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Summary

Two High Luminosity Large Hadron Collider (LHC) crab-cavity types have been installed in 2018
in the CERN SPS for testing purposes. An attempt to characterize the skew-sextupolar component
(a3) of the radio frequency field of the crab-cavity through beam-based techniques has been carried
out. By monitoring with turn-by-turn beam position monitors the betatron motion, it was possible
to study the non-linear coupling between the transverse planes resulting from the skew nature of
the a3 component of the crab-cavity. A measurement of the magnitude of a3 was thus obtained
by characterizing amplitude and phase of some of the spectral lines induced by such non-linear
coupling. Particular attention was required to disentangle the a3 contribution of the crab-cavity
from the SPS optics non-linearities, that unexpectedly was found to play a dominant role over the
faint signal induced by the crab-cavity skew-sextupolar component. A detailed description of the
measurement, analysis and the results are here presented.
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1 Introduction

Crab cavities will contribute to an increase in the LHC luminosity output as part of the
High-Luminosity LHC upgrade [1, 2, 3, 4]. The transverse radio frequency electric field
of the crab cavity is synchronized with the circulating bunches such that the head and
tail of the bunches receive an opposite transverse kick while the central part of the bunch
stays unperturbed. This condition “tilts” the bunch in the transverse plane and produces
a head-on collision. Space constraints, mainly due to the limited separation between the
two counter-rotating beams, required the crab cavities to be shaped accordingly, resulting
in a non-perfect transverse profile of the dipolar electric field. From simulations presented
in [4] and more recently in [5], a sextupolar term has been identified as the main contributor
beyond the purely dipolar field with a strength of ∼1.5 T/m measured at 10 MV cavity
integrated field. Due to the potential beam dynamics implications of such a non-linear field,
it was found necessary to verify experimentally the results of the crab-cavity electromagnetic
model simulation. The radio-frequency (RF) nature of the crab-cavity field makes it very
hard to measure precisely such a non-linear field component in an RF test bench, therefore
a beam based measurement was attempted.

During 2018, a prototype of the LHC cavity has been installed in the SPS [6] for test
and validation purposes, providing an opportunity to carry out, among other studies the
measurement of the aforementioned sextupolar term. The cavities were installed in a vertical
kick configuration, turning the quadratic field distortion into a skew-sextupolar field. A skew-
sextupole couples in a non-linear manner the vertical and horizontal betatron motion, i.e.
when approximated as a thin element the induced kick on to the beam is given by:{

δpx = 2a3xy

δpy = a3(x
2 − y2).

(1)
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Since in the SPS the perturbations driven by the vertical betatron motion are not exper-
imentally accessible, for reasons that will be explained in the next section, we concentrate
on the study of the vertical plane, where the term x2 is responsible for the excitation of
two modes driven by the horizontal betatron motion only. If the non-linearity strength a3 is
small enough the horizontal beam position x will be dominated by the linear betatron motion.
Therefore, at the location of the skew-sextupole the beam position can be approximated as:

x(n) '
√
βpxjx sin(2πQxn+ ψp), (2)

where n is the turn number, βp and ψp are respectively the betatron amplitude and phase
advance at the skew-sextupole, Qx is the horizontal tune and jx the horizontal betatron
action. Substituting Eq. (2) in Eq. (1) provides:

δpy(n) = a3x
2(n) = a3β

p
xjx sin2(2πQxn+ ψp) = a3β

p
xjx

1− cos(4πQxn+ 2ψp)

2
. (3)

The previous equation shows that the force induced by the skew-sextupole can be decom-
posed in two terms: the first one whose amplitude is independent on the turn number and
a second one oscillating with frequency 2Qx inducing two vertical modes with frequencies 0
and 2Qx which from now on will be referred as the V0,0 and V2,0 modes. For simplicity the
notation Hn,m and Vn,m is introduced to indicates respectively horizontal and vertical modes
with frequency nQx +mQy, such that x, y = Re(H,Vl,me

2πi(lQx+mQy)n).
A simple expression for a mode induced by a generic harmonic driving force is provided

in Appendix A. By substituting Eq. (3) in Eq. (27) an explicit expression for the V2,0 and
V0,0 modes is obtained:

V2,0 = ia3
jxβ

p
x

√
βoyβ

p
y

4

[
ei(ψ

o
y−ψo

y+2ψp
x)

1− e2πi(2Qx−Qy)
+

ei(−ψ
o
y+ψ

p
y+2ψp

x)

1− e2πi(2Qx+Qy)

]
(4)

V0,0 = ia3
jxβ

p
x

√
βoyβ

p
y

2
· ei(ψ

o
y−ψ

p
y)

1− e−2πiQy
, (5)

where βoy and ψoy are respectively the vertical betatron amplitude and phase advance at the
location of observation.

The measurement of the skew-sextupolar component of the crab-cavity is thus carried
out by exciting the horizontal betatron motion and measuring by means of turn-by-turn
beam position monitors (BPM) [7] the aforementioned characteristic modes: V2,0 and V0,0.

2 SPS Turn-by-Turn Measurements Optimization

A tune kicker is used to excite the betatron motion in the SPS and by lowering the chro-
maticity to a value close to 0 it is possible to reduce the decoherence to a level which allows
the observation of the coherent beam motion for up to a few hundreds of turns. Ideally,
a single low intensity bunch provides the best possible approximation of the single particle
dynamics and therefore is the preferred way to carry out turn-by-turn measurements. How-
ever this condition is suboptimal in terms of BPM signal quality in the SPS, resulting in a
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very noisy read-out. Increasing the bunch intensity is not an option, because of the strong
decoherence due to collective effects and beam instabilities observed at low chromaticity.
Instead, by employing a train of low intensity bunches, but still with a low chromaticity
setting of the machine, it was possible to obtain clear signals with low decoherence in the
horizontal plane. Unfortunately the same was not observed in the vertical plane because of
the detuning induced by the strong vertical transverse coupling impedance. Figure 1 shows
the bunch-by-bunch detuning in the horizontal and vertical planes for a train of 72 bunches.
Due to the transverse coupling impedances, the vertical plane is subject to a strong tune-
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Figure 1: Horizontal (top) and vertical (bottom) bunch by bunch detuning measured in
the SPS for trains of 72 bunches of various intensity. The measurement was carried out
using a special BPM with bunch-by-bunch capability. In the horizontal plane no detuning
is observed until a threshold is reached. This strongly non-linear behavior is the fingerprint
of electron-cloud, that requires a certain beam intensity in order for the cloud to build-up.
The linear detuning observed in the vertical plane instead can be attributed to transverse
impedance.

shift along the train. Since standard SPS BPMs do not have bunch-by-bunch capabilities
the overall observed transverse vertical motion of the train of bunches is subject to a fast
decoherence due to the strong bunch-to-bunch tune-shift, making it impossible to observe
with adequate precision any vertical mode. This is not the case for the horizontal plane,
where no major detuning is observed until a threshold of ∼5e12 protons is reached, triggering
the build-up of electron-cloud. Therefore by operating below this threshold allows the clear
observation of the spectral lines V0,0 and V2,0. The maximum kick strength to be used to ex-
cite the horizontal betatron motion instead was set by the safety margins required to operate
the crab-cavity that imposed a maximum trajectory excursion of 10 mm. It was found that
the total RF voltage of the SPS accelerating cavity was also playing an important role in the
quality of the measurements. Figure 2 shows an example of the measured horizontal beam
position for one BPM, repeated for 2 MV and 6 MV total RF voltage. A longer damping
time is observed for the higher voltage. To study the behavior, measurements have been
systematically repeated in the range from 2 MV to 7 MV. For each RF working point the
quality of the turn-by-turn measurement has been evaluated by looking at the BPM-to-BPM
spread of the horizontal tune frequency and the average betatron motion damping time as
shown in Fig. 3.
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Figure 2: Turn-by-turn horizontal beam position measured with one BPM for two different
RF settings: 2 MV and 6 MV total RF voltage.
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Figure 3: Frequency spread (black) between BPMs and average damping time (red) measured
for different RF working point.
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A substantial improvement is observed for higher voltages, the larger tune spread for
different BPMs and the faster decoherence for lower RF voltage could possibly be caused by
uncaptured beam.

3 Turn-by-Turn Signal Analysis

The tune kicker magnet is fired only once for each machine cycle, and consequently only
one acquisition is carried out for each cycle. The spectral analysis of the turn-by-turn signal
collected by the BPMs is performed independently for each acquisition. The analysis is
broken down in three main steps: a first phase of signal preconditioning is followed by the
analysis of the linear betatron motion, and finally by the spectral analysis of the modes V0,0
and V2,0.

To be able to disentangle the contribution to V0,0 and V2,0 of the skew-sextupolar field
under investigation (e.g. the crab-cavity) from any other skew-sextupolar field present in the
machine and not correlated to the crab-cavity, the entire procedure is always applied to two
experimental datasets: a reference one where the crab-cavity is switched off and a second
one where it is on. Once the shift ∆V2,0 and ∆V0,0 of the modes V2,0 and V0,0 observed
between the two datasets has been evaluated, a3 is determined by matching Eq. (4) and
(5) to the measured ∆V2,0 and ∆V0,0 by means of a least square fit. The fit is carried out

independently for ∆V2,0 and ∆V0,0, allowing for two independent evaluations of a3 (a
V2,0
3 and

a
V0,0
3 ) and making it possible to cross check the validity of the analysis.

3.1 Signal Preconditioning

Figure 4 shows a typical turn-by-turn signal acquired for 4096 turns with one BPM and the
associated spectrum.

While the observed beam betatron oscillation, starting at turn ∼3000 lasts for only a few
hundreds turns, a 50 Hz oscillation with constant amplitude is visible throughout the entire
acquisition. A similar 50 Hz mode has been observed for many different BPMs but not all
of them and with very different amplitude as shown in Fig. 5. Such oscillation is believed to
be due to electrical noise that couples directly to the BPM electronics rather than a proper
beam motion. Nevertheless it is helpful, for the following analysis to take into account for
this 50 Hz noise. The first ∼ 3000 turns, before firing the kicker are used to evaluate the
phase and amplitude of the 50 Hz mode, allowing to purge the noise from the entire acquired
data (Fig. 6). The signal offset is also evaluated from the median of the beam position during
the first ∼ 3000 turns and removed from the data. This initial data cleanup (removal of the
offset and 50 Hz line) is repeated independently BPM by BPM.
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Figure 4: Typical turn-by-turn beam position measurement for the horizontal and vertical
plane (left). The kicker magnet is fired only after ∼3000 turns allowing to sample the
background noise and beam position offset, while the spectral analysis is carried out on the
portion shown in red only. The Fourier spectrum (right) of the turn-by-turn beam position
(red portion only) shows clearly the peaks relative to the horizontal and vertical tune, while
the V2,0 barely appears over the noise floor and V0,0 requires some major analysis in order to
distinguish it from the beam position offset.
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Figure 5: Amplitude of the 50 Hz noise measured by each BPM sampled for ∼3000 turns.
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Figure 6: The 50 Hz noise appears clearly (red) in the beam position measured during the
first 3000 turns by one of the horizontal BPM. In black the same signal after the 50 Hz
”purging” process.

3.2 Analysis of the Linear Betatron Motion

The analysis of the linear betatron motion aims to estimate precisely a few parameters such
as the horizontal tune, action and damping time required to carry out the following analysis
of the modes V2,0 and V0,0. The analysis is broken down into several steps:

1. The frequency (Qx) of the horizontal tune (the mode H1,0) is established from the
signal collected by the horizontal BPMs. This is achieved by carrying out a spectral
analysis “à la Laskar” [8, 9, 10] independently BPM by BPM.

2. Since Qx is supposed to be independent from the observation point (BPM) a more
accurate estimate of Qx is obtained by calculating the median of Qx measured by each
horizontal BPM.

3. A first guess for the real and imaginary part of H1,0 is evaluated individually for each
BPM as:

H1,0 =
1

N

N∑
n=0

x(n)e2πiQxnw(n), (6)

where w(n) is the Hanning window function.

4. The estimate of the mode H1,0 previously obtained is used as the initial condition for
a least squares fit, where the damping time τx and the amplitude |H1,0| are optimized
to minimize the expression:

[x(n)− Re(H1,0e
2πiQxne−n/τx)]2. (7)
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Here a simple exponential decay is introduced to represent the signal damping, while a
more complicated law would be required to describe properly the decoherence process.
On the other hand the low chromaticity and the small number of turns used to carry
out the measurement makes the approximation acceptable and keeps the fit simple.

5. Since the damping τx is also independent from the observation point (BPM) a more
accurate estimate of the damping time is obtained as the median of τx measured by
each horizontal BPM.

6. The damping is removed from the signal collected by each horizontal BPM by normal-
izing the data with an exponential damping law with damping rate τx.

7. Real and imaginary parts of H1,0 are evaluated again, this time using the un-damped
signal obtained in the previous step by using Eq. (6).

8. Finally the horizontal betatron action jx is evaluated by fitting the amplitude of H1,0

at each BPM with a model of the SPS optics.

3.3 Spectral Analysis of the Modes V0,0 and V2,0

Once Qx, τx and jx have been evaluated it is possible to proceed with the analysis of the
modes V0,0 and V2,0. Also in this case the procedure involves several steps:

1. The turn-by-turn data y(n) collected by the vertical BPMs is renormalized by an
exponential damping law with damping rate τx/2. In fact while the horizontal linear
betatron motion (H1,0) decoheres with a characteristic time τx, the mode V2,0 decoheres
two times faster, having two times higher frequency [11, 12].

2. Real and imaginary part of V2,0 are evaluated as:

V2,0 =
1

N

N∑
n=0

y(n)e2πi2Qxnw(n). (8)

3. V0,0 describes a mode with frequency 0 that is a closed orbit distortion. Since many
other contributions to the beam orbit are to be expected (e.g. magnets misalignment,
BPMs misalignment), a slightly different approach is used to evaluate the mode V0,0.
Since the closed orbit distortion V0,0 is present only when the horizontal betatron mo-
tion is excited, it is possible to evaluate V0,0 from the orbit change observed before
and after firing the kicker. The orbit in presence of the horizontal betatron motion
is computed by averaging y(n) over N turns after firing the kicker while the N turns
before are used to compute the still beam reference orbit. A bigger number of turns to
compute the reference orbit could be potentially used but would not improve signifi-
cantly the analysis while increasing the risk of spoiling it because of slow uncontrolled
orbit drift or other systematic effects.

Every step of the spectral analysis has been carried out using the first N = 128 turns
after firing the kicker, this number has been initially chosen for convenience and because it
matches roughly the damping time of the modes V0,0 and V2,0. Further tests have shown
that no particular improvement was obtained by increasing N , therefore it was left at 128.
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4 MAD-X/PTC Tracking Test

A first test of the analysis procedure was carried out on simulated data. The software MAD-
X/PTC was used to track the turn-by-turn orbit of a single particle at every BPM in the
SPS. The simulation was setup to reproduce as close as possible the experimental conditions
to be used for the crab-cavity measurements, the Q26 optics was used and a single horizontal
kick at the same location of the SPS tune kicker was used to excite the horizontal betatron
motion. The kick strength was set such as to produce an horizontal betatron amplitude of
∼8 mm (jx '2.2× 10−7 m). Two simulations are carried out, the first one (reference) using
the bare lattice, while the second one includes a skew-sextupole located at the same position
where the crab-cavity prototypes have been installed. The skew-sextupole is simulated as
a static thin lens with integrated field a3: 10−2 m−2 (MAD-X unit for integrated thin lens
multipole strength). The two simulations are analyzed following the procedure described in
the previous section and the shift ∆V2,0 and ∆V0,0 observed between the two simulations is
used to establish a3. Figure 7 shows the result of the analysis. The discrepancy between
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Figure 7: Results of the spectral analysis of the turn-by-turn data simulated with MAD-
X/PTC (blue). A fit of the analytical model of V2,0 and V0,0 is also shown (black). The

values of a3 obtained from the two independent fit of V2,0 and V0,0 is a
V2,0
3 =9.94× 10−3 1/m2

and a
V0,0
3 =9.95× 10−3 1/m2, close to the skew-sextupole strength used in the MAD-X/PTC

simulation of 1× 10−2 1/m2.

the skew-sextupolar field strength a3 retrieved from the spectral analysis and the value set
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in the MAD-X/PTC simulation is ∼ 0.5%, well below the experimental uncertainties that
dominate the measurements as will be shown in the next sections.

5 Static Skew-Sextupole Measurements

In order to prove the experimental setup, a measurement was performed on the 20th October
2017 at the SPS by using a static skew-sextupolar field. The Q20 optics was used and the
chromaticity knobs were set to QPH: 0 and QPV: -0.45. The injector was configured to
provide single batches of 72 bunches at each cycle with a total intensity of ∼2.8× 1012 p.
The kicker voltage was set to 10 kV resulting in a horizontal betatron action jx '2.2× 10−7 m
and the total RF voltage was set to 4.5 MV.

Since no skew-sextupole magnets are installed in the SPS, the feed-down resulting from
a vertical orbit bump in an octupole was used instead to produce a skew-sextupolar field
with strength:

a3 = ypb4, (9)

where yp is the vertical beam orbit at the octupole location and b4 is the octupole integrated
field. For this purpose the octupole LOE33002 was selected, as the horizontal dispersion
(ηx =1.1 m) at this location is the lowest possible among all the individually powered ex-
traction octupoles. Several data-sets have been acquired for a vertical orbit bump of ±5 mm
(Fig. 8) and an integrated octupolar field of b4=0 m−3, ±2 m−3 and ±5 m−3, each dataset
consisting of a few tens of cycle acquisitions. Once again the analysis described previously

Figure 8: Four vertical orbit correctors (MDV32707, MDV32907, MDV33107 and
MDV33307) haven been used to bump the beam at the octupole location (LOE33002) and
produce a skew-sextupolar field by feed-down effect.

is carried out, and the shift ∆V2,0 and ∆V0,0 observed between the data-set acquired with
b4=0 m−3 and each other dataset is used to establish independently a3. Figure 9 shows the
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result of the fitting procedure for one of the configuration used in the measurement with
a positive bump of 5 mm and b4=−5 m−3 a similar result is obtained for the other cases.
The result of the fit for every configuration under test is shown in Table 1. The errors on
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Figure 9: Variation (blue) of the real and imaginary part of the V2,0 spectral line and the V0,0
orbit distortion induced by switching on the static sextupolar field. The error bars represent
the measurement-to-measurement statistic fluctuations. The analytical model (black) is
fitted to the data to obtain the skew-sextupole strength.

a
V2,0
3 and a

V0,0
3 represent the standard error derived from the covariance matrix of the least

square fit. The systematic deviation of a
V2,0
3 and a

V0,0
3 with respect to the expected a3 could

be attributed to many issues such as:

• Beta-beating at the octupole location.

• Errors in the octupole current-to-field calibration curve.

• Error in the bump amplitude due to beta-beating.

• Error in the bump amplitude due to error in the orbit correctors current-to-field cali-
bration curve.

The same explanation does not hold for the value of a
V0,0
3 , which is systematically higher

compared to a
V2,0
3 . On the other hand the worst discrepancy of a

V0,0
3 with respect to the

expected a3 is found to be ∼42% and ∼27% in the case of a
V2,0
3 , values considered still
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Table 1: Value of the skew-sextupolar integrated field obtained in every single configuration
under test. The expected value of a3 is derived from the amplitude of the orbit bump
in the octupole and the octupole strength (b4). The number of acquired cycles for the
octupole on/octupole off datasets is also shown.

Acquired
cycles

Bump
[mm]

b4
[m−3]

Expected a3
[m−2]

a
V2,0
3

[m−2]
a
V0,0
3

[m−2]
30 / 15 5 5 2.5 · 10−2 1.827·10−2±4.6·10−4 2.357·10−2±1.3·10−3

30 / 86 5 2 1.0 · 10−2 8.999·10−3±1.9·10−4 1.177·10−2±5.9·10−4

31 / 28 -5 2 -1.0 · 10−2 -9.699·10−3±1.9·10−4 -1.377·10−2±5.3·10−4

31 / 32 -5 5 -2.5 · 10−2 -2.237·10−2±4.8·10−4 -2.657·10−2±9.2·10−4

31 / 20 -5 -5 2.5 · 10−2 2.364·10−2±4.7·10−4 2.991·10−2±8.5·10−4

31 / 22 -5 -2 1.0 · 10−2 1.056·10−2±2.1·10−4 1.221·10−2±5.5·10−4

28 / 17 5 -2 -1.0 · 10−2 -7.513·10−3±1.5·10−4 -1.058·10−2±7.7·10−4

28 / 16 5 -5 -2.5 · 10−2 -2.035·10−2±3.6·10−4 -2.448·10−2±8.3·10−4

adequate for the purpose of the measurement. Since the observed systematic deviations are
by far dominant compared to the measurement-to-measurement fluctuations, the number
of acquired cycles for each data set can be decreased considerably without compromising
the results. This aspect plays an important role in the context of the crab-cavity testing
activities where the assigned time for this measurement is limited.

6 Crab-cavity Measurements

A short time span was assigned for crab cavity tests in October 2018 during which the a3
measurement was carried out. The time limitation constrained the attempts to a minimum
and forced to keep the setup as simple as possible. Unlike the case of a static skew-sextupole
the crab-cavity produces a time dependent field dominated by a strong dipolar vertical kick
with a weak skew-sextupolar component on top of it. To maximize the effect induced by
the crab-cavity on the beam the cavity was always operated on crest: the passage of the
beam was synchronized with the maximum field in the cavity. During the test only one
of the two installed crab-cavities was operational, limiting the total crab-cavity voltage to
∼1 MV. Three data sets were acquired, two with the maximum allowed crab cavity voltage
but opposite phase (±1 MV) and one with the cavity set to the minimum voltage of 100 kV:
the crab-cavity RF system in fact did not allow operating with a lower cavity voltage.

To provide a relative measurement of the field distortion independent of the crab-cavity
voltage the measurement of the skew-sextupolar component a3 is renormalized by the cavity
integrated field. Therefore it is important to be able to asses correctly the operating field of
the cavity for each one of the different acquired datasets. Instead of relying on the radio fre-
quency measurement, the crab-cavity voltage is determined by measuring the beam vertical
closed orbit distortion induced by the dipolar component of the field. More importantly this
approach allows to take out any effect due to the time dependent nature of the crab-cavity
field and the non flat frequency response of the BPMs [13], that otherwise would result in a
non trivial relation between the measured and effective beam position. In fact those effects
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affect in the same way both, the measurement of closed orbit and of the modes V0,0 and
V2,0 from which a3 is deduced. The orbit estimation is carried out for each vertical BPM
by calculating the median of the beam position during the first ∼3000 turns before firing
the kicker. The crab-cavity integrated field is inferred from the measured vertical orbit by
fitting the following model for the closed orbit distortion ∆y produced by a thin dipole:

∆y =
√
βoyβ

p
y

cos(πQy/2− |ψoy − ψpy |)
2 sin(πQy/2)

. (10)

Figure 10 shows the result of the closed orbit fitting procedure for the measurement obtained
when shifting the crab-cavity voltage from 100 kV to −1 MV, a similar result is observed
when shifting the cavity voltage from 100 kV to 1 MV. The observed integrated cavity field
obtained with this method (−0.62 MV) appears to be sensibly smaller compared to what is
expected, the discrepancy is to be attributed to the limited precision of the RF measurements
and to the non-trivial behavior of the BPMs in presence of a time dependent beam position
structure as the one produced by the crab-cavity field. Figure 11 shows the measured ∆V2,0

0 1 2 3 4 5 6 7
BPM position [km]

2
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2

4
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rti
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l o

rb
it 

[m
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]

Model (Field: -0.62 +/- 0.02 MV) Measurement

Figure 10: Measured vertical closed orbit shift observed when shifting the cavity voltage from
100 KV to 1 MV (blue), the error bars represent the statistical measurement to measurement
fluctuations calculated as one standard deviation divided by the square root of the number of
measurements. An analytical closed orbit model (black) is fitted to establish the crab-cavity
integrated field.

and ∆V0,0 observed when switching the crab cavity field from 100 kV to ∼1 MV. For the V0,0
mode there is only minor agreement between the analytical model and measurements, but
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Figure 11: Variation (blue) of the real and imaginary part of the V2,0 and V0,0 modes induced
by switching on the crab-cavity field from 100 kV to ∼1 MV. The error bars represent the
measurement-to-measurement statistic fluctuations. The analytical model (black) is fitted
to the data to obtain the skew-sextupole strength. The discrepancy in the case of the mode
V2,0 is striking while a certain agreement can be seen for V0,0.

for the V2,0 mode the discrepancy is even worse. A similarly disappointing result is obtained
when switching the crab cavity field from 100 kV to ∼−1 MV. To shed some light on the
issue, the fit of ∆V2,0 is repeated but considering a3 as a complex parameter, where the
magnitude |a3| represents the strength of the skew-sextupolar field and the phase ∆ψ allows
to take into account for example for a possible error in the crab-cavity phase advance. As
shown in Fig. 12 the added degree of freedom allows for a much better agreement between
the analytical model and experimental data. The results of the fit for the two crab-cavity
field configurations (±1 MV) have been collected in Table 2. The magnitude of a3 is shown
both in 1/(m2·MV), MAD-X units normalized by the crab-cavity voltage and in T/(m·MV),
following the same definition as in [4] 1. The non zero ∆ψ could be explained by a strong
distortion of the linear optics, possibly due to the large vertical closed orbit induced by the
crab-cavity. To exclude this possibility the measured horizontal phase advance (the phase of
the mode H1,0) has been compared to the one expected from the SPS optics model. Figure 13
shows the horizontal phase-beating measured by every horizontal BPM derived from the 3
data-sets (±1MV and 0.1MV), for completeness also the phase-beating obtained from one

1Switching from T/(m·MV) to 1/(m2·MV) requires to divide by the beam rigidity and multiply by 2 to
take into account for the factorial term introduced by the different definition of the field gradient.
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Figure 12: Variation (blue) of the real and imaginary part of the V2,0 and V0,0 modes induced
by switching on the crab-cavity field from 100 kV to ∼1 MV. Compared to to Fig. 11 a phase
parameter is introduced in the fit of V2,0, providing a much better agreement.

of the dataset acquired during the static skew-sextupole test is shown.
The phase error appears to be dominated by an overall offset that change from data-set

to data-set, the effect is more pronounced in the case of the static skew-sextupole test. Such
phase offset is not compatible with the beating footprint typical of an optics error. Instead
is likely to be attributed to the addidtional decoherence introduced by the octupole used to
induce the skew-sextupolar field. In fact the change in decoherence can affect the spectral
analysis, resulting in a systematic error of the estimated phase. Unfortunately the vertical
phase-beating was not measured since the vertical betatron motion was not excited during
the measurements, therefore a direct estimation of any optics distortion affecting the vertical
plane is not possible. It is still possible to establish the effect in the vertical plane in a worst
case scenario, where an error is located at a position of maximum vertical beam cross section
with βy '103 m that in the SPS corresponds also to a horizontal waist with βx '21 m. In
this case a vertical phase-beating about 5 times bigger compared to what was observed in
the horizontal plane is expected, a value still too small to explain the observed mismatch of
the phase of the mode V2,0. Explaining the wrong value of the measured V20 phase requires
a mechanism, tied to the presence of voltage in the crab-cavity and able to excite a vertical
betatron mode with frequency 2 ·Qx. In fact, any contribution to the modes V20 and V00 not
dependant on the crab-cavity field would affect equally every data-set having no effect on the
differences ∆V2,0 and ∆V0,0 thus not affecting the estimate of a

V2,0
3 and a

V0,0
3 . The only not
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Table 2: Value of the skew-sextupolar integrated field obtained in every single configuration
under test. ψ represents the phase of the complex parameter a

V2,0
3 . The set crab-cavity field

and the measured field change between the two used data-sets is also shown together with
the number of acquired cycles for the crab-cavity field configurations 100 kV / ±1 MV.

Cycles # Set field ∆field ψ |aV2,03 | a
V0,0
3

[MV] [MV] [deg] [1/(m2·MV)] [1/(m2·MV)]
[T/(m·MV)] [T/(m·MV)]

10 / 6 0.1 / 1 0.762 -82.4±2.5 2.046 · 10−2 ± 8.6 · 10−4 2.512 · 10−2 ± 4.0 · 10−3

0.887± 3.7 · 10−2 1.089± 1.8 · 10−1

10 / 4 0.1 / -1 -0.621 -84.2±2.2 2.492 · 10−2 ± 9.9 · 10−4 -2.039 · 10−2 ± 5.5 · 10−3

1.080± 4.3 · 10−2 -0.884± 2.4 · 10−3

disappearing contributions are the ones driven by the crab-cavity field, being the crab-cavity
field the only machine parameter changed during the entire measurement process.

7 Other Contributions to the Modes a
V2,0
3 and a

V0,0
3

Two mechanisms connected to the vertical orbit that affect the modes V2,0 and V0,0 have
been identified:

1. Feed-down effect from octupoles.

2. Second order contribution due to normal sextupoles.

As will be discussed in the following both effects play an important role in the analysis.

7.1 Octupoles Induced Feed-Down

While no octupole was purposely switched on during the measurements, it is known that a
certain amount of octupolar field is always present in the SPS [14], likely due to the octupoles
remanent field that persists even when the magnets power supply is switched off or as field
error in other elements. To evaluate the feed-down contribution of a single thin octupole, the
vertical beam orbit yp at the octupole location is calculated by means of Eq. (10) and plugged
into Eq. (9) to obtain the resulting skew-sextupolar field strength. After that Eqs. (4) and
(5) are used as usual to obtain the contribution to modes V2,0 and V0,0. The process is
iterated over every single octupole in the SPS optics and each individual contribution added
together.

7.2 Normal Sextupoles Second Order Effects

The contribution to the modes V2,0 and V0,0 from normal sextupoles instead is a “two step
process”. The vertical orbit induced by the crab-cavity is responsible for a skew-quadrupolar
field such that: {

δpx = ypb3 · y
δpy = ypb3 · x.

(11)
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Figure 13: Difference between measured horizontal phase-advance with respect to the ideal
value from the optics model. The plots have been realized using the three data-sets col-
lected during the crab-cavity measurements (bottom) and two of the data-sets collected for
the static skew-sextupole (top) relative to the same bump configuration and with octupole
strength b4: 0 m−3 and 5 m−3, while every other configuration provided similar results.

Where b3 is the integrated field of the normal sextupole. By following the same procedure
introduced in chapter 1, the driving force at a generic sextupole s is calculated by substituting
Eq. (2) in Eq. (11), providing:

δpy(n) = ysbs3 · x(n) = ysbs3
√
βsxjx · sin(2πQxn+ ψs), (12)

from which the mode V s
1,0 induced by the sextupole s is calculated by using Eq. (25):

V s
1,0 = bs3

√
2jxβsxβ

s
yβ

o
y

[
ei(ψ

s
x+ψ

o
y−ψs

y+2π(Qx−Qy))

1− e2πi(Qx−Qy)
− ei(ψ

s
x−ψo

y+ψ
s
y+2π(Qx+Qy))

1− e2πi(Qx+Qy)

]
. (13)

The overall V1,0 is obtained by adding together the contribution of each individual normal
sextupole. Because of the large number and strength of the sextupoles the amplitude of
the mode V1,0 is substantial and therefore can drive non negligible second order effect. In
particular when the modes V1,0 and H1,0 get mixed together by the non-linear coupling
introduced by the normal sextupoles, the modes V2,0 and V0,0 are excited. The kick induced
on the beam by a normal sextupole is:{

δpx = b3 · (x2 − y2)
δpy = 2b3 · xy.

(14)
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By substituting x(n) = Re(H1,0 · e2πiQxn) and y(n) = Re(V1,0 · e2πiQxn) in the previous
expression we obtain for δpy(n):

δpy = 2b3 cos(2πQxn+ ψs) · cos(2πQxn) Re(H1,0)
∑
s

V s
1,0. (15)

As in the case of Eq. (3), this expression can be decomposed as the sum of two terms: the first
one whose amplitude is independent on the turn number and a second one oscillating with
frequency 2 ·Qx and therefore exciting the two modes V2,0 and V0,0. By plugging Eq. (15) in
Eq. (25) we finally obtain the second order contribution to the modes V2,0 and V0,0 induced
by the normal sextupole z:

V2,0 = b3
jx
√
βzxβ

z
yβ

o
y

2

[
ei(ψ

o
y−ψz

y+ψ
z
x+2π(2Qx−Qy))

1− e2πi(Qx−Qy)
− ei(−ψ

o
y+ψ

z
y+ψ

z
x+2π(2Qx+Qy))

1− e2πi(Qx+Qy)

]∑
s

V s
1,0 (16)

V0,0 = −b3jx
√
βzxβ

z
yβ

o
y

[
ei(−ψ

o
y+ψ

z
y−ψz

x+2πQy)

1− e2πiQy

ei(ψ
o
y−ψz

y−ψz
x−2πQy)

1− e−2πiQy

]∑
s

V s
1,0. (17)

8 Analysis Including Octupoles and Sextupoles

The limited number of BPMs and the distributed nature of the sextupolar and octupolar
fields around the SPS ring, results in a pattern of the modes V2,0 and V0,0 indistinguish-
able from the one produced by the crab-cavity. Therefore the only possible approach is to
estimate and get rid of the octupoloes and sextupoles contributions relying solely on the
knowledge of the SPS non-linear model. The study of the SPS non-linear optics carried out
in 2017 [14] is used here as a reference. In addition to the chromatic sextupoles (for chro-
maticity correction), this model includes the field error of the 744 dipoles that is dominated
by a non-negligible sextupolar distortion. Some octupolar field has also been measured but
its exact origin is still debated. Two possible configurations for the residual octupolar field
have been proposed and considered equally valid. The first configuration assumes a rema-
nent octupolar field in the Landau octupoles, while the second one introduces the octupolar
field as an error in the quadrupoles field. Both configurations have been tested.

To provide a rough idea of the importance of the contribution of octupoles and sextupoles
to the analysis, the two families of multipoles are first analyzed individually. The contribu-
tion to the modes V2,0 and V0,0 are calculated separately for sextupoles and octupoles and
fitted with the crab-cavity analytical model (Eq. (4) and (5)). The results of the fit (Fig. 14)
show how normal octupoles and sextupoles have a dominant role in the analysis compared to
the measured value of a3 during the crab-cavity test and therefore should not be neglected.
Finally we proceed to include the contribution of octupoles and sextupoles in the analysis.
Starting from the SPS optics model and measured vertical closed orbit shift induced by the
crab-cavity, the octupoles and sextupoles contributions are removed from the measured V2,0
and V0,0 before proceeding with the fit of the crab-cavity induced a3. The results of the

analysis are summarized in Table 3. As expected a
V2,0
3 and a

V0,0
3 show a strong dependency

on the SPS non-linear model, and both models taken under consideration fail to provide a
consistent and conclusive result. Between the two non-linear models the one that localize
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Figure 14: The value of a3 inferred from the fit of the V2,0 mode is shown as a complex vector.
The a3 derived from experimental data is consistent between the two acquisitions obtained
with a crab-cavity voltage of ±1 MV but exhibits a large phase. The a3 derived from the
two octupoles configurations shows a somehow similar result in phase and amplitude while
the contribution from the normal sextupoles is diametrically opposed. For reference also the
a3 derived from RF simulations is shown.

the octupolar field at the quadrupoles seems more convincing, showing a smaller value of
the complex part of a

V2,0
3 (attested by the smaller value of the angle ψ). Finally, in the

attempt to obtain a more precise estimate of a
V2,0
3 the fit of the mode V2,0 has been repeated

a second time using both configurations of the octupoles model, but constraining again ψ to
0. This condition should provide a result in some extent immune to other sources driving
the mode V2,0 but likely with a different phase with respect to the crab-cavity. The results
are collected in Table 4 while a plot of the fit for the configuration with octupolar fields at
the quadrupoles is shown in Fig.15.
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Table 3: Value of the skew-sextupolar integrated field obtained in every configuration under
test with and without removing the contribution from normal sextupoles and octupoles. The
two possible octupoles configuration from the SPS non-linear model have been taken into
consideration.

Configuration ∆field ψ |aV2,03 | a
V0,0
3

[MV] [deg] [1/(m2·MV)] [1/(m2·MV)]
[T/(m·MV)] [T/(m·MV)]

No correction 0.762 -82.4±2.5 2.046 · 10−2 ± 8.6 · 10−4 2.512 · 10−2 ± 4.0 · 10−3

0.887± 3.7 · 10−2 1.089± 1.8 · 10−1

Sext.+Oct. (Qaud.) 0.762 -40.7±2.5 1.282 · 10−2 ± 8.2 · 10−4 3.438 · 10−2 ± 4.0 · 10−3

0.556± 3.6 · 10−2 1.490± 1.7 · 10−1

Sext.+Oct. (Landau) 0.762 -105.5±3.9 1.214 · 10−2 ± 8.4 · 10−4 2.606 · 10−2 ± 4.0 · 10−3

0.526± 3.6 · 10−2 1.129± 1.8 · 10−1

No correction -0.621 -84.2±2.2 2.492 · 10−2 ± 9.9 · 10−4 -2.039 · 10−2 ± 5.5 · 10−3

1.080± 4.3 · 10−2 -0.884± 2.4 · 10−3

Sext.+Oct. (Quad.) -0.621 -53.6±3.6 1.611 · 10−2 ± 9.9 · 10−4 -1.179 · 10−2 ± 5.4 · 10−3

0.698± 4.3 · 10−2 -0.511± 2.4 · 10−3

Sext.+Oct. (Landau) -0.621 -101.9±3.2 1.650 · 10−2 ± 9.6 · 10−4 -1.887 · 10−2 ± 5.5 · 10−3

0.715± 4.2 · 10−2 -0.818± 2.4 · 10−3

Table 4: Values of the skew-sextupolar integrated field derived from the fit of V2,0 only, after
having removed the contribution from normal sextupoles and octupoles. The two possible
octupoles configuration from the SPS non-linear model have been taken into consideration.
In order to get an estimate of a3 as immune as possible from other sources driving the mode
V2,0 the phase ψ has been constrained to 0.

Configuration Measured ∆field a
V2,0
3 a

V2,0
3

[MV] [1/(m2·MV)] [T/(m·MV)]
Sext. + Oct. (Landau) 0.762 -2.680 · 10−3 ± 1.2 · 10−3 -0.1161± 5.1 · 10−2

Sext. + Oct. (Landau) -0.621 9.953 · 10−3 ± 1.3 · 10−3 0.431± 5.8 · 10−2

Sext. + Oct. (Quad.) 0.762 1.012 · 10−2 ± 1.0 · 10−3 0.438± 4.5 · 10−2

Sext. + Oct. (Quad.) -0.621 -2.957 · 10−3 ± 1.5 · 10−3 -0.1282± 6.4 · 10−2
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Figure 15: Variation (blue) of the real and imaginary part of the V2,0 and V0,0 modes induced
by switching on the crab-cavity field from 100 kV to ∼1 MV (top) and from 100 kV to
∼−1 MV (bottom). No additional imaginary part was allowed to a3 during the fit, but the
contribution to V2,0 and V0,0 due to normal sextupoles and octupoles have been removed
from the experimental data before running the fit. The octupoles model used in this case is
the one with octupolar errors at the quadrupoles, a similar result is obtained for the other
configuration (remanent field in the octupoles).
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9 Conclusions

An attempt to estimate the value of the skew-sextupolar component a3 of the LHC crab-
cavity has been carried out, relying on the spectral analysis of the turn-by-turn non-linear
betatron motion. A first test was carried out using a static skew-sextupolar field, showing
positive results and proving the validity of the experimental technique and analysis tools.
A short time span was assigned for crab cavity tests in October 2018 during which the
measurement was carried out. The quality of the measured data appeared to be comparable
to what was observed in the previous test, despite the reduced statistics due to the time
constraints. It was found how the small signal produced by the skew-sextupolar field of the
Crab-Cavity was easily polluted by second order effects from normal octupoles and sextupoles
triggered by the substantial vertical orbit induced by the crab-cavity itself. Because of
the impossibility to carry out more measurements an attempt to estimate and remove the
contributions of sextupoles and octupoles relying on the current knowledge of the SPS non-
linear model was undertaken. The very small entity of the crab-cavity signal compared to
the already existing non linearity in the SPS optics made the task particularly challenging.
The uncertainties in the SPS non-linear model did not allow to derive a completely self
consistent result, and some contribution from the optics non-linearities are to be expected.
Therefore the fit results are to be considered as an overestimation of the real crab-cavity
skew-sextupolar field. Following this assumption, by relying on the observation of the mode
V2,0 that happen to be in a certain measure more immune to the contributions of spurious
effects of the SPS non-linear optics, it is possible to restrict the a3 value to the range
−0.13 T/(m ·MV) to 0.43 T/(m ·MV), to be compared with the value of 0.15 T/(m ·MV)
provided by RF simulations.
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Appendix

A Forced betatron motion

The transverse betatron motion of a particle under the influence of an external harmonic
driving force is derived here following a procedure similar to what is used in [15, 16]. Normal
form analysis is also another viable and largely used approach [17, 18, 19, 20]. On the other
hand the complexity of the required mathematical formalism is likely to hide the otherwise
simple physical mechanisms that leads to the dynamics under study. Being not strictly
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required in this specific case, we prefer to avoid normal form analysis in favor of a more agile
approach. The driving force is localized in a thin insert that at turn n results in a transverse
kick on the beam:

δp(n) = Ad · sin(2πQdn+ ψ0), (18)

where Qd is the driving force frequency, Ad is an amplitude parameter and the phase ψ0 takes
into account for the initial phase of the driving force. Thus the transverse action change
δj(n) associated with the kick δp(n) is:

δj(n) =
δp2(n) · βd

2
, (19)

with βd the betatron amplitude at the driving force location. The change in action δj(n) at
turn n is associated with a free betatron motion that at turn t has the amplitude:

xn(t) =
√

2δj(n)βo · sin(2πQ(t− n) + ψo − ψd), (20)

where Q is the natural betatron tune, βo is the betatron amplitude of the observation point
(e.g. BPM) and ψo−ψd is the phase advance between the observation point and the driving
force location. The overall betatron motion observed at turn t induced turn after turn by
the repeated action of the driving force is obtained by summing Eq. (20) over n:

x(t) =
n=t∑
n=0

√
2δj(n)βo · sin(2πQ(t− n) + ψo − ψd), (21)

where the sum starts from turn the betatron motion is excited by firing the tune kicker,
that is arbitrarily assumed to happen at turn n = 0. It is important to remember that in
every case studied here the driving force is the actual result of the interplay of a non-linear
magnetic field and the linear betatron motion rather than a an external driving force. This
condition ensures that the driving force is zero before turn n = 0, when the kicker is fired.
Combining Eqs. (18), (19) and (21) yields:

x(t) =
n=t∑
n=0

Ad
√
βdβo · sin(2πQdn+ ψ0) ˙sin(2πQ(t− n) + ψo − ψd), (22)

which after some manipulation can be written as:

x(t) = <
n=t∑
n=0

Ad

2

√
βdβo

[
e2πi(Qd+Q)n · ei(ψ0−2πQt−ψo+ψd) − e2πi(Qd−Q)n · ei(ψ0+2πQt+ψo−ψd)

]
.

(23)
The sum is written in closed form with the help of the geometric series property:

n=t∑
n=0

rn =
1− rt+1

1− r
, (24)
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providing:

x(t) = <A
d

2

√
βdβo

[
ei(ψ0−2πQt−ψo+ψd) − ei(2π(Qdt+Qd+Q)+ψ0−ψo+ψd)

1− e2πi(Qd+Q)
+

−e
i(ψ0+2πQt+ψo−ψd) − ei(2π(Qdt+Qd−Q)+ψ0+ψo−ψd)

1− e2πi(Qd−Q)

]
.

(25)

Interestingly the previous expression always consists of the sum of two terms, one with the
same frequency of the driving force Qd, and a second one with frequency Q. This last term
results from the transient nature of the excitation provided by the tune kicker, and instead
it disappears if gradually exciting (adiabatically ramping) the linear betatron motion (in
the limit of an infinite ramp this condition is equivalent to extend the lower bound of the
sum in Eq. (21) from 0 to −∞). From an experimental point of view this last mode, having
the same frequency of the natural tune is virtually impossible to distinguish from the free
betatron motion and therefore is usually discarded. Finally after removing this superfluous
term, the driven betatron motion reduces to:

x(t) ' <
[
H · e2πiQdt

]
, (26)

with:

H =
Ad

2

√
βdβo

[
ei(2π(Qd−Q)+ψ0+ψo−ψd)

1− e2πi(Qd−Q)
− ei(2π(Qd+Q)+ψ0−ψo+ψd)

1− e2πi(Qd+Q)

]
. (27)
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