear transfer maps

Now that the Hamiltonian of a nonlinear element is found, it can be used to define
a nonlinear transfer map for that element. For any function g of canonical variables
(x, px, y, py) that is not explicitly dependent on s, the change of g over the distance
∆s can be expressed in the form of a Taylor series as in,

g|s=s0+∆s = g|s=s0 + ∆s
dg
ds

∣∣∣∣
s=s0

+
∆s2

2
d2g
ds2

∣∣∣∣
s=s0

+ . . . , (2.42)

=
∞

∑
k=0

∆sk

k!
dkg
dsk

∣∣∣∣
s=s0

, (2.43)

= e∆s d
ds g|s=s0 . (2.44)

This series of polynomial functions describes the final state of a function g|s=s0+∆s,
as a function of its initial state g|s=s0 . This relation can be solved by rewriting the
derivative of g to a function of the local Hamiltonian using Hamilton’s equations,

dg
ds

=
dx
ds

∂g
∂x

+
dpx

ds
∂g
∂px

+
dy
ds

∂g
∂y

+
dpy

ds
∂g
∂py

, (2.45)

=
∂H
∂px

∂g
∂x
− ∂H

∂x
∂g
∂px

+
∂H
∂py

∂g
∂y
− ∂H

∂y
∂g
∂py

. (2.46)

This expression can be rewritten in a useful way with the introduction of Lie
operators. The Lie operator is defined as,

: f := ∑
z=x,y

∂ f
∂z

∂

∂pz
− ∂ f

∂pz

∂

∂z
, (2.47)

where the operator : f : has no explicit dependence on s. The Lie operator can
be expressed with two different notations, so for an operator f acting on g the
following equivalence holds,

: f : g ≡ [ f , g] . (2.48)

The square brackets are also referred to as the Poisson brackets. In the case where
the Hamiltonian (H) of an element has no explicit dependence on s either, the
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derivative dg
ds of Eq. (2.45) can be rewritten as,

dg
ds

= − : H : g , (2.49)

where : H : is the new Lie operator. Using this, Eq. (2.42) is rewritten as,

g|s=s0+∆s = e−∆s:H:g|s=s0 . (2.50)

This equation describes the evolution of a function g(x, px, y, py) through an el-
ement with the local Hamiltonian H. As the function g can be any function of
the phase-space variables, it naturally follows to choose g to be the phase-space
variables themselves. So, as an example, the final coordinates at s1 after passing
through a thin sextupole with Hamiltonian H(3) and length L, can be obtained as
a function of the initial coordinates at s0,


x

px

y

py


s1

= e−L:H(3) :


x

px

y

py


s0

= e−L: 1
6 K2(s)[x3−3xy2]:


x

px

y

py


s0

. (2.51)

Solving the derivatives of the Lie operator of Eq. (2.47) to first order yields,


x

px

y

py


s1

=


x

px

y

py


s0

− 1
2

LK2


0

x2 − y2

0

−2xy

 . (2.52)

This is the same transfer map as presented in Eq. (2.25). An illustrative represen-
tation of the coordinates in Eq. (2.51) is shown in Fig. 2.9. For further illustration,
the transfer map of the focussing plane of a thin quadrupole can also be derived,

 x

px


s1

= e−L:H(2) :

 x

px


s0

= e−L: 1
2 K1(s)[x2−y2]:

 x

px


s0

. (2.53)
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Figure 2.9: Illustrative representation of coordinates through a sextupole with length L and
strength K2. The transfer map is now determined by the Hamiltonian H(3) as shown in
Eq. (2.51).

This can be solved to obtain,

 x

px


s1

=

 x

px


s0

− K1L

0

x

 =

 1 0

−K1L 1

 x

px


s0

. (2.54)

which is the same as the thin lens approximation shown in Eq. (2.9) for a focussing
quadrupole. Both the quadrupolar and sextupolar thin lens approximations are re-
produced by solving their respective Hamiltonian Lie operator to first order. How-
ever, the order is not limited. A more precise calculation of transfer maps is possible
by deriving further orders in the Lie operator. Furthermore, deriving the evolution
of particles through thick elements is possible when the kinematic term of the
Hamiltonian 1

2(p2
x + p2

y) is included.
The nonlinear maps of multipoles can thus be expressed as maps in Lie operator

format by their Hamiltonians and their lengths. Using the multipolar expansion of
Eq. (2.39), the transformation of variables through any nonlinear element can be
calculated, and due to the expression of nonlinear transfer maps as Lie operators,
the combined effect of multiple nonlinear sources can be easily calculated.

combining nonlinear maps

The derived normalized coordinates can be rewritten into a more usable form in
the form of the complex normalized coordinates using,

ξz,± = ẑ± i p̂z , (2.55)

which yields a 4D complex coordinate space,
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ξ =


ξx,+

ξx,−

ξy,+

ξy,−

 =



√
2Jxe−i(φx+φx,0)

√
2Jxei(φx+φx,0)√
2Jye−i(φy+φy,0)√
2Jyei(φy+φy,0)

 . (2.56)

In this notation, the linear evolution of the coordinates takes an even simpler
form. The evolution through the linear lattice is described by rotations with the
phases. For a particle going from point s0 to s1, where the phase advance is given
by ∆φz = φz(s1)− φz(s0), the complex coordinates at s1 are expressed in terms of
the coordinates at s0 as,

ξz,±(s1) = e∓i∆φz ξz,±(s0) . (2.57)

The one-turn map can similarly be defined as a rotation operator R. In the case
of the horizontal complex coordinate ξx,+ the evolution over one turn is now ex-
pressed as,

ξx,+(s0 + C) = Rξx,+(s0) (2.58)

= e−i2πQx ξx,+(s0) . (2.59)

Figure 2.10 shows a schematic representation of an accelerator lattice with nonlin-
ear elements shown as black blocks with corresponding nonlinear maps Hw, and
linear sections with corresponding linear maps Mw interleaved between the non-
linear elements. The nonlinear elements can represent known nonlinear magnets
such as sextupoles and octupoles, but can also represent nonlinear errors arising
in linear elements due to limitations in manufacturing processes, misalignments,
and rotations. Analog to the linear case the composition of all successive linear and
nonlinear maps yield a one-turn map that relates the initial coordinate of a particle
to the final coordinates after a full revolution of the accelerator. The full nonlinear
one-turn map at location s0 is given by,

M = MW+1

W

∏
w=1

e:Hw :Mw . (2.60)
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Figure 2.10: Simplified representation of an accelerator lattice with linear elements (Mw)
and nonlinear elements (Hw). The nonlinear elements are shown as black blocks, while the
space in between contains all linear elements in between the nonlinear counterparts.

Here, M is the nonlinear one-turn map, Mw are the linear maps of the linear
elements at location w, e:Hw : are the nonlinear maps of the nonlinear elements at
location w, and MW+1 is the final linear map closing the loop. A transformation to
normalized coordinates as presented in Sec. 2.1 reduces the linear maps to phase-
space rotations. It can be shown that in this normalized phase-space the nonlinear
one-turn map then reduces to [49],

M̃ =
W

∏
w=1

e:H̃w :R , (2.61)

where R is the linear rotational matrix describing the linear motion over one turn,
and the new Hamiltonians H̃w are expressed as a function of the normalized co-
ordinates at the location of observation b propagated by the linear map between
that location and the location w. The normalized coordinates propagated from the
location w are given by,

ξbw = M̃b · M̃b+1 . . . M̃w ξw , (2.62)

where M̃i are the linear maps normalized by Eq. (2.22) and have the form of rota-
tions in phase-space. Using the fact that this is in normalized space, the composi-
tion of linear maps also becomes a simple rotation. As such, the propagated coordi-
nates are just the initial coordinates propagated by the phase advance between the
initial location and location w,
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ξbw,z,± = ξw,z,±e∓i∆φbw,z , (2.63)

where ∆φbw,z is the phase advance between the initial location b and the location of
the source w. The Hamiltonians of Eq. (2.61) are thus expressed as,

H̃w = Hw(ξbw) . (2.64)

The properties of Lie operators can be used to solve the product of Eq. (2.61). The
Campbell-Baker-Hausdorf theorem [50] expresses the concatenation of multiple
exponential Lie operators into a single new exponential Lie operator,

e: f1:e: f2: = e: f : , (2.65)

where,

f = f1 + f2 +
1
2
[ f1, f2] + . . . . (2.66)

Generally, for cases where the generators f1 and f2 are small enough such that the
series converges quickly, only the first two terms of Eq. (2.66) are used. Assuming
that the nonlinear perturbations are small compared to the linear motion, the one-
turn map is expressed as a single exponential Lie operator using the Campbell-
Baker-Hausdorf theorem,

M̃ = e:H̃:R , (2.67)

where M̃ is the one-turn map to first order in the nonlinear perturbation, and the
concatenated Hamiltonian is given by,

H̃ ≈
W

∑
w=1

H̃w . (2.68)

Note that this results in a single Hamiltonian describing the nonlinear evolution
of the coordinates over one turn at a single location, as a sum of all the sources in
the accelerator. The sum can then be expanded in terms of the eigencoordinates of
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Eq. (2.56) as,

H̃ =
W

∑
w=1

∑
jklm

hw,jklmei[(j−k)∆φw,x+(l−m)∆φw,y]ξ
j
w,x,+ξk

w,x,−ξ l
w,y,+ξm

w,y,− , (2.69)

where the multipolar order is given by n = j + k + l + m, ξw,z,± are the Courant-
Snyder complex coordinates at the specific nonlinear magnet w, and ∆φw,z is the
phase advance from the reference point to the specific magnet. The Hamiltonian
coefficients hw,jklm are obtained by rewriting x and y of Eq. (2.39) in terms of the
complex coordinates as,

x =
1
2

√
βx(ξx,+ + ξx,−) (2.70)

y =
1
2

√
βy(ξy,+ + ξy,−) . (2.71)

By invoking the binomial theorem to expand the coordinates, the Hamiltonian
coefficients can finally be obtained as [51],

hw,jklm = − [Kw,n−1Ω(l + m) + i Jw,n−1Ω(l + m + 1)]
j! k! l! m! 2j+k+l+m il+mβ

(j+k)
2

x,w β
(l+m)

2
y,w , (2.72)

where Ω(i) does the job of selecting either the normal (Kw) or the skew (Jw) multi-
poles,

Ω(i) = 1 if i is even (2.73)

Ω(i) = 0 if i is odd . (2.74)

The magnitude of the Hamiltonian terms are directly proportional to the strength
of the sources with Kw and Jw and are proportional with the β-functions with

β
(j+k)

2
x,w β

(l+m)
2

y,w . This indicates that the larger the β-function is at the location of a non-
linear source, the more sensitive it becomes to the nonlinear error. Not surprisingly
this becomes important in the LHC, where the β-functions in the final focus sec-
tions of the experimental insertion regions can become very large.
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normal form formalism

Although a one-turn map is found in normalized space for the nonlinear motion,
it turns out to be complicated to use. The phase-space is distorted by the nonlin-
ear perturbations losing its invariance, and calculations of the turn-by-turn motion
become difficult. An analogous transformation to the linear Courant-Snyder trans-
formation can be found in the nonlinear case to simplify the form of the one-turn
map. This Normal Form transformation yields a new coordinate system with circu-
lar phase-space, which represents an amplitude dependent rotation that is easier to
handle. Figure 2.11 shows an illustrative representation of the phase-space through
the two coordinate transformations. Figure 2.11a shows the initial phase-space in
physical coordinates (z, pz). The Courant-Snyder transformation of Eq. (2.22) to nor-
malized coordinates (ẑ, p̂z) transforms the phase-space to Fig. 2.11b. However, this
transformation does not account for all the nonlinear contributions of multipolar
fields. For this, the final normal form transformation is used to obtain a circular
phase-space in terms of new normal form complex coordinates (ζz,±), as shown in
Fig. 2.11c.

(a) Physical coordinates (b) Normalized coordinates (c) Normal form coordinates

Figure 2.11: Phase-space representations in the three different coordinate systems. The first
shows the phase-space in physical coordinates, the second in normalized coordinates after
the Courant-Snyder transformation, while the last shows the phase-space in normal form
coordinates after the normal form transformation. This is an exaggerated schematic repre-
sentation for illustrative purposes.

A transformation exists that transforms the one-turn map into the simplest form
of an amplitude dependent rotation. The generating function of this transformation
is found by a similarity transformation,
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e−:F:M̃e:F: = e:H(I):R , (2.75)

where F is the generating function of the normal form transformation, H(I) de-
scribes the average of H over the phase variables, and I is the new invariant in the
normal form space. Using the definition of the one-turn map from Eq. (2.67), and
the properties of exponential Lie operators, the transformation can be rewritten as,

e−:F:e:H̃:e:RF:R = e:H(I):R . (2.76)

Solving the transformation up to first order using the Campbell-Baker-Hausdorf
theorem, the following is obtained,

(R− 1)F + H̃ = H(I) . (2.77)

Finally, the generating function is found by solving Eq. (2.77) for F,

F =
1

1− R
(H̃ − H(I)) . (2.78)

Figure 2.12 presents a practical scheme that shows the different transformations
and changes to the one-turn map. To calculate the evolution of the normalized
coordinates one can directly solve the problem in Courant-Snyder coordinates by
applying the map M̃. However, this approach is complicated and difficult to solve.
It is far easier to transform to normal form coordinates (ζ) first, using the calcu-
lated generating function F, apply the amplitude dependent rotation R, and lastly
transform back to the normalized coordinates (ξ). All nonlinearities of the motion
are included in the transformation F, which simplifies the calculations.

ξN ξN+1

ζN ζN+1

e:−F:

M̃

R = e:H:R

e:F:

Figure 2.12: Scheme representing the coordinate transformations and change of the one-
turn map, where N is the turn number. Solving the one-turn map for the next turn is best
done by performing a transformation to normal form coordinates (ζ), apply the amplitude
dependent rotation map (R), and transform back to normalized coordinates (ξ).
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First the new normal form coordinates are defined as,

ζz,± =
√

2Ize(∓i(ψz+ψz0)) , (2.79)

where Iz is the new motion invariant and ψz and ψz0 are the new phases and initial
conditions respectively. The generating function F is now given by,

F = ∑
jklm

f jklmζ
j
x,+ζk

x,−ζ l
y,+ζm

y,− , (2.80)

where f jklm are the resonance driving terms (RDTs). The resonance driving terms
f jklm are related to the Hamiltonian terms hjklm by,

f jklm =
hjklm

1− ei2π[(j−k)Qx+(l−m)Qy]
, (2.81)

where the Hamiltonian coefficients are obtained from Eq. (2.72) to be,

hjklm = ∑
w

hw,jklmei[(j−k)∆φx+(l−m)∆φy] . (2.82)

In normal form coordinates, the one-turn map describes an amplitude dependent
rotation. Using this and the definition of the normal form coordinates of Eq. (2.79)
the turn-by-turn motion of in the normal form basis as a function of turn number
N is easily given by,

ζz,±(N) =
√

2Ize(∓i(2πQz N+ψz0)) , (2.83)

where N is the number of turns and Qz is the tune of the accelerator. Note that
in normal form the tunes Qz are now amplitude dependent due to the amplitude
dependent rotation of the normal form one-turn map. The turn-by-turn motion
in normalized coordinates can be constructed by transforming back to Courant-
Snyder coordinates using the generating function,

ξz,±(N) = e:F:ζz,±(N) . (2.84)

As an example, the turn evolution of the normalized horizontal coordinate ξx,−(N)

can be written as a function of the number of turns as,
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ξx,−(N) =
√

2Ixei(2πQx N+ψx0)

−2i ∑
jklm

j f jklm(2Ix)
j+k−1

2 (2Iy)
l+m

2

×ei[(1−j+k)(2πQx N+ψx0)+(m−l)(2πQy N+ψy0)] . (2.85)

This expression describes the full nonlinear motion in normalized coordinates
for free transverse oscillations. The first part describes the linear motion, while
the nonlinear contributions are expressed in the summation over the resonance
driving terms f jklm. This expression may be viewed as a spectral decomposition
of the motion, where the linear part drives a mode with the tune frequency Qx,
while the specific resonance driving terms drive specific frequencies of (k − j +
1)Qx + (m − l)Qy. The spectral analysis of the transverse position at a location
in the accelerator can thus reveal all the nonlinear modes that perturb the linear
motion at that location.

The denominator of Eq. (2.81) specifies the resonance conditions as a function of
the tunes Qx and Qy. The resonance driving terms will drive different resonances
dependent on the multipolar order of the sources and the repartitioning of the in-
dices j, k, l and m. The appropriate choice of tunes is critical to avoid resonances
from nonlinear elements. Figure 2.13 shows a resonance diagram with all the res-
onances up to decapolar order. Each line represents a resonance that satisfies the
condition,

(j− k)Qx + (l −m)Qy = q, (2.86)

where q is an integer. The red dot in Fig. 2.13 represents the tunes at injection
energy as used in the LHC.

The nonlinear modes are also dependent on the invariants Ix and Iy. It shows that
the secondary mode content of the signal can be enhanced by increasing the ampli-
tude of oscillation. This is the reason why large transverse oscillations of the beams
are necessary to measure resonance driving terms and to probe nonlinearities in
the machine.

In all, the resonance driving terms represent a measure for the nonlinearity of the
machine. This can be directly due to nonlinear elements, but also due to nonlinear
errors arising in quadrupoles and dipoles from the manufacturing process or from
misalignments and rotations of the magnets. These nonlinear sources can be mod-
elled exactly as a nonlinear magnet. Measurements of resonance driving terms can

33



2

Theoretical Considerations
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Figure 2.13: Resonance diagram showing all resonances up to decapolar order. The tunes
Qx and Qy are chosen in an area where resonances are scarce. At injection energy in the
LHC, the tunes are Qx = 0.28 and Qy = 0.31.

thus be used to measure and identify specific sources of nonlinearities in the ma-
chine. By comparing this to simulations, specific corrections can be implemented
in the machine to correct for these nonlinear perturbations.

measurements of resonance driving terms

The derivations presented so far are limited to free transverse oscillations. Measure-
ments of resonance driving terms are generally done by exciting the beam in the
transverse plane with a single kick. In the LHC this can be done using the aper-
ture kicker [52]. The transverse position of the beam is recorded at each turn using
Beam Position Monitors (BPMs) at around 550 locations around the accelerator. The
turn-by-turn data obtained from the BPMs provides a discrete oscillation signal of
the beam at a single location that is described by Eq. (2.85). Spectral analysis of this
signal reveals all the secondary spectral modes that are related to the resonance
driving terms.

Unfortunately, the aperture kicker cannot be used at top energy in the LHC.
From a point of view of machine protection considerations, the aperture kicker is
too powerful and can potentially cause significant losses of the beams in a few
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turns, which is too fast for current safety feedback systems to act upon. Secondly,
a beam that is excited by a single kick will decohere. In Eq. (2.75) it is shown
that the remaining rotation term is amplitude dependent. In other words, particles
with different amplitudes will have different total phase advances over one turn,
or different tunes. Due to the distribution of the bunch, over time, the bunch will
decohere. The decrease of amplitude observed in Fig. 1.1 for a kicked beam is not
due to damping of the beam, but purely due to the decoherence of the beam. As
the beam decoheres, the centroid of charge of the beam will gradually decrease to
zero. What is left is a bunch that is blown up, and that is not reusable for further
measurements. Measurements with single kicks therefore would require a dump
and reinject scheme that would be far too time consuming.

In practice, almost all optics measurements in the LHC are performed using the
ac dipoles. The ac dipoles adiabatically drive a coherent transverse oscillation of
the beam, and can adiabatically damp the oscillation. The forced motion with ac
dipoles creates a long lasting coherent oscillation between the ramping up and
ramping down of the ac dipole current. Forced beam excitations with ac dipoles
are non-destructive, as the state of the beam is recovered after ramping down the
ac dipole. Therefore multiple measurements can be taken in series, in a scheme
that does not require reinjections of fresh beams. All following chapters pertain
to the forced motion with ac dipoles. The derivations of the free resonance driving
terms in this chapter serve as an introduction to the forced resonance driving terms
presented in Chapter 4.
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L I N E A R F O R C E D M O T I O N W I T H A C

D I P O L E S

The ac dipoles are the single most important tool for optics measurements in the
LHC. A good understanding of the motion of particles under forced oscillations
with ac dipoles is thus critical. The linear forced motion was first parametrized
in [53]. This section will summarize the derivations of forced linear motion of [53],
and introduce an ensuing parametrization [54]. Although the final parametrization
could be given straight away, the steps in the derivation offer an insight in the
studies of Chapter 4, where a new nonlinear parametrization of the forced motion
is given. First, the linear Courant-Snyder complex coordinate of the free motion is
used,

ξz,± =
√

2Jze∓i(φz+φz0) , (3.1)

and the turn evolution is given by,

ξz,±(t + 1) = Rξz,±(t) , (3.2)

where t is the turn number, and R = e∓i2πQz describes the rotation of the coordinate
with the natural tune. Equations (3.1) and (3.2) describe the evolution of a particle
under free motion. At the location of the ac dipole, this particle will receive a kick
from the ac dipole. The kick from the ac dipole is defined as

∆ξz,±(t) = δ
√

βacd,z cos(2πQd,zt + χ0) (3.3)

=
δ
√

βacd,z

2
[ei(2πQd,zt+χ0) + e−i(2πQd,zt+χ0)] , (3.4)

where δ = BL
(B0ρ)

, BL is the integrated field amplitude of the ac dipole,
√

βacd,z is
the free β-function at the location of the ac dipole, Qd,z is the drive tune of the ac
dipole and χ0 is the initial phase of the ac dipole.

At a location just before the ac dipole, a particle with initial coordinate ξz,±(0)
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is defined. It will first experience the kick of the ac dipole of Eq. (3.3), followed by
the the one-turn evolution described by (3.2). Over the course of several turns the
particle will feel a kick at every turn and then propagate with the free tune. For
simplicity and clarity of notation the coordinate at turn t is written as ξt, and the
kick at turn t is written as ∆ξt. The coordinate after τ turns is then given by,

ξτ = Rτξ0 + Rτ∆ξ0 + Rτ−1∆ξ1 + Rτ−2∆ξ2 + ... + R2∆ξτ−2 + R∆ξτ−1 . (3.5)

By substituting Eq. (3.4) in Eq. (3.5) this is rewritten to,

ξτ = Rτξ0 +
1
2

δeiχ0 Rτ
τ−1

∑
t=0

pt
− +

1
2

δe−iχ0 Rτ
τ−1

∑
t=0

pt
+ , (3.6)

where,
p± = e−i2π(Qz∓Qd,z) . (3.7)

The following identity can be used to obtain the general solution for the linear
motion,

τ−1

∑
t=0

pt =
pτ − 1
p− 1

. (3.8)

The solution for the linear motion under influence of an ac dipole is then given
after some algebra by,

ξz,±(τ) =
√

2Jze∓i(2πQzτ+φz,0) + δz,−e∓i2πQd,zτ − δz,+e±i2πQd,zτ , (3.9)

where,

δz,− =
δ

4
e−i[π(Qd,z−Qz)−χ0]

sin[π(Qd,z −Qz)]
(3.10)

δz,+ =
δ

4
ei[π(Qd,z+Qz)−χ0]

sin[π(Qd,z + Qz)]
. (3.11)

Equation (3.9) describes three linear modes that together form the forced linear
motion. The first mode is the free mode, describing the linear motion of a particle
in the absence of ac dipoles. The second two modes are the forced modes. The first
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of the forced modes arises from the difference resonance between the ac dipole
tune and the natural tune (Qd,z − Qz), as shown in Eq. (3.10). The second forced
mode is related to the sum resonance between the forced tune and natural tune
(Qd,z + Qz), as shown in Eq. (3.11). In general the ac dipole tunes are chosen in
such a way that the difference resonance is excited, such that |δz,−| � |δz,+|. A
parameter λz is defined as the ratio of amplitudes between the second mode and
the main mode of the ac dipole as,

λz =
δz,+

δz,−
(3.12)

=
sin[π(Qd,z −Qz)]

sin[π(Qd,z + Qz)]
. (3.13)

By choosing the ac dipole tunes to be close to the natural tunes the parameter λz

is minimized. Generally, during optics measurements in the LHC, the parameter
will be of the order of a few percent.

combined ac dipole modes

The parametrization of linear forced motion was further developed in [54], where
the two forced modes of the ac dipoles are combined to a single mode. The price
paid for this simplification is the introduction of new perturbed optics functions
(αd,z, βd,z, γd,z), referred to as the forced optics functions or forced Courant-Snyder
parameters. An analogy is later made between the forced optics functions and op-
tics functions perturbed by a quadrupolar error. This analogy will prove to be very
useful in Chapter 4.

Ignoring the free part of the motion of Eq. (3.9) the transverse position of a
particle can be expressed as,

zd(τC + ∆s) =
θd,z
√

βacd,z

4 sin[π(Qd,z −Qz)]

√
βz(∆s)

× cos(2πQd,zτ + φz(∆s) + π(Qd,z −Qz) + χd)

+
θd,z
√

βacd,z

4 sin[π(Qd,z + Qz)]

√
βz(∆s)

× cos(−2πQd,zτ + φz(∆s) + π(Qd,z + Qz)− χd) , (3.14)

where θd,z is the maximum kick angle. The two terms in Eq. (3.14) can be combined
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into a compact form with new forced optics functions that are continuous in s [54],

zd(s) =
√

2Ad,zβd,z(s) cos(φd,z(s) + χd) , (3.15)

where the new constant of motion Ad,z is defined as,

Ad,z =
θd,z

4 sin(π[Qd,z −Qz)]

√
(1− λ2

z)βacd,z , (3.16)

and where the forced β-function is defined as,

βd,z(s) =
1 + λ2

z − 2λz cos(2φz(s)− 2πQz)

1− λ2
z

βz(s) . (3.17)

This new forced β-function, βd,z(s), describes a beating over βz(s) with a devia-
tion of the order of λz. It should be noted that as the ac dipole tunes approach the
natural tunes, βd,z(s) will converge to βz(s).

The new forced phase φd,z(s) is defined as,

tan[φd,z(s)− πQd,z] =
1 + λd,z

1− λd,z
tan[φz(s)− πQz]

=
tan(πQd,z)

tan(πQz)
tan[φz(s)− πQz] . (3.18)

All the forced optics functions (αd,z, βd,z, γd,z) behave in the same way as their
free counterpart (αz, βz, γz) and describe a phase-space ellipse. The only difference
being that this forced parameter ellipse has a slightly different shape compared to
the free parameter ellipse.

forced optics as gradient error

The benefit of this new parametrization of the forced motion is that the forced op-
tics functions closely resemble the optics functions under the influence of a single
quadrupolar error. A quadrupolar error creates a deformation of the phase-space
that is analogous to that of the forced parameters. It is remarkable that the effect of
an oscillating dipole field yields the same effect on the phase-space as a gradient
error. This analogy allows to easily calculate the forced optics functions by insert-
ing a quadrupole in the nominal lattice. The strength of this quadrupole will be
determined by the the forced and free tunes as well as the free β-function at the
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location of the ac dipole. The strength qacd of a quadrupole at the location of the ac
dipole is given by,

qacd =
θd,z

Ad,z
√

βd,z(0)

= 2
cos(2πQz)− cos(2πQd,z)

βacd,z sin(2πQz)
. (3.19)

This does not mean that the ac dipole acts like a true quadrupole on the optics,
but it merely states that the phase-space is modified in a way that is analogous to a
quadrupole error. In practice, forced optics functions are calculated in simulations
by inserting a quadrupole with its strength as defined by Eq. (3.19) at the location
of the ac dipole and calculating the free optics functions. The free optics functions
calculated with this fictive quadrupole reflect the forced optics functions observed
from forced oscillation with ac dipoles, as shown in Fig.3.1.
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Figure 3.1: Results from β-functions calculations for a FODO lattice with the free lattice
and with the forced lattice, compared to the results obtained from tracking simulations.
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F O R C E D R E S O N A N C E D R I V I N G T E R M S

Resonance driving terms promise to be a valuable observable for the measurement
and correction of nonlinear magnetic errors in the LHC. Measurements of reso-
nance driving terms can be performed by exciting the beam with a single kick
using the aperture kicker. Unfortunately, this method is not deemed safe at top
energy in the LHC, as it poses the risk of causing large losses that are too fast for
current safety feedback systems to act upon.

Currently, resonance driving terms can only be measured at top-energy by us-
ing the ac dipole for transverse beam excitations. Chapter 3 presented how the
forced motion with ac dipoles changes the linear motion of particles. However,
these changes are not limited to the linear motion. The nonlinear beam dynam-
ics are also perturbed by the use of the ac dipole, which infers a change in the
description of the resonance driving terms.

A first parametrization of resonance driving terms under the influence of forced
oscillations from ac dipoles, also known as forced resonance driving terms, was pre-
sented in [49]. This derived the forced resonance driving terms in the free Courant-
Snyder parameter space in one dimension and under the assumption that the main
mode of the ac dipole is much larger that the secondary mode, i.e. |δz,−| � |δz,+|.
An extension of this approach in two dimensions including the effect of the second
mode is presented in Appendix A, where it is shown that serious complications
arise in the parametrization of forced resonance driving terms when these addi-
tional requirements are taken into account. Spectral lines are now no longer driven
by a single resonance driving term, but by multiple driving terms of the same or-
der with different strengths. This stands in stark contrast to the resonance driving
terms of the free motion as presented in Sec. 2.4 where each resonance driving term
drives a single spectral line.

The studies presented in this chapter reflect a continuation of Chapters 2 and 3

as well as the studies presented in [49]. This chapter offers a parametrization of
forced resonance driving terms in the forced Courant-Snyder parameter space of
Chapter 3 using the forced optics parameters αd,z, βd,z, and γd,z. It shows that
significant simplifications arise by moving to the forced Courant-Snyder space. Sec-
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ondly, this chapter explores for the first time a second order contribution from the
ac dipole to the resonance driving terms.
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abstract

This paper presents the derivation of resonance driving terms under forced oscillations with
ac dipoles in the forced Courant-Snyder parameter space. Forced resonance driving terms
take a simple form when analysed in forced parameter space. A new parametrization of
forced resonance driving terms is presented that more accurately reproduces results from
tracking simulations in forced parameter space. Furthermore, a new contribution from ac
dipoles to resonance driving terms is observed. An analytical description of this perturbation
cross-term between ac dipole and resonance driving terms is presented and validated in
simulations.
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introduction

Forced oscillations from ac dipoles are widely used as a diagnostics tool for optics
measurements in synchrotrons [37, 38, 42, 53–63]. Recently the forced motion has
become increasingly important to measure nonlinear beam dynamics as well [3, 5,
43, 49, 53, 64–67]. A good understanding of nonlinear forced motion is thus crucial
for measurements of nonlinear dynamics in synchrotrons.

Forced oscillations change the direct observables in the transverse turn-by-turn
motion. Next to the free motion, two other modes are introduced to the linear
motion by the ac dipoles. One mode relates to the difference resonance between the
free motion and the ac dipole, while the other relates to the sum resonance. The
oscillation amplitudes and phases are perturbed by these two ac dipole modes [54].
The analysis of the nonlinear motion, specifically of resonance driving terms, of
forced oscillations has until now relied on the normal form description of the forced
motion in free parameter space [49]. This analysis features complexity by staying in
the free optics parameters, as the free phase and β-functions need to be calculated
separately.

In [54] it is shown that the parametrization of the linear forced motion when
combining the two ac dipole modes closely resembles that of the free motion. New
forced optics functions (αd, βd, γd) arise to describe the forced motion. Simulations
in this paper show that the analysis of resonance driving terms in this forced pa-
rameter space is simpler than in the free parameter space. An important finding is
that the forced resonance driving terms have a constant amplitude between non-
linear sources, while current theoretical predictions expect amplitude beating due
to mixing of modes. Furthermore, moving to the forced parameter space better
reflects the direct observables from BPM turn-by-turn data.

It is useful at this point to illustrate the main difference between forced resonance
driving terms analysed in the free parameter space and those analysed in the forced
parameter space. A single particle tracking simulation of a FODO lattice with a
closed skew sextupole bump is used. The sextupoles are positioned at π phase
advance of each other to form a closed resonance driving term bump, and the ac
dipole is placed at s = 0. Further details of tracking procedures are best left in the
simulations section in Sec. 4.5.

Figure 4.1 shows the normalized phase-space using turn-by-turn data from ac
dipole excitations. In red the normalized phase-space using the free Courant-Snyder
parameters is shown, while the normalized phase-space with forced parameters is
shown in blue. The normalized phase-space is expected to have a constant ampli-
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Figure 4.1: Phase-space obtained from the complex signal reconstruction of two BPMs
using free (blue) and forced (orange) Courant-Snyder parameters.

tude over phases, i.e. a circular phase-space. This is clearly reflected in the obtained
results using the forced parameters. Using free Courant-Snyder parameters to nor-
malize the phase-space of forced oscillations introduces a beating that eventually
propagates to the resonance driving terms.

The resonance driving terms from tracking simulations when analysed in the free
parameter space as opposed to the forced parameter space are shown in Figure 4.2.
A significant amplitude beating is observed when the analysis is performed in the
free parameter space. This beating arises from deformed phase-space of the forced
motion that is not accounted for in the free optics parameters, and further motivates
the analysis of forced resonance driving in the forced parameter space.

This paper presents the challenges encountered when deriving the resonance
driving terms following the normal form approach established in the free param-
eter space and extending it to the forced parameter space. A new description of
the forced resonance driving terms that more closely matches the direct observ-
ables is proposed. The results present an elegant parametrization of the nonlinear
forced motion, where the resonance driving term amplitudes are constant between
sources.

Furthermore, it is observed for the first time that the amplitude and phase of
resonance driving terms are perturbed at the location of the ac dipole. The second
order effects of the ac dipoles have until now never been considered. However, a
second order cross-term between the ac dipole and the resonance driving terms
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Figure 4.2: Amplitude of f0030 resonance driving term obtained from the analysis in free
parameter space (red) and in forced parameter space (blue). A significant amplitude beating
is found in the free parameter space.

becomes relevant for the calculation of resonance driving terms. Such perturba-
tions further show the complexity of the forced motion and highlight the need for
improved understanding of nonlinear forced motion.

This paper proceeds by presenting the derivations of the linear complex normal-
ized coordinates as well as a first derivation of the normal form in forced parameter
space in Sec. 4.2. An approximation is made following observations and a result-
ing parametrization of the forced parameter space is presented in Sec. 4.3. This is
followed by an analytical derivation of second order perturbations of ac dipoles
is presented in Sec. 4.4. Simulations with a closed skew sextupole resonance driv-
ing terms bump will be shown throughout the derivations to illustrate specific
observations and offer motivation for certain derivations. Finally Sec. 4.5 compares
the analytical parametrization of forced resonance driving terms to single particle
tracking simulations for various test cases.

forced theory

The theoretical framework for the derivation of resonance driving terms is pre-
sented in this section. First a full parametrization of the forced motion is needed
in the forced parameter space before an extension into the nonlinear domain is
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presented.

Linear forced motion

Under forced motion with an ac dipole the parametrization of the transverse mo-
tion along the longitudinal position s can be defined in the parameter space of the
free motion as in [43, 49, 53, 54] by,

x(τC + ∆s) =
√

2Jxβx(∆s) cos(2πQxτ + φx(∆s) + φ0)

+
θd,x
√

βacd,x

4 sin(πQx,−)

√
βx(∆s) cos(2πQd,xτ + φx(∆s) + πQx,− + χd)

+
θd,x
√

βacd,x

4 sin(πQx,+)

√
βx(∆s) cos(−2πQd,xτ + φx(∆s) + πQx,+ − χd) .

(4.1)

Here Jx is the invariant of the free motion, φx and βx are the free phase and
β-functions around the accelerator, θd,x is the maximum kick angle from the ac
dipole, βacd,x is the free β-function at the location of the ac dipole, Qx and Qd,x are
respectively the free and forced tunes, Qx,± is defined as Qx,± = Qd,x ± Qx, χd is
the initial phase of the ac dipole, while φ0 is the initial free phase, τ is the number
of turns, and lastly C is the circumference of the accelerator.

Note that in this description the longitudinal position is determined by ∆s and
not of s, where 0 ≤ ∆s < C. A discontinuity arises at the location of the ac dipole
(s = 0) [54]. This discontinuity, as well as the presence of two ac dipole modes
greatly complicates the calculation of resonance driving terms [49].

The two modes of the ac dipole related to the difference and sum resonances are
described in the two last summands of Eq. (4.1) respectively. In [54] it is shown
that the two ac dipole modes can be combined into a single forced mode that
is continuous in s, accompanied by new forced optics functions αd, βd and γd,
as well as new amplitude and phase variables Ad and φd. The complete linear
parametrization then becomes,

x(s) =
√

2Jxβx(s) cos(φx(s) + φ0)

+
√

2Ad,xβd,x(s) cos(φd,x(s) + χd) , (4.2)
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where Ad,x and φd,x are the new amplitude and phase parameters of forced motion,
and βd,x is the forced β-function. The forced phase φd,x is defined as [54],

tan[φd,x(s)− πQd,x] =
1 + λx

1− λx
tan[φx(s)− πQx] (4.3)

while the forced β-function βd,x is defined by,

βd,x(s) =
1 + λ2

x − 2λx cos(2φx(s)− 2πQx)

1− λ2
x

βx(s) . (4.4)

The parameter λx is the ratio of amplitudes between the second mode and the
main mode of the ac dipole, and it is defined by,

λx =
sin[π(Qx,−)]

sin[π(Qx,+)]
. (4.5)

In general, the ac dipole tunes are chosen close to the natural tunes such that the
difference resonance is enhanced as opposed to the sum resonance. The parameter
λx is thus generally very small, of the order of a few percent.

The transverse momentum is obtained from the derivative of the position coordi-
nate over the longitudinal variable and is defined as,

px(s) = −αx

√
2Jx

βx(s)
cos(φx(s) + φ0)

−
√

2Jx

βx(s)
sin(φx(s) + φ0)

−αd,x

√
2Ad,x

βd,x(s)
cos(φd,x(s) + χd)

−
√

2Ad,x

βd,x(s)
sin(φd,x(s) + χd) , (4.6)

where αx and αd,x are the Courant-Snyder α-functions for the free and forced com-
ponents. The forced αd,x parameter is defined analogously to the free motion as,

αd,x = −1
2

dβd,x(s)
ds

(4.7)

Traditionally the linear normalization to Courant-Snyder coordinates is performed
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using the free parameters. In this case, however, the normalization will be per-
formed using the forced parameters. This will lead to great simplifications in sub-
sequent normal form derivations. The normalized coordinates are found with the
Courant-Snyder transformation using the forced parameters,

 x̂

p̂x

 =

 1√
βd,x

0

αd,x√
βd,x

√
βd,x


 x

px

 , (4.8)

where x̂ and p̂x indicate the linearly normalized coordinates and are defined by,

x̂(s) =

√
2Jx

rβ,x
cos(φx(s) + φ0) +

√
2Ad,x cos(φd,x(s) + χd)

p̂x(s) =
√

2Jx

(
αd,x√rβ,x

− αx
√

rβ,x

)
cos(φx(s) + φ0)

−
√

2Jxrβ,x sin(φx(s) + φ0)

−
√

2Ad,x sin(φd,x(s) + χd) . (4.9)

The parameter rβ,x is the ratio of the forced over free β-functions βd,x(s)
βx(s)

. The
linearly normalized complex coordinate ξx,± is then defined as,

ξx,±(s) = x̂(s)± i p̂x(s) . (4.10)

Specifically the coordinate ξx,−(s) is given by,

ξx,−(s) =
√

2Ad,xei(φd,x(s)+χd) +

√
2Jx

rβ,x

(
cos(φx(s) + φ0)

−i
[
(αd,x − αxrβ,x) cos(φx(s) + φ0)

−rβ,x sin(φx(s) + φ0)

])
. (4.11)

The free part is written in the form of complex exponentials as,
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√
2Jx

rβ,x

(
cos(φx(s) + φ0)− i

[
(αd,x − αxrβ,x) cos(φx(s) + φ0)− rβ,x sin(φx(s) + φ0)

])

=

√
2Jx

1− λ2
x

ei[φd(s)−πQx,−]eiφ0 + λx

√
2Jx

1− λ2
x

ei[φd(s)−πQx,+]e−iφ0 . (4.12)

Here the amplitudes of the two exponential modes are found by expanding all
the cosines and sines in exponential form and solving the equation, while the phase
terms are obtained numerically. Equation (4.12) is only valid for s in the range [0, C).
Finally, combining these results, the complex linear coordinate is given by,

ξx,− =
√

2Ad,xei(2πQd,xτ+χd)

+
√

2J′xei(φx−πQx,−+φ0)

+λx
√

2J′xe−i(φx+πQx,++φ0) .

(4.13)

where the canonical variable φx is written out explicitly, J′x = Jx
1−λ2

x
, and the s de-

pendence is extracted such that the coordinate at a specific location is given by,

ξx,−(s) = eiφd,x(s)ξx,− (4.14)

Equation (4.14) shows that between two locations in the lattice the phase advance
is given by ∆φd,x for both the forced and the free modes. Furthermore, the turn-like
motion can be expressed as a function of turn T as,

(RxRτ)
Tξx,− = (RxRτ)

T
[√

2Ad,xei(2πQd,xτ+χd)

+
√

2J′xei(φx−πQx,−+φ0)

+λx
√

2J′xe−i(φx+πQx,++φ0)

]
.

(4.15)

where the rotation operators Rτ and Rx are defined as Rττ = τ + 1 and Rxφx =

φx + 2πQx.
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Nonlinear one-turn-map

The nonlinear one-turn-map is given as a function of the initial coordinates by,

M =

( N

∏
n=1

Mne:hn :
)

MN+1 (4.16)

where Mn are the linear maps between nonlinear elements, and hn are the Hamil-
tonians of the nonlinear elements. The last linear map MN+1 is needed to close
the turn to the starting location. From Eq. (4.15) the propagation of the coordinates
along s are shown to be dependent on the forced phase only, hence the linear maps
Mn will describe a rotation with the forced phase between the nonlinear elements.

The linear maps in the nonlinear one-turn-map can be concatenated to obtain,

M =

( N

∏
n=1

e:h̃n :
)

M̃N+1 (4.17)

where h̃n is the Hamiltonian of the nth element expressed as a function of the coor-
dinates at the location of observation, and M̃N+1 is the product of all the individual
linear maps Mn. In the forced parameter space obtained with the normalization of
Eq. (4.8) the linear map M̃N+1 is a rotation with the forced tune, where the rotation
is defined as,

M̃N+1ξz,± = e∓i2πQd,z ξz,± . (4.18)

However, this map is not the one-turn-map, it represents the map from just after
the ac dipole till just before the ac dipole. It does not reproduce the turn-by-turn mo-
tion obtained in Eq. (4.15), as this map is only dependent on the forced tunes. The
correct turn-by-turn motion is generally retrieved by implementing a tune jump at
the location of the ac dipole as in [49], and replacing the map M̃N+1 by the rotation
operators Rx,yRτ. New coordinates are then defined before and after the ac dipole
as,
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ξ<x,− = eiφd,x(s)
[√

2Ad,xei(2πQd,xτ+χd)

+
√

2J′xei(φx−πQx,−+φ0)

+λx
√

2J′xe−i(φx+πQx,++φ0)

]
. (4.19)

ξ>x,− = eiφd,x(s)
[√

2Ad,xei(2πQd,xτ+χd)

+
√

2J′xei(φx−πQx,−+φ0)e−i2πQx,−

+λx
√

2J′xe−i(φx+πQx,++φ0)e−i2πQx,+

]
. (4.20)

where ξ<x,− is the coordinate between the point of observation and the ac dipole
and ξ>x,− is the coordinate after the ac dipole till the point of observation.

Using the Campbell-Baker-Hausdorff theorem the exponential nonlinear maps
of Eq. (4.17) can be combined into a single map. To first order in the nonlinear
perturbations the new nonlinear Hamiltonian is given by,

H̃ =
N

∑
n=1

h̃n (4.21)

and the resulting one-turn-map is then obtained as,

M = e:H̃:Rx,yRτ . (4.22)

The Hamiltonian H̃ can be expanded in terms of the eigencoordinates as,

H̃ = ∑
jklm

h<jklmξ
<,j
x,+ξ<,k

x,−ξ<,l
y,+ξ<,m

y,−

+ ∑
jklm

h>jklmξ
>,j
x,+ξ>,k

x,−ξ>,l
y,+ξ>,m

y,− (4.23)

where the Hamiltonian terms h<jklm are the contributions from sources before the ac
dipole, while h>jklm contains the contributions from sources after the ac dipole and
are given by,

h>/<
jklm = ∑

n
h>/<

n,jklmei[(j−k)∆φd,n,x+(l−m)∆φd,n,y] (4.24)

where ∆φd,n,z are the phase advances from the reference point to the specific nonlin-

54



4

Forced resonance driving terms

ear element n. In this case h<jklm will be the sum over all sources n that are between
the reference point and the ac dipole, as ∆φd,n,z < ∆φd,acd,z. While h<jklm is the
sum over all sources that are between the ac dipole and the reference point, for
∆φd,n,z > ∆φd,acd,z. The Hamiltonian coefficients hn,jklm are given by

hn,jklm = −
[Kn,q−1Ω(l + m) + i Jn,q−1Ω(l + m + 1)]

j! k! l! m! 2j+k+l+m

× il+mβ
(j+k)

2
d,x,wβ

(l+m)
2

d,y,w , (4.25)

where the multipolar order is given by q = j + k + l + m, and where Ω(i) = 1 does
the job of selecting either the normal (K) or the skew multipoles (J) as,

Ω(i) = 1 if i is even (4.26)

Ω(i) = 0 if i is odd . (4.27)

Note that the description of the Hamiltonian terms hjklm relies on forced param-
eters only, and is analogous to the free motion treatment in free parameter space.

Normal form

The normal form method [49, 68–70] is the preferred approach to derive the nonlin-
ear motion in accelerators. The detailed derivations of the normal form approach
applied in the forced parameter space are presented in Appendix 4.7. The resulting
nonlinear coordinate is given by,

ξx,− =
√

2Ad,xei2π(Qd,xτ+χd,x)

−2i ∑
jklm

f jklm(2Ad,x)
j+k−1

2 (2Ad,y)
m+l

2 ei2π[(k−j+1)(Qd,xτ+χd,x)+(m−l)(Qd,yτ+χd,y)]

(4.28)

where the forced resonance driving terms f jklm are given by,
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f jklm =
1

1− λ2
x

[
j

h<jklm + h>jklmei2πQx,−

1− ei2π[−Qx+(k−j+1)Qd,x+(m−l)Qd,y]

−jλ2
x

h<jklm + h>jklmei2πQx,+

1− ei2π[Qx+(k−j+1)Qd,x+(m−l)Qd,y]

−kλxe−i2πQd,x
h<j−1,k+1,lm + h>j−1,k+1,lme−i2πQx,−

1− ei2π[Qx+(k−j+1)Qd,x+(m−l)Qd,y]

+kλxe−i2πQd,x
h<j−1,k+1,lm + h>j−1,k+1,lme−i2πQx,+

1− ei2π[−Qx+(k−j+1)Qd,x+(m−l)Qd,y]

]
(4.29)

Equation (4.29) shows that there are four contributions to resonance driving
terms from solving the normal form to first order. There is a main mode that does
not depend on λ in the numerator, one that depends on λ2

x, and two modes that
depend on λx. Interestingly, the two nonlinear modes that depend on λx also have
an extra phase factor that depends on the forced tune. These four contributions
cannot be simplified into a single contribution due to the different resonance de-
nominators, as a result of the two rotation operators of Eq. (4.22). The results of
Eq. (4.28) show that multiple Hamiltonian terms will contribute to the same spec-
tral line with different orders in λx. As the Hamiltonian terms that contribute to the
same line will not oscillate with the same phase, a beating of the resonance driving
terms is predicted.

Figure 4.3 shows the amplitude of f0030 from tracking simulations and from the
predictions of Eq. (4.28) for a model with a closed sextupole driving term bump,
and illustrates the main discrepancy between the predictions and tracking results.
The first important observation is that forced resonance driving terms as analysed
in forced parameter space have constant amplitudes between sources. This result
clearly contradicts the predictions of Eq. (4.29) where a superposition of four modes
of different orders in λx is expected. This superposition leads to amplitude beating
of the resonance driving terms, due to the different Hamiltonian terms and reso-
nance denominators. This discrepancy is not understood and is bypassed with an
approximation shown in the following section.

approximation of the nonlinear motion

Unfortunately the development of forced resonance driving terms as presented
above offers contradicting results with simulations and significantly increases the
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Figure 4.3: Amplitude of f0030 for a closed skew sextupole bump, with Qy = 0.31 and
Qd,y = 0.315. The prediction from Eq. (4.28) is shown in red, while the result from single
particle tracking simulation is shown in black. An amplitude beating is predicted in theory,
but not observed in the result from tracking simulations.

complexity of calculations. An approximation is presented in this section based on
observations of forced resonance driving terms in tracking simulations.

One possible way to retrieve the property that forced resonance driving terms
have constant amplitudes between sources is to have the same resonance denomi-
nators for each of the four modes in order to have cancellation. The one-turn rota-
tion is thus approximated as directly obtained from the concatenation of the linear
maps as described by Eq. (4.17). The tune jump at the location of the ac dipole is ne-
glected, and the coordinates before and after the ac dipole are the same as defined
in Eq. (4.15). The one-turn-map now becomes,

M = e:H̃:Rd,z , (4.30)

where Rd,z = M̃N+1 and M̃N+1 is defined in Eq. (4.18). Neglecting the tune jump
at the ac dipole has the further benefit of simplifying the expansion of the Hamil-
tonian yielding,

H̃ = ∑
jklm

hjklmξ
j
x,+ξk

x,−ξ l
y,+ξm

y,− (4.31)
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where the Hamiltonian terms are just given by

hjklm = ∑
n

hn,jklmei[(j−k)∆φd,n,x+(l−m)∆φd,n,y] . (4.32)

Equation (4.32) is identical to Eq. (4.24) except that no distinction between terms
before and after the ac dipole is made. The detailed derivation to derive the parametriza-
tion of the forced motion are detailed in Appendix 4.8. The resulting linearly nor-
malized complex coordinate including all contributions from nonlinear sources is
now given by,

ξx,− ≈
√

2Ad,xei2π(Qd,xτ+χd,x)

−2i ∑
jklm

j f jklm(2Ad,x)
j−1+k

2 (2Ad,y)
l+m

2

×ei2π[(k−j+1)(Qd,xτ+χd,x)+(m−l)(Qd,yτ+χd,y)] (4.33)

where f jklm are the resonance driving terms and are defined as,

f jklm =
hjklm

1− ei2π[(k−j)Qd,x+(m−l)Qd,y]
.

(4.34)

The same derivation can be performed for the vertical motion, which gives the
following result for the evolution of the vertical coordinate,

ξy,− ≈
√

2Ad,yei2π(Qd,yτ+χd,y)

−2i ∑
jklm

l f jklm(2Ad,x)
j+k

2 (2Ad,y)
l−1+m

2

×ei2π[(k−j)(Qd,xτ+χd,x)+(m−l+1)(Qd,yτ+χd,y)] (4.35)

This result is the forced motion equivalent to the free motion resonance driving
terms from [70]. Two distinctions can be made between this new parametrization
of the nonlinear motion and that of Eq. (4.28). Firstly, only a single nonlinear mode
is obtained from this derivation, which means that the resonance driving terms
amplitude is constant between sources. Secondly, a resonance denominator is ob-
tained that is only dependent on the forced tunes. The lack of the free tune in the
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resonance denominator is problematic, as forced resonances should be dependent
on both free and forced tunes. However, the proper resonance behaviour is recov-
ered in the next section by introducing the cross-term between the ac dipole and
resonance driving terms.

derivation of second order cross-terms from ac dipole

All previous derivations assume linear motion at the location of the ac dipole. How-
ever a significant perturbation can be expected at the location of the ac dipole when
the phase-space is deformed due to the machine driving terms. Second order cross-
terms between resonance driving terms and the ac dipole can perturb the resonance
driving terms around the machine.

To illustrate this, tracking simulations are performed with a closed skew sex-
tupole bump. One simulation is done with the ac dipole outside the bump at s = 0
m, while the second simulation is done with the ac dipole inside the bump at
s = 830 m. Figure 4.4 shows the amplitude of f0030 for the two simulations. When
the ac dipole is located in a region with non-zero f0030 it shows a clear perturbation
at the location of the ac dipole. A jump in amplitude is observed as well as the
non-closure of the skew sextupolar resonance driving term bump.
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Figure 4.4: Amplitude of f0030 resonance driving term from tracking simulations with the
ac dipole located at s = 0 m (blue), and for a simulation with the ac dipole at s = 830 m
(red). The perturbation from the ac dipole prevents the resonance bump from closing, and
creates a jump in amplitude at the location of the ac dipole.
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A possible approach to derive this second order contribution from the ac dipole
is to find the second order generating function and solve the normal form approach
to second order. A derivation of the generating function to second order is found
in [71]. The cross-term is derived in an illustrative way by calculating an effective
Hamiltonian term at the location of the ac dipole.

First the kick of the ac dipole in physical space is defined as,

∆z′ =
BL
B0ρ

cos(2πQd,zτ) (4.36)

The normalized complex coordinate including the ac dipole kick term ξ† is then
defined as

ξ†
z,± = ξz,± ± i

√
βd,z∆z′

= ξz,± ± iδz cos(2πQd,zτ) (4.37)

where δy =
√

βacd,y
BL
B0ρ . So far, the kick has only been accounted for in relation with

the linear motion which led to the linear coordinate of Eq. (4.1). This is sufficient
in the assumption that the phase-space at the location of the ac dipole is circular.
However, nonlinearities will distort the phase-space around the accelerator as well
as at the location of the ac dipole. The kicks acting on this distorted phase-space
will result in cross-terms between resonance driving terms and the ac dipole. To
calculate these cross-terms it is necessary to move to the normal form space.

The approach is to evaluate the modified normalized complex coordinates of
Eq. (4.37) in the normal form basis, and subtract the evaluation of the original
linear normalized complex coordinate. A residual is obtained for each turn in the
motion. This can be summed over the total number of turns, taking into account
the turn-by-turn rotation R = e−i2πQz , to obtain,

r = −1
2

N−1

∑
τ=0

RN−τ

(
[F, h]

∣∣∣∣
h=ξ†
− [F, h]

∣∣∣∣
h=ξ

)
. (4.38)

The factor 1
2 in Eq. (5.14) results from the derivations of the second order gener-

ating function in [71]. For the vertical motion the residual cross-term rjklm,V , arising
from the interaction between the resonance driving term f jklm and the ac dipole,
will take the form of,
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rjklm,V = i× l f jklm

N−1

∑
τ=0

RN−τ

×
(
(ξ†

x,+)
j(ξ†

x,−)
k(ξ†

y,+)
l−1(ξ†

y,−)
m

−ξ
j
x,+ξk

x,−ξ l−1
y,+ξm

y,−

)
. (4.39)

Note that a distinction is now made between the planes of motion by the addition
of V in the indices. This is needed to account for the fact that R acts on the two
planes differently. Furthermore, the calculated residual from Eq. (4.39) will yield
multiple contributions per resonance driving term. The resonance driving terms
of the same order will all contribute, i.e. f0030 will be perturbed by r0030,V , r0021,V ,
and r0012,V . In fact this approach bears resemblance to the second order normal
form development in [71]. The summation of the kicks over turns is an operation
analogous to a normal form transformation.

Cross-term for f0030,V

In view of the simulations done in Sec. 4.5 the contribution to f0030,V is calculated
as an example in this section. The residual r0030,V is calculated as follows,

r0030,V = i× 3 f0030

N−1

∑
τ=0

RN−τ

[
(ξ†

y,+)
2 − ξ2

y,+

]
= i× 3 f0030

N−1

∑
τ=0

RN−τ

[(
−

δ2
y

2
+ i
√

2Ad,yδy

)
+

(
−

δ2
y

4
+ i
√

2Ad,yδy

)
e−i2π[2Qd,y]τ

+

(
−

δ2
y

4

)
ei2π[2Qd,y]τ

]
.

Only the terms with ±2Qd,y will contribute to the skew sextupolar resonance
driving terms. The first term of the summand can thus be neglected to obtain,
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r0030,V = i× 3 f0030

N−1

∑
τ=0

RN−τ (4.40)

×
[(
−

δ2
y

4
+ i
√

2Ad,yδy

)
e−i2π[2Qd,y]τ

+

(
−

δ2
y

4

)
ei2π[2Qd,y]τ

]
.

The summation can be solved by using the identity,

1 + p + p2 + . . . + pN−1 =
pN − 1
p− 1

, (4.41)

and observing that p = ei2π[−Qy±2Qd,y]. Solving the summation while neglecting the
terms that oscillate with Qy only, and rewriting the new resonance denominator in
the familiar form of 1− p, the residual contribution is given by,

r0030,V = −i× 3 f0030

[(
−

δ2
y

4

)
ei2π[2Qd,y]N

1− ei2π[−Qy+2Qd,y]

+

(
−

δ2
y

4
+ i
√

2Ad,yδy

)
ei2π[−2Qd,y]N

1− ei2π[−Qy−2Qd,y]

]
.

(4.42)

This can be further simplified by expressing the kick strength δy in terms of Ad,y

using,

δy = Λy

√
2Ad,y , (4.43)

with,

Λy =
4 sin(π(Qd,y −Qy))√

1− λ2
y

. (4.44)

Equation (4.42) then reduces to,
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r0030,V = −i× 3 f0030(2Ad,y)

×
[(
−

Λ2
y

4

)
ei2π[2Qd,y]N

1− ei2π[−Qy+2Qd,y]

+

(
−

Λ2
y

4
+ iΛy

)
ei2π[−2Qd,y]N

1− ei2π[−Qy−2Qd,y]

]
.

(4.45)

This result is very similar in form to Eq. (4.35) for skew sextupolar resonance
driving terms. By imposing the form of Eq. (4.35) on to the acquired result a correc-
tional Hamiltonian term at the location of the ac dipole hac

jklm,V can be defined and
substituted into the result as,

r0030,V = −2i
hac

0012,V

1− ei2π[Qd,y]
(2Ad,y)e

i2π[2Qd,y]N

−2i
3hac

0030,V

1− ei2π[−3Qd,y]
(2Ad,y)e

i2π[−2Qd,y]N ,

(4.46)

where the Hamiltonian terms for the contributions at the AC dipole are,

hac
0012,V = −3

2
f0030

Λ2
y

4
1− ei2π[Qd,y]

1− ei2π[−Qy+2Qd,y]

hac
0030,V = −1

2
f0030

(Λ2
y

4
− iΛy

)
1− ei2π[−3Qd,y]

1− ei2π[−Qy−2Qd,y]
.

(4.47)

The resonant behaviour near the true forced motion resonances −Qx + mQd,x +

nQd,y, where m, n ∈ Z, that was lost in Eq. (4.34) is now recovered by this contri-
bution at the location of the ac dipole. The same derivations can be done for the
other skew sextupolar resonance driving terms f0012,V and f0021,V , as both terms
will contribute to hac

0030,V . Combining the contributions from all three resonance
driving terms and explicitly writing out the factor 1

2 from the second order generat-
ing function, the final contribution at the location of the ac dipole is obtained and
given by,
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hac
0030,V =

1
2

[
− f0030

(Λ2
y

4
− iΛy

)
− 1

3
f0012

Λ2
y

4

+
2
3

f0021

(Λ2
y

4
− i

2
Λy

)]
×
[

1− ei2π[−3Qd,y]

1− ei2π[−Qy−2Qd,y]

]
.

(4.48)

Calculation of resonance driving terms

The procedure to calculate the resonance driving terms now becomes apparent.
First a model is made of the forced motion by modelling the linear optics per-
turbations as a quadrupolar kick, as shown in [54]. The forced optics parameters
obtained from this model are used to calculate the resonance driving terms from
Eqs. (4.32) and (4.34). The forced resonance driving terms obtained at the location
of the ac dipole are used to calculate the cross-term at the same location using
Eq. (4.48).

The Hamiltonian terms of Eq. (4.32) can then be re-expressed as,

hjklm,H/V = ∑
n

hn,jklmei[(j−k)∆φd,n,x+(l−m)∆φd,n,y]

+hac
jklm,H/Vei[(j−k)∆φd,ac,x+(l−m)∆φd,ac,y] .

(4.49)

The forced resonance driving terms are now calculated using,

f jklm,H/V =
hjklm,H/V

1− ei2π[(k−j)Qd,x+(m−l)Qd,y]
.

(4.50)

where the index H/V specifies the plane in which the resonance driving terms are
observed.

comparison of theory to particle tracking simulations

Single particle tracking simulations are done in MAD-X [72] to verify the analytical
development of resonance driving terms with forced oscillations. A simple FODO
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lattice is used as the model for the tracking simulations with natural tunes Qx =

Qy = 0.25. A vertical ac dipole is installed at the beginning of the lattice, at location
s = 0 m. The ac dipole starts with a ramp-up time of 2000 turns, and has a flattop
excitations of 6000 turns before ramping down again. Only the turn-by-turn data
of the flattop excitation is used for the spectral analysis. Skew sextupoles are added
to the model to create various different test cases that are detailed in the following
sections. For illustrative purposes all results are shown for the skew sextupolar
resonance driving term f0030,V , but it reflects the results found for other driving
terms.

Closed resonance driving term bump

First an idealised test case is used in the form of a closed resonance driving term
bump. Two skew sextupolar sources are introduced at π phase advance from each
other to form a closed driving term bump. This closed bump is specifically cho-
sen such that the resonance driving term at the location of the ac dipole is zero,
thus mitigating any second order contribution from the ac dipole. The comparison
between the theoretical derivations of Eq. (4.34) and the results from tracking sim-
ulations are shown in Fig. 4.5 for the amplitude of the f0030,V driving term. A very
good agreement is observed between the two results.

Figure 4.6 shows the relative amplitude deviation and phase deviation between
the theoretical predictions and the results from tracking simulations for the closed
bump case. The deviation inside the closed bump is negligibly small and shows an
almost exact agreement between theory and simulations.

Non-closed resonance driving term sources

The closed driving term bump is a special case of course, for which the ac dipole is
located in a region where the driving terms are zero. Furthermore, by construction
the closed bump does not show resonant behaviour as it functions similarly to a
single pass of the lattice. A second test case is used to probe the effect of the ac
dipole on the resonance driving terms as well as the resonance behaviour close to
resonances. The second skew sextupole in the lattice is removed leaving a single
skew sextupole in the lattice. The same single particle tracking simulations are
repeated.

The results from tracking simulations and from the analytical predictions of
Eq. (4.34) with and without the contribution of Eq. (4.48) are presented in Fig. 4.7.
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Figure 4.5: Amplitude of f0030,V driving term from analytical calculations and tracking for
a closed driving term bump with skew sextupoles at π phase advance. The vertical natural
and forced tunes are Qy = 0.25, and Qd,y = 0.255.
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Figure 4.6: Amplitude and phase deviation of f0030,V driving term between analytical cal-
culations and tracking for a closed driving term bump with skew sextupoles at π phase
advance. The vertical natural and forced tunes are Qy = 0.25, and Qd,y = 0.255.
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Figure 4.7: Amplitude of f0030,V driving term from analytical calculations, including and
excluding the cross-term contribution from the ac dipole at s=0 m, and tracking for a lattice
with a single skew sextupole at s=400 m. The vertical natural and forced tunes are Qy =

0.25, and Qd,y = 0.255.
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Figure 4.8: Amplitude and phase deviation of f0030,V driving term from analytical calcula-
tions, including and excluding the cross-term contribution, and tracking for a lattice with
a single skew sextupole at s=400 m and the ac dipole at s=0 m. The vertical natural and
forced tunes are Qy = 0.25, and Qd,y = 0.255.
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Firstly a jump in amplitude is observed at the start of the lattice compared to the
amplitudes at the end of the lattice. This jump shows the effect of the ac dipole on
the amplitude of the resonance driving term. Indeed it is shown that omitting the
second order cross-term yields a significant discrepancy between tracking and the-
ory. In contrast, including the cross-term shows an almost perfect agreement with
tracking results.

Figure 4.8 shows the relative amplitude and phase deviations between the dif-
ferent theoretical predictions and the results from tracking. Again a much better
agreement is observed in the case where the second order cross-term is included.

Lastly, a model is used with six skew sextupoles at arbitrary phase advance
between each other and with arbitrary strength. The results for both tracking sim-
ulations and analytical calculations are presented in Fig. 4.9. Again a very good
agreement is observed between tracking and analytical results. The relative ampli-
tude and phase deviations are still negligibly small as shown in Fig. 4.10.

Behaviour near resonance

General forced motion theory predicts resonances to be dependent on both the free
tune as well as the forced tunes. Although this is not obtained by the derivations
of Sec. 4.3 this behaviour is recovered from the second order cross-term in Sec. 4.4.
The analytical predictions are compared to tracking results near resonances in this
section. The same base model with the six skew sextupoles is used as in Sec. 4.5.2.
To probe the behaviour near resonances the natural tunes are shifted by introducing
a correction quadrupole at the first defocussing quadrupole of the lattice (s = 10

m). The resonance probed is −Qy − 2Qd,y = p, where {p ∈ Z}. This quadrupole is
modulated to shift the vertical natural tune to Qy = 0.327, while the forced tune is
chosen at Qd,y = Qy + 0.005.

Figure 4.11 shows the amplitude of f0030,V obtained from tracking simulations
and from theory. The results show that the resonance driving term amplitude in-
creases drastically as expected. Furthermore, as the resonance is approached the
phase advance between the skew sextupolar sources aligns such that the local
jumps in amplitude become relatively smaller. The result is a constant, high am-
plitude, resonance driving term over the full machine.

The relative amplitude and phase deviations between theory and results from
tracking are shown in Fig. 4.12. The deviations have increased slightly as compared
to the results shown in Fig. 4.10, but are still negligibly small. The deviations ob-
served in the amplitude show steps at the locations of the ac dipole and at s=1750,
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Figure 4.9: Amplitude of f0030,V driving term from analytical calculations and tracking for
a lattice with six skew sextupoles with arbitrary location and strengths and the ac dipole at
s=0 m. The vertical natural and forced tunes are Qy = 0.25, and Qd,y = 0.255.
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Figure 4.10: Amplitude and phase deviation of f0030,V driving term from analytical cal-
culations and tracking for a lattice with six skew sextupoles with arbitrary location and
strengths and the ac dipole at s=0 m. The vertical natural and forced tunes are Qy = 0.25,
and Qd,y = 0.255.
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Figure 4.11: Amplitude of f0030,V driving term from analytical calculations and tracking
for a lattice with six skew sextupoles with arbitrary location and strengths and the ac dipole
at s=0 m. The vertical natural and forced tunes are Qy = 0.327, and Qd,y = 0.332.
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Figure 4.12: Amplitude and phase deviation of f0030,V driving term from analytical cal-
culations and tracking for a lattice with six skew sextupoles with arbitrary location and
strengths and the ac dipole at s=0 m. The vertical natural and forced tunes are Qy = 0.327,
and Qd,y = 0.332.
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while the phase deviation is constant over the whole lattice.

Larger tune split

The simulations have so far been done with a tune split between the natural tunes
and the ac dipole tunes of Qd,y − Qy = 0.005. During optics measurements with
ac dipoles in accelerators, the tune splits are generally chosen to be smaller than
|Qd,z−Qz| < 0.015. Simulations are done to validate the proposed parametrization
of forced resonance driving terms at the edge of these operational bounds of tune
splits.

Figure 4.13 shows results from the tracking simulations with the model con-
taining multiple random sources and analytical predictions for the case where
Qy = 0.31 and Qd,y = Qy + 0.015. The deviation in amplitude and phase of the
driving term between predictions and the results from tracking simulations are
shown in Fig. 4.14. A constant phase deviation of (0.97± 0.15) mrad is observed,
while the amplitude deviation does not exceed 0.2 %. The results still show a very
small relative amplitude and phase deviation that is well within tolerated errors on
resonance driving terms.

conclusions

A theoretical description of forced resonance driving terms with ac dipoles is pre-
sented. It is shown that the analysis using the forced Courant-Snyder parameters
greatly simplifies the description of resonance driving terms in forced motion. The
amplitudes of resonance driving terms in the forced parameter space are constant
between sources. This does not agree with the result of the normal form analysis of
the forced motion as presented here, where amplitude beating would be expected.
The reasons for this discrepancy remain unknown. A new parametrization of forced
resonance driving terms is presented in this paper that includes a new cross-term
contribution between the ac dipole and the resonance driving terms. In this descrip-
tion the resonance driving terms are constant between nonlinear sources.

Simulations with a closed skew sextupolar driving term bump, and with the
ac dipole outside this closed bump, show a good agreement between theory and
results from tracking. The ac dipole being in a region where the driving terms are
zero does not affect the driving terms.

Results from simulations where the ac dipole is at a location with nonzero driv-
ing terms, show a perturbation of second order by the ac dipole. This perturbation
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Figure 4.13: Amplitude of f0030,V driving term from analytical calculations and tracking
for a lattice with six skew sextupoles with arbitrary location and strengths and the ac dipole
at s=0 m. The vertical natural and forced tunes are Qy = 0.31, and Qd,y = 0.325.
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Figure 4.14: Amplitude and phase deviation of f0030,V driving term from analytical cal-
culations and tracking for a lattice with six skew sextupoles with arbitrary location and
strengths and the ac dipole at s=0 m. The vertical natural and forced tunes are Qy = 0.31,
and Qd,y = 0.325.
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shows up as a jump of both phase and amplitude at the location of the ac dipole.
The nonlinearity of the motion at the location of the ac dipole is identified as the
source of perturbation. A Hamiltonian term at the location of the ac dipole is de-
rived from the normal form approach. The contribution reproduces the observa-
tions of the tracking in theory. The jumps in phase and amplitude of the resonance
driving terms at the location of the ac dipole are accurately reproduced, as well as
the resonance driving terms around the full lattice.

The results presented in this paper offer a new parametrization of the forced
resonance driving terms, while at the same time highlight the complexity of forced
motion in synchrotrons. Indeed further studies are needed to fully understand all
intricacies of the nonlinear forced motion.

appendix a : normal form method

Solving the normal form approach to first order yields complicated analytical ex-
pressions. The normal form method consists of finding a transformation that sim-
plifies the motion to an amplitude dependent rotation that satisfies [68, 69],

e−:F:e:H̃:Rx,yRτe:F: = e:H(I):Rx,yRτ (4.51)

where F is the generating function, and I is the new invariant of the motion. The
generating function is defined in normal form as,

F =
1

1− Rx,yRτ
∑
jklm

hjklmζ
j
x,+ζk

x,−ζ l
y,+ζm

y,− (4.52)

Here, the two rotation operators are defined as, Rxψx = ψx + 2πQx and Rττ =

τ + 1. It is the combination of these two rotation operators that will create the
complexity in the following derivations. The normal form coordinate can be written
in a compact form as,

ζx,± = hx,± + gx,±e±iπQx,− + λxgx,∓e±iπQx,+ (4.53)

where
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hx,± =
√

2Ad,xe∓i(ψd,x(s)+χd,x)

gx,± =
√

2I′xe∓i(ψx+ψ0) . (4.54)

To obtain the nonlinear turn-by-turn motion in linearly normalized space the
generating function F can be applied to first order as,

ξx,− = e:F:ζx,−

≈ ζx,− + [F, ζx,−] (4.55)

where the square brackets denote the Poisson brackets and are defined as,

[ f , g] = ∑
z

∂ f
∂ψz

∂g
∂Iz
− ∂ f

∂Iz

∂g
∂ψz

.

Solving Eq. (4.55) becomes very complicated when the full expansion of Eq. (4.52)
is considered. To simplify this it is assumed that the forced amplitude is much
greater than the free action, i.e. Ad,z � Iz. The only terms in the expansion of
Eq. (4.52) that will remain after the Poisson brackets in Eq. (4.55) are the ones that
only depend on gx,± to the first order. All other terms dependent on higher orders
of gx,± will disappear in the limit of I → 0. To solve the Poisson brackets, a few
identities are needed.

[gx,+eiπQx,− , ζx,−] =
−2i

1− λ2
x

[λxgx,−eiπQx,+ , ζx,−] =
2iλ2

x
1− λ2

x

[gx,−e−iπQx,− , ζx,−] =
2iλxe−i2πQd,x

1− λ2
x

[λxgx,+e−iπQx,+ , ζx,−] =
−2iλxe−i2πQd,x

1− λ2
x

(4.56)

The Poisson bracket of Eq. (4.55) can be expanded as,
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[F, ζx,−] =

[
1

1− Rx,yRτ
∑
jklm

hjklmζ
j
x,+ζk

x,−ζ l
y,+ζm

y,− , ζx,−

]

= ∑
jklm

j(h<jklm + h>jklmei2πQx,−)hj−1
x,+hk

x,−hl
y,+hm

y,−

1− ei2π[−Qx+(k−j+1)Qd,x+(m−l)Qd,y]
[gx,+eiπQx,− , ζx,−]

+ ∑
jklm

j(h<jklm + h>jklmei2πQx,+)hj−1
x,+hk

x,−hl
y,+hm

y,−

1− ei2π[Qx+(k−j+1)Qd,x+(m−l)Qd,y]
[λxgx,−eiπQx,+ , ζx,−]

+ ∑
jklm

k(h<jklm + h>jklme−i2πQx,−)hj
x,+hk−1

x,− hl
y,+hm

y,−

1− ei2π[Qx+(k−1−j)Qd,x+(m−l)Qd,y]
[gx,−e−iπQx,− , ζx,−]

+ ∑
jklm

k(h<jklm + h>jklme−i2πQx,+)hj
x,+hk−1

x,− hl
y,+hm

y,−

1− ei2π[−Qx+(k−1−j)Qd,x+(m−l)Qd,y]
[λxgx,+e−iπQx,+ , ζx,−]

(4.57)

where h< describes the Hamiltonian terms before the ac dipole, and h> describes
the Hamiltonian terms after the ac dipole. Equation (4.57) can be solved using the
identities of Eq. (4.56) and is given by,

[F, ζx,−] =
2i

1− λ2
x

(
− ∑

jklm

j(h<jklm + h>jklmei2πQx,−)hj−1
x,+hk

x,−hl
y,+hm

y,−

1− ei2π[−Qx+(k−j+1)Qd,x+(m−l)Qd,y]

+λ2
x ∑

jklm

j(h<jklm + h>jklmei2πQx,+)hj−1
x,+hk

x,−hl
y,+hm

y,−

1− ei2π[Qx+(k−j+1)Qd,x+(m−l)Qd,y]

+λxe−i2πQd,x ∑
jklm

k(h<jklm + h>jklme−i2πQx,−)hj
x,+hk−1

x,− hl
y,+hm

y,−

1− ei2π[Qx+(k−1−j)Qd,x+(m−l)Qd,y]

−λxe−i2πQd,x ∑
jklm

k(h<jklm + h>jklme−i2πQx,+)hj
x,+hk−1

x,− hl
y,+hm

y,−

1− ei2π[−Qx+(k−1−j)Qd,x+(m−l)Qd,y]

)
(4.58)

The nonlinear coordinate is then obtained using Eq. (4.55) as,
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ξx,− =
√

2Ad,xei2π(Qd,xτ+χd,x)

−2i ∑
jklm

f jklm(2Ad,x)
j+k−1

2 (2Ad,y)
m+l

2 ei2π[(k−j+1)(Qd,xτ+χd,x)+(m−l)(Qd,yτ+χd,y)]

(4.59)

where the forced resonance driving terms f jklm are given by,

f jklm =
1

1− λ2
x

[
j

h<jklm + h>jklmei2πQx,−

1− ei2π[−Qx+(k−j+1)Qd,x+(m−l)Qd,y]

−jλ2
x

h<jklm + h>jklmei2πQx,+

1− ei2π[Qx+(k−j+1)Qd,x+(m−l)Qd,y]

−kλxe−i2πQd,x
h<j−1,k+1,lm + h>j−1,k+1,lme−i2πQx,−

1− ei2π[Qx+(k−j+1)Qd,x+(m−l)Qd,y]

+kλxe−i2πQd,x
h<j−1,k+1,lm + h>j−1,k+1,lme−i2πQx,+

1− ei2π[−Qx+(k−j+1)Qd,x+(m−l)Qd,y]

]
(4.60)

appendix b : derivation of new forced resonance driving terms

Using the new expression of the linear map of Eq. (4.30) the normal form transfor-
mation can be written as,

e−:F:e:H̃:Rde:F: = e:H(I):Rd (4.61)

This yields the new generating function,

Fd =
1

1− Rd,z
∑
jklm

hjklmζ
j
x,+ζk

x,−ζ l
y,+ζm

y,− (4.62)

To obtain the nonlinear turn-by-turn motion in linearly normalized space the
generating function Fd can be applied to first order as,

ξx,− = e:F:ζx,−

≈ ζx,− + [F, ζx,−] (4.63)
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A few properties are needed to solve the Poisson brackets. First it is observed
that the property

[ζx,±, ζx,±] = 0 (4.64)

is conserved for the new coordinates. Secondly the Poisson bracket of two conjugate
coordinates is given by,

[ζx,±, ζx,∓] = ∓2i (4.65)

Furthermore, the Poisson brackets of a polynomial is simply given by,

[ζ
j
x,+, ζx,−] = jζ j−1

x,+ [ζx,+, ζx,−] (4.66)

Using these properties the first order solution of the Poisson brackets [F, ζx,−] of
Eq. (4.63) is given by,

[F, ζx,−] =

−2i ∑
jklm

jhjklm

1− ei2π[(k−j)Qd,x+(m−l)Qd,y]
ζ

j−1
x,+ζk

x,−ζ l
y,+ζm

y,−

(4.67)

The linearly normalized complex coordinate including all contributions from
nonlinear sources is now obtained using Eq. (4.63) and the result in Eq. (4.67),
and assuming that Ad,x �

√
2Ix.

ξx,− ≈
√

2Ad,xei2π(Qd,xτ+χd,x)

−2i ∑
jklm

j f jklm,H(2Ad,x)
j−1+k

2 (2Ad,y)
l+m

2

×ei2π[(k−j+1)(Qd,xτ+χd,x)+(m−l)(Qd,yτ+χd,y)]

(4.68)

where f jklm,H are the resonance driving terms and are defined as,
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f jklm =
hjklm

1− ei2π[(k−j)Qd,x+(m−l)Qd,y]
.

(4.69)

The same derivation can be done for the vertical motion, which gives the follow-
ing result for the evolution of the vertical coordinate,

ξy,− ≈
√

2Ad,yei2π(Qd,yτ+χd,y)

−2i ∑
jklm

l f jklm(2Ad,x)
j+k

2 (2Ad,y)
l−1+m

2

×ei2π[(k−j)(Qd,xτ+χd,x)+(m−l+1)(Qd,yτ+χd,y)]

(4.70)
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M E A S U R E M E N T A N D C O R R E C T I O N O F

R E S O N A N C E D R I V I N G T E R M S I N T H E

L A R G E H A D R O N C O L L I D E R

Resonance driving terms measurements were foreseen as one of the main correction
strategies for the LHC during the design phase of the LHC. However, nonlinear cor-
rections from this method were not performed until now. The studies presented in
this chapter summarize the extensive measurement campaign undertaken during
Run II of the LHC. The highlight of which was the first measurement of decapolar
resonance driving terms, and the very first correction of skew octupolar sources in
the LHC using measurements of resonance driving terms.

The perturbative impact of nonlinear errors is dependent on the strength of the
nonlinear component, as well as the size of the β-function at the location of the error,
as presented in Eq. (2.72). In the LHC, the regions where nonlinear errors have the
largest impact are found in the final focussing quadrupoles near the experimental
insertion regions. Figure 5.1 shows the horizontal and vertical β-functions around
IP1 (ATLAS) that reach values of up to 9000 m in the final focus sections. This
means that the effect of nonlinear errors is significantly amplified in these regions.
During Run II of the LHC the main focus of nonlinear correction strategies was on
the correction of errors located in these experimental insertion regions. The large
β-functions in these regions do come with a benefit. As the β-functions are so large,
the phase advance is close to zero, as described by Eq. (2.17). Any corrector magnet
in this region is automatically in phase with the nonlinear errors located in the
same region. Dedicated corrector magnets are thus located in these experimental
insertion regions.

Two methods were used at the start of Run II for the calculation of beam-based
corrections. One is based on measuring tune shifts with beam oscillation amplitude,
referred to as amplitude detuning, which is sensitive to octupolar and dodecapolar
errors. Another method is based on measurements of tune and linear coupling as
a function of crossing angles in the experimental insertions. The crossing angles
create an offset with respect to the closed orbit around the collision point. This
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Figure 5.1: Horizontal and vertical β-functions around IP1 (ATLAS) showing the large
increase of βx and βy before and after the collision point. The areas with large β-functions
are more sensitive to nonlinear errors.

offset will cause nonlinear magnetic fields to feed down to lower order fields. A
particle travelling with a horizontal offset through a sextupole will incur an addi-
tional quadrupolar field leading to a tune shift, while vertical offset will result in
a skew quadrupolar field leading to linear coupling. Nonlinear errors can thus be
measured by characterizing the tune and linear coupling as a function of crossing
angles. These two methods, however, rely on measurements of global observables
to infer local sources.

Measurements of resonance driving terms promise to provide local information
at each BPM on the nonlinear content of the machine. Furthermore, such measure-
ments can distinguish different driving terms, something which other methods
struggle to do. The validation of resonance driving terms measurements for the
correction of nonlinear errors as presented in this chapter, now offers an additional
correction strategy to measure and correct nonlinear errors in the LHC.
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abstract

The second run of the LHC has been marked by the developments in methods for nonlinear
corrections without which the current unprecedented luminosity would have been challeng-
ing to achieve. Nonlinear corrections are now considered a priority in the LHC commission-
ing strategies due to their effect on Landau damping of instabilities and operational benefits.
The measurements of resonance driving terms has now taken a prominent role in the non-
linear correction strategies for the LHC as well as for the the future High Luminosity LHC.
This paper presents key developments and advances made during Run II in measurements
of resonance driving terms with ac dipoles. This has lead to the first observation of normal
and skew decapolar resonance driving terms. Furthermore, the first ever direct correction of
skew octupolar driving terms is presented, paving the way for future nonlinear corrections
with resonance driving terms.
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introduction

Measurements of resonance driving terms are in the scope of accelerator physics
only a recent development. It was helped by the development of the normal form
approach to describe the nonlinear motion in circular accelerators [68, 69]. The
relation between the normal form maps and resonances to the spectral content of
the complex motion variable z± ipz was established in [73]. This provided a clear
path for direct measurements of resonance driving terms by exciting the beam in
the transverse planes and recording the turn-by-turn transverse position data using
beam position monitors (BPMs).

The first resonance driving terms measurements were done at LEAR [74] and
later in the SPS and LEP [75, 76]. Since then measurements of resonance driving
terms have been done at RHIC [58, 64, 77, 78], Tevatron [79], PS [80], ALS [81],
ESRF [70], Bessy-II [82], Soleil [83], and the ATF Damping Ring [84]. However
they have by no means become easy, which is demonstrated by the mixed results
obtained at the different laboratories.

The first corrections of resonance driving terms was achieved in the PS at CERN
and managed to reduce the 3Qy resonance successfully [76]. Later experiments at
the Diamond light source achieved corrections for sextupolar sources by matching
spectral line amplitudes [85]. More recently, successful corrections of sextupolar
and normal octupolar sources were achieved in the ESRF light source by measuring
the combined resonance driving terms from single BPM data [70]. The scarcity of
successful corrections reflects the difficulty of the method.

Resonance driving terms in the LHC

In the LHC lattice design, the optimisation of resonance driving terms plays a cen-
tral role. Though being at the core of the nonlinear design phase, measurements of
these resonance driving terms, let alone corrections, are difficult to achieve. First of
all, the aperture kicker [52] installed in the LHC, and foreseen for such measure-
ments during the design phase [23], is only considered safe at injection energy and
thus prohibits its use at top energy. At top energy the LHC is fully reliant on the
ac dipoles to measure resonance driving terms. The forced motion with ac dipoles
results in changes in the description of the nonlinear motion. A theoretical descrip-
tion of the nonlinear forced motion in free parameter space is presented in [49],
while a description in forced parameter space is presented in [1].

However, using ac dipoles comes with its benefits too. ac dipoles generate a
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coherent betatronic oscillation that can last far longer than with a conventional
kicker. Figure 5.2 shows the recorded turn-by-turn data at a BPM for two different
excitations, one with the aperture kicker in blue and the other with the ac dipole
in red. The free kicked beam suffers from decoherence and only 1000 turns can be
used. In the ac dipole case, the full duration of the signal can be used, resulting
in 6600 turns of high amplitude coherent oscillation data. The larger number of
turns and usable data greatly improves the spectral resolution needed for resonance
driving terms measurements.

Figure 5.2: Comparison between turn-by-turn data obtained from a single free kick (blue)
and an ac dipole excitation (red) at injection energy.

As the LHC is being pushed beyond its design parameters, shifts in commission-
ing strategies are required. Initial correction strategies in the design phase of the
LHC assumed corrections based on measured magnetic errors from offline mea-
surements. Unfortunately, beam based measurements of nonlinear sources in Run
I showed a large discrepancy with magnetic errors measurements [39, 86]. Beam
based measurements have since been the de facto approach for nonlinear correc-
tions in the LHC. A second major shift to nonlinear corrections has been seen in
Run II, where these corrections are now an integral part of commissioning [39, 86].
Methods for nonlinear corrections in the LHC were mostly based on measurements
of feed-down to tune and coupling with crossing angles, measurements of tune
shifts with excitation amplitude, and dynamic aperture measurements with beam
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blow-up. Resonance driving terms measurements were so far only used for the
validation of corrections. With these methods, successful corrections were achieved
for normal and skew sextupolar and normal octupolar sources [39, 86].

The development of the tools for measurements of resonance driving terms in
the LHC now facilitates regular measurements of sextupolar and octupolar reso-
nance driving terms and more recently have allowed the first measurements of
normal and skew decapolar resonance driving terms. Furthermore, the first correc-
tion of skew octupolar sources are achieved in the LHC by directly measuring and
correcting skew octupolar resonance driving terms.

The recent results offer a positive outlook for correcting high order nonlinear
sources for the LHC in Run III and especially for the High Luminosity LHC. Fur-
thermore measurements of resonance driving terms are fast and allow instanta-
neous measurement of different orders. They require less machine changes than
feed-down measurements, where orbit changes are made at each step, and can
for some resonance driving terms even be obtained parasitically from linear optics
measurements or amplitude detuning measurements.

This paper reviews the theoretical framework needed for the measurement and
correction of forced resonance driving terms in Sec. 5.2. It then proceeds by dis-
cussing the measurement and data analysis methods used for resonance driving
terms measurements in the LHC in Sec. 5.3. Section 5.4 shows the results of reso-
nance driving terms measurements in the LHC during Run II, including the first
measurements of decapolar driving terms. The use of resonance driving terms for
the validation of corrections obtained from complementary methods is presented in
Sec. 5.5. Finally the first ever correction of skew octupolar sources using ac dipole
resonance driving terms is presented in Sec. 5.6.

theoretical framework for ac dipole resonance driving terms

The theoretical description of the ac dipole motion in synchrotrons was established
in [1, 43, 49, 53, 54, 65]. The general solution for the particle motion at any longi-
tudinal location s in the ring is given in Courant-Snyder variables as a function of
turn τ,

ẑ(τ)− i p̂z(τ) =
√

2Jzei(2πQzτ+φz0)

+ e−iφd,z(δz,−ei2πQd,zτ − δz,+e−i2πQd,zτ),

(5.1)
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where z ∈ {x, y} denotes the plane of motion, Qd,z is the ac dipole tune, Qz is the
natural tune, φz0 is the initial phase, φd,z is the phase advance between location s
and the ac dipole, Jz is the linear invariant of the free motion and δz,− and δz,+ are
the complex ac dipole strengths defined as,

δz,± =
√

βacd,z
BL
B0ρ

e±i(πQz,±−ψ0)

4 sin(πQz,±)
, (5.2)

where Qz,± = Qd,z ± Qz, ψ0 is the initial phase of the ac dipole, βacd,z is the free
β-function at the location of the ac dipole, BL is the integrated field amplitude of
the ac dipole, and B0ρ is the magnetic rigidity. ac dipole tunes are typically set close
to the natural tune to enhance the Qd,z ≈ Qz resonance and thus enlarge the δz,−

mode, referred to here as the main mode. The parameter λx can be defined as the
ratio of amplitudes between the second mode and the main mode of the ac dipole
as,

λx =
sin[π(Qx,−)]

sin[π(Qx,+)]
. (5.3)

The ac dipole working point is typically chosen between 0.015 and 0.008 away
from the natural tune. In such conditions we see that the second mode of the ac
dipole can have an effect of up to 5% on the motion, as shown in Fig. 5.3.
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Figure 5.3: Ratio between |δz,−| and |δz,+| in percentage showing the almost linear corre-
lation between the relative strength of |δz,+| and the tune separation between the ac dipole
and natural tune.

This second mode of the ac dipole causes a distortion in the linear lattice func-
tions αz, βz and γz. A new parametrization of the ac dipole linear motion is ob-
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tained in [54], where both forced modes are combined to a single contribution. The
particle position can be expressed as,

x(s) =
√

2Jxβx(s) cos(φx(s) + φ0)

+
√

2Ad,xβd,x(s) cos(φd,x(s) + χd) , (5.4)

where Ad,x is a new invariant, and φd,x is the new phase advance of forced motion.
New optics functions arise as well, such as the forced β-function βd,x, and the
forced αd,x and γd,x functions. The new forced phase φd,x is defined by [54],

tan[φd,x(s)− πQd,x] =
1 + λx

1− λx
tan[φx(s)− πQx] , (5.5)

while βd,x is defined as [54],

βd,x(s) =
1 + λ2

x − 2λx cos(2φx(s)− 2πQx)

1− λ2
x

βx(s) . (5.6)

This description shows a beating of the optics functions that is equivalent to the
effect of a gradient error as shown in [54].

Resonance driving terms

Resonance driving terms are most commonly derived using the normal form for-
malism. A derivation of resonance driving terms for forced motion in the free
parameter space was first done in [49]. A first derivation of specific resonance
driving terms was done for single plane motion and under the assumption that
|δz,−| � |δz,+| and |δz,−| � 2Iz,+. However, the analysis in the free parameter
space requires the observables from BPM turn-by-turn data to be converted to the
free parameter space, which introduces errors.

The analysis of forced resonance driving terms in the forced parameter space
shows that the description of resonance driving terms is greatly simplified [1]. The
amplitude of driving terms now becomes constant between sources. Furthermore,
the analysis in forced parameter space allows to use the direct observables, and
does not require a conversion of the observables to the free parameter space, thus
avoiding the possible introduction of errors during the analysis. Furthermore, it is
shown in [1] that a second order perturbative cross-term between the ac dipole and
the resonance driving terms acts as a nonlinear source and perturbs the driving
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terms around the ring.
The normalized complex Courant-Snyder coordinate under the influence of non-

linear perturbations is given in the forced parameter space by [1],

ξx,− ≈
√

2Ad,xei2π(Qd,xτ+χd,x) (5.7)

−2i ∑
jklm

j f jklm,H(2Ad,x)
j−1+k

2 (2Ad,y)
l+m

2

×ei2π[(k−j+1)(Qd,xτ+χd,x)+(m−l)(Qd,yτ+χd,y)] ,

for the horizontal motion, and for the vertical motion by,

ξy,− ≈
√

2Ad,yei2π(Qd,yτ+χd,y) (5.8)

−2i ∑
jklm

l f jklm,V(2Ad,x)
j+k

2 (2Ad,y)
l−1+m

2

×ei2π[(k−j)(Qd,xτ+χd,x)+(m−l+1)(Qd,yτ+χd,y)] .

The resonance driving terms are defined as,

f jklm,H/V =
hjklm,H/V

1− ei2π[(k−j)Qd,x+(m−l)Qd,y]
, (5.9)

where the index H/V specifies the plane in which the resonance driving terms is
observed, and hjklm,H/V is defined by,

hjklm,H/V = ∑
n

hn,jklmei[(j−k)∆φd,n,x+(l−m)∆φd,n,y]

+hac
jklm,H/Vei[(j−k)∆φd,ac,x+(l−m)∆φd,ac,y]

(5.10)

Here hn,jklm describes the forced Hamiltonian terms, while hac
jklm,H/V describes the

second order cross-term between the resonance driving terms and the ac dipole ex-
pressed in terms of an effective Hamiltonian term, as shown in [1]. The Hamiltonian
terms hn,jklm are defined as,
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hn,jklm = −
[Kn,q−1Ω(l + m) + i Jn,q−1Ω(l + m + 1)]

j! k! l! m! 2j+k+l+m

× il+mβ
(j+k)

2
d,x,wβ

(l+m)
2

d,y,w . (5.11)

The multipolar order is given by q = j + k + l + m, and Ω(i) = 1 does the job of
selecting either the normal (K) or the skew multipoles (J) with,

Ω(i) = 1 if i is even (5.12)

Ω(i) = 0 if i is odd . (5.13)

The second order cross-term at the location of the ac dipole arises from the ac
dipole kick on a distorted phase-space. Derivations of forced motion generally as-
sume a circular normalized phase-space, but this is not the case when nonlinearities
are included. A residual r from the ac dipole cross-term can be calculated by sum-
ming the contributions at each turn from the kick on the deformed phase-space [1],

r = −1
2

N−1

∑
τ=0

RN−τ

(
[F, h]

∣∣∣∣
h=ξ†
− [F, h]

∣∣∣∣
h=ξ

)
, (5.14)

where ξ is the normalized complex coordinate, while ξ† is the normalized complex
coordinate including the ac dipole kick, and is defined as,

ξ†
z,± = ξz,± ± i

√
βacd,z

BL
B0ρ

cos(2πQd,zτ) . (5.15)

Detailed derivations of the effective Hamiltonian term describing the second or-
der cross-term are found in [1]. An effective Hamiltonian term for the skew sex-
tupolar resonance driving term f0030,V is derived in [1] and is shown to be,

hac
0030,V =

1
2

[
− f0030

(Λ2
y

4
− iΛy

)
− 1

3
f0012

Λ2
y

4

+
2
3

f0021

(Λ2
y

4
− i

2
Λy

)]
×
[

1− ei2π[−3Qd,y]

1− ei2π[−Qy−2Qd,y]

]
(5.16)
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where,

Λy =
4 sin(π(Qd,y −Qy))√

1− λ2
y

. (5.17)

and where the driving terms in Eq. (5.16) are defined using the first summation of
Eq. (5.10) as,

f jklm =
∑n hn,jklmei[(j−k)∆φd,n,x+(l−m)∆φd,n,y]

1− ei2π[(k−j)Qd,x+(m−l)Qd,y]
,

(5.18)

Equation (5.16) shows that multiple resonance driving terms will contribute
to the second order cross-term. Secondly it is important to notice that in this
parametrization the forced resonances of the form −Qx + (k − j + 1)Qd,x + (m −
l)Qd,y for the horizontal motion and −Qy + (k − j)Qd,x + (m − l + 1)Qd,y for the
vertical motion, are recovered from this second order cross-term.

measuring resonance driving terms from bpm turn-by-turn data

The relation between resonance driving terms and secondary spectral lines in the
spectra of BPM position turn-by-turn data was first established in [73]. It provides
a clear road-map for measuring forced resonance driving terms. A beam is excited
in the transverse plane, in one or two planes, to large amplitudes. Simultaneous
excitations in both planes are referred to as diagonal excitations. The transverse
positions of the bunch are recorded turn-by-turn using BPMs. The spectral content
of this turn-by-turn data holds all the necessary information to measure resonance
driving terms. However, as only the real position data is known the contributions
from different resonance driving terms cannot be untangled. In order to retrieve
this information the full complex signal needs to be recovered. The complex signal
at a BPM can be recomposed using the turn-by-turn data of two BPMs at close
to π/2 phase advance. For an element at location si the forced Courant-Snyder
coordinates are given by

ẑi =
√

2Ad,z cos(φd,z(si) + χd)

p̂z,i = −
√

2Ad,z sin(φd,z(si) + χd) . (5.19)
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Assuming that there is no significant error between the two BPMs, the phase
advance between the two BPMs is given by ∆φd,z = φd,z(s2)− φd,z(s1). The momen-
tum at a BPM can be expressed as a function of the position data (z1) of that BPM
and of the second BPM at π/2 phase advance (z2) as,

pz,1 =
z2 − z1 cos(∆φd,z)

sin(∆φd,z)
. (5.20)

The complex signal at location s1 can then be recombined from the real position
data at both locations s1 and s2 as,

z1 − ipz,1 = z1

(
1 + i

cos(∆φd,z)

sin(∆φd,z)

)
− z2

(
i

1
sin(∆φd,z)

)
. (5.21)

The resonance driving terms are related to the secondary spectral line amplitudes
from spectra as,

H(k− j + 1, m− l) = 2j| f jklm,H|(2Ad,x)
j+k−1

2 (2Ad,y)
m+l

2

V(k− j, m− l + 1) = 2l| f jklm,V|(2Ad,x)
j+k

2 (2Ad,y)
m+l−1

2 (5.22)

where H(k − j + 1, m − l) are the secondary spectral line amplitudes in the hori-
zontal plane with frequencies (k− j + 1)Qd,x + (m− l)Qd,y, and V(k− j, m− l + 1)
are the secondary spectral line amplitudes in the vertical plane with frequencies
(k− j)Qd,x + (m− l + 1)Qd,y. The phases of the resonance driving terms are given
by,

φk−j+1,m−l = φjklm,H + (k− j + 1)φ1,0 + (m− l)φ0,1 −
π

2
φk−j,m−l+1 = φjklm,V + (k− j)φ1,0 + (m− l + 1)φ0,1 −

π

2
(5.23)

where φk−j+1,m−l is the phase of the secondary spectral line in the horizontal plane
and φk−j,m−l+1 is the spectral line phase in the vertical plane, φjklm,H/V is the phase
of the resonance driving term, and φ1,0 and φ0,1 are the phases of the main spectral
lines of the horizontal and vertical planes respectively.
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Procedure for measurements of resonance driving terms

Resonance driving terms measurements are done in the LHC by filling the beams
with a single pilot bunch of 1010 protons per beam. This low intensity is consid-
ered safe for excitation with ac dipoles at top energy. The beams are non-colliding
to avoid perturbations from beam-beam effects [5], and the Landau octupoles are
turned off to not perturb the amplitude detuning. The linear coupling is corrected
to |C−| < 10−3, where the coupling parameter |C−| is defined as in [87]. All mea-
surements presented in the following sections are done with these base machine
settings. Settings of possible crossing angles, orbit bumps in the experimental in-
sertion regions, and β∗ at the location of the interaction points are specified per
measurement on the corresponding sections.

The beams are excited using the ac dipoles. They can be excited in the vertical and
horizontal planes independently, or simultaneously which is referred to as diagonal
excitations. The turn-by-turn data is recorded using the BPMs for the duration of
the flattop excitation of the ac dipole. The raw BPM data is cleaned of noise by
applying the singular value decomposition (SVD) method developed in [88]. The
number of retained singular values is increased with respect to linear optics studies,
this is done to prevent weaker nonlinear signals to be filtered out. The spectral
analysis of the turn-by-turn data at each BPM is done using the spectral analysis
code SUSSIX [89]. The frequencies of the secondary spectral lines are expressed as
linear combinations of the main tune lines in SUSSIX. The secondary spectral line
amplitudes are normalized by the main tune line amplitudes in each BPM, which
has the benefit of removing the βd,z dependence of the amplitude signal along the
ring and taking care of possible calibration errors.

The invariants Ad,z are calculated from the amplitudes of the main tune lines
in the spectra. Under the assumption that the nonlinear perturbations are weak
compared to the linear motion, the invariants may be approximated as the average
of the main line amplitudes over all the arc BPMs as,

2Ad,x =
1

NBPM

NBPM

∑
0

|H(1, 0)|2
βd,x

,

2Ad,y =
1

NBPM

NBPM

∑
0

|V(0, 1)|2
βd,y

, (5.24)

where |H(1, 0)| is the amplitude of the horizontal ac dipole tune line in the real
horizontal spectrum and |V(0, 1)| is the amplitude of the vertical ac dipole tune
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line in the real vertical spectrum. For measurements, the average over all arc BPMs
is taken to avoid possible calibration errors of BPMs in the insertion regions [90].
The error on the actions is defined as the standard deviation over those BPMs.
Furthermore, high-order resonance driving terms that contribute to the H(1, 0) and
V(0, 1) lines will generally not propagate with the same phase as the main mode
and their perturbation thus averages out when taking the average over the BPMs.

Resonance driving terms are finally calculated by fitting Eq. (5.22) to the mea-
sured spectral line amplitude and actions of the series of excitations. The obtained
error on the fit provides the error on the amplitude of the driving term. The phase
of the resonance driving terms is obtained from Eq. (5.23) for each measurement.
The average over all the measurements provides the average phase and correspond-
ing error for the resonance driving term at each BPM.

measurements of resonance driving terms in lhc

One main objective of Run II in the LHC was to develop and test methods for
nonlinear corrections in view of the High Luminosity LHC upgrade. Resonance
driving terms measurements were thus taken throughout Run II in commission-
ing or dedicated Machine Development (MD) periods. Resonance driving terms of
normal and skew sextupolar sources and normal and skew octupolar sources are
now measured on a regular basis when the machine is in an uncorrected state. This
section starts by exploring the effect of the ac dipole and natural working point on
the ability to measure the driving terms, and then proceed by presenting the first
measurements of higher order driving terms from decapolar orders are presented.

Enhancement of resonance driving terms with working point

The amplitude of resonance driving terms is greatly dependent on the chosen work-
ing point. The resonance driving terms amplitude can be enhanced by approaching
the forced resonances. By carefully choosing the working point, the amplitude of
specific spectral lines can be increased, thus improving the measurement of the
corresponding resonance driving terms. Measurements done in 2016 explore the
effect of the working points on resonance driving terms measurements. The mea-
surements are done in Beam 2 at top energy with β∗ = 40 cm at IP1 and IP5 and flat
orbit. Three working points are chosen to study the enhancement of f0030,V , f4000,H

and f1210,H. The first working point uses the nominal injection tunes at Qx = 0.28
and Qy = 0.31. The second working point is moved closer to the octupolar reso-
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Table 5.1: Natural and forced tunes used for the study of resonance driving terms enhance-
ments. Measurements are done either with horizontal excitations (H) or diagonal excitations
(H+V).

Qx Qy Qd,x Qd,y excited plane

wp 1 0.28 0.31 0.27 0.324 H, H+V

wp 2 0.27 0.31 0.26 0.324 H

wp 3 0.29 0.30 0.28 0.314 H+V

nance −Qx− 3Qd,x = p, related to the driving term f4000,H. The third working point
is closer to the skew octupolar resonance −Qx + 2Qd,x − Qd,y = p that is driven
by f1210,H, and further away from the skew sextupolar resonance −Qy − 2Qd,y that
is driven by f0030,V . The chosen natural and ac dipole tunes are summarised in
Tab. 5.1. The ac dipole tunes are always at the same tune split to the natural work-
ing point; Qd,x = Qx − 0.01 and Qd,y = Qy + 0.014, to minimise effects from tune
proximity between natural and ac dipole tunes, and to facilitate kicks at identical
amplitudes. Measurements with large diagonal ac dipole excitations were taken at
the two working points 1 and 3 of Tab. 5.1, while large horizontal excitations were
made at working points 1 and 2.

Figure 5.4 shows the measured amplitude of f4000,H for measurements at work-
ing points 1 and 2. The amplitude of f4000,H is successfully increased by a factor
1.63± 0.06 when moving the working point closer to the octupolar resonance. The
BPMs around the IPs are left out of the measurements due to unfavourable phase
advances, which result in large outliers. Single particle tracking simulations are
done with the nominal 2016 model with flat orbit and the 60 seeds of the WISE [91]
error tables available for the LHC, including the normal and skew sextupolar, oc-
tupolar and decapolar errors. An average and standard deviation of the resulting
driving terms for all the seeds is obtained at each BPM and shown alongside the
measurements. Clearly, there is a significant discrepancy between the measured res-
onance driving terms amplitudes and the simulations results from expected non-
linear errors. This discrepancy is not unexpected as beam-based measurements of
nonlinear errors have demonstrated that the errors from offline magnetic measure-
ments do not accurately reproduce the observed machine nonlinearities [39, 86,
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92]. Furthermore, jumps in the amplitude of the driving terms are observed in the
results from simulations at IP1 and IP5 where the errors have the largest effect
due to the large β-functions at the triplets. This behaviour is not as pronounced
in measurements and can possibly be due to loss of information in the cleaning
of the data [93]. Unfortunately, the cleaning of the data is necessary to observe
the secondary spectral lines in the first place. Future improvements and studies
on the cleaning may improve the sensitivity to the observation of local jumps in
amplitude.
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Figure 5.4: Enhancement of the normal octupolar f4000,H from a change of working point
between working points 1 and 2, for Beam 2 at β∗ = 40 cm.

Still, the relative enhancement of the f4000,H driving term between the two work-
ing points can also be probed in simulation regardless of its absolute amplitude.
Tracking simulations show an enhancement of f4000,H by a factor of 1.73 ± 0.05,
which is compatible with the measured values.

Similar measurements are presented for the skew octupolar and skew sextupolar
resonance driving terms f1210,H and f0030,V by moving to the third working point
of Tab. 5.1. Again the simulation results are presented alongside the measurements.
Figure 5.5 shows the measured and simulated amplitudes of f0030,V . The measured
driving term amplitudes are larger than predictions from simulations, although
the relative deviation is smaller than for the previous case of f4000,H. Figure 5.5
shows that the driving term amplitude decreases when the working point is moved
away from the third-order resonance. The decrease in amplitude is measured at
0.556± 0.011 and simulated to be 0.600± 0.018.

As a reference, the amplitude of another skew sextupolar resonance driving term
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Figure 5.5: Enhancement of the skew sextupolar f0030,V from a change of working point
between the working points 1 and 3, for Beam 2 at β∗ = 40 cm.

f0012,V is shown in Fig. 5.6. Both working points 1 and 3 are far away from the cor-
responding resonance, and thus the change in driving term amplitude is minimal.
Furthermore, a better agreement is observed between measurements and simula-
tions than for f0030,V . Interestingly, a large jump in amplitude is observed in the
simulations at IP4, the location of the ac dipole. This jump is generated by the
second order cross-term of the ac dipole from Eq. (5.10). A similar jump is not
observed in the measurement data.

0 5000 10000 15000 20000 25000
s [m]

0.000

0.005

0.010

0.015

0.020

0.025

|f 0
01

2,
V
| [

m
1/

2 ]

Simulation (wp 1)
Simulation (wp 3)

Measurement (wp 1)
Measurement (wp 3)

IP3 IP4 IP5 IP6 IP7 IP8 IP1 IP2

Figure 5.6: Enhancement of the skew sextupolar f0012,V from a change of working point
between the working points 1 and 3, for Beam 2 at β∗ = 40 cm. No enhancement is
observed as expected due to the far distance to the resonance condition.
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Lastly, the enhancement of f1210,H is studied for the same change of working
point 1 to 3. The results from measurements and tracking simulations for both
working points are shown in Fig. 5.7. The measured amplitudes of f1210,H are sig-
nificantly lower than those observed from tracking simulations. However, the fac-
tor of enhancement is measured to be 1.34± 0.03 for the beam measurements and
1.45± 0.03 for the tracking simulations.
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Figure 5.7: Enhancement of the skew octupolar f1210,H from a change of working point
between the working points 1 and 3, for Beam 2 at β∗ = 40 cm.

The measured amplification factors of resonance driving terms agree relatively
well with simulation. These studies show that the resonance driving terms can be
enhanced by carefully choosing the natural and forced tunes. This is of significant
importance for the study of higher order nonlinear sources that may be difficult to
measure, especially so for the High Luminosity LHC where high order nonlinear
error are expected to impact performance.

First measurements of decapolar resonance driving terms

No definite beam-based correction strategy has yet been defined for the correction
of higher order nonlinear sources such as normal and skew decapolar errors for the
High Luminosity LHC [94]. Various methods have shown to be sensitive to such
high order errors when probed at their expected strength of the High Luminosity
LHC [32] in the LHC. Measurements of resonance driving terms are considered
a promising option for the correction of such high order perturbations. Measure-
ments of higher order resonance driving terms require very large amplitude excita-
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Table 5.2: Natural and forced tunes used for the study of decapolar resonance driving terms.

Qx Qy Qd,x Qd,y

collision tunes 0.31 0.32 0.302 0.33

shifted tunes 0.305 0.315 0.297 0.325

tions. Such measurements are thus in part limited by physical aperture as well as
the available forced dynamic aperture [3]. It is thus crucial to have good corrections
of the lower order nonlinear sources to limit amplitude detuning and maximise the
forced dynamic aperture to be able to measure decapolar and dodecapolar sources.

This section presents the first measurements of resonance driving terms of de-
capolar order. Measurements with large vertical excitations were done in 2018

with crossing angles of 145 µrad in the insertion regions of IP1 (ATLAS) and IP5

(CMS), as well as the skew and normal sextupolar and octupolar corrections of
2018. The measurements are done at two different working points to rule out possi-
ble fixed noise lines, and the chosen working points are summarized in Tab. 5.2.
Note that at collision tunes the working point is exactly on the skew decapo-
lar resonance −Qy + 4Qd,y = p in the vertical motion, and very close to the
−Qx + Qd,x− 3Qd,y = p resonance in the horizontal motion. The resonance driving
terms driving these resonances are thus expected to be large as well. The shifted
tunes depart slightly from the two specified resonances, a decrease of the related
resonance driving terms is thus expected.

Spectral analysis of the turn-by-turn data reveal two secondary spectral lines of
decapolar order in both the horizontal and vertical plane, namely H(1,−3) and
H(0, 4) that are generated by f1130,H and f1004,H respectively, and in the vertical
plane V(1,−3) and V(0, 4) that are generated by f0140,V and f0014,V respectively.
Figures 5.8 and 5.9 show zoomed spectra of the horizontal and vertical turn-by-
turn data for measurements taken at collision tunes and at the shifted working
point respectively. The observed secondary spectral lines all shift in frequency with
the change of tunes, thus excluding possible observations of fixed noise lines. A
very small deviation of the natural tune and ac dipole tune during experiments
allows the distinction between the V(0, 4) spectral line and the vertical natural
tune (Qy) as can be seen in Fig. 5.8.

The amplitudes of the resonance driving terms measured at collision tunes are
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Figure 5.8: Zoom of horizontal and vertical spectra at BPM.15L5.B1 for measurement at
collision tunes. The line (0, 4) with frequency 4Qd,y indicates the normal decapolar line in
the horizontal spectrum, and the skew decapolar line in the vertical spectrum.

shown in Fig. 5.10. The amplitudes of both f1130,H and f0014,V are very large com-
pared to the other two driving terms. Single particle tracking simulations are done
and the calculated resonance driving terms are compared in Fig. 5.10. First, the am-
plitude of the two largest driving terms, f1130,H and f0014,V , are not well reproduced.
The simulated driving terms amplitudes are all smaller than those measured. How-
ever the calculated error on the resonance driving term amplitudes from tracking
simulations with 60 error seeds increases dramatically for the resonance driving
terms that are close or on their respective resonances.

The measurements with the shifted tunes show a general reduction of the res-
onance driving terms amplitudes, as presented in Fig. 5.11. The f1130,H resonance
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Figure 5.9: Zoom of horizontal and vertical spectra at BPM.15L5.B1 for shifted tunes.
The line (0, 4) with frequency 4Qd,y indicates the normal decapolar line in the horizontal
spectrum, and the skew decapolar line in the vertical spectrum.

driving term related to the H(1,−3) spectral line is not properly observed at these
tunes, and thus omitted from the results. Tracking simulations confirm a reduction
of resonance driving terms amplitudes for those measured. The deviation calcu-
lated from the simulations with 60 error seeds is reduced as well as the working
points are moved away from the resonances. A discrepancy is observed between
measurements and simulations for the f1004,H and f0140,V driving terms. The simu-
lations, however accurately reproduce their relative amplitude difference. Further-
more, the simulations manage to reproduce the measurements of f0014,V more ac-
curately for the case with shifted tunes.

The measured skew and normal decapolar resonance driving terms amplitudes
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Figure 5.10: Amplitudes of f1130,H, f1004,H, f0140,V and f0014,V resonance driving terms
measured in Beam 1 for measurements with large vertical excitations at collision tunes, see
Tab. 5.2.
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Figure 5.11: Amplitudes of f1004,H, f0140,V and f0014,V resonance driving terms measured
in Beam 1 for measurements with large vertical excitations and shifted tunes, see Tab. 5.2.
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are larger than simulated in the current models, which suggests that the decapolar
errors are currently underestimated in the LHC. Further measurements of decapo-
lar resonance driving terms should be done to better identify and localize the errors.
Unfortunately, there are currently no decapolar correctors in the LHC which signif-
icantly complicates any attempt to correct these errors. This first measurement of
decapolar resonance driving terms offers a positive outlook on the measurement of
high order resonance driving terms for nonlinear correction strategies in the High
Luminosity LHC.

validating nonlinear corrections with measurements of resonance

driving terms

Corrections of nonlinear optics at top energy in the LHC are mainly focused on the
insertion regions with large β-functions, i.e. ATLAS (IR1) and CMS (IR5). Local non-
linear errors in the final focussing triplets are generally the most perturbative, and
the correction of these errors are thus prioritized. Dedicated corrector magnets are
located next to the triplets that can be used independently to correct nonlinear er-
rors locally. These corrector magnets include normal and skew sextupoles, normal
and skew octupoles, and normal dodecapoles. It must be noted that the triplets as
well as the correctors are in regions of shared aperture between Beam 1 and Beam 2,
thus affecting both beams. Resonance driving terms measurements of both beams
are not always possible due to other parallel studies and limited beam availability.
The results presented in this section thus mainly focus on measurements in Beam 2.

Measurements of resonance driving terms were, in the first stages of Run II, ini-
tially used to validate the corrections calculated from other complimentary beam-
based methods [39, 86, 92]. Run II of the LHC saw an iterative approach to the cor-
rection of nonlinear observables at top energy. Firstly, amplitude detuning measure-
ments revealed a significant source of local normal octupolar errors in the triplets
of the experimental insertion regions [39, 65, 92], which is to be expected consider-
ing the systematic normal octupolar components measured in the triplets during
magnetic measurements [91]. Corrections were implemented in 2017 that are based
on measurements of tune shifts with amplitude, and measurements of tune shifts
with crossing angle. Measurements of the normal octupolar driving term f4000,H

before and after correction are presented in Fig. 5.12.
A reduction of the driving term amplitude is observed along the full circumfer-

ence of the LHC as the local normal octupolar correction in IP1 is implemented, and
subsequently a further reduction is observed when the correction in IP5 is added.
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Figure 5.12: Measurements of f4000,H before and after the implementation of local normal
octupolar corrections in IR1 and IR5 in Beam 2. The reduction of driving term amplitude
after the implementation of the correction offers a validation of the calculated corrections
from amplitude detuning and feed-down measurements.

The measured driving term in the case where both insertion regions are corrected
show a great reduction in the amplitude of f4000,H to levels where the spectral noise
level starts to perturb the measurement. As the amplitude of the driving terms is
reduced through corrections, the measurement error at each BPM increases. In-
deed, for low amplitude driving terms, the corresponding spectral line amplitude
is much more sensitive to noise. The measurements offer a validation of the local
normal octupolar errors calculated from amplitude detuning measurements and
feed-down measurements with crossing angles [39, 92].

Local skew sextupolar errors in IR1 were measured 2017. The corrections were
based on feed-down measurements to tune with vertical crossing angles in IR1. The
corrections are in part validated with measurements of the skew sextupolar reso-
nance driving term f0030,V related to the −Qy − 2Qd,y = p resonance. Figure 5.13

shows the amplitude of f0030,V as measured before and after the implementation
of the local IR1 corrections. A significant reduction of driving term amplitude is
observed, thus validating the correction. Just as for the validation of the f4000,H

correction, the results with corrected skew sextupolar errors show a very small am-
plitude where the signal-to-noise level starts to deteriorate and measurement errors
increase.

Local skew octupolar corrections were derived in IR1 and IR5 from measure-
ments of feed-down to coupling with crossing angle in 2017 [95]. While the cor-
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Figure 5.13: Measurements of f0030,V before and after the implementation of local IR1
skew sextupolar corrections in Beam 2. The reduction of driving term amplitude after the
implementation of the correction offers a validation of the calculated corrections from feed-
down measurements.

rections for IR1 were validated with crossing-angle scans and implemented opera-
tionally, calculating corrections for IR5 proved more challenging.

Measurements of the skew octupolar resonance driving term f1210,H are used to
verify two corrections derived for IR5. All measurements presented are done for
the ATS optics [96] at β∗ = 30 cm with a flat orbit. Due to uncertainties about
the polarity of the skew octupolar correctors on the left side and right side of
IP5 the calculated correction is implemented with both polarities to compare the
results. The following results compare three settings of the correctors. The setting
without any correction in IR5, the corrector setting assuming a positive polarity of
the correctors (Correction 1), and the setting assuming a negative polarity of the
correctors (Correction 2). Figure 5.14 shows the measured amplitudes of f1210,H for
the corrector settings. Measurements using the negative polarity of the correctors
(Corr. 2) show a doubling of the resonance driving term amplitude along the ring.
For the case with positive polarity (Corr. 1) the resonance driving term amplitude
increases only slightly.

The difference in the resonance driving term phase φ1210,H between the measure-
ments with corrections and the reference measurement without corrections can be
compared and is presented in Fig. 5.15. A constant phase offset is observed in for
both corrector settings. Such a phase offset indicates that the phases of the skew
octupolar correctors in IR5 may not be aligned with the local skew octupolar error
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Figure 5.14: Amplitude of f1210,V for the LHC without skew octupolar corrections and with
two different skew octupolar corrections with different polarities, for Beam 2 at 6.5 TeV,
β∗ = 30 cm, and flat orbit.

that the correctors try to correct. The phase offset of the corrections are given in
Tab. 5.3. The results suggest that the local correction of IR1 is not perfect, which
can cause the phase of the resonance driving term in IR5 to be misaligned with the
phase of the correctors and thus deteriorate the correction.

first correction of skew octupolar resonance driving terms

The aim of resonance driving terms measurements is to directly measure and cor-
rect nonlinear errors in the LHC. Corrections of skew octupolar resonance driving
terms are for the first time achieved using the ac dipoles in the LHC. This section
presents the correction of the skew octupolar driving terms f1210,H and f1012,V .

Table 5.3: Calculated driving term phase (φ1210,H) offset between the local correction and
the skew octupolar error from measurements.

Polarity Phase Offset

Correction 1 +1 56± 5

Correction 2 -1 109± 6
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Figure 5.15: Difference in driving term phases with ∆φ1210 = φ1210, no corr− φ1210, with corr,
for two skew octupolar corrections with different polarities. For Beam 2 at 6.5 TeV, β∗ =

30 cm, and flat orbit.

The measurement approach is identical to what is presented in the previous sec-
tions. The natural tunes are chosen are at Qx = 0.31 and Qy = 0.32, while the ac
dipole tunes are set to to Qd,x = 0.302 and Qd,x = 0.33. The crossing angles in IR1

and IR5 are set to 145 µrad. This is a compromise crossing angle that sits in the mid-
dle of the range of operational crossing angles used during β∗-levelling in 2018. It
is the crossing angle at which most of the linear and nonlinear commissioning was
done in 2018. The measurements were done by exciting the beam simultaneously
in both horizontal and vertical planes.

The approach for the calculation of the corrections is as follows. First a mea-
surement of the bare machine without any skew octupolar correction is done. Fig-
ure 5.16 shows the real and imaginary parts of f1210,H for the bare machine with
all the skew octupolar correctors turned off for Beam 1. The real and imaginary
parts of the driving term responses of the skew octupolar correctors are calcu-
lated from tracking simulations where each corrector is powered individually. Fig-
ure 5.17 shows the real and imaginary part of f1210,H which forms the response
from the skew octupolar corrector left of IP5. The responses are matched to the
measured driving term of the bare machine, and the opposite of the obtained cor-
rector strengths is implemented in the machine.

The corrector responses are calculated with single particle tracking simulations
for each available skew octupolar corrector in main experimental insertion regions.
Each corrector is simulated individually to obtain a response in both beams per
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Figure 5.16: Real and imaginary parts of f1210,H as measured in LHC without any skew
octupolar correction in Beam 1, with β∗ = 30 cm and crossing angles of 145 µrad in IR1
and IR5.
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Figure 5.17: Real and imaginary parts of f1210,H from single particle tracking simulations
with only the corrector left of IP5 set to a strength of 0.2 m−4 in Beam 1, with β∗ = 30 cm
and crossing angles of 145 µrad in IR1 and IR5.
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corrector. There is an additional complexity to the correction of skew octupolar
sources in the LHC due to a broken corrector left of IP1 that is thus unavailable for
corrections. This missing corrector effectively reduces the degrees of freedom, and
a full correction of the measured resonance driving terms may not be expected. The
limitations of the correction due to the missing magnet are discussed more detail
in Sec. 5.6.1. As the correction cannot be expected to correct both beams fully, the
correction is aimed at correcting Beam 1 while not spoiling Beam 2. The calculated
corrector strengths are summarized in Tab. 5.4.

Figure 5.18 shows the measured amplitude of the forced resonance driving terms
f1210,H and f1012,V in Beam 1 before and after correction. The results show a signif-
icant correction of both skew octupolar resonance driving terms in Beam 1. The
driving term f1210,H is changed by a factor of 0.27± 0.05, while f1012,V is changed
by a factor 0.48± 0.04. The results further indicate that both f1210,H (related to x3y
in the Hamiltonian) and f1012,V (related to xy3 in the Hamiltonian) are corrected in
Beam 1.

Figure 5.19 compares the same driving terms measured in Beam 2. An improve-
ment of f1012,V by a factor 0.46± 0.11 is observed after the implementation of the
calculated corrections. The uncorrected state of f1012,V already has smaller ampli-
tude as compared to the other driving term f1210,H. As to the skew octupolar driv-
ing term with the largest amplitude in Beam 2, f1210,H is still measured at similar
amplitudes as those before correction. So although an overall small improvement
is observed in Beam 2, the largest driving term in Beam 2 remains uncorrected. The
ratio between amplitudes of the driving terms between the corrected state and the

Table 5.4: Calculated corrections for skew octupolar resonance driving terms. The corrector
left of IP1 (MCOSX.L1) is broken and unavailable for corrections.

Corrector Strength [m−4]

Left of IR1 (ATLAS) (broken)

Right of IR1 (ATLAS) 0.5

Left of IR5 (CMS) 0.254

Right of IR5 (CMS) 0.263
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Figure 5.18: First correction of the skew octupolar resonance driving terms f1210,H and
f1012,V in Beam 1, with β∗ = 30 cm and crossing angles of 145 µrad in IR1 and IR5. A
significant reduction of the amplitudes is observed for both resonance driving terms.

uncorrected state of the machine are summarised in Tab. 5.5.
The results show a successful first correction of skew octupolar resonance driving

terms using ac dipoles in the LHC. Possible improvements on the correction are
discussed in the following section.

Limitations due to broken a4 corrector

The effectiveness of the skew octupolar correction is limited by the unavailability
of the broken corrector left of IP1. Figure 5.20 shows the expected average driving
term amplitude of f1210,H for Beam 1 and Beam 2 for a scan of different possible
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Figure 5.19: Skew octupolar resonance driving terms f1210,H and f1012,V in Beam 2 after
the correction of Beam 1, with β∗ = 30 cm and crossing angles of 145 µrad in IR1 and IR5.
The correction does not have a deteriorating effect on the largest driving term in Beam 2
( f1210,H), while a reduction of the amplitude is observed for the f1012,V driving term.

corrections for the machine with crossing angles of 145 µrad in IR1 and IR5. The
average resonance driving term amplitudes over the ring is shown for the range
of possible corrector settings using only the three available correctors is shown in
pink, and in light blue for the case where all four correctors are available. The
stepping behaviour observed in the results using three correctors is related to the
sampling distance of possible corrector strengths. Increasing the sampling only
smoothens the boundary. A clear limitation in the achievable correction level is
observed between the two cases. When using only the three available correctors,
there are clear trade-offs to be made. Beam 1 can be corrected to levels similar
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to those achieved with four correctors at the cost of degrading Beam 2, while the
average amplitude of f1210,H after correction in Beam 2 is limited to around 0.21 µm
and greatly spoiling Beam 1. Furthermore, there is no setting of the correctors,
using all four correctors, that fully correct the measured resonance driving terms
for both beams. This could be attributed to the measurement precision as well as
the second order cross-term from the ac dipole as a change in the driving term at
the location of the ac dipole will change this second order contribution.

The average resonance driving term amplitude for the uncorrected state of the
machine is also shown in Fig. 5.20. The average amplitude after implementing the
2017 corrections obtained from feed-down measurements [39], and the correction
of 2018 from resonance driving term measurements are also shown in Fig. 5.20. The
correction of 2017 offers an improvement in Beam 2 while deteriorating Beam 1. On
the other hand the correction calculated from resonance driving terms almost fully
corrects Beam 1, while keeping Beam 2 at levels comparable to the bare machine
state. This highlights that the absence of a single corrector can have a significant
impact on the correction of nonlinear errors, which in turn can have operational
consequences [97].

Feed down with crossing angles

During the measurements and correction of skew octupolar errors, initial tests were
made with a flat orbit configuration where all crossing angles and orbit bumps are
turned off. Measurements of f1210,H at flat orbit and with crossing angles are shown
in Fig. 5.21. Clearly a deterioration of the resonance driving term amplitude is ob-

Table 5.5: Ratio of amplitudes of resonance driving terms between after and before correc-
tion. The driving term f1210,H is best corrected in Beam 1 remains at the same level as the
uncorrected state in Beam 2, while f1012,V is corrected in both beams to less than half its
uncorrected state.

f1210,H f1012,V

Beam 1 0.27± 0.05 0.48± 0.04

Beam 2 1.02± 0.04 0.46± 0.11
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Figure 5.20: Limitations of corrections due to broken corrector. Starting from the measure-
ment without corrections (black), the points in pink show different predicted average res-
onance driving term amplitudes for different settings of correctors when using only three
correctors. The points in light blue show the predictions when using all four correctors. The
correction from 2017 using measurements of feed-down is shown in red, while the correction
of 2018 from resonance driving terms measurements is shown in blue.

served after the introduction of the crossing angles. This points to a contribution
from feed-down coming from higher order errors such as normal and skew decap-
olar sources in the separation dipoles and triplets or second order feed-down from
dodecapolar sources in the triplets. Apart from normal dodecapolar sources, such
high order perturbations were until now assumed to be negligible.

The change of f1210,H with crossing angles shows that the success of the imple-
mented correction may vary during the crossing angle changes associated with
β∗-levelling. However, it is possible to refine the skew octupolar corrections in the
future by measuring and correcting the skew octupolar driving terms at different
crossing angles.

Simulations are done at β∗ = 30 cm, with and without the crossing angles in
IR1 and IR5 to study the possible effect of higher order multipolar errors on skew
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Figure 5.21: Amplitude of f1210,H for measurements at flat orbit and with crossing angles
of 145 µrad, and β∗ = 30 cm. The amplitude of f1210,H changes with crossing angle
suggesting feed-down from higher order sources.

octupolar driving terms. The simulations are done in Beam 1 with the normal and
skew decapolar and dodecapolar errors as obtained from WISE [91], and are pre-
sented in Fig. 5.22. The amplitude of f1210,H for simulations at flat orbit is shown in
red, while the amplitude of f1210,H for simulations with crossing angles of 145 µrad
in IR1 and IR5 are shown in blue. A significant increase is observed in the am-
plitude of f1210,H after implementing the crossing angles. The leading source of
feed-down to this skew octupolar driving term is found to be skew dodecapolar er-
rors. Simulations with only skew dodecapolar errors and crossing angles are shown
in green, and show a comparable effect of feed-down to f1210,H as the simulations
with all decapolar and dodecapolar sources. These results show that skew dode-
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Figure 5.22: Amplitude of f1210,H for simulations at β∗ = 30 cm in Beam 1 showing
the effect of feed-down from higher order multipolar errors. In red is the simulation with
normal and skew decapolar and dodecapolar errors at flat orbit, while the same simulation
with crossing angles of 145 µrad in IR1 and IR5 is shown in blue. Simulations with the
same crossing angles but only skew dodecapolar sources are shown in green, showing that
skew dodecapolar errors are the leading sources perturbing the f1210,H driving term.

capolar errors have a more significant impact on lower order observables, and may
impact future correction strategies of nonlinear observables. Just as for the calcu-
lation of nonlinear errors from complementary methods [39, 92], the correction of
higher order nonlinear errors will be interdependent and will most likely require
an iterative order-by-order approach.

conclusions

Proper correction of nonlinear magnetic errors becomes increasingly important to
achieve the required luminosities. As the operational requirements and optics de-
signs are pushed further, the correction of increasingly higher order nonlinear er-
rors become relevant. Forced resonance driving terms under forced motion with
ac dipoles are seen as promising observables to measure, identify, and correct such
machine nonlinearities.

Measurements of resonance driving terms in the LHC at top energy are only
possible with the use of ac dipoles. The ac dipoles are used to excite large transverse
coherent oscillations that provide high quality data for spectral analysis. Using
such excitations, it is now possible to measure normal and skew sextupolar and
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octupolar resonance driving terms on a regular basis.
It is shown in this paper that the free and forced tunes can be used to change the

amplitude of the measured resonance driving terms by approaching forced reso-
nances. Such changes in tunes can now be used to improve the signal-to-noise level
of secondary spectral lines and thus in turn improve the measurement resolution
of resonance driving terms. Experiments in the LHC show that the skew sextupo-
lar driving term f0030,V , normal octupolar driving term f4000,H, and skew octupolar
term f1210,H are enhanced by moving to their respective resonances. The factor of
enhancement is in good agreement with simulations.

The first measurements of decapolar resonance driving terms in a synchrotron
are also presented. Normal and skew decapolar resonance driving terms are mea-
sured at two different working points with large vertical excitations. This first
measurement offers a positive outlook to directly measure and correct decapolar
sources.

Measurements of resonance driving terms have been used in Run II to validate
corrections that are calculated from complementary methods of nonlinear correc-
tions, such as amplitude detuning and feed-down measurements. A reduction of
amplitude of f4000,H is observed when local normal octupolar corrections are im-
plemented in the main experimental insertion regions in IR1 (ATLAS) and IR5

(CMS). The reduction confirms the validity of the calculated corrections. The same
approach is used to validate skew sextupolar corrections obtained from feed-down
measurements. A reduction in the amplitude of f0030,V is observed after the im-
plementation of the local skew sextupolar corrections in IR1. Furthermore, mea-
surements of f1210,H are used to show a possible phase offset between local skew
octupolar errors and calculated skew octupolar corrections from feed-down mea-
surements in 2017.

The correction of skew octupolar resonance driving terms is achieved for the first
time in the LHC in 2018. Corrections are for the first time calculated from forced
resonance driving terms measurements by matching the skew octupolar responses
from tracking simulations to the uncorrected machine state. A successful correction
of both f1210,H and f1012,V is achieved in Beam 1 while the correction is only able
to improve f1012,V in Beam 2. The driving term f1210,H in Beam 2 is retained at the
same level as the uncorrected state of the machine.

A full correction of the skew octupolar resonance driving terms is impossible due
to a broken skew octupolar corrector left of IP1. Only three correctors are available
thus limiting the degrees of freedom and limiting the effectiveness of the correction.
Simulation results show that a close to full correction is possible if the broken
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corrector can be used in the future. Furthermore, the role of the second order cross-
term from the ac dipole should be studied in the future to better understand the
impact on the corrections.

Measurements of f1210,H at flat-orbit and at crossing angles of 145 µrad in the IR1

and IR5 show a significant source of feed-down to the skew octupolar resonance
driving term. Although this can reduce the effectiveness of the correction with
crossing angle changes, it is possible to refine the corrections by measuring and
correcting the skew octupolar driving terms at different settings of crossing angles
to span the operational range.
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F I R S T E X P E R I M E N TA L D E M O N S T R AT I O N

O F F O R C E D D Y N A M I C A P E RT U R E

M E A S U R E M E N T S W I T H L H C A C D I P O L E S

Imperfections in the high-field superconducting magnets of the LHC disturb the
motion of particles. These sources can arise from imperfections in the construction
of the magnets, small misalignments of magnets within the accelerator tunnel, per-
sistent currents in magnets, and hysteresis. All these imperfections are in principle
within the design tolerances, but combined, these can have a large impact on the
stability of the beams. The stability of particles can be greatly reduced to a point
where the dynamic aperture, the area of stable motion in phase-space, becomes
smaller than the physical aperture determined by the beam pipe. Beyond the dy-
namic aperture the motion becomes chaotic and particles are lost. The reduction of
the dynamic aperture can thus significantly reduce the beam life-time.

The dynamic aperture is one of the most important design parameters of the
LHC. A small dynamic aperture can cause parts of the beams to be lost, and can
trigger unscheduled beam dumps. Vast simulation campaigns are performed to
accurately predict the available dynamic aperture under the influence of various
nonlinear errors, multipolar magnets, beam-beam interactions, and other perturba-
tive sources.

During optics measurements with ac dipoles the motion of particles change, and
the dynamic aperture inherently changes too. The forced dynamic aperture, that
is the dynamic aperture under the influence of forced oscillations with ac dipoles,
is considered for the first time. The forced dynamic aperture may pose limitations
on optics measurements with ac dipoles, but can also be used as an alternative
observable that allows for the fast characterisation of nonlinearities and validation
of nonlinear corrections in the LHC.

The following paper describes the proposed forced dynamic aperture measure-
ments. It offers the first measurements of forced dynamic aperture in synchrotrons
and sets out the benefits and challenges of using ac dipoles for the characterisation
of nonlinearities using the forced dynamic aperture. This paper is followed by a
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second paper describing the first measurements of forced dynamic aperture at top
energy that were used for the validation of specific skew octupolar corrections in
the LHC.
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abstract

Diagnostics of nonlinear beam dynamics has become more important for the LHC as it ad-
vances into increasingly challenging regimes of operation, as well as for the High Luminos-
ity LHC where machine nonlinearities will have a significantly larger impact. Limitations
of traditional excitation methods at top energy, in particular due to machine protection,
have pushed the development of safe alternative methods using ac dipoles to characterise
the nonlinear content of the LHC. One of the methods that has been proposed is the dy-
namic aperture under forced oscillation of ac dipoles. This new observable has the potential
to help characterise relative changes in the nonlinear content of the machine, improve the
understanding of the nonlinear models by comparing to simulations, validate nonlinear op-
tics corrections, and give a qualitative lower bound estimate on the free dynamic aperture.
This paper presents the first experimental demonstration of forced dynamic aperture mea-
surements under forced oscillations performed using the LHC ac dipoles, and discusses the
benefits of forced dynamic aperture measurements in circular colliders.
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introduction

The ac dipole system is able to generate coherent transverse beam oscillations. It
was first developed for synchrotrons to avoid spin resonances in the AGS [42] and
later used for the first time to measure linear optics functions in RHIC [53, 55, 59]
and the Tevatron [54, 56, 57]. ac dipoles were proposed in the LHC as a comple-
mentary tool to measure optics functions alongside the more conventional kickers
(MKQ and MKA [52, 98]). However over the years, the importance of the LHC ac
dipoles [99, 100] has grown and they have now become critical in correcting lin-
ear [37, 38, 101] and nonlinear [49, 65, 86] optics parameters. To such an extent that
they are the single most important measurement method for the linear and nonlin-
ear correction strategies in the LHC and for the High Luminosity LHC [94]. This is
in part due to the fact that single kicks are not allowed at top energy for machine
protection considerations.

The success and reliability of ac dipoles have allowed them to be used for new
applications. The LHC ac dipoles have been used to measure the physical aperture
of the collider to assist in collimator alignment [63], to measure amplitude detuning
in the presence of head-on beam-beam interactions [66] as well as to measure the
machine impedance [60]. More recently ac dipoles have been used in lightsources,
such as at ESRF [62], PETRA III [61] and ALBA [102]. Furthermore, ac dipoles
are currently foreseen for the AGS to compensate spin resonances for the eRHIC
project [103] for the transport of polarized helium ions.

It is clear that functionality and importance of ac dipoles have grown significantly.
At the core of this success lies the fact that the ac dipole can generate safe coherent
transverse beam oscillation while recovering the original beam after the excitation.
The slow adiabatic ramp up of the ac dipole current allows for a continuous mon-
itoring of losses and enough time to allow safe dump triggers at top energy in
the LHC. Secondly, the slow adiabatic ramp down of the ac dipole current makes
sure the beam emittance is recovered after excitations, which means that multiple
excitations can be performed in series thus drastically cutting down measurement
time.

Similarly to particles in free motion, stable particles under forced oscillations are
confined to a region in phase space. Beyond the boundary of stable motion in phase
space particles are lost. This stability region under forced oscillations is called the
forced dynamic aperture [104] and it is analogous to the dynamic aperture for free
motion [105–108] which is defined here as free dynamic aperture. It is important to
note that the forced dynamic aperture is a different physical quantity than the free
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dynamic aperture. Indeed a direct scaling law between free and forced dynamic
apertures may not be trivially found for synchrotrons.

A poor forced dynamic aperture can significantly affect commissioning strategies
with ac dipoles for highly nonlinear machines, for example for the High Luminos-
ity LHC [94]. It is thus desirable to maximise the forced dynamic aperture to facil-
itate linear and nonlinear optics commissioning with ac dipoles. Furthermore, the
forced dynamic aperture can be generated by any coherent harmonic excitations
and is thus of particular interest to understand the effect of induced forced oscilla-
tions coming from imperfect power supplies or possible harmonic excitations from
crab cavities [109]. Such sources of forced motion may significantly affect machine
performance, and motivate a good understanding of forced oscillations in hadron
colliders.

Fortunately, forced dynamic aperture does not only bring limitations. It is also a
new alternative observable which has the potential to provide fast characterisation
of the nonlinear content of the machine, improve the understanding of the nonlin-
ear models by comparing to simulations, and validate nonlinear optics corrections.
It is viewed as an important complementary figure of merit for nonlinear optics
commissioning strategies in the LHC and High Luminosity LHC [94].

In this paper we describe the first experimental demonstration of forced dynamic
aperture measurements. The LHC ac dipoles are limited to an excitation of 10000

turns while typical free dynamic aperture studies consider measurements lasting
above an order of magnitude longer. The studies in this paper are therefore re-
stricted to short term forced dynamic aperture though the concepts are applicable
to longer timescales as well. This paper proceeds by describing the influence of an
ac dipole on the forced dynamic aperture in section 6.2. This is followed by results
obtained through MAD-X [72] single particle tracking simulations in section 6.3
where the effect of the ac dipole driving tunes on the forced dynamic aperture is
explored. In section 6.4 the forced dynamic aperture is defined from beam intensity
losses. Finally, a first demonstration of forced dynamic aperture measurements at
injection energy in the LHC is presented in section 6.5.

influence of ac dipole on forced dynamic aperture

Particle dynamics under the driven motion of an ac dipole are considerably altered
[49, 54, 65]. The general solution for the driven particle motion with an ac dipole
can be expressed at any longitudinal location s of the ring as a function of turn
number T as
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ẑ(T)− i p̂z(T) =
√

2Jzei(2πQzT+φz0)

+e−iφd,z(δz,−ei2πQd,zT − δz,+e−i2πQd,zT),

(6.1)

where z ∈ {x, y} denotes the plane of motion, Qz is the betatron tune, Qd,z is the
ac dipole driving tune, φd,z is the phase advance between the location s and the ac
dipole, J and φz0 are the initial action and phase of the particle, and finally δz,− and
δz,+ are the complex ac dipole strengths defined as

δz,± =
√

βd,z
BL
B0ρ

e±i(π(Qd,z±Qz)−ψ0)

4 sin(π(Qd,z ±Qz))
(6.2)

where βd,z is the β-function at the location of the ac dipole. Generally the ac dipole
tunes are chosen close to the natural tunes which leads to |δz,−| � |δz,+|.

In the case of free oscillations, where δz,± = 0, the resonance condition obtained
from the normal form formalism [70], is conventionally given by

(j− k)Qx + (l −m)Qy = p

with, p ∈ Z and j, k, m, l ∈N0, (6.3)

where j, k, l and m are the indices of the Hamiltonian term hjklm. The Hamiltonian
terms are defined as in [70] as the sum over the individual sources along the accel-
erator,

hjklm = ∑
w

hw,jklmei[(j−k)∆φx+(l−m)∆φy] (6.4)

where w is the location of a multipolar source, and ∆φx,y are the phase advances be-
tween the observation point and the sources at locations w. The coefficients hw,jklm

are defined using the normal and skew multipolar strengths Kw and Jw respectively,
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hw,jklm = − [Kw,n−1Ω(l + m) + i Jw,n−1Ω(l + m + 1)]
j! k! l! m! 2j+k+l+m

il+mβ
(j+k)

2
x,w β

(l+m)
2

y,w (6.5)

with

Ω(i) = 1 if i is even

Ω(i) = 0 if i is odd
.

The addition of ac dipoles introduces new frequencies that lead to new reso-
nances. The derivations presented in [49] may be extended to two dimensions to
obtain the resonance condition for ac dipole driven motion, as

(k1 − j1)Qx + (k2 − k3 + j2 − j3)Qd,x +

(m1 − l1)Qy + (m2 −m3 + l2 − l3)Qd,y = p

with, p ∈ Z and ji, ki, mi, li ∈N0 , (6.6)

where the indices fulfill the following conditions,

j1 + j2 + j3 = j

k1 + k2 + k3 = k

l1 + l2 + l3 = l

m1 + m2 + m3 = m

j1 + l1 > 0 . (6.7)

In general the number of resonances is larger when exciting the beam with an
ac dipole and also include the resonances present in the free motion. The choice
of working point for the bare machine tunes as well as for the ac dipole tunes will
therefore have a significant influence on the forced dynamic aperture, as explored
in section 6.3.

Resonances are approached by the detuning of the natural tunes with amplitude.
As the oscillation amplitude increases, the natural tunes will detune on to reso-
nances causing particle losses. Amplitude detuning is in general larger with forced
oscillations. It has been shown that the direct linear amplitude detuning terms gen-
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erated by normal octupolar fields double under the influence of an ac dipole driven
motion [65]. The tune shifts for free and driven motion horizontal excitations are
given by

∆Qx =
q
p

3B4

8π
(β2

x Jfree
x + 2βxβ′x Jforced

x )

∆Qy = − q
p

3B4

8π
(2βxβy Jfree

x + 2β′xβy Jforced
x ) , (6.8)

where q and p are the particle charge and momentum, B4 is the integrated field of
a normal octupole normalised with the magnetic rigidity, βx,y are the β-function at
the octupole sources, β′x,y are the β-function at the octupoles under the influence
of the ac dipole motion [54], Jfree

x,y and Jforced
x,y are the actions of the free oscillation

and forced oscillation, respectively. When neglecting δz,+, the forced action can be
defined as Jforced

x = 1
2 |δz,−|2. The expressions for vertical excitations are obtained by

swapping the plane indices. Assuming the optics perturbations coming from the
ac dipole are small (βx,y ≈ β′x,y), and that the forced oscillation is much larger than
the free oscillation component (Jforced

x,y >> Jfree
x,y ), Eq. (6.8) shows that the detuning

for forced oscillations is twice as large as for free motion (when Jforced
x,y = 0) in the

plane of oscillation. Further detuning from higher order nonlinear fields, such as
second order detuning from dodecapoles, are even more enhanced [65].

The increased amplitude detuning under forced oscillations combined with the
larger number of resonances should result in a forced dynamic aperture typically
smaller than the free dynamic aperture (DA f orced . DA f ree), and can thus give a
qualitative lower bound estimate on the free dynamic aperture.

simulations of forced dynamic aperture with ac dipole

Tracking simulations are done in MAD-X [72] to explore the effect of the ac dipole
driving tunes on forced dynamic aperture. For the purpose of this study, the nomi-
nal 2016 model of the LHC at top energy (6500 GeV) and end of squeeze (β∗ = 0.40
m) is used. Sources of nonlinearities are introduced to the model in the following
ways; The nonlinear magnetic errors as generated by Windows Interface to Simula-
tions Errors (WISE) [91] are applied to all dipoles and quadrupoles. The corrector
spool pieces settings for the sextupoles (MCS), octupoles (MCO) and decapoles
(MCD) are used as implemented during regular 2016 LHC operation. Misalign-
ments of the separation dipoles are introduced, and the orbit is corrected to zero
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with a residual rms orbit of 2 × 10−6 m. The crossing angles in the interaction
regions are turned off and all other parameters such as tunes, chromaticity and
coupling are corrected to Qx = 0.31, Qy = 0.32, Q′x,y = 5, |C−| = 5× 10−4, and
β∗ = 0.40 m to represent normal conditions during optics measurements in the
LHC. The coupling parameter is defined according to [87] by

C− =
1

2πR

∫ 2π

0

√
βxβyKei[(φx−φy)−(Qx−Qy−p)θ]dθ (6.9)

where R is the circumference of the accelerator, K is the skew quadrupolar strength
as defined in [87], (Qx −Qy − p) is the fractional tune difference, φx/y are the hori-
zontal and vertical phase advances, βx/y are the horizontal and vertical β-functions,
and |C−| is the coupling stopband.

Free kick single particle tracking simulations are done by introducing a ∆x
and/or ∆y offset as initial conditions and then tracked using the MAD-X thin lens
tracking module. For the ac dipole single particle tracking simulations the particle
is initially at rest (x = px = y = py = 0). The ac dipole excitation starts after 500

turns and the excitation amplitude is ramped up for 2000 turns after which it is kept
constant for 6000 turns (flattop) and finally ramped down for 2000 turns till zero
amplitude. Figure 6.1 shows the turn-by-turn signal for the particle at BPM.22L1.B1

for the vertical plane as used in simulations. Those parameters are comparable to
what is currently used for the ac dipole in the LHC.

Dynamic aperture from simulations is commonly represented as the stable do-
main as a function of actions, where the actions are obtained from the initial condi-
tions. Such a representation may not be trivially obtained for ac dipole excitations
where the particle is initially at rest.

Two methods are used in the paper to measure the actions from turn-by-turn
data in both simulations and measurements. In the case of single particle tracking
simulations, multiparticle simulations with ac dipole, and measurements with ac
dipole, where a sustained coherent oscillation is observed in the turn-by-turn data,
the actions are measured from the amplitude of the tune line in the spectrum of the
BPM turn-by-turn tracking data. The spectral analysis code SUSSIX [89] is used for
all spectral analysis in this paper. However for free kick measurements where large
sources of nonlinearity cause the beam to decohere quickly, the usable number of
turns for the spectral analysis becomes too small. The quality of spectral analysis
quickly deteriorates, and the actions are thus determined from the peak-to-peak
amplitude of the turn-by-turn signal.

In single particle simulations, where both free and forced oscillations yield co-
herent turn-by-turn position data, the actions are calculated by spectral analysis of
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Figure 6.1: Typical ac dipole excitation showing the turn-by-turn amplitude of a particle in
the vertical plane. The excitation is similar in the horizontal plane.

Figure 6.2: A close-up plot of the first 200 turns of the flattop excitation showing the
coherent turn-by-turn oscillation with an amplitude of A = 1.6 mm.

Figure 6.3: Spectrum of the flattop turn-by-turn data. The main spectral line is measured
at the ac dipole vertical tune Qd,y = 0.296 and with an amplitude of A′ = 0.80 mm, i.e.
A = 2A′.
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the turn-by-turn data of the first 200 turns for the free kick motion, and the first
200 turns of the flattop data of the ac dipole excitations. Only the first 200 turns
are used to mitigate the effects of possible emittance growth when exciting close
to resonances. Figure 6.2 shows the first 200 turns of flattop turn-by-turn data for
a vertical excitation with an oscillation amplitude of A = 1.6 mm. The spectrum of
the this turn-by-turn data is shown in Fig. 6.3. The amplitude signal A′ of the main
tune line at frequency Qd,y is observed with an amplitude of A′ = 0.80 mm in the
spectrum and is proportional to the signal amplitude with A = 2A′. The actions
are calculated with

2Jx,y =
A2

βx,y
. (6.10)

The actions are then normalized to the emittance using

N =

√
2Jx,y

εx,y
, (6.11)

where εx,y are the physical emittances and are defined as εx,y = 7.8 · 10−9 m at
injection energy (0.45 TeV), and εx,y = 5.4 · 10−10 m at top energy (6.5 TeV).

Figure 6.4 shows the free dynamic aperture as a function of initial conditions,
while the free dynamic aperture as a function of the calculated actions from the
main spectral line is shown in Fig. 6.5. Both results are from the same free kick
simulations with 6000 turns. The blue points represent surviving particles and the
red points are particles lost during tracking. Certain regions in action space are
not fully probed using the usual regular phase space sampling. At large excitation
amplitudes, nonlinearities start to distort the sampling from initial conditions and
does not guarantee a smooth coverage in action space.

Simulations allow to probe a large area of phase space and define the forced and
free dynamic apertures as the minimum radial distance to the first observed losses.
The free dynamic aperture is simulated at 12.2 σnom as shown by the black and
white arc in Fig. 6.5. This is slightly lower than the 13.8 σnom free dynamic aperture
found in Fig. 6.4 from the initial conditions.

Effect of driving tunes on forced dynamic aperture

Figure 6.6 shows the simulated forced dynamic aperture for different ac dipole
driving tunes. The top figure shows the simulated forced dynamic aperture for sym-
metric excitation of the ac dipole where Qd,x = Qx − 0.012 and Qd,y = Qy + 0.012.
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Figure 6.4: Simulated free dynamic aperture with excitations calculated from initialised
amplitude. The machine tunes are Qx = 0.31 and Qx = 0.32.

Figure 6.5: Simulated free dynamic aperture with excitations calculated from the amplitude
of the main spectral line. The machine tunes are Qx = 0.31 and Qx = 0.32.
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Figure 6.6: Forced dynamic aperture results for three different ac dipole driving tunes at
top energy the natural tunes are Qx = 0.31 and Qy = 0.32.
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The forced dynamic aperture is limited to 6.2 σnom due to early losses for diagonal
excitations as the octupolar resonance Qd,x + Qd,y − Qx − Qy = p, with p as inte-
ger, is excited. This resonance is automatically excited at low amplitudes, though at
larger amplitudes its excitation depends on symmetric amplitude detuning in both
planes. Results of tracking simulations with two different working points are also
presented in Fig. 6.6 with Qd,x = Qx − 0.010 and Qd,y = Qy + 0.014 (middle), and
Qd,x = Qx − 0.015 and Qd,y = Qy + 0.012 (bottom), where their respective forced
dynamic aperture are found at 7.8 σnom and 7.0 σnom. In all three cases the forced
dynamic aperture is lower than the free dynamic aperture, confirming qualitative
predictions from section 6.2. All three simulations with different ac dipole driv-
ing tunes show a considerably different forced dynamic aperture. It is clear from
these results that the choice of ac dipole driving tunes has a large effect on the
forced dynamic aperture and that the angle at which first losses occur is varying.
These differences show that to accurately use the forced dynamic aperture as an
observable for nonlinearities the same working point should be used throughout
all measurements to compare forced dynamic aperture at different nonlinear con-
figurations. Furthermore, it should be emphasized that the choice of working point
can greatly increase the available aperture for optics measurements with ac dipole,
a fact that will be relevant for the High Luminosity LHC where nonlinear errors
are expected to be large.

Simulations at injection energy

Single particle tracking simulations of forced dynamic aperture at injection energy
(450 GeV) with operational Landau octupole strengths of 2016 [110] are shown in
Fig. 6.7 for two different models. The top figure shows the forced dynamic aperture
for the nominal injection model with magnetic errors applied in the same way as de-
tailed previously, and the Landau octupoles powered to 40 A. The minimum forced
dynamic aperture is simulated at 3.3 σnom. A large distortion of the probed action
space is observed at large amplitudes due to the very strong Landau octupoles at
injection energy. The bottom figure shows the forced dynamic aperture for simula-
tions with the same model and with the addition of rotational geometric errors in
all multipoles. After the introduction of the geometrical rotational errors the cou-
pling is corrected to |C−| = 5 · 10−4, a typical value during optics measurements
in the LHC. A reduction of forced dynamic aperture to 2.6 σnom is observed. Geo-
metrical rotations of multipoles change the nonlinear content of the model, which
translates to a change in simulated forced dynamic aperture.
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Figure 6.7: Forced dynamic aperture at injection with Landau octupoles at 40 A. The top
figure shows the forced dynamic aperture for a model including magnetic errors, while
the bottom figure shows the forced dynamic aperture for a model including geometrical
rotational errors as well as magnetic errors. A reduction of forced dynamic aperture is
observed when including the geometrical rotational errors in the multipoles.
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evaluation of forced dynamic aperture from beam intensity losses

Both free and forced short term dynamic aperture can be measured by probing the
beam intensity loss after large transverse excitations. In general, as the excitation
amplitude is increased, more particles will cross the free or forced dynamic aper-
ture and become lost. By assuming that the losses are dominant in a single plane
and that the free or forced dynamic aperture is smooth, the problem can be simpli-
fied to a single dimension. In such a case the condition for loosing a particle from
free DA becomes,

Jfree > DAfree (6.12)

and for loosing a particle from forced DA

Jfree + Jforced > DAforced (6.13)

This is reflected in Fig. 6.8 and Fig. 6.9. Figure 6.8 shows a beam excited with a
single free kick. All particles beyond the free dynamic aperture are lost. The free
dynamic aperture is determined by fitting an error function to the measured losses
over kick amplitudes as described in [92, 111, 112].

Lost particles

Surviving particles

Free DA

Figure 6.8: Diagram showing where the losses in the particle bunch occur as a result of
reaching the free dynamic aperture. As the kick amplitude (∆px) increases more particles
will cross the free dynamic aperture and will be lost.
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Lost particles

Surviving particles

Forced DA

Figure 6.9: Diagram showing where the losses in the particle bunch occur as a result of
reaching the forced dynamic aperture. The remaining free motion inside the bunch will
cause the tails of the bunch to be lost.

The coherent excitation of the ac dipole will not change the initial bunch profile.
Multiparticle tracking simulations are done to verify that the Gaussian bunch pro-
file is maintained during the ac dipole excitation. Figure 6.10 shows the Gaussian
bunch profile with 4000 particles for a bunch at rest before the ac dipole excitation
and the same particles during the flattop excitation of the ac dipole. The bunch
size is calculated before the ac dipole excitation at σ = 1.305 mm, and during the
flattop ac dipole excitation at σ = 1.309 mm. The small deviations between the two
are attributed to limited number of particles used in the simulation. This is also
representative for the other coordinates x, px, and py.

Figure 6.9 shows an ac dipole excited beam traversing the forced dynamic aper-
ture. In contrast to the free kick case where only particles beyond the free dynamic
aperture are lost, the particle motion with ac dipole excitation will cause all the
tails to be lost. By further assuming that the coupling is negligible this simplifies
the problem to an integral over the distribution in action space only,

∆I
I
(DAforced) =

∫ +∞

DAforced

1
εz

e−
w−Jforced

z
εz d w (6.14)

where ∆I/I is the normalized measured losses, Jforced
z is the measured action of

the bunch from forced oscillations, εz is the beam emittance, w is the integration
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Figure 6.10: Bunch distributions for vertical excitations of ac dipole for the case before
the ac dipole (at rest) and during the flattop ac dipole excitation for multiparticle tracking
simulations with 4000 particles. Before the ac dipole the bunch size is σ = 1.305 mm, and
during the flattop ac dipole excitation it is measured at σ = 1.309 mm.

variable in units of Jforced
z , and z ∈ {x, y} determines the plane of losses. This leads

to the following expression of the forced dynamic aperture for given beam losses
and forced excitation

DAforced = Jforced
z − εzln

(
∆I
I

)
. (6.15)

which is dependent on Jforced
z and ∆I/I. The resulting expression for the forced dy-

namic aperture is very close to the exponential formula for free dynamic aperture
as defined in [108], but now contains a kick term (Jforced

z ). The forced dynamic aper-
ture can then be calculated from measurements by fitting Eq. (6.15) to the measured
beam intensity losses over ac dipole excitation amplitudes.

Further simulations are done with an evenly sampled vertical phase space and
the same conditions as presented in Sec. 6.3.2. The horizontal initial conditions are
set to x = px = 0. All particles are excited with the same diagonal excitation close
to the forced dynamic aperture. Figure 6.11 shows the lost and surviving particles
as a function of their initial conditions in the vertical plane. All tails of the initial
distribution are lost due to the forced dynamic aperture which is in line with the
representation of Fig. 6.9.
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Figure 6.11: Location of losses from forced DA with evenly sampled vertical phase space. In
black the phase space ellipse at 1σ is drawn for reference.

forced dynamic aperture measurements at injection energy

A first demonstration of forced dynamic aperture measurements using the LHC
ac dipoles at injection energy is presented. The experiments carried out consist of
exciting the beam with the LHC aperture kicker (MKA) or the LHC ac dipoles and
measuring the beam intensity losses using the LHC beam current transformer sys-
tem (BCT) [113]. A single pilot bunch is used during the measurements and the
collimators are retracted to 12 σnom to allow for large excitations without scraping
the stable beam and providing the necessary aperture to probe the free and forced
dynamic aperture. Measurements were performed with the Landau octupoles pow-
ered at 40 A, equal to the operational settings in 2016 [110] as well as at 6.5 A.
Several series of measurements were done in Beam 2 by exciting the beam in the
horizontal plane and vertical planes separately. For the series of free kick measure-
ments a dump and re-inject scheme is used, while during the ac dipole excitations
the bunch is dumped and re-injected whenever significant losses occur. The emit-
tance of the injected beams shows no significant variations between different in-
jections and was measured consistently around 1.2 µm with the wirescanners in
both planes. Free dynamic aperture measurements were first performed with the
aperture kicker (MKA) [52] to obtain a free dynamic aperture reference with a con-
ventional free kick method. The experiment was repeated in both planes using the
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ac dipole.
ac dipole excitation amplitudes and frequencies are controlled through an on-

line measurement tool. The ac dipole currents have been demonstrated to be very
well regulated with a noise floor at 5 · 10−4 of the main frequency amplitude and
an emittance growth below the 0.1 % level for the excitation ranges used in the
LHC [99]. The ac dipole driving tunes was set to Qd,y = Qy − 0.014 = 0.296 and
Qd,x = Qx − 0.018 = 0.262 to ensure the Qd,y = Qy resonance is not approached
through detuning with amplitude for vertical excitations. The measurement was
repeated with lower octupole strength (+6.5 A) to probe the change of forced dy-
namic aperture.

Figure 6.12 shows the measured beam losses as percentages of initial beam inten-
sity for measurements with Landau octupoles at 40 A with free kick and ac dipole
excitations in the vertical plane in the top plot and the corresponding measured
natural tunes in the bottom plot. The actions are calculated at each BPM along the
ring by using the main spectral line amplitude for ac dipole excitations and the
peak-to-peak of the turn-by-turn signal for the free kicks as discussed in Sec. 6.3.
In practice, an average over all arc BPMs is taken, having the benefit of providing
an errorbar for the action measurement and excluding the BPMs in the insertion
regions. The measurement errors on the actions are defined as the standard devia-
tion of the measured actions in all working arc BPMs. The measured natural tunes
are measured from the turn-by-turn data at each BPM using the spectral analysis
code SUSSIX. The error is defined as the standard deviation over all BPMs and is
in general small.

The beam losses are calculated from the BCT measured intensity before and after
excitation. In the case of the ac dipole excitation this gives very clear losses from the
BCT data, as there are no beam losses after excitation. For free kicks the difference
in beam intensity is measured at the same timescales as the ac dipole excitation.
However, continued slow losses are occurring then due to the free dynamic aper-
ture. This results in a larger measured error on the relative beam losses for free
kicks.

The forced dynamic aperture is calculated by fitting Eq. (6.15) to the measured
losses as a function of ac dipole excitation amplitudes. The fit is also shown in
Fig. 6.12 as the blue dotted line. We observe a very good agreement between mea-
surement and the fit. The forced dynamic aperture is measured with the ac dipole
at (2.60 ± 0.04) σnom and is limited by the 3rd order resonance 3Qy = p, as shown in
Fig. 6.13. In the case of free kicks, the free dynamic aperture arising from the 3rd or-
der resonance is 4.3 σnom. The kicks at 3.5 and 4.6 σnom show very small losses thus
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Figure 6.12: Measured losses for ac dipole excitations (blue) and free kick (red) measure-
ments with Landau octupoles powered at 40 A.
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Figure 6.13: Measured natural vertical tunes vs. vertical excitation amplitudes for measure-
ments with ac dipole (blue) and free kicks (red) and Landau octupoles powered at 40 A.
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enclosing a thin unstable region at the 3rd order resonance. Such a thin unstable re-
gion explains the small losses observed for free kicks at the free dynamic aperture.
Further free kick measurements at larger amplitude were performed up to 7.3 σnom

where the beam is lost. As free kicks apply an instant change in phase space, it is
possible to excite the beam beyond the 3rd order resonance without crossing the
resonance for large amplitude kicks. It should be noted that such strong kicks are
not present in operational conditions and that any bunch experiencing a gradual
increase of amplitude will thus cross the resonance and become resonantly excited.
In the case of the ac dipole the 3rd order resonance is dominant in defining the
forced dynamic aperture. Due to the ramp up of the ac dipole all particles will
slowly cross the resonance and thus be lost.

Figure 6.14 shows the beam losses for vertical kicks with ac dipoles at two differ-
ent settings of Landau octupoles. The first curve, in blue, shows the same results as
in Fig. 6.12 for Landau octupoles powered at 40 A. The forced dynamic aperture for
measurements with lower octupole powering (6.5 A) is shown in green, and forced
dynamic aperture from the fit is calculated at (6.86 ± 0.12) σnom. An increase of
forced dynamic aperture is observed with a reduction of Landau octupole strength.
This can be related to much weaker amplitude detuning coming from the Landau
octupoles, as shown in Fig. 6.15. Amplitude detuning is linear in octupole current
and quadratic in σnom. The expected increase of forced dynamic aperture from re-
duced amplitude detuning with weaker octupoles is thus

√
6.5/40 = 2.48, while

the observed increase of DAforced(40) / DAforced(6.5) = 2.64. In both cases the
forced dynamic aperture is limited by the 3rd order resonance. The measurements
demonstrate that changes in the nonlinear state of the machine can be measured
with forced dynamic aperture measurements.

Further measurements with horizontal excitations are presented in Fig. 6.16. The
resulting particle losses for measurements at horizontal excitations with both the
ac dipole (in blue) and the MKA (in red) are shown. The forced dynamic aperture
in the horizontal plane for the ac dipole was measured at (2.9 ± 0.3) σnom, while
the free dynamic aperture was measured at (5.2,± 0.2) σnom. Note that the fit for
the free dynamic aperture is done with the error function as described in [92]. In
the case of the ac dipole driven motion, the horizontal natural tune is detuning
onto the linear resonance Qx = Qd,y and nonlinear resonance 2Qx = 2Qd,y, as
shown in Fig. 6.17. Most likely, both linear and nonlinear resonances influence the
observed particle losses. The free dynamic aperture is reached when approaching
the difference linear coupling resonance Qx = Qy and octupolar resonance 2Qx =

2Qy as both the vertical and horizontal tunes approach each other, as presented
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Figure 6.14: Measured losses for ac dipole excitations with Landau octupoles powered at
40 A (blue) and 6.5 A (green).
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Figure 6.15: Measured natural vertical tunes vs. vertical excitation amplitudes for measure-
ments with ac dipole and Landau octupoles powered at 40 A (blue) and 6.5 A (green).
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in Fig. 6.17. The losses are most likely caused by the octupolar resonance, as the
difference linear coupling resonance is a stable resonance.

Comparison to multi-particle tracking simulations

The nonlinear content of the machine can be probed by comparing measurements
to simulation. By simulating the beam intensity losses after ac dipole excitation in
multiparticle simulations a direct comparison to measurements can be made. Mul-
tiparticle bunches are initialized as a Gaussian distribution with 10000 particles
following [34] and tracked in MADX. The intensity losses and turn-by-turn data
of the centroid of charge are observed just like in measurements. The actions are
calculated in the same way as with the measurements, by using the turn-by-turn
data of the centroid of charge. Multiparticle tracking simulations are done at in-
jection energy with Landau octupole at 40 A with the two models described in
Sec. 6.3.2. Figure 6.18 shows the comparison between measurement and multipar-
ticle simulations for vertical ac dipole excitations with Landau octupoles at 40 A,
while Fig. 6.19 shows the same comparison at 6.5 A. The simulations with the nom-
inal injection model using only magnetic errors are shown in pink. The nonlinear
model used in this case fails to reproduce the observed losses in the forced dy-
namic aperture measurement. The sources of this discrepancy can be related to the
fact that the skew sextupolar sources present in the model are much smaller than
the beam based observations. The forced dynamic aperture using a model with
geometrical rotational errors is shown in light blue. The second model is in good
agreement with the measurements. This exercise demonstrates that the nonlinear
content of the machine may be probed by directly comparing to simulation, and
that improvements in the machine models may be derived from forced dynamic
aperture measurements. As this method is allowed at top energy in the LHC this
provides a distinct advantage over the conventional single kick methods that are
currently forbidden at top energy in the LHC.

Simulations for the case with lower Landau octupole strengths show a similar be-
haviour as with the large octupole powering. When the model without rotational
lattice errors is used forced dynamic aperture is at 10.8 σnom, and does not repro-
duce the measurements. After including the rotational lattice errors the forced dy-
namic aperture reduces to 8 σnom and is limited by the third-order resonance 3Qy.
Though this is still 1σ away from the measured values it shows a significant im-
provement in the model. Excitations at larger amplitudes show reduced losses at
around 35% until the bunches are fully lost again. The losses observed between
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Figure 6.16: Measured losses for both free kicks (red) and ac dipole excitations (blue) in the
horizontal plane with Landau octupoles powered at 40 A. The blue fit is done with Eq. 6.15,
while the red fit is done with the error-function of [92]
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Figure 6.17: Measured natural horizontal and vertical tunes vs. horizontal excitation am-
plitudes with Landau octupoles powered at 40 A for ac dipole excitations and free kicks
excitations.
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Figure 6.18: Measured losses for ac dipole excitations with Landau octupoles at 40 A from
measurements and multiparticle simulations. The simulations results without geometrical
rotational lattice errors are shown in pink, while the simulations including those rotational
errors are shown in light blue.

8 σnom and 10.8 σnom occur during the ramp-up and ramp-down of the ac dipole
during which the 3Qy resonance is crossed. Future studies will be needed for a
more accurate model and exploration of advanced features of this method.

conclusions

In recent years ac dipoles have obtained a prominent role in the commissioning of
the LHC, and have been used or envisaged for many other machines. The forced
dynamic aperture may become a limiting factor for future applications of ac dipoles.
Fortunately the forced dynamic aperture can also be used as a new alternative
observable for probing machine nonlinearities.

The nonlinear dynamics under the influence of an ac dipole are altered and the
measured forced dynamic aperture is expected to be smaller than the free dynamic
aperture. This is related to the appearance of new resonances and to the doubling
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Figure 6.19: Measured losses for ac dipole excitations with Landau octupoles at 6.5 A from
measurements and multiparticle simulations. The simulations results without geometrical
rotational lattice errors are shown in pink, while the simulations including those rotational
errors are shown in light blue.

of first order direct detuning terms in the ac dipole driven motion. Assuming direct
detuning terms are the dominant detuning terms, this means enclosing resonances
are approached with actions twice smaller than under free oscillations, thus nar-
rowing the stability region in phase-space.

Single particle tracking simulations were done for both forced and free dynamic
aperture. At top energy and without Landau octupoles the free dynamic aperture
is 12.2 σnom. The forced dynamic aperture in single particle tracking simulations
with ac dipole is found to be between 6.2 and 7.8 σnom depending on the chosen
working point. Results show that the measured forced dynamic aperture is signif-
icantly reduced compared to the free dynamic aperture, confirming expectations.
Furthermore, the role of the choice of ac dipole driving tunes is demonstrated.
Depending on the working point, various resonances are observed to reduce the
minimum forced dynamic aperture. It is thus crucial to use the same working point
to probe and compare the forced dynamic aperture of different machine configu-
rations. Secondly, this motivates a study to find a working point that maximizes
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forced dynamic aperture to facilitate optics measurements in the LHC and High
Luminosity LHC.

A first demonstration of forced dynamic aperture measurements is presented at
injection energy with Landau octupoles powered to 40 A, and later to 6.5 A. At 40 A,
measurements with the aperture kicker (MKA) showed a vertical kick free dynamic
aperture at the 3rd order resonance at 4.3 σnom. The ac dipole forced dynamic aper-
ture was measured at (2.60 ± 0.04) σnom, limited also by the 3rd order resonance.
Lowering of the Landau octupole powering to 6.5 A resulted in a significant mea-
surable increase of forced dynamic aperture. A reduction of octupole currents to
6.5 A shows an increase of forced dynamic aperture to (6.86 ± 0.12)σnom, and il-
lustrates the potential use to characterize relative changes in the nonlinear state
of the machine using forced dynamic aperture measurements. Measurements with
horizontal excitations show a forced dynamic aperture of (2.9 ± 0.3) σnom, and a
free dynamic aperture of (5.2 ± 0.2) σnom for free oscillations.

Both results in the vertical and horizontal planes show a reduced forced dynamic
aperture compared to the free dynamic aperture. This is of particular significance
for top-energy applications in the LHC and High Luminosity LHC where ac dipole
measurements are central to all beam optics commissioning strategies, and are
limited in excitation amplitudes by the forced dynamic aperture. Forced dynamic
aperture optimisation is therefore crucial to allow optics measurements in highly
nonlinear machines such as the High Luminosity LHC.

Multiparticle simulations show that the nominal model used with nonlinear mag-
netic errors fails to reproduce the measured forced dynamic aperture. The intro-
duction of measured geometrical rotational errors and matching the coupling to
the measured experimental values is needed in the model to reproduce the mea-
sured forced dynamic aperture. It demonstrates the usefulness of forced dynamic
aperture measurements to characterise the nonlinear model.

The results presented in this paper demonstrate the potential of forced dynamic
aperture as a new observable to provide insight on the nonlinear content of the
machine, validate nonlinear corrections, improve the nonlinear model, and provide
qualitative estimates of a lower bound for the free dynamic aperture.
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abstract

Measurements of the dynamic aperture in colliders are a common method to ensure machine
performance and offer an insight in the nonlinear content of the machine. Such direct mea-
surements are very challenging for the LHC and High Luminosity LHC. Forced dynamic
aperture has been demonstrated for the first time in the LHC at injection energy as a poten-
tial new observable to safely probe the nonlinear content of the machine. This paper presents
the first measurements of forced dynamic aperture at top energy and discusses the proposed
measurement schemes and challenges.
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introduction

Measurements of forced dynamic aperture have been proposed as an alternative
observable to probe machine nonlinearities in particle colliders [3, 94, 114]. The
availability of forced dynamic aperture measurements has opened up the possibil-
ity for fast and reliable characterisation of the nonlinear state of the machine where
conventional free dynamic aperture measurements with free kicks are too time con-
suming [92, 94], and is complementary to the alternative method based on beam
heating as presented in [108, 115]

The motion under forced coherent oscillation of an ac dipole is altered com-
pared to the free betatron motion [42, 43, 49, 53, 65]. Due to the presence of ex-
tra resonances [49], and an increase in amplitude detuning for the direct detun-
ing terms [65] during forced coherent oscillations the forced DA is expected to be
smaller than the dynamic aperture under free motion. Nonetheless, measurements
of forced DA can provide useful insights in nonlinearities in the LHC and can be
used as a valuable figure of merit for nonlinear optics corrections.

The LHC ac dipoles are limited to short excitations of 6600 turns due to hardware
heating protections. As such, the presented work in this paper focusses on short
term forced DA only. A generalisation to longer time scales is of course possible,
but not considered in this paper. Measurements of forced DA are done by probing
the beam intensity loss after large coherent oscillations using the LHC ac dipoles.
As the excitation amplitude is increased, more particles will cross the forced DA
and become lost. By characterising the beam intensity losses with ac dipole exci-
tation amplitude the forced DA can be calculated. Under the assumption that the
losses occur dominantly in a single plane the problem can be simplified to a single
dimension. Figure 6.20 shows an ac dipole excited beam traversing the forced DA.
In contrast to the free kick case where only particles beyond the free DA are lost,
the intrabunch evolution of the particles due to the residual free motion will cause
all the tails to be lost. This now greatly simplifies the problem to an integral over
the distribution in action space.

∆I
I
(A) =

∫ +∞

DAforced

1
εz

e−
Jz−A

εz d Jz (6.16)

where ∆I/I is the normalized measured losses, 2Jz are the measured actions, εz

is the measured physical emittance, and z ∈ {x, y} determines the plane of losses.
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Figure 6.20: Losses of distribution from ac dipole excitations. The bunch rotates as a whole
in phase space with the ac dipole frequency, while the bunch itself revolves with the natural
frequency.

This leads to the following expression for the forced DA

DAforced(Jz, ∆I/I) = 2Jz − 2εzln
(

∆I
I

)
(6.17)

forced da at top-energy

Measurements of forced DA at top energy (6.5 TeV) and end-of-squeeze (β∗ =

40 cm) are presented. Several different magnetic configurations of the Landau oc-
tupoles and dodecapolar corrector magnets in the insertion regions are probed. The
settings are reported in Tab. 6.1

The transverse beam size is recorded using the Beam Synchrotron Radiation Tele-
scope (BSRT) [116]. Calibration of the BSRT data is done with wirescanner mea-
surements [116] at the start of the forced DA measurements. The BSRT data is
particularly interesting to measure the evolution of the beam size and detect possi-
ble beam blow-up. Figure 6.21 shows the measured beam size for the vertical and
horizontal plane of Beam 1 in units of nominal emittance. Where the nominal nor-
malized emittance is defined as σnom = 3.75 µm. The large vertical spikes in the
data correspond to the ac dipole excitations.
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Table 6.1: Summary of different magnetic configurations with εnom = 3.75 µm, and mea-
sured forced DA.

MO [m−4] MCTX [m−6] forced DA [σnom]

Settings 1 10.8 - 4± 2

Settings 2 14.3 - 3.3± 1.6

Settings 3 14.3 38000 2.7± 1.3

Some beam blow-up is observed in the horizontal plane for the first 4 vertical ex-
citations with low octupole currents (Settings 1). The beam size later stabilizes and
no further blow-up is observed. Fortunately the blow-up occurs in the plane oppo-
site to the excitation and the effect on measured losses for the first view excitations
is negligible as will be presented later. All further measurements are performed
with stable beam size and can thus be directly compared.

Figure 6.21 shows the measured beam intensity from the Beam Current Trans-
formers System (BCT) [113] for Beam 1. At each excitation a reduction of beam
intensity is observed. By characterising the losses over the measured actions an
estimate on forced DA may be obtained.

The measured losses in percentages of beam intensity before the excitation are
presented in Fig. 6.22 as a function of the measured excitation amplitudes for the
different magnetic configurations. By fitting Eq. (6.17) to the measured data, using
the physical emittances measured from the wirescanners, an estimate of forced
DA is acquired for the three settings. The results are presented in Tab. 6.1. The
configuration with the lowest octupole strengths shows the largest forced DA at
(4± 2) σnom. The forced DA decreases to (3.3± 1.6) σnom when increasing the MO
strengths and further down to (2.7± 1.3) σnom when also including the dodecapoles.
Unfortunately the fit errors are large due to the limited number of measurements
and the limited allowed beam intensity losses due to machine protection thresholds
on the Beam Loss Monitors. Furthermore, a closer look at the beam profiles from
the wirescanners may improve the modelling of the beam distribution and thus
improve the fit quality.

A significant decrease in forced DA is observed as the nonlinear magnetic sources
are increased. Secondly, a direct effect of the dodecapolar sources on the forced DA
is measured. Forced DA may form a valuable figure of merit to correct dodecapolar
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Figure 6.21: Measured beam size for horizontal and vertical planes of Beam 1 at top energy
(6.5 TeV) and β∗ = 40 cm, using the LHC BSRT system (top figure). Measured beam
current of Beam 1 at top energy (6.5 TeV) and β∗ = 40 cm, using the LHC BCT system
(bottom figure).

sources in the insertion regions of the High Luminosity LHC, alongside the method
of beam heating [94].

forced da with skew octupolar corrections

Correction of nonlinear magnetic errors in the insertion regions of the LHC have
been a priority in 2017, and successful correction of b3, a3 and b4 sources have
been achieved [117]. Local corrections for skew octupolar sources (a4) have been
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Figure 6.22: Measured beam intensity losses with vertical ac dipole excitation amplitude
for Beam 1 at top energy (6.5 TeV) and β∗ = 40 cm. Measured forced DA from fits is
summarised in Tab. 6.1.

calculated from feed down measurements to tune as a function of crossing angles.
While corrections of IR1 have been validated with crossing angle scans and imple-
mented operationally in 2017, IR5 corrections proved more challenging. Part of the
challenge comes from confusion about the polarity of the a4 correctors in IR5 due
to differences in conventions between simulation codes and the magnet powering
architecture in the LHC. There are two a4 correctors in IR5, one left of the IP and
one right of the IP. The corrector strengths were calculated as potential local cor-
rections from feed down measurements. The two configurations of correctors have
the same strengths but opposite polarity, as specified in Tab. 6.2.

Forced DA measurements taken parasitically at top energy (6.5 TeV) and β∗ =

30 cm are shown for three different configurations of the a4 correctors in IR5 in
Fig. 6.23. The forced DA is again calculated by fitting the measurements with
Eq. (6.17) and using the physical emittance measured with the wirescanners. The
reference measurement with no powering of the correctors shows the largest forced
DA of (4.5 ± 2) σnom, while the forced DA decreases to (4 ± 2) σnom and (3.8 ±
1.9) σnom for the configurations with respectively the positive and negative polar-
ity. The measurement errors are very large and prevent these studies from being
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Figure 6.23: Measured beam intensity losses with vertical ac dipole excitation amplitude
for 3 different corrector settings in Beam 2 at top energy (6.5 TeV) and β∗ = 30 cm.

conclusive. It is critical for future studies to increase the number of measurements
to reduce the fitting errors. The forced DA is observed to deteriorate for both con-
figurations, which suggests a mismatch between a4 errors and the attempted local
correction. These findings are in line with resonance driving terms measurements
presented in [95].

Furthermore, it is interesting to see that a small change in the a4 correctors in
the insertion regions, at β∗ = 30 cm, produces a reduction in forced DA of the

Table 6.2: Summary of different magnetic configurations.

a4 left [m−4] a4 right [m−4] forced DA [σnom]

No correction - - 4.5± 2

Configuration 1 -0.36 -0.53 4± 2

Configuration 2 0.36 0.53 3.8± 1.9
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same order of magnitude as an increase of the MOs to 14.3 m−4. This underlines
the importance of a4 errors in the insertions regions as significant sources of forced
DA and motivates further studies for successful corrections in view of the High
Luminosity LHC.

conclusions

Measurements of forced DA have been successfully performed at top energy in the
LHC. Changes in forced DA resulting from increased Landau octupole strengths as
well as dodecapolar corrector magnets are shown to be measurable. Forced DA has
demonstrated to be a promising observable to measure nonlinear sources, and may
at some point be used for validation of dodecapolar corrections in the High Lu-
minosity LHC. Furthermore, attempted local skew octupolar corrections in IR5 are
studied. The implementation of both corrections independently result in a decrease
in forced DA. The second correction (assuming negative polarity of the corrector
magnets) shows the largest degradation. The results presented in this paper reject
the proposed local a4 corrections in IR5. The successful correction of a4 in the in-
sertion regions of the LHC is considered as one of the main objectives of the 2018

commissioning campaign.
In general the fit quality is poor, but as a first demonstration the results are

promising. Great care should be taken to take more measurements and improve
statistics. To conclude, the method of forced DA has been demonstrated to be a
valuable observable to probe machine nonlinearities as well as the validity of non-
linear optics corrections.
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F I R S T M E A S U R E M E N T O F R E S O N A N C E

D R I V I N G T E R M S F R O M H E A D - O N

B E A M - B E A M I N T E R A C T I O N I N T H E L H C

All the studies presented up till now discuss the dynamics of particles for non-
colliding beams. However, for colliding beams, the opposing beams at and near the
collision points will be a large source of nonlinearity. Figure 7.1 shows a schematic
representation of beams in collision. There are two places where the opposing beam
will perturb the particle motion. The first is before and after the collision point and
is referred to as the long-range beam-beam interaction. The second is at the collision
point, where it is referred to as the head-on beam-beam interaction. This chapter
focuses solely on the head-on beam-beam interaction, and at times refers to it as
the beam-beam interaction, omitting the head-on description.

Head-on 
collision

Long range
parasitic encounter

25 ns

7.5 m

Beam 1 Beam 2

Crossing
angle

Figure 7.1: Schematic representation of colliding beams showing the crossing angles. The
head-on beam-beam interaction is generated at the collision point [118].

The beam-beam interaction is a collider specific effect that describes the inter-
action between the two opposing colliding beams. The electromagnetic potential
of the opposing beam creates a large perturbation in the beam motion, and its
forces are highly nonlinear as shown in Fig. 7.2. For particles with small trans-
verse amplitudes the beam-beam effect is equivalent to a quadrupolar perturbation
and induces a tune shift. However, for particles oscillating with larger amplitudes
the nonlinear effects of the beam-beam interaction become increasingly important.
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As the perturbative force is highly nonlinear the beam-beam interaction can cause
resonances and significantly reduce the dynamic aperture. The beam-beam interac-
tion forms one of the central limits in colliders and requires extensive optimisation
during the design phase of colliders. However, while the beam-beam interaction
is critical to the design of colliders, it is scarcely studied in experiments due to
challenging nature of the measurements.
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Figure 7.2: Force generated by the head-on beam-beam interaction and the derivative of the
force.

Direct measurements of the nonlinear effects of the beam-beam interaction are
challenging. Measurements of beam lifetime have shown the detrimental effect of
the beam-beam interaction due to the increased nonlinearities in the machine. How-
ever, these are measurements of averaged effects of all nonlinear orders. Direct
measurements of specific nonlinear modes generated by the beam-beam interac-
tion were until now not successful.

The following chapter presents the first ever measurements of beam-beam gen-
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erated resonance driving terms in a collider. The key to these measurements lie in
the use of ac dipoles for coherent large amplitude excitations of the beam. Note
that to fit previous literature on this topic, the derivations are described in terms of
the betatron phase advance over one turn µz instead of the tune Qz. Their relation
is given by µz = 2πQz, as specified in the chapter.
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abstract

Beam-beam interactions typically limit the performance of colliders. Monitoring beam-beam
effects, possibly including compensation devices, will be crucial for operation of the next
generation of high intensity colliders. Direct measurements of beam-beam driven resonance
terms are challenging to perform due to the fast decoherence of kicked beams. This paper de-
scribes the theoretical background for measuring beam-beam resonance driving terms from
turn-by-turn data of excited beams for both the free excitations as well as forced excitations
with an ac dipole. It also presents measurements of octupolar and dodecapolar beam-beam
generated resonance driving terms in the LHC, the first of such measurements in any col-
lider.
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introduction

The head-on beam-beam interaction is a major limitation for particle colliders. It
generates amplitude detuning and tune spread, reduces the dynamic aperture, and
can lead to excited resonances [119, 120]. Modelling of the head-on beam-beam in-
teraction is a critical tuning parameter during the lattice design phase of colliders.
However, direct measurements of resonance driving terms resulting from the beam-
beam interactions from collisions remain elusive. Measurements of beam-beam res-
onance driving terms are very challenging to achieve. The beam-beam interaction
introduces a large tune spread and amplitude detuning that cause free oscillations
of the beams to decohere very quickly.

Direct measurements of beam-beam effects on the beam dynamics are crucial
to improve the understanding of the beam-beam interactions, study beam-beam
induced limitations, resonances, and help develop mitigation strategies using for
example electron lenses [121–125] or compensating wires [126].

In this paper the theoretical framework to characterize the secondary spectral line
amplitudes in terms of beam-beam generated resonance driving terms is presented
in Sec. 7.2 for free oscillations and in Sec. 7.3 for forced oscillations with an ac
dipole. It is followed by validations of the analytical expressions to single particle
tracking simulations in Sec. 7.5. The first measurements of beam-beam resonance
driving terms at injection energy in the LHC, as well as the first observation of
dodecapolar resonance driving terms are presented in Sec. 7.6.

analytical description of spectral line amplitudes from beam-beam

in free motion

Resonance driving terms measurements are generally done by kicking the beam
in the transverse plane and measuring the transverse position at the beam posi-
tion monitors (BPMs). Spectral analysis of the obtained turn-by-turn data reveals
the spectral composition and gives insights in the nonlinear sources in the accel-
erator. For regular magnetic multipoles or multipolar sources a straight forward
conversion between spectral line amplitudes and resonance driving terms is possi-
ble [70, 73, 127]. It will be shown in this section that such a conversion in the case of
beam-beam resonance driving terms is complicated, as the spectral line amplitude
dependence on the kick amplitude is a composition of Bessel functions. The follow-
ing derivations will thus aim to describe the expected spectral line amplitude as
generated by a single beam-beam interaction.
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The derivation follows the approach described in [46] to establish the beam-beam
map. To start the derivations are done in a single dimension before generalizing to
two dimensions and adding the ac dipole. The Courant-Snyder map is defined in
a Lie map representation as

e: f2:, where f2 = −µz

2
(ẑ2 + p̂2

z) (7.1)

where z ∈ {x, y} specifies the plane of motion, µz is the betatron phase advance
over one turn and relates to the machine tune Qz with µz = 2πQz, βz is the β-
function at the location of observation and ẑ and p̂z are the linearly normalized
coordinates that are defined using the action angle variables (φz, Jz),

ẑ =
√

2Jz cos φz (7.2)

p̂z = −
√

2Jz sin φz . (7.3)

from which the linearly normalized complex coordinates can be defined,

ξz,± = ẑ± i p̂z . (7.4)

The linear map in action angle variables then becomes

e: f2: = e:−µz Jz : . (7.5)

The beam-beam force for round Gaussian beams of rms-radius σ is given by:

f (z) =
Nr0

γ

2
z
(1− e−z2/2σ2

) , (7.6)

where N is the number of particles in the opposing bunch, γ is the relativistic
Lorentz factor, r0 is the classical radius of the colliding particle, and σ is the beam
size of the opposing beam at the location of the head-on beam-beam interaction.
As this is in normalized coordinates, σ is normalized by the β-function of the beam
of interest.

The beam-beam map in Lie operator form can be expressed as,

e:hbb: with hbb =
∫ z

0
dz′ f (z′) , (7.7)

where −hbb is the potential from the beam-beam force. The potential hbb can be
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decomposed as a Fourier series as

hbb =
∞

∑
n=−∞

cn(Jz)einφz . (7.8)

The one-turn map of a system with a single head-on beam-beam source is ex-
pressed as

M = e:hbb:e: f2: . (7.9)

The normal from method [68, 69] can be applied to this one-turn map to obtain a
rotational one-turn map that only depends on the amplitude. A generating function
F exists for which,

e:−F:e:hbb:e: f2:e:F: = e:H(Jz):R , (7.10)

where H(Iz) is the amplitude dependent Hamiltonian. The solution to Eq. (7.10) is
obtained from the Campbell-Baker-Hausdorf (CBH) theorem and is given to first
order by,

F =
1

1− Rz
hbb − h̄ (7.11)

where Rz is the linear rotation operator defined as Rz = e:−µz Jz :, h̄ is the average
of hbb over the phase variables and is in this case given by h̄ = c0(Jz). Note that h̄
defines the beam-beam amplitude detuning of the beam-beam potential. Inserting
the expansion of hbb into Eq. (7.11) yields the generating function,

F = ∑
n 6=0

cn(Jz)

(
1

1− einµz

)
einφz (7.12)

The coefficients cn(Jz) in single dimension are calculated as done in [46] and are
defined as,

cn(Jz) =
Nr0

γ

∫ Jz/2σ2
z

0

dα

α

−e−αIn/2(ff) n = even 6= 0

0 otherwise

(7.13)
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Figure 7.3: The amplitude of coefficients gn in one dimension as specified in Eq. (7.20) over
horizontal excitation amplitudes.

where In are the modified Bessel functions of the first kind, and βz and σz are
respectively the β-function and beam size at the location of the beam-beam inter-
action. The coefficients are shown in Fig. 7.3 as a function of normalized excitation
amplitudes.

The computation of the nonlinear perturbations are obtained by deriving the
change of coordinates from normal form complex coordinates ζz,± to the linearly
normalized complex coordinates ξz,± by applying the generating function as a Lie
operator,

ξz,± = e:F:ζz,± . (7.14)

where the normal form coordinate is a nonlinear generalization of the normalized
complex coordinate with a new phase ψz and a new invariant of the motion Iz,

ζz,± =
√

2Ize∓i(ψz+ψz,0) . (7.15)

The generating function F in normal form space is given as a function of the
normal form variables,
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F = ∑
n 6=0

cn(Iz)

(
1

1− einµz

)
einψz (7.16)

The solution to the transformation of Eq. (7.14) is given to first order by,

ξz,± = ζz,± + [F, ζz,±] (7.17)

where the square bracket are the Poisson brackets and are defined by,

[ f , g] = ∑
z

∂ f
∂ψz

∂g
∂Iz
− ∂ f

∂Iz

∂g
∂ψz

. (7.18)

By substituting Eqs (7.15) and (7.16) in Eq. (7.17) and solving the Poisson bracket
while taking into account that cn(Iz) = 0 for odd n, the result for ξz,− is given by,

ξz,− =
√

2Izei(µz N+ψz,0)

+i ∑
n∈2Z
n 6=0

gn(Iz)

1− einµz
ei(n+1)(µz N+ψz,0) , (7.19)

where,

gn(Iz) =

(
n√
2Iz

cn(Iz)−
√

2Iz
∂cn(Iz)

∂Iz

)
, (7.20)

and with the resonance condition given by nµz = 2πp for p ∈ Z. The derivative of
the coefficients are then given by,

∂cn(Jz)

∂Jz
=

Nr0

γJz

−e−Jz/2σ2
z In/2(Jz/2œ2

z) n = even 6= 0

0 otherwise

(7.21)

Equation (7.19) shows all the spectral modes contained in the motion of a parti-
cle under the influence of a single head-on beam-beam interaction. In fact the sec-
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ondary spectral line amplitudes in spectra of turn-by-turn complex position data
are fully determined by the function gn(Iz) and its corresponding resonance denom-
inator. The beam-beam resonance driving terms can thus be studied by observing
the secondary spectral line amplitudes, as will be shown in Sec. 7.5.

head-on beam-beam with ac dipole

The calculation of resonance driving terms under the influence of an ac dipole
need a more involved approach. First the forced motion normal form coordinate is
defined as

ζ±z =
√

2Ize∓i(ψz+ψz,0) +
√

2Ad,ze∓i(µd,zτ+χd,z) , (7.22)

where µd,z is the ac dipole phase advance after one turn, χd,z is the ac dipole
initial phase, τ is the turn like variable, Ad,z is the action of the ac dipole driven
motion [54], and the second mode of the ac dipole is neglected. The forced motion
can now be derived using the generating function for the forced motion (Fd) as
defined in [49],

Fd =
1

1− RzRτ
h∗ (7.23)

where Rτ is the one-turn rotation operator acting on the variable τ as Rττ = τ + 1.
Starting with the Hamiltonian h∗ of the generating function, the coefficients cn(Jz)

of h∗ are expanded in terms of the eigen functions of Eq. (7.15) as,

h∗ = ∑
n 6=0

∑
k

ck

2k ζ
k+ n

2
z,− ζ

k− n
2

z,+ . (7.24)

and the corresponding derivative of the expanded coefficients is given by,

∂cn(Jz)

∂Jz
= ∑

k
kck Jk−1

z (7.25)

Two properties of Poisson brackets are used. First the Poisson bracket of conju-
gate coordinates is given by,
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[ζv
z,+, ζz,−] = −2ivζv−1

z,+ (7.26)

and secondly the rotation operator may be extracted from the Poisson bracket as
in [49],

[
1

1− RzRτ
h∗, ζz,−

]
=

1
1− e−iµz RzRτ

[h∗, ζz,−] . (7.27)

Using these properties and inserting the new Hamiltonian expansion into Eq. (7.17)
the linearly normalized coordinate is given by,

ξz,− = ζz,− − 2i
1

1− e−iµz RzRτ

× ∑
n 6=0

∑
k

(
k− n

2

) ck

2k ζ
k+ n

2
z,− ζ

k− n
2−1

z,+ . (7.28)

For the free motion where Rτ = 1 and with the normal form coordinate as
defined by Eq. (7.15), this reduces to the previous result of Eq. (7.19).

For the forced motion the new forced normal form coordinate of Eq. (7.22) are
used. Making use of the assumption that Ad,z � Iz, and using the definition of
Eq. (7.25) the forced turn-by-turn motion in normalized coordinate is found to be,

ξz,− =
√

2Ad,zei(µd,zτ+χd,z)

+i ∑
n∈2Z, n 6=0

gn(Ad,z)

1− ei[−µz+(n+1)µd,z]
ei(n+1)(µd,zτ+χd,z) . (7.29)

where,

gn(Ad,z) =

(
n√

2Ad,z
cn(Ad,z)−

√
2Ad,z

∂cn(Ad,z)

∂Ad,z

)
. (7.30)

This result is almost identical to the free motion case, expect for the new reso-
nance condition is now defined as −µz + (n + 1)µd,z = 2πp for p ∈ Z.
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derivations in two dimensions

The previous derivations are extended to two dimensions for cases where both
the horizontal and vertical planes are excited. The two dimensional beam-beam
potential is now decomposed as,

hbb(Jx, Jy, φx, φy) = ∑
m,n∈Z

cmn(Jx, Jy)eimφx einφy (7.31)

The steps described in Sec. 7.3 are applicable to the two dimensional case as well,
from which the following horizontal coordinate is obtained for the free motion,

ξx,− =
√

2Ixei(µx N+ψz,0)

+ ∑
m,n∈2Z
m,n 6=0

i
gmn(Ix, Iy)

1− ei[mµx+nµy]

× ei[(m+1)(µx N+ψx,0)+n(µy N+ψy,0)] (7.32)

with,

gmn(Ix, Iy) =
n√
2Ix

cmn(Ix, Iy)−
√

2Ix
∂cmn(Ix, Iy)

∂Ix

(7.33)

and for the forced motion,

ξx,− =
√

2Ad,xeiµd,xτ

+ ∑
m,n∈2Z
m,n 6=0

i
gmn(Ad,x, Ad,y)

1− ei[−µx+(m+1)µd,x+nµd,y]

× ei[(m+1)µd,xτ+nµd,yτ] (7.34)

with,
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gmn(Ad,x, Ad,y) =
n√

2Ad,x
cmn(Ad,x, Ad,y)

−
√

2Ad,x
∂cmn(Ad,x, Ad,y)

∂Ad,x
. (7.35)

The results are very similar to the single dimensional case, although the coeffi-
cients cmn now come from the two dimensional decomposition of Eq. (7.31). Un-
fortunately there is no nice analytical form for the two dimensional coefficients as
there is for the one-dimensional coefficients. However, the coefficients cmn(Ad,x, Ad,y)

can be evaluated numerically by numerically performing the integrals as,

cmn(Ad,x, Ad,y) =
1

4π2

2π∫
0

2π∫
0

eimφx einφy

r∫
0

f (r′)dr′dφxdφy (7.36)

where

r =
√

2Ad,x sin2 φx + 2Ad,y sin2 φy (7.37)

A similar integral can be solved for the derivative of cmn(Ad,x, Ad,y),

∂cmn(Ad,x, Ad,y)

∂Ad,x
=

1
4π2

2π∫
0

2π∫
0

eimφx einφy
∂r

∂Ad,x
f (r)dφxdφy (7.38)

Figure 7.4 shows the two-dimensional composition of coefficients gmn(Ad,x, Ad,y)

from Eq. (7.35), obtained by numerical integration for diagonal excitations with
Ad,x = Ad,y. The coefficients are set over the r normalized by the design beam size
at the interaction point.

comparing analytical derivations with single particle tracking

simulations

Simulations are done to compare the previously derived analytical expressions of
the nonlinear motion for the case of free and forced oscillations. The simulations
are done with the nominal LHC model at injection energy for the 2016 optics
with nominal natural tunes Qx = 0.31, Qy = 0.32. All sextupoles are turned off
to exclude second order contributions to secondary spectral lines for large am-
plitude excitations. The normalized beam emittances are used in the simulations
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Figure 7.4: The amplitude of coefficients gmn in two dimensions as specified in Eq. (7.33)
over diagonal excitation amplitudes with Ad,x = Ad,y where rnorm = r/

√
ε.

εx,nom = εy,nom = 1.0 µm, and the beams are setup with 1.1 · 1011 protons per
bunch. The beam-beam interaction is modelled by installing five equally strong
and equally spaced beam-beam elements at IP1 over a longitudinal distance of
0.10 m. Simulations with this approach accurately reproduce the linear beam-beam
tune shift as calculated from theory [128, 129]. Tracking is done in MAD-X [72] for
both free and forced excitations, and the SUSSIX code [89] is used to do all the
spectral analyses. The spectral lines are labelled as H(u, v) for lines in the horizon-
tal spectra with frequency uµx + vµy, and V(u, v) for the vertical spectra. For the
forced motion, the line labels will refer to the frequency defined by the forced tunes
uµd,x + vµd,y.

In the case of single kicks for free motion, a series of simulations is done with
increasing initial horizontal displacement. The particle is tracked for 3000 turns,
and the obtained turn-by-turn data is used to do the spectral analysis. The spectral
content of the real turn-by-turn data will yield symmetric spectra around 0. In such
a state there can be no distinction between spectral lines with opposite frequencies,
such as for example for H(3, 0) and H(−3, 0). To distinguish between the two lines
the complex signal z− ipy needs to be reconstructed from two BPMs at π/2 phase
advance. This is done in the same way as in [1].

Figure 7.5 shows the secondary spectral line amplitude of H(3,0) along the ring.
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The amplitude is observed to be mostly constant. Indeed a single source is expected
to yield a resonance driving term with a constant amplitude that propagates with
its corresponding phase. As the spectral line amplitude is constant the average of
the amplitude over the whole accelerator is taken to characterize the secondary
spectral line amplitude as a function of kick amplitudes and provide a measure of
the resonance driving term amplitude.

The secondary spectral line amplitudes obtained from particle tracking simula-
tions are compared to the theoretical predictions from Eq. (7.19) in Fig. 7.6. The lines
H(3, 0) and H(−3, 0) correspond to the spectral lines of octupolar order, while the
lines H(5, 0) and H(−5, 0) relate to dodecapolar spectral lines. A very good agree-
ment is observed between the analytical predictions and the results from tracking
simulations, with only small deviations observed for the peak line amplitudes of
H(±3, 0) between 1.5 σnom and 3.5 σnom. This is likely due to higher order contribu-
tions to the same spectral line from the normal form transformation of Eq. (7.17).

In the case of forced motion with ac dipoles the β-functions around the ring
are perturbed [54]. To calculate the spectral line amplitudes from theory, the per-
turbed β at IP1 is obtained by modelling the ac dipole as a quadrupolar kick in
the lattice [54]. This effective quadrupole is only used to obtain the β-functions and
is not applied during tracking. Tracking simulations with the ac dipole are done
with a particle initially at rest (x = px = y = py = 0). The ac dipole tunes are
chosen at {Qd,x, Qd,y} = {0.268, 0.278} such that both ac dipole tunes are below
the full beam-beam footprint, in order to avoid to excite resonantly for the range
of amplitudes. A ramp up time of 2000 turns is used, and the spectral analysis is
done on 3000 turns of flattop ac dipole excitation data. The detuning of the natural
tune with amplitude for forced oscillations is obtained as in [66] and is used in the
resonance denominator of Eq.(7.29)

Figure 7.7 shows the spectral line amplitudes from Eq. (7.29) of single plane
octupolar and dodecapolar order, and are compared to results from tracking sim-
ulations. In general, a good agreement is observed between the two, although a
larger deviation is seen at peak values compared to the free motion case.

Simulations are done with simultaneous excitations in the horizontal and ver-
tical planes to validate the derivations in two dimensions of Sec. 7.4. Figure 7.8
compares the octupolar spectral line amplitudes of H(3, 0), H(−3, 0), H(−1, 2) and
V(2,−1) obtained from the turn-by-turn data of single particle tracking simula-
tions to the analytical predictions of Eq. (7.32). The coefficients of Eq. (7.32) are
derived numerically using the excitation amplitudes from the tracking simulations.
This ensures that any deviation from perfectly diagonal excitations in simulations
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Figure 7.5: Normalized amplitude of the secondary spectral line H(3, 0) along the cir-
cumference of the LHC in single particle simulations. For the case with a single head-on
beam-beam interaction at IP1, with an opposite beam intensity of 1.1 · 1011 and a round
beams with ε = 1.0 µm

0 1 2 3 4 5 6
N x

0.000

0.002

0.004

0.006

0.008

0.010

No
rm

. l
in

e 
am

p.

Theory H(3,0) 
Theory H(-3,0)
Theory H(5,0) 
Theory H(-5,0)
Tracking

Figure 7.6: Comparison of spectral line amplitudes between single particle tracking simula-
tions with a single free kick and analytical derivations for the free motion of Eq. (7.19).
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Figure 7.7: Comparison of spectral line amplitudes between single particle tracking simula-
tions using ac dipoles and analytical derivations for the forced motion of Eq. (7.29).

is accounted for. The results for the single plane lines H(3, 0) and H(−3, 0) are well
reproduced analytically. However, for the two dual plane spectral lines H(−1, 2)
and V(2,−1) a discrepancy is observed between analytical calculations and the re-
sults from tracking simulations. Firstly, while the two line amplitudes are expected
to be the same for perfectly diagonal excitations, they differ significantly in the
tracking simulations. This can partly be explained by the slight asymmetry in exci-
tation amplitudes, as is seen in the theoretical predictions of Fig. 7.8. Furthermore,
the change of optical functions with amplitude can perturb the two driving terms
asymmetrically which can contribute to this discrepancy.

Again the forced motion is also tested in tracking simulations in the case of
diagonal excitations. The comparison between Eq. (7.34) and is shown in Fig. 7.9.
The maximal deviation between simulation and analytical calculations is of 7% for
the H(−1, 2) line for large excitation amplitudes. Simulations are larger excitation
amplitudes are omitted as the 8th order resonance µx = −3µd,x + 4µd,y is crossed
and spoils the simulations.

Simulations in two dimensions show a complication of the analysis of beam-
beam generated driving terms. The amplitude of spectral lines become more sen-
sitive to changes in optics parameters. Although the results for diagonal excita-
tions are less accurately reproduced with theoretical calculations, the presented
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Figure 7.8: Comparison of spectral line amplitudes between single particle tracking simula-
tions with free single kicks and analytical derivations for the free motion in two dimensions
of Eq. (7.32).
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Figure 7.9: Comparison of spectral line amplitudes between single particle tracking simula-
tions using ac dipoles and analytical derivations for the forced motion in two dimensions of
Eq. (7.34).
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analytical derivations still offer a clear cut path to measuring beam-beam gener-
ated driving terms by characterizing spectral line amplitude as a function of beam
oscillation.

first measurements of beam-beam driven resonance driving terms

Measurements of beam-beam generated resonance driving terms are very challeng-
ing. One of the main issues faced when attempting to measure with colliding beams
is how to obtain high quality turn-by-turn data. The beam-beam interaction gen-
erates very large amplitude detuning that results in extremely quickly decohering
bunches when kicked with single kicks and thus a very limited usable number of
turns for spectral analysis.

Secondly measuring the head-on beam-beam interaction of two colliding beams
of comparable intensities is made even more challenging due to oscillation coupling
between the two beams. The static beam will be excited by the kicked beam, and
will in turn excite the kicked beam. As disentangling this beam coupling from the
turn-by-turn data is very complicated, a simpler setup is explored to mitigate this
in experiments in the LHC.

Measurements of head-on beam-beam driving terms in the LHC

The ac dipoles in the LHC combined with the flexibility of beam setup at injec-
tion offer a unique setup to measure beam-beam generated driving terms. Mea-
surements were taken in 2016 to measure beam-beam generated resonance driving
terms at injection energy in the LHC. A review of the setup is presented below,
while a complete overview can be found in [130].

To mitigate the coupling between the two beams the weak-strong beam-beam
interaction is examined. The weak beam is used for the excitation while the strong
beam is kept at rest. Beam 2 is filled with two nominal bunches (1.097± 0.002 · 1011

protons) with round beams with small emittances of 1.0 µm to function as the
strong beam. The exact beam parameters are reported in [130]. It should be noted
that the emittance measurements from the Beam Synchrotron Radiation Telescope
(BSRT) [116] for such small beams are of poor quality [131]. Studies reported emit-
tances that may be 20% larger than the BSRT measured emittances [130], and fur-
ther deviations are not excluded.

Only a single bunch in Beam 2 is colliding, while the second bunch in Beam
2 is used for diagnostic purposes. Beam 2 is operated with Landau octupoles at
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Figure 7.10: Spectra from horizontal and vertical turn-by-turn position data at
BPM.14L5.B1 for the horizontal plane (top) and BPM.15L5.B1 for the vertical plane (bot-
tom) for non-colliding Beam 1. The main ac dipole tunes (Qd,x and Qd,y) are the largest
two spectral lines observed.

nominal injection settings and the transverse damper turned on to mitigate any
sort of coherent excitation of Beam 2. Beam 1 is filled with a single colliding pilot
bunch with low intensity (7.5 · 109 protons) as the weak beam.

Reference measurements are done with the ac dipole during setup to measure
and correct the linear coupling. The working point for these measurements is Qx =

0.31 and Qy = 0.32 and the ac dipole tunes are chosen as Qd,x = 0.298 and Qd,y =

0.33. The coupling is corrected to values below |C−| < 10−3, where |C−| is defined
by the integral notation of [87].

Figure 7.10 shows the horizontal and vertical spectra for non-colliding beams at

173



7

First measurement of beam-beam resonance driving terms

BPM.14L5.B1 and BPM.15L5.B1 respectively, both BPMs located at focussing arc
quadrupoles of their respective planes for a kick amplitude of 2.1 σB2. The spectra
reveal the main ac dipole tune lines as the largest lines {H(1, 0), V(0, 1)}, and
several smaller spectral lines {H(0, 2), H(1, 1), H(2, 0), V(2, 0)} corresponding to
sextupolar sources, as well as the natural tunes {Nx, Ny}. These measurement do
not indicate any visible source of b4 or b6 at this working point and amplitude.

Due to the combination of the low intensity of the pilot bunch in Beam 1, the low
energy of both beams and the large β∗ at the point of interaction, the generated
luminosity is very low and collision optimization is thus practically impossible. The
head-on collision of the two beams is assured by aligning collision with nominal
bunches in both beams and then emptying Beam 1 before filling it with a single
pilot bunch in the previously occupied slot. It is assumed in this approach that
there is no significant orbit drift between dumping and re-injecting in Beam 1.

Different ac dipole tunes are used for the measurements with colliding beams,
with Qd,x = 0.268 and Qd,y = 0.278. The ac dipole tunes have to be chosen beyond
to beam-beam induced detuning, as to avoid resonantly exciting part of the beam.
Figure 7.11 shows the expected footprint coming from the head-on beam-beam
interaction as well as the ac dipole working point used during the experiments.
One of the disadvantages of this working point is that as the excitation amplitude
increases the tune footprint moves away from the ac dipole tunes, thus weakening
the ac dipole. At injection energy in the LHC this does not pose severe limitations
as the ac dipoles are powerful enough. However, this may become challenging at
top-energy where ac dipole strengths are limited.

Measurements of resonance driving terms are done in Beam 1. The beam is ex-
cited with both the vertical and horizontal ac dipoles simultaneously. This results
in diagonal kicks in action-space. Turn-by-turn position data is recorded at each
BPM to be used for spectral analysis. Spectra from turn-by-turn data obtained with
colliding beams are shown in Fig. 7.12. The spectra are obtained at the same BPMs
as in Fig. 7.10 and the amplitudes have been normalized to the main tune line
amplitude.

Secondary spectral lines corresponding to octupolar order sources from the beam-
beam collision are now clearly visible in both planes, {H(1, 2), H(3, 0), H(−1, 2)}
in the horizontal plane, and {V(0,−3), V(2, 1), V(2,−1)} in the vertical plane.
Furthermore, the dodecapolar order line V(−2, 3) with frequency −2Qx + 3Qy is
observed. These measurements not only show the first ever measurement of beam-
beam driving terms, but also the first ever observation of dodecapolar spectral lines
in turn-by-turn data from synchrotrons.
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Figure 7.11: Footprint of beam with measured beam-beam parameters. The ac dipole work-
ing point is indicated by the green point at Qd,x = 0.268 and Qd,y = 0.278, while the
natural tunes are indicated by the orange point at Qx = 0.31 and Qy = 0.32.

Figure 7.13 shows the measured normalized spectral line amplitude of H(−1, 2)
over the circumference of the LHC. As there is only a single beam-beam interac-
tion, at IP1, the line amplitude does not show significant changes as discussed in
Sec. 7.5. These measurements can thus be presented in the same way as shown
in Sec. 7.5 as the average spectral line amplitude over kick amplitude. Figure 7.14

shows the average octupolar order spectral line amplitude of H(−1, 2), V(2,−1)
and V(0,−3) over the combined 2-dimensional action

√
A2

x + A2
y in units of σB2,

where σB2 = 1.0µm. Several measurements are done at the same kick amplitude.
The measurement errors in the spectral line amplitude is obtained from the stan-
dard deviation of the measurements with the same kick amplitudes. Firstly a lack
of quality data is observed for low amplitude kicks, where the errors are large. As
the ac dipole excitation amplitude is increased the secondary spectral line ampli-
tudes increase over the noise floor.

Due to the change of tunes between the reference measurement and the measure-
ments with colliding beams, some spectral lines may be enhanced by this new work-
ing point and become visible. To assure the observed secondary spectral lines are
not a result of this change of tunes, and validate the measurement of beam-beam
generated driving terms, the noise floor of the non-colliding beams measurement
is used to set a threshold on the maximum possible spectral amplitude from mov-
ing the tunes. The noise floor of the spectra for non-colliding beam is used as the
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Figure 7.12: Spectra from horizontal and vertical turn-by-turn position data at
BPM.14L5.B1 for the horizontal plane (top) and BPM.15L5.B1 for the vertical plane (bot-
tom) for Beam 1 with head-on collisions. The main ac dipole tunes (Qd,x and Qd,y) are the
largest two spectral lines observed.

maximum line amplitude at those settings, and the effect of moving the tunes on
this noise floor yields a threshold value for the new working point. This threshold
is shown as a dashed line with corresponding color to the line measurements. The
measured driving term amplitudes of H(−1, 2), V(2,−1), and V(0, 3) surpass this
threshold, thus indicating a clear first measurement of beam-beam driving terms.

The same is done for the dodecapolar spectral line and presented in Fig. 7.15.
For large enough oscillation amplitudes (> 1.3σB2) the spectral line V(−2, 3) rises
above the threshold value from the reference measurement. This serves as the first
measurement of dodecapolar resonance driving terms in a synchrotron.
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Figure 7.13: Measured normalized spectral line amplitude of H(−1, 2) for the largest kicks
with ac dipole, with kick size rnorm = 2.3σB2.
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the LHC. The noise threshold sets limit obtained from the reference measurement.
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Figure 7.15: Measurement of the dodecapolar spectral line V(-2,3) generated by head-on
beam-beam in the LHC. The noise threshold sets limit obtained from the reference measure-
ment.

Comparison of measurements to multiparticle simulations

Multiparticle simulations are required to attempt to accurately reproduce the mea-
surements. Due to the beam-beam induced footprint, the distance between the ac
dipole tune and particle tune will depend significantly on the amplitude of the
particles. The ac dipole will thus have a varying effect on all the particles inside the
bunch, resulting in different excitation amplitudes. When considering a full bunch
the response of a kick in the turn-by-turn data will reflect the centroid of charge and
can thus deviate from the idealized particle at rest. In general, the simulations done
in Sec. 7.5 with a single idealized particle at rest will overestimate the secondary
spectral line amplitudes compared to the multiparticle systems of bunches.

Multiparticle tracking simulations with 20000 particles are done in MAD-X using
the same model as detailed in Sec. 7.5. To start with the simulations are done
with two sets of round beams, with emittances set to 1.0 µm and 1.2 µm. This
encompasses the measured emittances, and the proposed 20% increase from beam
based measurements [130]. The beam intensity of Beam 2 is set at 1.1 · 1011 protons,
as measured with the Beam Current Transformers (BCT) [113]. The simulations are
done for a series of increasing flattop ac dipole amplitude. The simulated turn-by-
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turn data is analysed in the same way as done for the measurements. Results of
the multiparticle simulations are shown in Fig. 7.16. The simulations with round
beams of ε = 1.0 µm are shown in green, while the simulations with round beams
of ε = 1.2 µm are shown in blue. The simulated spectral line amplitude of H(−1, 2)
for the ε = 1.0 µm case agrees well with measurements. However, a weaker beam-
beam effect is observed for the case with larger emittance of ε = 1.2 µm. The
opposite is true for the vertical octupolar spectral line amplitude V(2,−1). Indeed,
in this case the smaller emittance over estimates the beam-beam force, while the
larger round beams reproduce the measurements.

Figure 7.17 shows the results of the same simulations for the dodecapolar spec-
tral line V(−2, 3) compared to measurements. In this case the simulations with
ε = 1.0µm over-estimate the strength of the beam-beam interaction. A much better
agreement is found with the larger beams with ε = 1.2µm. Note that, as shown
previously in Fig. 7.15, the low amplitude kicks are close to the noise floor and
have very large errors, which explains the discrepancy between simulations and
measurements. Furthermore, the rise in amplitude of the spectral line occurs for
higher amplitudes than in the case of octupolar lines. This result is consistent with
the simulations of Sec. 7.5.

The BSRT measured a larger horizontal emittance than the vertical emittance,
pointing to possible elliptical beams. Multiparticle simulations are done with ellip-
tical beams with emittances of εx = 1.2 µm and εy = 1.0 µm to explore the effect of
non-round Gaussian beams on the measured driving terms. Figure 7.18 shows the
results of the simulations compared to the measurements for the octupolar driv-
ing terms. The agreement between measurements and simulation is better than for
the round beam case as both line amplitudes are well reproduced. For large am-
plitude kicks, however, the measurements and simulations start to deviate. In the
case of the driving term generating V(−2, 3) a larger discrepancy is observed for
elliptical beams, as is shown in Fig. 7.19. While the simulations better reproduce
the measurements of octupolar order, they also point to possible other sources of
uncertainty in the collision parameters.

Figure 7.17 presents the comparison between the dodecapolar spectral line am-
plitudes of V(−2, 3) obtained from the same multiparticle simulations to the the
measurements. At low amplitudes a discrepancy between the simulations and mea-
surements is observed, which is due to the poor measurement quality at low ampli-
tudes. However, for higher excitation amplitudes the results from simulation and
measurements converge to form a good agreement.
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Figure 7.16: Octupolar spectral line amplitudes of H(−1, 2) and V(2,−1) as a function
of oscillation amplitude for measurements and multiparticle simulations with emittances of
ε = 1.0µm (green) and ε = 1.0µm (blue).
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Figure 7.17: Dodecapolar spectral line amplitudes of V(−2, 3) as a function of oscillation
amplitude for measurements and multiparticle simulations with emittances of ε = 1.0µm
(green) and ε = 1.0µm (blue).

conclusions

The effects of beam-beam interactions are starting to be studied in more detail,
and various compensation methods have been proposed and tested in several ma-
chines. Studies of beam-beam effects often rely on indirect measurements or on
measurements of global effects. Measurements of resonance driving terms gener-
ated by head-on beam-beam interactions offer a direct measurement of beam-beam
nonlinearities in the accelerator, and of the interplay between various sources.

An analytical derivation is presented to characterize the secondary spectral line
amplitudes of even orders coming from a single head-on beam-beam collision as a
function of oscillation amplitude. The analytical approach is shown to be in good
agreement with single particle tracking simulations for both free oscillations as well
as forced oscillations with ac dipole excitations. These results offer a new method
to study resonance driving terms from head-on beam-beam collisions, and pave
the way for compensation studies with for example electron lenses.

The first direct measurements of resonance driving terms resulting from head-
on collisions are done in the LHC. A setup with a weak-strong interaction between
the two beams allows to excite the weak beam and use it for turn-by-turn diagnos-
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Figure 7.18: Octupolar spectral line amplitudes of H(−1, 2) and V(2,−1) as a function of
oscillation amplitude for measurements and multiparticle simulations with elliptical beams
with emittances of εh = 1.2µm and εv = 1.0µm.
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Figure 7.19: Dodecapolar spectral line amplitudes of V(−2, 3) as a function of oscillation
amplitude for measurements and multiparticle simulations with elliptical beams with emit-
tances of εh = 1.2µm and εv = 1.0µm.

tics. Measurements are done at injection energy and with the ac dipoles to obtain
large enough coherent oscillation data. Analysis of measurements with diagonal ac
dipole kicks show large octupolar and dodecapolar secondary spectral lines gener-
ated by the beam-beam collision. These measurements offer the first measurements
of beam-beam generated resonance driving terms, as well as the first measurements
of dodecapolar resonance driving terms in synchrotrons.

The ac dipoles are critical to measure beam-beam generated resonance driving
terms in the LHC. Using the ac dipoles slightly complicates the analysis, but in
return provide long coherent excitations allowing for spectral analysis.

Multiparticle simulations are done in MAD-X to validate the current injection
models with beam-beam interactions. Simulations with round beams with emit-
tances of 1.0 µm and 1.2 µm show some discrepancies in the octupolar spectral line
amplitudes. A correction to the beam profile to εx = 1.2 µm and εy = 1.0 µm is
necessary to better reproduce the measurements. This correction of emittance is in
line previous analysis of the measurements.

To conclude, the presented results offer a new path for beam based measurement
and correction of beam-beam nonlinearities.
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Nonlinear magnetic errors are a major limitation in the operation of the LHC and
are predicted to have a critical impact on the High Luminosity LHC. The measure-
ment and correction of these nonlinear sources of perturbation is crucial to envisage
pushing the operational parameters of the LHC, and to achieve the design perfor-
mance of the High Luminosity LHC. During Run II of the LHC, significant studies
were performed to develop and test correction strategies for the nonlinear beam dy-
namics. Measurements of resonance driving terms were foreseen as an important
correction strategy in the LHC, but had until now not yet demonstrated their full
potential.

The aim of this thesis is to develop, test and validate the use of resonance driving
terms measurements for the correction of nonlinear beam dynamics in the LHC
using ac dipoles. The forced motion under ac dipole excitations is seen as one of
the main diagnostic tool for the measurement and correction of nonlinear errors
for Run III of the LHC, as well as for the High Luminosity LHC upgrade. The
main promise of forced excitations is the possibility to measure specific resonance
driving terms and allow for a direct order by order correction of specific driving
terms.

This thesis has explored the theoretical parametrization of the nonlinear forced
motion and studied it both in simulations and in experiments in the LHC. It pro-
vides an improved understanding of the nonlinear motion with ac dipoles, and
presents the first experimental demonstration of specific correction strategies in
the LHC.

To shortly summarize, a new parametrization of the nonlinear forced motion is
presented in Chapter 4. The first direct correction of skew-octupolar errors using
forced resonance driving terms measurements are achieved and presented in Chap-
ter 5. Chapter 6 presents the first experimental demonstration of forced dynamic
aperture measurements, while Chapter 6 presents the first measurements of forced
dynamic aperture at top energy in the LHC. Finally the first measurement of beam-
beam generated resonance driving terms is presented in Chapter 7. A discussion
of the remaining challenges and proposed studies is presented for each chapter
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below.

chapter 4 : forced resonance driving terms

It is shown in Chapter 4 that the analysis using the forced Courant-Snyder pa-
rameters greatly simplifies the description of resonance driving terms in forced
motion. The amplitudes of resonance driving terms in the forced parameter space
are constant between sources. This does not agree with the results of the normal
form analysis of the forced motion, where amplitude beating would be expected.
Chapter 4 derives a new parametrization of forced resonance driving terms that
accurately reproduces the observations in simulations.

Furthermore, the results presented in Chapter 4 show a second order perturba-
tion from the ac dipole. This perturbation manifests itself as a jump in both phase
and amplitude of the resonance driving terms at the location of the ac dipole. It is
the first time that such a second order contribution is considered for the nonlinear
forced motion. The new proposed parametrization of resonance driving terms accu-
rately reproduces this second order contribution as well. However, open questions
still remain that should be addressed in future studies.

Firstly, future studies should try to clarify why the first normal form approach
presented in this chapter fails to reproduce the obtained results from simulations.
Certain conceptual inaccuracies may have been overlooked and new approaches
may yield an even better understanding of the forced motion. One approach that
conceptually differs from the presented studies, would be to apply the generating
function obtained from the normal form transformation to the normalized coor-
dinate in free parameter space, before transforming the result again to the forced
parameter space.

Furthermore, the second order contribution from the ac dipole should be studied
in greater detail. The effect of the resonance driving terms amplitude and phase
on the driving terms around the ring poses interesting challenges and raises the
question of what the impact is on measurements and corrections. This is a new
observation of perturbation of the driving terms and its implications may not yet
be fully understood.
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chapter 5 : measurement and correction of resonance driving terms

in the large hadron collider

Measurements of forced resonance driving terms under forced motion with ac
dipoles are seen as a promising correction strategy for machine nonlinearities for
the LHC and High Luminosity LHC. Chapter 5 presents the measurements of reso-
nance driving terms and the accompanying experimental developments performed
in Run II of the LHC. A first measurement of decapolar resonance driving terms
is presented which motivates the use of resonance driving terms measurements
for the correction of higher order nonlinear sources. Chapter 5 concludes with
the highlight of the first direct skew octupolar correction using resonance driving
terms measurements with ac dipoles. This successful correction opens up the field
for the wider application of resonance driving terms measurements for the correc-
tion of nonlinear errors in Run III of the LHC and most importantly for the High
Luminosity LHC where the correction of nonlinear errors is critical for operation.
The results provide a milestone validation for using resonance driving terms mea-
surements as a correction strategy in future colliders. Further improvements and
studies should be foreseen for the wide application of this method.

The main challenge in measuring resonance driving terms is to increase the sec-
ondary spectral line content from the turn-by-turn data, and improve the signal-to-
noise ratio. This is one of the main strengths of using ac dipoles as they provide
clean coherent oscillations for a large number of turns. However, even with the cur-
rent diagnostics tools and measurement strategies the observed secondary spectral
lines are small compared to the main spectral lines.

The measurements can be improved in two ways. One improvement can come
from longer ac dipole excitations. The ac dipole is currently limited to 6,600 turns
of flattop excitation due to thermal constraints, while the BPM system can acquire
25,000 turns of data. Significant improvements in noise reduction can be obtained
by upgrading the ac dipole electronics and increase the excitation period to 25,000

turns. Secondly, the excitation amplitude is directly proportional to the ac dipole
strength. An increase of ac dipole strength over a wide bandwidth should improve
measurements and allow measurements of driving terms over a wider range of
tunes. These two improvements could be combined in the form of an ac dipole
upgrade for the High Luminosity LHC.

The measurements of resonance driving terms in the LHC currently do not re-
produce the detailed structure of amplitude jumps observed in simulations. This
can possibly arise from the loss of information in the cleaning process when the
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secondary spectral lines are small. Future studies should clarify this loss of struc-
ture in the driving terms around the ring and, if needed, an improved cleaning
approach should be used. A reduction of the noise floor as discussed previously
can further improve these observations.

The studies presented in Chapter 5 discuss the measurements of driving terms
on an order-by-order basis. However, both lower order and higher order multipoles
can affect the measurements of specific driving terms. Measurements of resonance
driving terms can be perturbed by higher order resonance driving terms driving
the same spectral line, i.e. f4000 and f5100 both driving the H(−3, 0) line, and may
be further perturbed by second order contributions from sources of different mul-
tipolar order. Further perturbations can arise from feed-down from higher order
sources as presented in Chapter 5. Measurements of f1210,H at flat-orbit and at cross-
ing angles of 145 µrad in the IR1 and IR5 show a significant source of feed-down
to the skew octupolar resonance driving term. The effect of such perturbations on
measurements of resonance driving terms should be understood in more detail to
improve the models and corrections.

Lastly, the effect of the second order cross-term from the ac dipole on measure-
ments should be studied. Deviations between machine and model can introduce
discrepancies between simulated second order contribution and the actual second
order contribution in the machine. This discrepancy can impact the calculation of
the resonance driving terms responses and thus have an impact on the quality of
corrections of driving terms.

chapter 6 : first experimental demonstration of forced dynamic

aperture measurements with lhc ac dipoles

The forced dynamic aperture is proposed as a new observable in Chapter 6 for the
study of nonlinear beam dynamics. A first measurement of forced dynamic aper-
ture at injection energy in the LHC shows that the method is sensitive to changes
in the nonlinear content of the machine. These results show that the forced dy-
namic aperture can be used to probe machine nonlinearities and can be used as
a complementary observable to validate nonlinear corrections. Measurements of
forced dynamic aperture can further be used to provide a qualitative lower bound
estimate on the free dynamic aperture.

Measurements performed in the LHC at top energy show a sensitivity to mag-
netic changes of the Landau octupoles, as presented in Chapter 6. Forced dynamic
aperture measurements have also been used to evaluate the effect of skew octupolar
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corrections calculated with different methods. Furthermore, a good understanding
of the forced dynamic aperture is important as it is the forced dynamic aperture
and not the free dynamic aperture that is the limiting factor during optics measure-
ments with ac dipoles.

As part of future studies, forced dynamic aperture simulations should be per-
formed to find working points where the forced dynamic aperture is maximized.
At such working points the excitation amplitudes are not limited by the forced
dynamic aperture. Larger oscillation amplitudes can thus be reached that in turn
improve the measurements of resonance driving terms.

A recurrent question from the journal referees for this publication was about the
relationship between the free dynamic aperture and the forced dynamic aperture.
Although the studies presented explicitly do not try to prove a relation between
the two, it is a question that is of great interest. The free dynamic aperture is
one of the most important design parameters for particle colliders, while being
difficult to measure. A relation between the free and forced dynamic apertures is
not guaranteed, but an exploration of such a relation may yield positive results that
may permit fast estimates of free dynamic aperture in the future.

chapter 7 : first measurement of resonance driving terms from head-
on beam-beam interaction in the lhc

An analytical derivation is presented to characterize the secondary spectral line
amplitudes of even orders coming from a single head-on beam-beam collision as a
function of oscillation amplitude. The analytical approach is shown to be in good
agreement with single particle tracking simulations for both free oscillations as well
as forced oscillations with ac dipole excitations. These results offer a new method
to study resonance driving terms from head-on beam-beam collisions, and pave
the way for compensation studies with, for example, electron lenses.

Chapter 7 presents a theoretical derivation for beam-beam generated resonance
driving terms and offers a new measurement approach. Direct measurements of
resonance driving terms resulting from head-on collisions are achieved for the first
time in the LHC and presented in Chapter 7. The results offer a first validation of
the method and a promising outlook on future studies of beam-beam resonance
driving terms. Two studies are suggested to continue the research on beam-beam
resonance driving terms measurements.

Measurements of beam-beam generated resonance driving terms should be re-
peated with less aggressive beam parameters. The colliding beam emittance should
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be larger, such that accurate emittance measurements are possible. A larger emit-
tance will furthermore decrease the beam-beam parameter. This has the effect of
narrowing the tune distribution of the test beam, which can improve the measure-
ment of the natural tune and thus improve the models to reproduce resonance
driving terms measurements.

Future studies of the LHC can explore the compensation of specific resonance
driving terms with dedicated octupolar or dodecapolar correctors. Another exper-
iment of great interest is to study the compensation schemes using electron lenses.
Such measurements can possibly be achieved in the Relativistic Heavy Ion Collider
(RHIC), where both an electron lens and an ac dipole are present.

To conclude, the achievements presented in this thesis significantly improve the
understanding of the nonlinear motion under the influence of ac dipoles on a theo-
retical basis, as well as in simulations and in experiments. This thesis offers the first
experimental demonstration of specific nonlinear correction strategies using the ac
dipoles at top energy. The validation of these methods now offer new strategies
to improve the beam control, push for more challenging optics parameters, and
achieve higher luminosities.

190



A
A P P E N D I X : F O R C E D N O R M A L F O R M I N

F R E E PA R A M E T E R S PA C E

The theoretical description of the ac dipole motion in synchrotrons was established
in [53]. The general solution for the particle motion at any longitudinal location s
in the ring is given in Courant-Snyder variables as a function of turn T,

ẑ(T)− i p̂z(T) =
√

2Jzei(2πQzT+φz0)

+ e−iφacd,z(δz,−ei2πQd,zT − δz,+e−i2πQd,zT) ,

(A.1)

where z ∈ {x, y} denotes the plane of motion, Qd,z is the ac dipole tune, Qz is the
natural tune, φz0 is the initial phase, φacd,z is the phase advance between location s
and the ac dipole, Jz is the linear invariant of the free motion and δz,− and δz,+ are
the complex ac dipole strengths defined as

δz,± =
√

βacd
BL
B0ρ

e±i(πQz,±−ψ0)

4 sin(πQz,±)
, (A.2)

where Qz,± = Qd,z ± Qz, βacd is the β-function at the location of the ac dipole, BL
is the field strength of the ac dipole, B0ρ is the rigidity, and ψ0 is the initial phase of
the ac dipole. ac dipoles tunes are typically set close to the natural tune to enhance
the Qd,z ≈ Qz resonance and thus enlarge the δz,− mode. The ratio of amplitudes
between δz,+ and δz,− is given by,

λz =
δz,+

δz,−
. (A.3)

The normal form formalism for ac dipole motion was first derived in [49]. A first
derivation of specific resonance driving terms was done for single plane motion
and under the assumption that |δz,−| � |δz,+| and |δz,−| � 2Iz,+. This approach is
extended to include the dual plane resonance driving terms as well as the contri-
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bution from the second ac dipole mode, δz,+. The treatment is done straight away
for any location in the accelerator. The normal form coordinates under forced oscil-
lation of ac dipoles are given at locations before the ac dipole by,

ζ<z,± =
√

2Ize∓i(ψz+ψz,0) + |δz,−|e∓i(2πQd,zτ−ηz−)

−|δz,+|e±i(2πQd,zτ+ηz+) , (A.4)

and after the ac dipole by,

ζ>z,± =
√

2Ize∓i(ψz+ψz,0) + |δz,−|e∓i[2π(Qd,zτ+Q−)−ηz−]

−|δz,+|e±i[2π(Qd,zτ+Q+)+ηz+] , (A.5)

where δz,± are split into their phase eiηz± and amplitude |δz,±| terms, Iz is the new
action invariant, ψz is the new phase variable and τ is the the time-like variable as
defined in [49].

The linear normalised coordinates ξξξ are retrieved to first order by,

ξξξ ≈ ζζζ + [Fr, ζζζ] , (A.6)

where ξξξ are the linear normalised coordinates (ξx,+, ξx,−, ξy,+, ξy,−), ζζζ are the nor-
mal form coordinates (ζx,+, ζx,−, ζy,+, ζy,−), and Fr is the generating function to
transform to normal form defined as [49]. The variable ξx,− is then derived at the
location of the ac dipole as,

ξx,− = ζx,− − 2i ∑
jklm

j
1

1− e−i2πQx Rx,yRτ

×(h<,jklm ζ
j−1
<x,+ζk

<x,−ζ l
<y,+ζm

<y,−

+h>,jklm ζ
j−1
>x,+ζk

>x,−ζ l
>y,+ζm

>y,−) , (A.7)

where h<,jklm are the Hamiltonian terms before the ac dipole (φw − φs < φacd − φs)
and h>,jklm are the Hamiltonian terms after the ac dipole (φw − φs > φacd − φs).

To obtain the full description of the nonlinear turn-by-turn motion, the coordi-
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nates ζ>/<,z,± have to be replaced by the content of Eqs. (A.4) and (A.5). This
then yields the nonlinear turn-by-turn motion as a function of its eigenvectors.
Though the normal form approach simplifies the derivation of the nonlinear mo-
tion, expanding the product of the normal form coordinates in Eq. (A.7) still gives
considerable complexity to the problem. This can be simplified by observing that
|δz,−| �

√
2Iz and |δz,+| �

√
2Iz. Using the binomial theorem the expansion of

powers of a single normal form coordinate can be derived to any order n,

ζn
z,± =

n

∑
u=0

(
n
u

)
(|δz,−|e∓i(2πQd,zτ−η′z−))n−u

×(−|δx,+|e±i(2πQd,zτ+η′z+))u . (A.8)

Applying this to all coordinates of Eq. (A.7), using (A.3) and with some refactor-
ing the variable ξx,− can now be expressed as,

ξx,− = |δx,−|e∓i(2πQd,xτ−ηx−) − |δx,+|e±i(2πQd,xτ+ηx+)

− ∑
jklm

2ij h′jklm,H

j−1

∑
a=0

k

∑
b=0

l

∑
c=0

m

∑
d=0

(
j− 1

a

)(
k
b

)(
l
c

)(
m
d

)

×(−1)a+b+c+d|δx,−|j−1+k|δy,−|l+mλa+b
x λc+d

y

× ei2π{[k−j+1+2(a−b)]Qd,xτ+[m−l+2(c−d)]Qd,yτ}

1− ei2π(−Qx+[k−j+1+2(a−b)]Qd,x+[m−l+2(c−d)]Qd,y)

×ei{[k−j+1+2(a−b)]ηx,−+[m−l+2(c−d)]ηy,−} . (A.9)

The equivalent in the vertical variable ξy,− is given by,
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ξy,− = |δy,−|e∓i(2πQd,yτ−ηy−) − |δy,+|e±i(2πQd,yτ+ηy+)

− ∑
jklm

2il h′jklm,V

j

∑
a=0

k

∑
b=0

l−1

∑
c=0

m

∑
d=0

(
j
a

)(
k
b

)(
l − 1

c

)(
m
d

)

×(−1)a+b+c+d|δx,−|j+k|δy,−|l−1+mλa+b
x λc+d

y

× ei2π{[k−j+2(a−b)]Qd,xτ+[m−l+1+2(c−d)]Qd,yτ}

1− ei2π(−Qy+[k−j+2(a−b)]Qd,x+[m−l+1+2(c−d)]Qd,y)

×ei{[k−j+2(a−b)]ηx,−+[m−l+1+2(c−d)]ηy,−} , (A.10)

where h′jklm,H and h′jklm,V are given by,

h′jklm,H = h<,jklm + h>,jklm ei2π[(k−j+1)Qx,−+2(b−a)Qx+(m−l)Qy,−+2(d−c)Qy] ,

h′jklm,V = h<,jklm + h>,jklm ei2π[(k−j)Qx,−+2(b−a)Qx+(m−l+1)Qy,−+2(d−c)Qy] .

(A.11)

The terms on the first line of Eqs. (A.9) and (A.10) describe the linear motion
of both modes of the ac dipole. The second part describes the nonlinear motion
and gives a slightly complicated view of which frequencies are driven by which
Hamiltonian terms. However a few things can be stated. First of all, a Hamiltonian
term will drive different resonances in the horizontal and vertical planes with dif-
ferent orders in λδ,x/y. This is displayed in Tab. A.1 for the Hamiltonian term h′1020

in the horizontal and vertical motion. Secondly, multiple Hamiltonian terms will
contribute to the same spectral line, as illustrated in Tab. A.2.

In general, it becomes quite complicated to derive all the contributions to the
various spectral line, especially when dual plane resonance driving terms are con-
sidered, as well as all orders of nonlinear sources. An analogue to the resonance
driving terms of the free motion can be defined. To do this, only the contributions
of the lowest order multipoles to a specific oscillation frequency are considered,
i.e. contributions of decapoles to sextupolar frequencies are not taken into account.
Secondly the resonance driving term is labelled according to the dominant Hamilto-
nian term, that is, the Hamiltonian term that contributes to the specified frequency
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Table A.1: Table showing the different spectral lines generated in the horizontal and vertical
spectra from the Hamiltonian term h1020 , including the different orders in λz with which
the spectral modes are excited.

Spectral line jklm abcd λδ,x/y

H(0,-2) 1020 0000 1

H(0,0) 1020 0010 λy

H(0,2) 1020 0020 λ2
y

V(-1,-1) 1020 0000 1

V(1,-1) 1020 1000 λx

V(-1,1) 1020 0010 λy

V(1,1) 1020 1000 λxλy

Table A.2: Table showing the different octupolar resonance driving terms that excite the
horizontal octupolar spectral line H(-3,0), including the different orders in λz with which
the spectral modes are excited.

jklm abcd λδ,x/y

H(-3,0) 4000 0000 1

H(-3,0) 3100 0100 λx

H(-3,0) 2200 0200 λ2
x

H(-3,0) 1300 0300 λ3
x

H(-3,0) 0400 0400 λ4
x

195



Appendix A: Forced normal form in free parameter space

for which a = b = c = d = 0. The resonance driving term is then defined as the
sum of all contributing Hamiltonian terms. This is illustrated here using f ′4000,H.
Using Tab. A.2 f ′4000,H can be defined as,

f ′4000,H =
1

1− e2πi(−Qx−3Qd,x)

×
[

4h′4000 − 3h′3100λx + 2h′2200λ2
x − h′1300λ3

x

]
.

(A.12)

Note that the last term in Tab. A.2 is not driving the line as the index j is zero.
The resonance driving term contains the descriptor H/V that specifies the plane of
motion. This is important as, unlike the case in free motion, the resonance driving
term drives different resonances in the different planes.
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( O F : A N O N L I N E A R F U T U R E )

It is with great pleasure that I take this opportunity to diverge from the beaten path
and indulge in a little creative freedom in summarizing this thesis for the general
public. A word of warning to the seasoned physicists is appropriate; some oversim-
plification may have taken place. Yet this will hopefully help to explain some of the
key elements of this research, and at the very least, make it an enjoyable read. For
fear of losing you, the reader, at the first page, a more thoughtful introduction is
presented. I hope to convey a better sense of the context, challenges and methods
on which this thesis is built before diving into the results of the presented research.

Before addressing the core of this thesis, it is worth discussing the setting. The
research presented in this thesis was performed at the European Organisation for
Nuclear Research, more commonly known as CERN. The main mission of CERN is
to find experimental evidence for the physical laws that govern the universe at the
most fundamental level. To date, the Standard Model of particle physics is the most
accurate model describing the interactions of elementary particles and fundamental
forces. It has been tested and validated extensively, and has been valuable at pre-
dicting a wide range of phenomena. However, there are still many open problems
to which physicists have not found an explanation. Why is matter more abundant
than anti-matter? Can the gravitational force be unified with the other fundamental forces?
What is that dark matter people talk about? Or even more exotic, what is dark energy?
All these topics describe physical phenomena and observations that lie beyond the
Standard Model and require a new understanding of physics. It is exactly these
sort of questions that CERN tries to address in its research programme.

To study physics at this level, CERN attempts to recreate the conditions of the
early universe. The most successful way to approach these conditions is by collid-
ing particles at very high velocities in what are called particle colliders. In particle
colliders, particles are accelerated close to the speed of light and brought to col-
lision with each other. By colliding protons together at large velocities, i.e. high
energies, new particles are created by converting the energy of the protons into
mass, as described by the famous equation, E = mc2. The higher the energies of
the protons, the more massive the created particles can be. By studying what par-
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ticles are created and how these new particles behave and decay, researchers try
to uncover the deeper physical laws. In fact, researchers are still trying to answer
the age-old question; How are babies born? Although now at the smallest possible
scale.

The world’s largest and most powerful particle collider is the Large Hadron
Collider, or LHC for short. The LHC is a circular collider with a circumference
of 27 km and lies 100 m underground at CERN, near Geneva (Switzerland). It
is the largest scientific facility to date. The LHC has the task of accelerating the
protons and setting up the collisions. There are two accelerators in the collider. One
accelerates protons in a clockwise direction, while the other accelerates protons in
an anti-clockwise direction. The two beams intersect at four different locations in
the collider where dedicated detectors look for the newly created particles. These
detectors are ATLAS, CMS, LHCb, and ALICE.

The topic of this thesis however, is not about the result of the collisions or the de-
tectors. It is strictly about the LHC and how the protons travel through this particle
collider. The task of accelerating and colliding the protons is a whole challenge on
its own.

The trajectory of the particles through the collider is fully determined by magnets.
All the magnets will exert a force that is perpendicular to the direction that a
particle is traveling in1. A multitude of magnets are used in the LHC to bend, twist,
mold and kick the protons onto the designed trajectory. In total, the LHC contains
about 9,600 magnets. These are generally named by the number of magnetic poles
they contain. A dipole has two poles, a quadrupole has four poles, and so forth.

The dipoles are the toughest of all the magnets in the LHC, the bodybuilders
under the magnets, and by far the most numerous in the LHC. They are tasked
with the job to bend the trajectory of the particles into a ring. Secondly, there

1 For those who attended Dutch high school, the ’BIL’ rule might ring a bell, while others may
recognise it as the Lorentz force.
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are quadrupoles that maintain the order in the LHC. Quadrupoles guarantee that
bunches of particles stay grouped and focused on the job. Then there are also sex-
tupoles. Sextupoles ensure that particles with energy deviations stay on the right
track. There are also octupoles that can detune certain particles. If well controlled,
they can be useful to tame some unstable particles. Lastly, there are higher order
magnets with even more poles. From here on it does get messy. The naming of
higher order magnets can become quite a mouthful. There are the decapoles with
ten poles, dodecapoles with 12 poles. Rumour has it that someone once tried to
use tetradecapole to describe a 14 pole magnetic field. Of all these magnets, the
sextupoles, octupoles and higher order multipoles are called nonlinear magnets.

Although much is known about all these magnets, it is unavoidable that these
magnet may have some character traits of other magnets. It is thus very possible
that what is believed to be a perfect quadrupole, may in fact hold some unknown
octupolar traits. These are called magnetic errors. In fact, all the magnets in the
LHC can deviate slightly from their designed magnetic field. These errors can be
the result of manufacturing processes, as well as misalignments or tilts of the mag-
nets that occur during the installation phase. In some cases this is not so important,
but in certain cases this has severe implications. Deviations in magnetic fields can
severely distort the trajectories of the particles from the design trajectory. The par-
ticles in a beam can get lost, gradually or even all at once. Not only does this
deteriorate the performance of the machine when particles are lost gradually, it can
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also be damaging to the machine when all particles are lost at once.

The magnets are aligned in a specific order and powered to very precise strengths
to successfully guide the protons on a circular trajectory through the collider. Be-
cause the LHC is a circular machine, the protons will travel through the same
machine over, and over and over. Scientists like to call this a periodic system, a sys-
tem that repeats itself after a specific period, which in this case is a full turn. The
series of alternating quadrupoles in the LHC will cause the protons to oscillate in
the plane that is perpendicular to the direction in which they are travelling, which
is referred to as the transverse plane.

This thesis is purely focused on how the particles oscillate in this transverse
plane, and the behaviour in the direction of travel is ignored. The oscillation is
described with respect to the ideal particle on the reference orbit. In principle
this oscillation is well behaved and controlled. However, when magnetic errors are
present, it is possible that this oscillation is distorted and that the protons become
unstable and get ejected from the LHC. This means that there will be less protons
available for the collisions, and thus less statistical data for the experiments. Not
to forget, if all the protons are lost at once it can severely damage the LHC. The
energy stored in the proton beam is equivalent to the kinetic energy of a TGV (high
speed train) at 150 km/h. One can easily imagine the damage that it could cause
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the LHC if not well controlled. It is thus very important to understand these oscil-
lations and understand how each magnet family and magnetic errors act on this
oscillation. The aim of this thesis is to develop and validate methods with which
these magnetic errors can be measured and with which corrections and compensa-
tion schemes can be found. In fact, the current performance of the LHC depends on
these corrections of nonlinear errors, and the future machines such as the High Lu-
minosity LHC or the Future Circular Collider (FCC) cannot operate without such
corrections.

Since the interest lies only in this oscillation, a useful analogy is to describe it as
a simple playground swing. A proton oscillating with a high transverse amplitude
is comparable to being on a swing and swinging to a high height. The proton in
this case embodies the behaviour of a bunch of protons in the LHC.

As the LHC is already constructed, it is not possible to open it to measure specific
magnets anymore. However, the proton can be used as a spy to look for hidden
magnetic errors in the LHC. The proton can travel in the accelerator and look and
feel for these errors. It can then hand in its investigative report at several locations
in the accelerator. The concept of using the proton beam to measure the state of the
accelerator is called beam-based measurements.

However, the proton will not do all this by itself, it needs a little push so to speak.
It is commonly known that there are two ways to push your little sister on a swing.
Either you give her one large kick and go back to play football, or you stand by
patiently and give her a gentle nudge each time she passes by. This is not different
for a proton. One big kick can be used of course, using the kicker magnet, but this
is hardly the nicest way. Indeed, this is not even allowed in the LHC. A single kick
that is too powerful can kick the beam out of the LHC in a single turn, which is too
fast for any safety feedback system. Such risks are rightfully considered too high
for the LHC.

Instead, in the LHC the gentle approach is used. An ac dipole is used that gives
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a nudge exactly at the right time to increase the amplitude of oscillation, or height
of the swing. At some point the ac dipole adapts its strength so that the amplitude
stays constant for a while, before gently guiding the proton back to standstill. These
oscillations are referred to in this thesis as forced oscillations.

At its largest height, the proton can see the most of course. As it gets higher, the
proton will be able to see more nonlinear magnets and errors with an increasing
number of poles. Of course this is not the most pleasant for the proton, as it will be
shaken around by the sextupoles, octupoles, and the higher order magnetic fields.
But it is a necessary evil.

As the proton travels through the LHC, it dutifully reports its findings to the
Beam Position Monitors (BPMs), that in turn translate this into readable informa-
tion. More exactly, the BPMs measure the transverse position of the beam, which
contains all the information about the magnetic fields the proton interacted with
along the way. There are 550 BPMs around the accelerator to get a detailed view of
the particle dynamics.

The BPMs provide a measurement of the transverse position of the bunch at
each turn. This forms a discrete time signal of an oscillation that can be analysed
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through spectral analysis. This spectral analysis reveals all the secondary modes,
or oscillations, that are generated by the nonlinear sources. From these secondary
modes, the resonance driving terms can be calculated. Resonance driving terms
are a measure of how strong specific nonlinear sources are, and how the sum of all
these sources behave at a specific location. By measuring these resonance driving
terms, it is possible to locate magnetic errors and devise strategies to compensate
for nonlinear errors. After lots of gatherings, meetings, coffees, lunch breaks, and
sleepless nights a solution is finally found. By powering specific magnets that are
well controlled, the effect of the measured errors can be countered and compen-
sated. The resulting machine is a machine where the effect of nonlinear errors on
the protons is minimized. In other words, the nonlinear errors and sources in the
machine have been corrected. The particle oscillations are well understood in this
situation, and any manipulation of the beams has a well predictable effect.

The work presented in this thesis focuses entirely on this process of measurement
and correction of nonlinear errors. Chapter 4 derives a new theoretical description
of how particles oscillate as a result of the ac dipole in the presence of nonlinear
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sources. This new description offers a simpler parametrization of resonance driv-
ing terms compared to previous works. The presented derivations are compared
to simulations and show an excellent agreement, and the results offer a novel ap-
proach to describe and study resonance driving terms of forced oscillations. It also
shows for the first time that the ac dipole has a second order effect on resonance
driving terms that may play a significant role in future studies. It is a truly exciting
study that significantly improved the understanding of the ac dipole driven motion
and invites further research to unravel all the intricacies of forced oscillations.

After these theoretical explorations, Chapter 5 presents the experiments per-
formed in the LHC to specifically identify and correct nonlinear sources by mea-
suring resonance driving terms. The development of the methods and an overview
of all the measurements of resonance driving terms in Run II of the LHC are
presented. The very first measurement of resonance driving terms of decapolar
sources, with 10 poles, is achieved. This validates the use of this method to mea-
sure and correct higher order errors that other methods struggle to address. Fur-
thermore, magnetic errors of skew octupolar order, with 8 poles, are corrected for
the first time using the measurements of resonance driving terms. This is a mile-
stone achievement, and validates the use of this method for future machines.

Chapter 6 present the first experimental demonstrations of forced dynamic aper-
ture performed in the LHC. The forced dynamic aperture is a measure of the max-
imum amplitude of oscillation that particles can achieve with the ac dipole while
remaining stable. The instability of particles is mainly determined by nonlinear
magnetic fields. If the particles become unstable at lower amplitudes it suggests
that stronger nonlinear fields are present in the machine, i.e. stronger nonlinear
errors. The forced dynamic aperture can be used as a new observable to measure
how nonlinear the accelerator is on average. These chapters present an analytical
definition for this new observable, and present experimental evidence that this ob-
servable is sensitive to changes in the nonlinear content of the LHC.

Finally, Chapter 7 applies the concepts and methods of Chapters 4 and 5 to the
case where the beams are now in collision. During collisions, the opposing beam
forms a large source of nonlinearity and will affect the way particles propagate
through the LHC. This interaction is called the beam-beam interaction. Chapter 7

presents theoretical derivations to describe this effect on resonance driving terms.
The derivations are validated with simulations and show a good agreement. It also
presents the first ever measurements of resonance driving terms resulting from
the beam-beam interaction. This now opens the doors for new ways to study the
beam-beam effect and possible compensation schemes.
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In all, the achievements presented in this thesis significantly improve the under-
standing of the nonlinear motion under the influence of ac dipoles both theoreti-
cally as well as experimentally. This thesis offers the first demonstration of specific
nonlinear correction strategies using the ac dipoles. The validation of these meth-
ods now offer new strategies to improve the control of the beams and further push
the performance of the LHC as well as future machines as the High Luminosity
LHC and the FCC.

In the end, the LHC can finally be used for its true purpose, proton collisions.
The results are messy. Sprays of particle traces are left everywhere. A gruesome
sight. It is here that the particle detectors start their investigations. Did the proton
leave any clues about the foundations of the universe? Those questions are up to the
detectors to answer.
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Het is met veel plezier dat ik van de gelegenheid gebruik maak om af te wijken
van de gebaande paden en een beetje creatieve vrijheid toe laat bij het samenvatten
van dit proefschrift. Een waarschuwing aan de doorgewinterde fysici is op zijn
plaats; er is sprake van enige oversimplicatie in deze samenvatting. Toch zal dit
hopelijk helpen om een aantal van de belangrijkste elementen van dit onderzoek
uit te leggen. Mocht dat niet werken hoop ik dat het in ieder geval plezierig zal zijn.
Uit angst u, de lezer, te verliezen op de eerste pagina wordt er een uitgebreidere
inleiding gepresenteerd. Ik hoop een beter gevoel te verschaffen over de context,
uitdagingen en methoden waarop deze dissertatie is gebouwd, en pas daarna de
resultaten van het onderzoek presenteren.

Voordat ik inga op de kern van dit proefschrift is het de moeite waard om de
context te bespreken. Het onderzoek dat in dit proefschrift wordt gepresenteerd is
uitgevoerd aan de Europese Organisatie voor Nucleair Onderzoek, beter bekend
als CERN. De belangrijkste missie van CERN is het vinden van experimenteel be-
wijs voor de natuurkundige wetten die het universum op het meest fundamentele
niveau beheersen. Tot op heden is het Standaard Model van de deeltjesfysica het
meest nauwkeurige model dat de interacties van elementaire deeltjes en funda-
mentele krachten beschrijft. Het is uitgebreid getest en gevalideerd en is waardevol
geweest bij het voorspellen van een breed scala aan verschijnselen. Er zijn echter
nog veel openstaande problemen waarvoor fysici geen verklaring hebben gevon-
den. Gedraagt de anti-materie zich anders dan de materie? Kan de zwaartekracht worden
verenigd met de andere fundamentele krachten? Wat is die donkere materie waar mensen
over praten? Of nog exotischer, wat is donkere energie? Al deze onderwerpen beschri-
jven fysische fenomenen en waarnemingen die verder gaan dan het standaard-
model en die een nieuw begrip van de fysica vereisen. Het zijn precies dit soort
vragen die CERN in haar onderzoeksprogramma probeert aan te pakken.

Om de natuurkunde op dit niveau te bestuderen, probeert CERN de condities
van het vroege universum na te bootsen. De meest succesvolle manier om deze
condities te benaderen is door deeltjes met zeer hoge snelheden met elkaar te laten
botsen in zogenaamde deeltjesbotser (particle collider). In deeltjesversnellers worden
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deeltjes dicht bij de lichtsnelheid versneld en met elkaar in botsing gebracht. Door
protonen met grote snelheden tegen elkaar aan te botsen, d.w.z. hoge energieën,
worden nieuwe deeltjes gecreëerd door de energie van de protonen om te zetten
in massa. Hoe hoger de energieën van de protonen, hoe massiever de gecreëerde
deeltjes zijn. Door te bestuderen welke deeltjes ontstaan en hoe deze nieuwe deelt-
jes zich gedragen en vervallen, proberen onderzoekers de diepere natuurkundige
wetten bloot te leggen. In feite proberen onderzoekers nog steeds een antwoord te
geven op de eeuwenoude vraag: Hoe worden baby’s geboren? Hoewel nu op de
kleinst mogelijke schaal.

De grootste en krachtigste deeltjesbotser is de Large Hadron Collider, kortweg
LHC. De LHC is een cirkelvormige versneller met een omtrek van 27 km en ligt
100 m onder de grond bij CERN, vlakbij Genève (Zwitserland). Het is het grootste
wetenschappelijke experiment tot nu toe. De LHC heeft de taak om de protonen
te versnellen en de botsingen op te zetten. Er zitten twee deeltjesversnellers in de
LHC. Een versneller versnelt protonen met de klok mee, terwijl de andere pro-
tonen in tegengestelde richting versnelt. De twee bundels kruisen elkaar op vier
verschillende locaties in de collider waar speciale detectoren zoeken naar de nieuw
ontstane deeltjes. Deze detectoren zijn ATLAS, CMS LHCb en ALICE.

Het onderwerp van dit proefschrift gaat echter niet over het resultaat van de
botsingen of de detectoren. Het gaat strikt om de LHC en hoe de protonen door
deze deeltjesbotser reizen. De taak om de protonen te versnellen en te laten botsen
is een hele uitdaging op zich.

De baan van de deeltjes door de versneller wordt volledig bepaald door mag-
neten. Alle magneten zullen een kracht uitoefenen die loodrecht staat op de richt-
ing waarin een deeltje zich voort beweegt. 2 Een waslijst aan magneten wordt in de

2 Voor degenen die naar de Nederlandse middelbare school gingen, zou de ’BIL’-regel een belletje
kunnen doen rinkelen, terwijl anderen het misschien herkennen als de Lorentz-kracht.
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LHC gebruikt om de protonen te buigen, te verdraaien, te vormen en te duwen op
de ontworpen baan. In totaal bevat de LHC ongeveer 9600 magneten. Deze worden
meestal genoemd naar het aantal magnetische polen dat ze bevatten. Een dipool
heeft twee polen, een quadrupool heeft vier polen, enzovoort.

De dipolen zijn de zwaarste van alle magneten in de LHC, de bodybuilders on-
der de magneten, en veruit de talrijkste in de LHC. Ze zijn belast met de taak om
de baan van de deeltjes te buigen tot een ring. Ten tweede zijn er quadrupolen die
de orde in de LHC handhaven. Quadrupolen zorgen ervoor dat de deeltjesbundels
gegroepeerd en gefocust blijven. Dan zijn er ook nog sextupolen. Sextupolen zorgen
ervoor dat deeltjes met energieafwijkingen op het juiste spoor blijven. Er zijn ook
octupolen die bepaalde deeltjes kunnen ontstemmen. Als ze goed gecontroleerd
zijn, kunnen ze nuttig zijn om enkele onstabiele deeltjes te temmen. Tot slot zijn er
magneten van een hogere orde met nog meer polen. Vanaf hier wordt het rommelig.
Het benoemen van magneten van een hogere orde kan een hele mond vol raken. Er
zijn de decapolen met tien polen, dodecapolen met 12 polen. Het gerucht gaat dat
iemand ooit heeft geprobeerd om tetradecapool te benoemen om een 14-polig mag-
netisch veld te beschrijven. Van al deze magneten worden de sextupolen, octupolen
en meerpolige magneten van hogere orde niet-lineaire magneten genoemd.

Hoewel er veel bekend is over al deze magneten, is het onvermijdelijk dat een
magneet enkele karaktereigenschappen van andere magneten kan hebben. Het is
dus heel goed mogelijk dat wat wordt verondersteld een perfecte quadrupool te
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zijn, in feite een aantal onbekende octupolaire kenmerken heeft. Deze worden mag-
netische fouten genoemd. In feite kunnen alle magneten in de LHC lichtjes afwijken
van hun ontworpen magnetisch veld. Deze fouten kunnen het gevolg zijn van fab-
ricageprocessen, maar ook van het verkeerd uitlijnen of kantelen van de magneten
tijdens de installatiefase. In sommige gevallen is dit niet zo belangrijk, maar in
bepaalde gevallen heeft dit ernstige gevolgen. Afwijkingen in magnetische velden
kunnen de banen van de deeltjes uit het ontwerp ernstig verstoren. De deeltjes
in een straal kunnen verloren gaan, geleidelijk of zelfs allemaal tegelijk. Dit ver-
slechtert niet alleen de prestaties van de machine als er geleidelijk aan deeltjes
verloren gaan, het kan ook schadelijk zijn voor de machine als alle deeltjes in één
keer verloren gaan.

De magneten zijn in een specifieke volgorde uitgelijnd en worden tot zeer nauwkeurige
sterktes aangedreven om de protonen met succes in een cirkelvormig traject door
de versneller te leiden. Omdat de LHC een cirkelvormige machine is, zullen de pro-
tonen steeds weer door dezelfde machine reizen. Wetenschappers noemen dit graag
een periodiek systeem, een systeem dat zich na een bepaalde periode herhaalt, wat
in dit geval een volledige ronde is. De reeks van afwisselende quadrupolen in de
LHC zal ervoor zorgen dat de protonen gaan oscilleren in het vlak dat loodrecht
staat op de richting waarin het zich beweegt, wat het hier het transverse vlak wordt
genoemd.

Dit proefschrift is puur gericht op de manier waarop de deeltjes in dit transverse
vlak oscilleren. De oscillatie wordt beschreven met betrekking tot het ideale deeltje
op de referentiebaan. Deze oscillatie is in principe goed gecontroleerd. Wanneer
er echter magnetische fouten aanwezig zijn, is het mogelijk dat deze oscillatie ver-
vormd is en dat de protonen onstabiel worden en uit de LHC worden geworpen.
Dit betekent dat er minder protonen beschikbaar zullen zijn voor de botsingen, en
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dus minder statistische gegevens voor de detectoren. Niet te vergeten, als alle proto-
nen in één keer verloren gaan kan het de LHC ernstig beschadigen. Het is dus zeer
belangrijk om deze oscillaties te begrijpen en te identificeren hoe elke magneetfami-
lie en magnetische fouten op deze oscillatie inwerken. Het doel van dit proefschrift
is het ontwikkelen en valideren van methoden waarmee deze magnetische fouten
kunnen worden gemeten en waarmee correcties en compensatie technieken kun-
nen worden gevonden. De huidige prestaties van de LHC zijn afhankelijk van deze
correcties van niet-lineaire fouten, en de toekomstige machines zoals de High Lu-
minosity LHC of de Future Circular Collider (FCC) kunnen niet zonder dergelijke
correcties opereren.

Aangezien het belang alleen in deze oscillatie ligt, is het een nuttige analogie
om het te beschrijven als een eenvoudige schommel. Een proton dat met een hoge
transversale amplitude schommelt, is vergelijkbaar met een schommel die schom-
melt tot op grote hoogte. De proton belichaamt in dit geval het gedrag van een
protonen bundel in de LHC.

Aangezien de LHC al gebouwd is, is het niet meer mogelijk om deze te openen
om specifieke magneten te meten. De proton kan echter worden gebruikt als spion
om te zoeken naar verborgen magnetische fouten in de LHC. De proton kan zich
in versneller voortbewegen en kijken en voelen voor deze fouten. Het kan dan op
verschillende plaatsen in de versneller zijn onderzoeksrapport inleveren.

Maar de proton zal dit alles niet alleen doen, het heeft als het ware een zetje in de
rug nodig. Het is algemeen bekend dat er twee manieren zijn om je kleine zusje op
een schommel te duwen. Of je geeft haar een grote schop en gaat weer voetballen,
of je staat geduldig klaar en geeft haar een zacht duwtje elke keer dat ze langskomt.
Dit is niet anders voor een proton. Eén grote schop kan natuurlijk worden gebruikt,
met behulp van de kicker-magneet, maar dit is niet de beste manier. Dit is zelfs niet
toegestaan in de LHC. Een krachtige schop die te sterk is kan de bundel protonen
in één keer uit de LHC schoppen, wat te snel is voor elk veiligheids-systeem in de
LHC. Dergelijke risico’s worden terecht als te hoog beschouwd voor de LHC.

In plaats daarvan wordt in de LHC de zachte aanpak gebruikt. Een ac dipool
(alternating current) wordt gebruikt die een duwtje precies op het juiste moment
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geeft om de amplitude van de oscillatie, of de hoogte van de schommel, te verhogen.
Op een gegeven moment past de ac dipool zijn kracht aan, zodat de amplitude
een tijd constant blijft. Vervolgens brengt de ac dipool de proton zachtjes weer tot
stilstand brengt. Deze oscillaties worden in dit proefschrift geforceerde oscillaties
(forced oscillations) genoemd.

Op zijn grootste hoogte kan de proton natuurlijk het meest zien. Naarmate de
proton hoger schommelt zal deze niet-lineaire magneten zien van steeds hogere
orde. Dit is natuurlijk niet het prettigste voor de proton, omdat die door de sex-
tupolen, octupolen en de hogere orde magnetische velden heen en weer geschud
zal worden. Maar het is een noodzakelijk kwaad.

Terwijl de proton door de LHC reist, rapporteert het plichtsgetrouw zijn bevin-
dingen aan de Beam Position Monitors (BPMs), die dit op hun beurt weer vertalen
in leesbare informatie. Om preciezer te zijn meten de BPMs de transverse posi-
tie van de bundel. Die bevat alle informatie over de magnetische velden waarmee
de proton onderweg in aanraking is gekomen. Er zijn 550 BPMs verspreid in de
versneller om zo een gedetailleerd beeld te krijgen van de deeltjesdynamiek.

De BPMs geven een meting van de transverse positie van de bundel bij elke
ronde. Dit vormt een discreet tijdsignaal van een oscillatie dat kan worden geanal-
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yseerd door middel van spectrale analyse. Deze spectrale analyse onthult alle se-
cundaire modi, of oscillaties, die door de niet-lineaire bronnen worden gegenereerd.
Uit deze secundaire modi kunnen de resonance driving terms worden berekend. Deze
resonance driving terms zijn een maatstaf voor hoe sterk specifieke niet-lineaire bron-
nen zijn, en hoe de som van al deze bronnen zich op een specifieke locatie gedraagt.
Door het meten van deze resonance driving terms is het mogelijk om magnetische
fouten te lokaliseren en strategieën te bedenken om niet-lineaire fouten te com-
penseren. Na veel bijeenkomsten, vergaderingen, koffie, lunchpauzes en slapeloze
nachten is er eindelijk een oplossing gevonden. Door specifieke magneten aan te
drijven die goed gecontroleerd zijn, kan het effect van de gemeten fouten worden
gecompenseerd. De resulterende machine is een machine waarbij de niet-lineaire
fouten de protonen niet meer storen. Oftewel, de niet-lineaire fouten en bronnen in
de machine zijn gecorrigeerd. De deeltjes oscillaties worden in deze situatie goed
begrepen en elke manipulatie van de bundels heeft een goed voorspelbaar effect.

Het werk dat in dit proefschrift wordt gepresenteerd richt zich volledig op dit
proces van meten en corrigeren van niet-lineaire fouten. Hoofdstuk 4 leidt een
nieuwe theoretische beschrijving af van hoe deeltjes oscilleren als gevolg van de
ac dipool in de aanwezigheid van niet-lineaire bronnen. Deze nieuwe beschrijving
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biedt een eenvoudigere parametrisering van de resonance driving terms in vergeli-
jking met eerdere werken. De gepresenteerde afleidingen worden vergeleken met
simulaties en laten een uitstekende overeenkomst zien, en de resultaten bieden een
nieuwe benadering voor het beschrijven en bestuderen van resonance driving terms
van geforceerde oscillaties. Het toont ook voor het eerst aan dat de ac dipool een
tweede-orde-effect heeft op resonance driving terms die een belangrijke rol kunnen
spelen in toekomstige studies. Het is een werkelijk enerverende studie die het be-
grip van de ac dipool gedreven oscillaties aanzienlijk heeft verbeterd. Het nodigt
uit tot verder onderzoek om alle fijne kneepjes van geforceerde oscillaties te on-
trafelen.

Na deze theoretische verkenningen presenteert hoofdstuk 5 de experimenten die
zijn uitgevoerd in de LHC om specifiek niet-lineaire bronnen te identificeren en te
corrigeren door het meten van deze resonance driving terms. De ontwikkeling van de
methoden wordt gepresenteerd en er wordt een overzicht gegeven van alle metin-
gen van resonance driving terms in Run II van de LHC. De allereerste meting van de
resonance driving terms van decapolaire bronnen, met 10 polen, wordt bereikt. Dit
valideert het gebruik van deze methode voor het meten en corrigeren van fouten
van een hogere orde die door andere methoden moeilijk kunnen worden aangepakt.
Bovendien worden magnetische fouten van gekantelde octupolaire orde voor het
eerst gecorrigeerd met behulp van de metingen van de resonance driving terms. Dit
is een mijlpaal en valideert het gebruik van deze methode voor toekomstige ma-
chines.

Hoofdstuk 6 presenteert de eerste experimentele demonstraties van forced dy-
namic aperture. De forced dynamic aperture is een maat voor de maximale amplitude
van de oscillatie die deeltjes kunnen bereiken met de ac dipool terwijl ze stabiel bli-
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jven. De instabiliteit van de deeltjes wordt voornamelijk bepaald door niet-lineaire
magnetische velden. Als de deeltjes onstabiel worden bij lagere amplitudes sug-
gereert dit dat er sterkere niet-lineaire velden in de machine aanwezig zijn, d.w.z.
sterkere niet-lineaire fouten. De forced dynamic aperture kan worden gebruikt als
een nieuw waarneembaar meetmethode om te meten hoe niet-lineair de versneller
gemiddeld is. In deze hoofdstukken wordt een analytische definitie gegeven van
deze nieuwe waarneembare kwantiteit, en wordt experimenteel bewijs geleverd
dat dit waarneembare kwantiteit gevoelig is voor veranderingen in de niet-lineaire
inhoud van de LHC.

Tenslotte past Hoofdstuk 7 de concepten en methoden van Hoofdstukken 4

en 5 toe op het geval dat de bundels nu in botsing zijn. Tijdens botsingen vormt
de tegengestelde bundel een grote bron van niet-lineariteit en zal het de manier
waarop de deeltjes zich voortbewegen door de LHC beïnvloeden. Deze interactie
wordt de beam-beam interactie genoemd. Hoofdstuk 7 presenteert theoretische aflei-
dingen om dit effect op de resonance driving terms te beschrijven. De afleidingen
worden gevalideerd met simulaties en laten een goede overeenkomst zien. Het pre-
senteert ook de allereerste metingen van de resonance driving terms als gevolg van
de interactie tussen de twee tegenovergestelde bundels. Dit opent de deur naar
nieuwe manieren om het beam-beam effect en mogelijke compensatiemethoden te
bestuderen.

Al met al verbeteren, de in dit proefschrift gepresenteerde ondervindingen, aanzien-
lijk het begrip van de niet-lineaire dynamica onder invloed van ac dipolen, zowel
theoretisch als experimenteel. Dit proefschrift biedt de eerste demonstratie van
specifieke niet-lineaire correctiestrategieën met behulp van de ac dipolen. De val-
idatie van deze methoden biedt nu nieuwe strategieën om de controle over de
bundels te verbeteren en de prestaties van de LHC en toekomstige machines zoals
de High Luminosity LHC en de FCC verder te verbeteren.

Uiteindelijk kan de LHC eindelijk worden gebruikt voor zijn ware doel, pro-
tonbotsingen. De resultaten zijn rommelig. Overal worden deeltjessporen achterge-
laten. Een gruwelijk aanzicht. Het is hier dat het onderzoek van de deeltjesdetec-
toren begint. Heeft de proton aanwijzingen achtergelaten over de fundamentele wetten van
het universum? Die vragen zijn aan de detectoren om te beantwoorden.
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