
C
ER

N
-T

H
ES

IS
-2

01
8-

46
9

24
/0

2/
20

20

Master thesis:

MECHATRONIC DESIGN OF AN
OMNIDIRECTIONAL ROBOTIC PLATFORM AND

ITS NAVIGATION BASED ON GRAPH SLAM
IMPLEMENTATION

Present:

Carlos Prados Sesmero

Supervised by:

Manuel Ferre Pérez

Mario Di Castro

Master in Automatic and Robotic

Robotic Department (ETSII)

January 2020

Acknowledgments

I would like to thank, first of all, to Mario Di Castro and Manuel Ferre for organizing this
experience. I am always going to be grateful for this huge chance you have given me that
has allowed me to grow professionally and humanly.

To my family, especially my parents and sister, who have made my stay in CERN more
pleasant. Thank you for your unconditional support and help, for your continuous encour-
agement and for always have time and space to dedicate to me.

To Silvia for being closer than never in spite of the long distance. This experience would
not have been possible without your positive energy and help. Thanks very much.

To all of you who have taken part in the robotic group.

i

Abstract

One of the most significant problems in underground tunnels is the survey of the proper
performance of the security sensors available along the whole corridor, especially when dealing
with the safety of personnel working in one of the largest underground tunnel complexes in
the world.

Intending to enhance the process of inspection in long tunnels, this project presents the
mechatronic design of an autonomous robot for the SPS accelerator of CERN, where any
amount of restriction is present due to its actual state. Besides, its kinematic and dynamic
control is specified.

Furthermore, a graph-SLAM algorithm, which uses the robot odometry, inertial motion,
visual odometry, and point clouds acquisition, for the robot location while generating a
reconstruction of the environment is presented.

Besides, to find a radiation-resistant system, a study of microcontrollers under radioactiv-
ity has been prepared.

Keywords

Robotic Platform - Omnidirectional Robot - GraphSLAM - Selflocation - Control.

iii

Contents

Acknowledgments i

Abstract iii
Keywords iii

List of Figures ix

List of Tables xi

Chapter 1. Introduction 1
1.1. Objectives and project motivation 2

Chapter 2. State of the art 5
2.1. Facilities with radioactivity where robots take part 5
2.1.1. DONES 6
2.1.2. CERN 7
2.2. Robots for inspection 8
2.2.1. CERNbots 9
2.2.2. TIM 10
2.2.3. Telemax Pro 11
2.3. Self-location 12
2.3.1. EKF SLAM 12
2.3.2. FastSLAM 13
2.3.3. GraphSLAM 13

Project development 15

Chapter 3. Mechatronic design of a robotic platform 17
3.1. Requirements and specifications 17
3.2. Decision making 18
3.3. Motor set selection 20
3.3.1. Nominal force, torque, and power 20
3.3.2. Maximum force, torque, and power 22
3.3.3. Motor and gearhead selection 23
3.3.4. Motor verification 25

v

Contents

3.4. Devices selection 26
3.5. Mechanical design 27
3.5.1. Preliminary design 27
3.5.2. Stability study 31
3.5.3. Final design 32
3.6. Electronic and electrical design 36

Chapter 4. Control of the robotic platform 39
4.1. Kinematic calculation 39
4.2. Dynamic calculation 45

Chapter 5. GraphSLAM for the robot self-location 49
5.1. Requirements and specifications 49
5.2. Decision-maker 49
5.3. Main procedure 51
5.4. Visual omodetry 53
5.5. Graph Generator and Optimizer 54
5.5.1. Graph structure 55
5.5.2. g2o 58
5.5.3. KdTree 61
5.6. SLAM Algorithm 62

Chapter 6. GraphSLAM results 67

Chapter 7. Study of microcontrollers under radioactivity 73
7.1. System approach 73
7.2. Communication protocol 75
7.3. Electronic scheme 77
7.4. Tests 79

Project evaluation 85

Chapter 8. Conclusions and future development lines 87
Objectives met 87
Future development lines 88

Bibliography 91

Appendices 93

Appendix A. Project Gantt 95

Appendix B. Economical study 101

vi

Contents

Appendix C. Methodology to program a microcontroller with an external programmer 105

Appendix D. Datasheets 111
D.1. Reducer 112
D.2. Motor 113
D.3. Encoder 114

vii

List of Figures

2.1.1 Penetration force of the radiation types ... 5
2.1.2 Layout of DONES... 6
2.1.3 Current CERN accelerator complex. .. 8
2.2.1 CERNbots and CHARMbot ... 10
2.2.2 TIM .. 11
2.2.3 Telemax PRO ... 12

3.1.1 Sector doors. A small robot is expected to cross.. 18
3.3.1 Velocity profile of the robotic platform... 21
3.3.2 Inertial moments of a hollow cylinder... 22
3.3.3 Block diagram for the motor verification.. 25
3.3.4 Results for a desired speed of 1.5m/s. .. 26
3.5.1 The entire system of the preliminary design... 28
3.5.2 Components of the preliminary design of the robotic platform. 29
3.5.3 The robotic platform crossing the door .. 30
3.5.4 Dimensions of the robotic platform for the preliminary design 30
3.5.5 Situations of the stability study ... 31
3.5.6 The compact design of the robotic platform for the survey in underground

tunnels with space constraints. ... 33
3.5.7 Some dimensions of the compact design of the robotic platform for the

survey in tunnels are shown in ’mm’ .. 34
3.5.8 Robot posture crossing the doors ... 35
3.6.1 Electronic and electrical scheme to control only one motor............................ 37
3.6.2 Electronic and electrical scheme to control four motors 38

4.1.1 Reference systems ∑W and ∑R .. 39
4.1.2 Reference systems related to the used omnidirectional wheel......................... 40
4.1.3 Reference systems related to the robot and the wheels 41
4.1.4 Wheel parameters relative to the robot.. 44

5.2.1 Structure of the SLAM system ... 50
5.3.1 Errors and problems of scan matching in a reduced environment 52
5.4.1 Results of the SIFT algorithm on accelerator images. 54

ix

List of Figures

5.5.1 Cumulative error problem and way to reduce... 56
5.5.2 The technique to close the loop and correct the previous robot positions...... 57
5.5.3 Graphical model of full and partial full SLAM system................................... 58
5.5.4 An example that illustrates how to represent an objective function by a

graph... 59
5.5.5 General 3-d tree.. 61
5.6.1 Flowchart of the graph optimization .. 63
5.6.2 Coordinate system transformation between the robot movement center point

and the sensor central point. .. 64

6.0.1 1D test results. ... 67
6.0.2 2D test results. ... 68
6.0.3 Radiation sensor reconstruction.. 69
6.0.4 Good behavior test of the over-constrained graph.. 70
6.0.5 Good behavior test of the loop closure with fixed vertices 70

7.1.1 ATmega64M1 and ATmegaS64M1 Pinout.. 74
7.2.1 Nodes and communication protocol between them... 76
7.3.1 Electronic scheme of the set ... 78
7.4.1 Servomotor Parallax Standard performance (Step input) 79
7.4.2 Servomotor Parallax Standard performance (Ramp and Step input)............. 80
7.4.3 Received signals from two microcontrollers .. 81
7.4.4 Received signals from four microcontrollers.. 82
7.4.5 Failure of one microcontroller ... 82
7.4.6 Failure of several microcontrollers in different moments................................. 83
7.4.7 Completely signal lost failure ... 83
7.4.8 Temporally signal lost failure ... 84

C.0.1 Components of AVR Pocket Programmer .. 106
C.0.2 Arduino Uno Rev3.. 107
C.0.3 Pinout of each device.. 108
C.0.4 The necessary connection between the programmer and the microcontroller. 109

x

List of Tables

3.5.1 Stability study results with the maximum load.. 32

4.1.1 Kinematic parameters of our robot (recommended to take a look at Figure
4.1.4). These parameters can be observed in Figure 3.5.8................................ 42

8.0.1 The total cost to continue with the project and get a functional robot 90

B.0.1 Material cost study... 102
B.0.2 Staff costs study ... 102
B.0.3 Resource costs study .. 103
B.0.4 The total cost of the project until now... 103

xi

CHAPTER 1

Introduction

One of the most significant problems in underground tunnels is the survey of the proper
performance of the security sensors available along the whole corridor, especially when dealing
with the safety of personnel working in one of the largest underground tunnel complexes in
the world. Inspection of large tunnels can be laborious when performed by operators. This
process can be automated by robots, reducing inspection time and avoiding possible risks to
people.

To enhance the process of inspection, a complex net of robots is being developed in
the robotic group of CERN1. SPS, one of the particle accelerators, has particularly high
radioactivity during its operation, so it is strongly desired to replace the maintenance personal
by robots.

The main objectives of this thesis are the mechatronic design and the development of the
autonomous location system with the goal of the inspection of long tunnels. After that, a
study of some microcontrollers under radioactivity is prepared. The objective of this part is
to determine the resistant capability of them in different cases (radioactive exposure time,
radioactivity quantity, with and without cover, etc.).

The structure of this project is the following:

In this chapter, an introduction to the project is written. In the next one, the objectives of
this project are raised. With these goals, a study of the state of art is developed, putting the
project into context.

Within the project development, thorough development of the robotic platform is carried out,
selecting the proper mechanical, electronic and electrical devices, making studies about the
platform stability and presenting the mechanical, electronic and electrical design.

The kinematic and dynamic control of the omnidirectional platform is detailed in the following
chapter.

Then, to localize the robot within the environment, a graph-SLAM approach is explained.

Finally, a study of some microcontrollers under radioactivity is prepared. This study is ex-
pected to consist of test the resistance of some electronic devices under different cases of
radiation.
1CERN: Center for European Nuclear Research

1

Objectives and project motivation Introduction

Within the project evaluation, some conclusions and future development lines are exposed
before the bibliography, in order to continue with the present project.

Finally, some appendices have been included.

Here, a project Gantt is shown. This graphic tool exposes the dedicated time planned for the
different tasks throughout the project development time.

Besides, a study of the staff salary, the used materials and resources are detailed for an
economical study.

Lastly, a working guide for the study of the microcontrollers and some datasheets are presen-
ted.

1.1. Objectives and project motivation

In this section, the project objectives are presented.

The first three parts of the project consist in develop a mechatronic design of a robotic
platform, control it and develop a self-location system that determines the robot position
with an accuracy of 10cm.

The Super Proton Synchrotron, SPS, was switched on in 1976 and nowadays it is the
second largest machine in CERN’s accelerator complex [3]. Measuring nearly 7 kilometers in
circumference, the corridor of the tunnel becomes completely monotonous, so typical location
systems that use ultrasonic sensors and lasers are hopelessly useful.

Radiation sensors, which measure the radiation steadily, are located at completely random
distances in the ring. These sensors are essentials to guarantee material and personal security.
Due to the necessity of sensors surveys, inspections must be carried out every month. The
actual surveillance is performed by internal employees, so it is strongly recommendable to
replace these workers with automatic systems.

The Large Hadron Collider, LHC, disposes of the TIM, which performs this hard task.
However, SPS doesn’t dispose of rails, so other automatic techniques must be developed.

A robotic autonomous system must be developed to perform the task of radiation survey,
so the first part of this project must present the mechanical design of the platform, while the
third part must present the self-location approach. Some specific objectives are presented
in each chapter of the corresponding part.

Currently, there are very few autonomous tasks in underground tunnels made by robots,
almost everything is teleoperated. For this reason, this project is expected to present innov-
ative techniques for a lot of companies related to the robot self-location. These techniques
can be used by any robot that meets the minimum characteristics.

2 of 114

Objectives and project motivation Introduction

The fourth part of the project development is the preparation of a study of microcon-
trollers under radioactivity. The main objective in this part is to dispose of a PCB2 able to
support high quantities of irradiation in a contaminated environment to its performance like
an integrated controller in the robotic arm joints. In these environments, the main problem
is found in the microcontrollers, since it is the first that breaks down due to radiation, while
the rest of the components withstand greater amounts of time.

This last part is being worked on due to a collaboration between the Polytechnic Uni-
versity of Madrid and DONES, which is looking for robots able to work under very high
radioactive levels, far superior to those working in other environments.

2PCB: Printed circuit board

3 of 114

CHAPTER 2

State of the art

During this chapter, several topics related to the project will be addressed with the
objective of compare and contrast them in order to take suitable options in the several
decisions that are presented during the development of the project.

There are three main topics to tackle. The first treats about the facilities with radioactiv-
ity where the robots are present, the second treats about robots for inspection in a variety
of environments and the third treats about some SLAM algorithms.

2.1. Facilities with radioactivity where robots take part

Radioactivity refers to the particles (with or without matter) which are emitted from
nuclei as a result of nuclear instability[1]. The most usual types of radiation are called alpha,
beta, and gamma, whose penetration force is represented in Figure 2.1.1.

Figure 2.1.1. Penetration force of the radiation types

In this section, some facilities where robots work under radiation are going to be men-
tioned. The selection of this sort list has been set due to the proximity with them, since

5

Facilities with radioactivity where robots take part State of the art

Chapter 7 has been developed for DONES, while the rest of the chapters of the ”Project
Development” have been developed for CERN..

2.1.1. DONES.

Between the different facilities which work with radioactivity, it is possible to find DONES3.
DONES is a facility located in Granada (Spain) whose main objective is to recreate the terms
of a fusion reactor and irradiate samples of material for the posterior analysis and studies.
One of the principle applications consists of the capability to develop resistant materials for
future facilities of DEMO4..

Three important areas exist within DONES:.

• AS (Accelerator System). The deuterium is generated.
• TS (Test System). Three rooms are available:

– TC (Test Cell). It contains the samples, with which the accelerated deuterium
collide.

– AC (Access Cell), over the TC, contains the necessary equipment for the remote
maintenance (cranes, robots, tools, etc.).

– IWTC. Where the samples are extracted from the TC. These components are,
among others, the HFTM5 and the Target Assembly (TA).

• LS (Lithium System). Where the lithium samples are stored.

Some of these areas and rooms can be observed in Figure 2.1.2.

Figure 2.1.2. Layout of DONES

3DONES: DEMO oriented Neutron Source.
4DEMO: DEMOstration Power Plant.
5HFTM: High Flux Test Module.

6 of 114

Facilities with radioactivity where robots take part State of the art

In these facilities, the samples are irradiated with accelerate deuterium to study the
impact of the different materials. Then, the process can be summarized in the next sequence:

• The deuterium is accelerated in AS.
• The accelerated deuterium impact against the sample in the TC, irradiating it. The
samples are located in a complex system known such us HFTM.
• The HFTM is extracted from the TC through the equipment located in AC. It is
transported throughout the said room and is introduced in the room IWTC.
• The components of HFTM are uninstalled to obtain the samples thanks to the use
of robots, due to the existent radiation level of the materials.
• The materials are treated, packed and driven out.

The use of robots in this facility is crucial for the safety of the staff, to avoid their exposure
to high levels of radiation.

2.1.2. CERN.

Probably, the most known place related to nuclear research is the European Organization
for Nuclear Research. CERN is a European research organization that operates the largest
particle physics laboratory in the world [3]. Surely, the most remarkable part of this organiz-
ation is the particle accelerators complex, where various experiments are located strategically
at some points. All of them are shown in Figure 2.1.3 [4].

CERN operates a network of 6 accelerators and a decelerator, increasing the energy of
particle beams. Currently, active machines are the following [3, 4]:

• Two linear accelerators generate low energy particles. LINAC 2 accelerates protons
for injection into the Proton Synchrotron Booster (PSB), while LINAC 3 provides
heavy ions for injection into the Low Energy Ion Ring (LEIR).
• The Proton Synchrotron Booster increases the energy of particles generated by the
proton linear accelerator.
• The Low Energy Ion Ring (LEIR) accelerates the ions from the ion linear accelerator,
before transferring them to the Proton Synchrotron (PS).
• The Proton Synchrotron (PS) operates as a feeder to the more powerful SPS.
• The Super Proton Synchrotron (SPS), a circular accelerator with a diameter of 2
kilometers built in a tunnel. It is been used to inject protons and heavy ions into
the Large Hadron Collider (LHC).
• The On-Line Isotope Mass Separator (ISOLDE), which is used to study unstable
nuclei.
• The Antiproton Decelerator (AD), which reduces the velocity of antiprotons to about
10% of the speed of light for research of antimatter.

7 of 114

Robots for inspection State of the art

Figure 2.1.3. Current CERN accelerator complex.

• The Compact Linear Collider Test Facility, which studies feasibility for the future
normal conducting linear collider project.
• The AWAKE experiment, which is a proof-of-principle plasma wake-field accelerator.
• The Large Hadron Collider (LHC) is a tunnel located 100 meters underground, with
a length of 27 km. Insert the pre-accelerate protons and lead ions from PS/SPS and
contains seven experiments.

The use of robots in this complex is crucial for the safety of the employees, to avoid their
exposure to high levels of radiation. CERN disposes of a great set of robots for manipulation
and survey in continuous development.

2.2. Robots for inspection

Reconnaissance and inspection might be laborious and even dangerous in hazardous en-
vironments. The best solution for those tasks can be found in the proper use of robots.
These electromechanical machines can actuate in a complicated environment where radio-
active, electrical and other dangers are present. Furthermore, robots improve the process of
survey, reducing the time, optimizing the results and taking a lot of useful data of the place
features.

8 of 114

Robots for inspection State of the art

In this section, some robots working for reconnaissance and inspection are described.
Robots are extremely necessaries due to the danger in underground tunnels. A kind of
danger can be the high level of radioactivity during the performance of the accelerators.

Robots are used for material handling and transport, person detection, sensor inspection,
environment state survey, parts change and bug fix.

2.2.1. CERNbots.

CERNbots are a set of robotic platforms developed at CERN for complex interventions
in the presence of hazards like ionization radiation.

As the first CERNbot version, the second one is an omnidirectional platform, modular and
flexible. Its upper module can have two robotic arms installed and can be deployed without
the mechanical chassis onto other structures/platforms such as cranes etc. In addition, the
chassis is very stable and can be safely operated with two robotic arms installed on a lifting
chariot, which allows operations at a height of up to 3m, thus further expanding the versatility
of the platform.

CERNbot uses standard industry components for most of its electronics and controls
hardware making it a constantly evolving platform as the hardware is upgraded by the
manufacturer. This also keeps the cost at a very competitive level for a platform with a
payload of up to 250 kg and the capabilities of CERNbot.

The main applications are:

• Teleoperated interventions in hostile environments in particular in the presence of
ionizing radiation.
• Complex interventions involving coordination of two robotics arms in heights up to
3m.
• Search and rescue tasks.

9 of 114

Robots for inspection State of the art

(a) CERNbot 1 (b) CERNbot 2 (c) CHARMbot

Figure 2.2.1. CERNbots and CHARMbot

All the versions can be observed in Figure 2.2.1, where CHARMbot is focused on visual
inspections (it is also used for the testing algorithm).

2.2.2. TIM.

TIM6 is a robot for LHC tunnel inspection. Its functions are the monitoring of the whole
corridor of 27 km, record images (both visual and infrared), bring materials and small robots
and store data of the oxygen percentage, bandwidth of the communication and temperature.

6TIM: Train Inspection Monorail

10 of 114

Robots for inspection State of the art

Figure 2.2.2. TIM

The train (shown in Figure 2.2.2) operates on a monorail that is installed on the ceiling
all around a tunnel. Communication is done via 4G or Wi-Fi. It consists of five coupled
wagons: control, battery, motor, payload and reconnaissance wagon, each one designed for
a different purpose (modularity). This flexible robot is an autonomous system that can be
operated from the surface through an advanced HMI7. Besides, all parts are featured with
different types of cameras, sensors, PCs, controllers (almost everyone PLCs) and mechatronic
systems [5].

2.2.3. Telemax Pro.

Telemax PRO is a versatile robot of Telerob, with a robotic arm of 7 degrees of freedom,
capable of handling significant gradients and obstacles [6]. This robot (shown in Figure 2.2.3)
allows a high range of manipulation thanks to a telescopic joint and the possibility of fold the
track wheels. The control is made through a friendly HMI, where the operator can observe
images provided for the 5 cameras located along with the robot.

7HMI: Human Machine Interface

11 of 114

Self-location State of the art

Figure 2.2.3. Telemax PRO

This robot is used to material handling and transport, general inspection, parts change
and bug fix. Telemax is widely used at CERN in a big quantity of tasks where space is not
a critical restriction.

2.3. Self-location

Robot location in an unknown or monotonous environment can become an arduous task.
The problem of constructing and updating a map (usually in two or three dimensions) of an
unknown environment while, at the same time, keeping track of the robot location is known
as SLAM..

In this section, some SLAM algorithms are described.

2.3.1. EKF SLAM.

EKF SLAM is a class of algorithms features based witch utilizes the extended Kalman fil-
ter (EKF) for SLAM. It provides analytical estimates of the complete a posteriori probability,
incrementally.

It is not an optimal solution. Computational cost raises quadratically with the number
of items in the map. It is only used in small environments (unlike tunnels).

12 of 114

Self-location State of the art

Similar to EKF SLAM, it is possible to find SEIF SLAM which is dual to the Kalman
filter, where the correction step has a less computational cost.

2.3.2. FastSLAM.

Factored Solution to SLAM, FastSLAM, is an approach of the SLAM problem from a
Bayesian point of view [7]. It decomposes the SLAM problem into a robot localization
problem and a collection of landmark estimation problems that are conditioned on the robot
pose estimate.

FastSLAM uses a modified particle filter for estimating the posterior over robot paths.
Each particle possesses Kalman filters that estimate the landmark locations conditioned on
the path estimate. Landmark estimations are efficiently represented using tree structures [7].

2.3.3. GraphSLAM.

GraphSLAM is a Simultaneous localization and mapping algorithm that uses sparse in-
formation matrices produced by generating a factor graph of observation interdependencies
(two observations are related if they contain data about the same landmark) [9].

A graph-based SLAM approach constructs a simplified estimation problem by abstracting
the raw sensor measurements. These raw measurements are replaced by the edges in the graph
which can then be seen as “virtual measurements” [8].

13 of 114

Project development

Throughout this project, different activities are developed with the aim to comply with
the set goals and achieve in the best way all the defined requirements and specifications.
Every solution has been focused on functionality, quality and security point of view.

The development has been structured as follows:

Firstly, the mechatronic design of a robotic platform is carried out. Here, the platform
requirement and specification are presented, making the decisions that are most affected to
face the problem. A set of equations is proposed in order to find the best motor model (with
gearhead and encoder), verifying the selection thanks to some simulations. In parallel form
to the motor selection, some devices have been chosen as well and the mechanical design
has been carried out. This design has two different phases, a preliminary design (with two
extensible wheels to improve the stability) and a second model without those wheels, which
have been removed thanks to a stability study. Finally, electronic and electrical design is
presented, where the connexions of the motors are shown.

The next chapter presents the control system of the robotic platform from a kinematic
and dynamic point of view. Here, the models are obtained, which will be used to control
properly the robot, improving the quality of its movements.

In the following chapter, a graphSLAM approach for the robot is detailed. Here, the
self-location system requirement and specification are presented, making the decisions that
are most affected to face the problem. The main procedure to create a graph that reflects the
location system is explained. After that, the used tools and libraries to create and optimize
the graph are detailed. With these tools, the SLAM algorithm is done, which indicates the
steps to follow to build the system. Finally, the results of the self-location system are shown.

In the last chapter, the preparation of a study of microcontrollers under radioactivity has
been carried out. Here, a set of four microcontrollers is communicated with a master through
RS-485 modules. The approach, the high-level communication protocol, and the electronic
scheme are presented. Furthermore, some tests are shown, demonstrating the performance
of the system in different cases.

CHAPTER 3

Mechatronic design of a robotic platform

In this chapter, the mechatronic design of a robotic platform is presented. How is typical
in engineering projects, all the following Sections have been carried out in parallel, so some
aspects are explained in later sections. The structure of this chapter is the following:

Firstly, the project requirements and specifications are explained in order to contextualize
this document. According to them, important decisions have been taken to solve the problem
as well as possible, proposing the development of a robotic platform. The next step has been
the selection of the motor set and the batteries. They have been calculated to guarantee the
robotic platform power in any case, of course, developing a study to verify its performance.

Then, the mechanical design is presented. Firstly, a preliminary design is shown and, after
some stability studies of the platform, a final and compact design is presented.

Finally, the device selection and the electrical and electronic design are detailed, closing the
mechatronic design in this way.

3.1. Requirements and specifications

A robotic system must be developed to perform the task of a radiation survey. A robot
must start from its home, take a full turn to the ring and come back to the initial position.
Since the radiation sensors are localized at 1m of height, the robot must get this heigh during
the inspection.

It is expected that the robot circulates throughout the tunnel performing the survey in
80 minutes, this is, 5.5km/h or 1.5m/s.

SPS has 19 sector doors. Current internal law obligates that the doors remain closed for
security reasons, so there is a problem to perform the survey with robots. In order to solve
this problem, some modifications to the doors have been carried out to create an aperture
that allows the robot passing through the doors.

The door modification has been approved by the committee with the constraint that the
hole will be of dimensions 400x200mm (see Figure 3.1.1), so, due to this small size, the robot
has a lot of constraints that must be solved. Since this project has a lot of constraints, the
following requirements must be followed:

17

Decision making Mechatronic design of a robotic platform

(a) Previous state (b) Actual State

(c) Approved modification

Figure 3.1.1. Sector doors. A small robot is expected to cross

• In order to achieve good maneuverability to cross the small doors, arrive at the
charger station through the very narrow corridors and park the robot in the charger
station, the robot is expected to be holonomic.
• The accelerator complex is almost flat, with maximum slopes of 1º, so the motors
must keep the velocity in any cases.
• Due to the dimension constrains and since there will not be very big obstacles, the
robot is not expected to have a damping and suspension system.
• To guarantee the robot autonomy during the survey, the batteries must apply energy
for 3 hours at least.

3.2. Decision making

Due to the dimension constraints to cross the doors, the robot is expected to be (~700)
x 350 x 190mm. Furthermore, the robot is expected to bring a robotic arm which brings a
radiation sensor. In this way, if the robot is needed in other tasks, it can be used if the tool
on the robotic arm is changed.

18 of 114

Decision making Mechatronic design of a robotic platform

About the locomotion system, the possible options are the following:

• Differential: A high power is required because there are only two traction wheels.
The control is simple but the odometry calculation is very sensitive to errors and
timely responses. If a motor fails during the survey, it would be a big problem
because the robot would stay in the ring.
• Ackerman: Almost impossible to access to the tunnel and park in the charger station
due to the narrow spaces (non-holonomic system).
• Tricycle: Completely discarded.
• Synchronous: Four mechanically coupled wheels, all of them turn at the same time.

– Advantages: Reduction of the number of encoders, spin synchronism, high ac-
curacy.

– Disadvantages: The steering belt can become loose and generate errors, high
spin friction, difficult to implement.

• Omni-directional: Four mecanum wheels.
– Advantages: High maneuverability, easy to implement, the controllers have been
already developed in the robotic group of CERN.

– Disadvantages: High slip, bad energetic efficient and low speed (the last one is
not a problem).

The final decision has been to implement an omni-directional robot. With this structure,
the system is more simple, more compact and the risk when a motor fails is lower. This last
point is very important, setting four wheels in rectangle, the system is redundant, this is,
there are more modifiable d.o.f (4) than motion d.o.f (3, [x, y, orientation]). In case a motor
fails, the system is able to continue making movements.

3.2.0.1. Sensorization.

The following sensors should be added:

• Two 2D lidars for object detection. They will be used to prevent the robot from
crashing with obstacles, with the walls, and with the accelerator.
• Cameras for teleoperation.
• A tracking camera for visual odometry (this camera can be the same as the camera
for teleoperation).
• A point-cloud generator sensor for the self-localization. It can be a 3D lidar or a
RGBd camera.
• Encoders and an IMU for the localization system.

19 of 114

Motor set selection Mechatronic design of a robotic platform

3.3. Motor set selection

In this Section, all the calculations are detailed in order to determine the proper motor and
its gearhead to move the robotic platform, with his corresponding structure and locomotion
system. The first step in the election of the proper components is the force and torque
calculation.

3.3.1. Nominal force, torque, and power.

Since the robot is supposed to be autonomous, the maximum speed is limited. In our
case, this maximum limit has been established to 2m/s (higher than required just in case of
teleoperation). The equation that relates the desired linear velocity with the velocity of thee
wheels (in rpm) is shown in Eq. 3.3.1 (a factor is applied to ensure good performance), while
Eq. 3.3.2 shows the case this document is working on.

(3.3.1) nin = 60
Π
· vL
d · η

(3.3.2) nin = 60
Π
· 2m/s

0.1524m · 0.8 = 313.2rpm

The input torque to move the entire robot (at nominal velocity) is established in Eq. 3.3.3.
This torque depends proportionally on the force necessary to apply, which is determined in
Eq. 3.3.4. In our case, since the maximum slope in the tunnel is 1º, taken the friction
coefficient of the bearings as 0.01 (high value to ensure the proper robot performance) and
the bearing factor such as 0.8, the results are shown in Eq. 3.3.5 and 3.3.6.

(3.3.3) Min = d

2 ·
FL
η

(3.3.4) FL = m · g · sin θ + µv ·m · g · cos θ

(3.3.5) FL = 40kg · 9.8m/s2 · sin 1º + 0.01 · 40kg · 9.8m/s2 · cos 1º = 10.76N

(3.3.6) Min = 0.1524m
2 · 10.76N

0.8 = 1.025N ·m

20 of 114

Motor set selection Mechatronic design of a robotic platform

The input torque must be split on the number of traction wheels in the robot, in this
case, four wheels. The resulting torque on each wheel is expressed in Eq. 3.3.7.

(3.3.7) MWheel = Min

n
= 1.025

4 = 0.256N ·m

Until now, the torque when the nominal velocity is reached has been calculated. In
order to calculate the acceleration torque, the average and the maximum torque, the velocity
profile of Figure 3.3.1 has been created. This profile has been created according to the
distance between the doors when the robot would drive at a nominal velocity.

Figure 3.3.1. Velocity profile of the robotic platform

Thanks to this velocity profile, where it takes 5 seconds to reach de maximum velocity
(long time to avoid the abrupt movements), the acceleration has been set in Eq. 3.3.8.

(3.3.8) a = Vmax
t

= 2m/s
5s = 0.4m/s2

With all these calculations, it is possible to calculate the necessary power of the motor,
following Eq. 3.3.9, resolved in Eq. 3.3.10. In both equations, a confidence factor of 0.8 has
been set. Of course, the chosen motors must have more power than the calculated. For this
calculation, a power factor of 1.1 has been applied to ensure the good performance of the
motors.

(3.3.9) Power = PF · m · VL · (a+ g · sin θ)
2 ·Π · κ

(3.3.10) Power = 1.1 · 40 · 2 · (0.4 + 9.8 · sin 1º)
2 ·Π · 0.8 = 10W

21 of 114

Motor set selection Mechatronic design of a robotic platform

3.3.2. Maximum force, torque, and power.

One of the most important parts in the selection of a motor is found in the inertial forces.
With the first selection of the motor, it is possible to know its inertial moment. Since the
inertial moment of the wheels is well know, the inertial moment of the set can be calculated.
The inertial moment of the wheels has been calculated through the equations shown in Figure
3.3.2 [13]. For the case of a wheel, the important axis would be the ’x’ one.

Figure 3.3.2. Inertial moments of a hollow cylinder

Thanks to it (value obtain in Eq. 3.3.11 and 3.3.12), it is possible to calculate the
acceleration torque for the whole robot, which is shown in Eq. 3.3.13 and solved in Eq.
3.3.14, where the inertial moment of the motor is supposed to be the inertial moment of a
motor that satisfies the previous specifications.

(3.3.11) m = 2.38kg(mass)
0.01363m3(volume) · π · ((0.0762m2)− (0.01m2)) · 0.076m = 0.24kg

(3.3.12) Jx = 1
2 · 0.24·((0.0762m)2 + (0.01m2)) = 70260g · cm2

(3.3.13) Min,α = (n · Jin + n · Jw + mL +mF

η
· d

2

4) · Π
30 ·

∆nin
∆ta

· PF

(3.3.14)

Min,α = (4·0.007026kg·m2+4·14.7·10−7kg·m2+40kg
0.8 ·

(0.1524m)2

4)· Π30 ·
313.2rpm

5s ·1.1 = 2.3N ·m

Then, knowing the torque during the nominal moment (Eq. 3.3.6) and during the accel-
eration (Eq. 3.3.14), it is possible to calculate the maximum and RMS torque in each wheel,
according to Eq. 3.3.15 and 3.3.17, solved in Eq. 3.3.16 and 3.3.18 respectively.

(3.3.15) Mmax/wheel = Min +Min,α

nwheels

22 of 114

Motor set selection Mechatronic design of a robotic platform

(3.3.16) Mmax/wheel = 1.025Nm+ 2.3Nm
4 = 0.83N ·m

(3.3.17) MRMS/wheel =
√

1
ttotal

· (t1 ·M2
1 + t2 ·M2

2 + t3·M2
3 + t4·M2

4

(3.3.18)

MRMS/wheel =
√

1
185s · (5s · (0.83Nm)2 + 175 · (0.256Nm)2 + 5s·(0.83Nm− 0.256Nm)2 = 0.3Nm

At this moment, the maximum and RMS power can be calculated according to Eq. 3.3.19
and 3.3.21, and they have been solved in Eq. 3.3.20 and 3.3.22.

(3.3.19) Pmax = Mmax · nmax ·
Π
30

(3.3.20) Pmax = 0.83Nm · 313.2rpm · Π
30 = 27.28W

(3.3.21) PRMS = MRMS · nRMS ·
Π
30

(3.3.22) PRMS = 0.3Nm · 313.2rpm · Π
30 = 9.92W

3.3.3. Motor and gearhead selection.

Thanks to the calculations made previously, it is possible to do a proper selection of the
gearhead according to the instructions detailed in the following text box:

Result

A reducer with torque in continuous performance at least of 0.3Nm is necessary, and
an intermittent torque at least of 0.83Nm.

The necessary reduction is calculated in Eq. 3.3.23, so the chosen reduction has to be
smaller.

(3.3.23) N = nmotor
nwheel

= 9690rpm
313.23rpm = 30.94

23 of 114

Motor set selection Mechatronic design of a robotic platform

The chosen reducer has been the model GP 26A of Maxon, with a reduction of 1:27
and fulfilling all the specification of the text box (more information in Appendix D.1).

Since the output velocity is higher than required and since it is necessary motion trans-
mission between the motor system and the wheels, a couple of pulleys have been chosen (with
the corresponding belt). The necessary relationship to get 2m/s is 1:1.15, however, a 1:1.1
relation has been selected.

In this way, the motor must get the velocity indicated in Eq. 3.3.24, with a continuous
and intermittent torque detailed in Eq. 3.3.25 and Eq. 3.3.26 respectively.

(3.3.24) nmotor = nwheel · r = 313.22rpm · 27 · 1.1 = 9303rpm

(3.3.25) MRMS = MRMS/Wheel

r · η
= 0.3Nm

27 · 1.1 · 0.8 = 0.0126Nm

(3.3.26) Mmax = Mmax/Wheel

r · η
= 0.83Nm

27 · 1.1 · 0.8 = 0.035Nm

In summary, to select the motor:

Result

With the chosen reducer, with a reduction number (r) and a performance (η), the motor
must apply at least of 9303rpm, with a minimum torque of 0.0126Nm in continuous
operation and at least 0.035Nm in intermittent operation, with a power higher than
9.92W (checking the ability to withstand 27.28W in specific moments).

The chosen motor has been the model RE 25, Graphite Brushes, 20W of 24V (more
information in Appendix D.2).

Finally, to ensure the good performance of the chosen motor, the speed constant of the
motor must be higher than the calculated in Eq. 3.3.27.

(3.3.27) K = nempty
Vsupply

= nmotor+gradient·Mmax

Vsupply
=

8457rpm+ 34000 rpm
Nm
· 0.04Nm

24V = 407rpm
V

The motor must have a speed constant higher than 407rpm/V, in this way it is possible
to compensate with the controller the desired velocity, being able to reach higher velocities
(the motor speed constant is 460rpm/V, this is, higher). Additionally, the chosen encoder has
been the Encoder MR Type ML which allows 500 counts per turn (shown in Appendix
D.3).

24 of 114

Motor set selection Mechatronic design of a robotic platform

3.3.4. Motor verification.

In order to guarantee the proper performance of the chosen motor, an experiment has
been carried out. This experiment has been approached according to the methodologies
explained in [14]. The case of study is a cycle of motor performance, from null velocity to
maximum velocity, keeping this velocity in a nominal state.

For this study, the tool Simulink of Matlab has been used. In this way, the blocking
scheme of Figure 3.3.3 has been developed, where a PID controller has been included in the
motor model (defined by its features such as the terminal resistance, terminal inductance,
torque constant, inertial moment and viscous constant).

The results for the desired speed of 1.5m/s are shown in Figure 3.3.4, where it is possible
to observe different graphs with interesting data.

Figure 3.3.3. Block diagram for the motor verification.
Green square: Velocity controller of the robot. Red square: Motor model. Gray square:

Input torque due to the necessity of motion.

25 of 114

Devices selection Mechatronic design of a robotic platform

Figure 3.3.4. Results for a desired speed of 1.5m/s.
The following graphs are shown: 1.a. Current in the terminals (less than the nominal
current in the nominal state). 1.b Speed of the motor in rpm (less than the nominal

velocity of the motor). 2.a. Platform velocity (exactly the desired). 2.b. Torque applied by
the motor (less than the nominal torque). 3.a. Voltage in the motor (less than the nominal

voltage). 3.b. Input torque (a simulation of the input torque when the robot is
accelerating).

Thanks to this study, it is possible to verify the following facts:

• The current during the desired speed is not higher than the nominal current.
• The current does not overcome the maximum current.
• The torque during the desired speed is not higher than the nominal torque.
• The torque does not overcome the maximum torque.
• The PID controller (it will be implemented externally) allows the robot to achieve
the desired velocity in 5 seconds, as calculated.

3.4. Devices selection

Between the device to be selected, it is possible to mention:

• Two 2D lidars for object detection. In this case, the model UST-20LX of Hokuyo
has been selected because of its features:
– Range from 0.06m to 60m (high to detect the obstacle with enough time).
– 0.25º of angular resolution (small to detect every type of obstacle).
– A scan angle of 270º (more than required for the front and back view).

• Cameras for teleoperation (or for visual odometry). In this case, the model UI-
3080CP Rev. 2 of IDS has been selected. The camera carries a lens LM5JC10M
of Kowa to increase the field of view, so, in this way, it is possible to extract more

26 of 114

Mechanical design Mechatronic design of a robotic platform

features for the images and improve the results of the visual odometry. The main
characteristics of the camera are:
– Resolution of 5MPix.
– Global shutter to avoid bad distortion in the picture taking.
– A frame-rate of 77fps (high to reduce shaking).

• A tracking camera for visual odometry. In this case, the model R265 of Intel has
been selected. This camera can be replaced by the cameras for teleoperation (and
the needed software).
• A point-cloud generator sensor. In this case, we have two options (the second one
has been implemented in this project):
– The 3D lidar Velodyne HDL-32E, which has a 360x40º field of view and 2cm
of accuracy. The range is up to100m.

– The RGBd camera D415 of Intel, which has a 65x40x72º (HxVxD) field of
view and 10m of range.

• The IMU VMU931 with a sensing range of 2000º/s.
• The batteries NP7-12, the most efficient of the seller Yuasa and suitable for a
future design.
• Radiation sensor (internal component).
• 4G module for communication and Wi-Fi antenna (internal components).

3.5. Mechanical design

The mechanical design has been approached using aluminum profiles for the main struc-
ture, giving consistency and strength to the robot body. Furthermore, the bottom plates have
been chosen of aluminum material, since this material is proper for a radioactive environment
(information obtained from ActiWiz application).

3.5.1. Preliminary design.

In the first place, a mechanical design with two stabilizer wheels has been approached
(Figure 3.5.1). This design has the following components:

• An aluminum structure (Figure 3.5.2a) with the bottom plate to fix the components.
• Four traction set (Figure 3.5.2b), composed by:

– A mecanum wheel to convert the robot to omnidirectional.
– A motor.
– A reducer.
– An encoder.
– System support for the motor.
– A shaft to move the wheel.
– Two bearing to support the shaft.

27 of 114

Mechanical design Mechatronic design of a robotic platform

– A pulley set, composed of the transmitter and transmitted pulleys and by a
belt.

• A stabilizer set (Figure 3.5.2c) to ensure stability. It is composed by:
– Two 90º mecanum wheels. With this kind of wheels, if the robot goes forward
the wheels turn normally, while in case the robot goes laterally, the rollers allow
the movement without friction.

– Two shafts with bearings that allow the wheels to move freely.
– Two linear guides.
– Two supports for the linear guides
– Two supports to couple the shaft and the linear guide.
– A stepper motor for the motion (with a controller externally).
– Support for the motor.
– Gear for the motor.
– Two linear gears coupled to the motor gear and linked to the linear guide.

• Four battery packs.

Figure 3.5.1. The entire system of the preliminary design

The main characteristic of this design is the possibility to extract the telescopic system to
improve the stability of the robot when it is driving at the maximum velocity (Figure 3.5.1).
However, the width in that state is bigger than required to cross the doors. To solve this

28 of 114

Mechanical design Mechatronic design of a robotic platform

(a) Aluminium structure (b) Traction set

(c) Stabilizer set (d) Battery package

Figure 3.5.2. Components of the preliminary design of the robotic platform.
All the pieces shown in dark blue have to be manufactured in aluminum material.

problem, the telescopic system can shrink and the robotic arm can be placed horizontally,
like Figure 3.5.3 shows.

In all the cases, the dimensions of the robot can be observed in Figure 3.5.4.

29 of 114

Mechanical design Mechatronic design of a robotic platform

Figure 3.5.3. The robotic platform crossing the door

(a) Width and long (b) Heights

(c) Stability system width

Figure 3.5.4. Dimensions of the robotic platform for the preliminary design

30 of 114

Mechanical design Mechatronic design of a robotic platform

A study should be carried out from the stability point of view, in order to know if the
telescopic wheels are useful or can be suppressed.

3.5.2. Stability study.

With the preliminary design, a stability study has been carried out in different situations:

• Arm laterally (Figure 3.5.5a).
• Arm diagonally (Figure 3.5.5b).
• Arm frontally (Figure 3.5.5c).

(a) Arm laterally (b) Arm diagonally

(c) Arm frontally

Figure 3.5.5. Situations of the stability study

In all cases, the c.o.g. of the platform (black) and robotic arm (purple) are indicated, so
the calculations use these distances.

This study presents three different cases:

(1) The previous design, this is, explained in Section 3.5.1. In this case, the critical
tipping line is shown in red color in Figure 3.5.5.

(2) The previous design eliminating the extensible wheels. In this case, the critical
tipping line is shown in green color (fictitious).

31 of 114

Mechanical design Mechatronic design of a robotic platform

(3) A compact design eliminating the extensible wheels. In this case, the critical tipping
line is the green line as well (fictitious line).

Since there is an estimation of the robotic platform weight, a stability study is presented
in Table 3.5.1, understanding stability as the ability to avoid overturning. This study con-
templates both the static case, where the robotic arm is still, both the dynamic case, when
the robotic arm is at its most critical point, moving from zero speed to maximum speed or
vice versa.

Furthermore, the study has been developed considering the maximum load in the robotic
arm in the worst configuration (the robot is not expected to bring the maximum load either
the worst configuration). As it is possible to see in Table 3.5.1, the only critical case is when
the robotic arm is set laterally with a reduced design (without the extensible wheels).

Table 3.5.1. Stability study results with the maximum load

Since in the worst case (maximum load with the more critical configuration of the robotic
arm at the maximum velocity) the confidence factor (stable torque divided by tipping or
unstable torque) in a reduced design without telescopic wheels is around 20%, it is expected
that the robot will never tip over, and the design has to be modified to a new configuration.

3.5.3. Final design.

32 of 114

Mechanical design Mechatronic design of a robotic platform

With the certainty that the robot does not need the extensible wheels, a new more
compact design is presented in Figure 3.5.6. This design does not change the traction system,
but its size and some characteristics are modified.

Figure 3.5.6. The compact design of the robotic platform for the survey in
underground tunnels with space constraints.

The new features are the following:

• A magnetic connector for charge the batteries localized on one side.
• Four possible localization for IDS cameras behind the wheels.
• Two 2D lidars for obstacle and wall detection (one in front and one in the back).
Both of them are linked to the structure with a piece that has to be manufactured
in aluminum material.
• Possibility to localize a 3D lidar (especially design for Velodyne HDL-32E) behind
the plate that supports the robotic arm (this plate can be moved forward if needed).

33 of 114

Mechanical design Mechatronic design of a robotic platform

• A piece to support the radiation sensor in the end effector of the robotic arm.
• A piece to link in the radiation sensor to place a SONAR in order to determine the
distance between the sensor and the radiation source.
• Figure 3.5.6 shows the robotic arm in an inverted way to appreciate the necessary
space of the connectors (green pieces).

The size of the robot is shown in Figure 3.5.7, where it is possible to appreciate that the
main dimensions are 706.6x350x184.22mm, a size that is expected to be perfect to cross the
doors.

Figure 3.5.7. Some dimensions of the compact design of the robotic platform
for the survey in tunnels are shown in ’mm’

The expected weight of the robot is around 45kg, taking into account everything. The
reach of the sensor is expected to be at 850mm, however, it can reach until 1100mm in its
main point.

The robot is expected to adopt the position shown in Figure 3.5.8when it is crossing the
door.

34 of 114

Mechanical design Mechatronic design of a robotic platform

(a) Top view

(b) Front view

Figure 3.5.8. Robot posture crossing the doors

As shown in those pictures, a piece has been attached to the radiation sensor. This piece
has a SONAR, which is responsible for measure the distance between the sensor and the
radioactive source. The connexions between the control system and the SONAR are carried
out thanks to the internal connexions in the robotic arm.

In those pictures is also possible to appreciate the distance when crossing the door, con-
cluding that there is enough space in that situation.

35 of 114

Electronic and electrical design Mechatronic design of a robotic platform

3.6. Electronic and electrical design

In this section, electronic and electrical design is shown. Since the motor, the gearhead,
the encoder, and the controller have been selected from Maxon Motor seller, the cables have
been chosen as well. The following guidelines have been taken:

• The power supply has been taken from the batteries.
• The communication between the computer and the controller is through CAN bus8.
• The controller must control the motor position, taking the information from the
encoder.

An electronic and electrical scheme to control one motor and determinate its position
is shown in Figure 3.6.1, where the cables identifier is indicated (cable identifier of Maxon
Motor).

Following the simple scheme, a complex scheme of the four motors has been developed
and shown in Figure 3.6.2.

Summary

A robotic system for remote inspection and environmental measurements is proposed
to be implemented in the SPS to reduce personnel exposure to hazards and machine
downtime. In particular, the robotic system will be used to survey the radiation levels
in the tunnel during a planned technical stop or during a repair intervention.
The robot is based on a four-wheeled mobile platform and equipped with several cam-
eras, LIDARs and a radiation sensor. The robot can be monitored remotely using the
4G mobile connection available in the underground tunnels.
The estimated weight of the robot is 45kg. The robot is expected to be equipped with
an active collision-avoidance system to cause no damage to the components (magnets,
etc..).
The robot will be permanently stored in the SPS, in an area protected from radiation
during the beam operation. An automatic charging station will be implemented; the
station and charging parameters (charge status, battery temperature, and voltage, etc.)
will be monitored through the Ethernet network and IT infrastructure.

8CAN bus: Controller Area Network. It is a robust vehicle bus standard designed to allow microcontrollers
and devices to communicate with each other’s applications without a host computer.

36 of 114

Electronic and electrical design Mechatronic design of a robotic platform

Figure 3.6.1. Electronic and electrical scheme to control only one motor

37 of 114

Electronic and electrical design Mechatronic design of a robotic platform

Figure 3.6.2. Electronic and electrical scheme to control four motors

38 of 114

CHAPTER 4

Control of the robotic platform

In this chapter, the kinematic and dynamic control of the platform is presented from a
theoretical point of view.

4.1. Kinematic calculation

In this section, the process of obtaining the kinematic model has been developed. Firstly,
to describe the robot posture in the ground plane, the reference system shown in Figure 4.1.1
has been created. The used sources in this section can be found in [15, 16, 17].

Figure 4.1.1. Reference systems ∑W and ∑R

These systems are:

• ∑W denotes the world coordinates system.
• ∑R denotes the robot coordinates system.

The position of the robot is described by 3 d.o.f., the coordinates ’x’ and ’y’ (relation
between the robot and world systems), and the orientation ’θ’. So, the vector ξ which defines

39

Kinematic calculation Control of the robotic platform

the posture of the robot is presented in Eq. 4.1.1.

(4.1.1) ξ =


x

y

θ

 ε R3

It is possible to define the rotation matrix Eq. 4.1.2 and 4.1.3 between both systems.

(4.1.2) Rw
R(θ) =


cθ −sθ 0
sθ cθ 0
0 0 1



(4.1.3) RR
w(θ) =


cθ sθ 0
−sθ cθ 0

0 0 1



Considering the reference systems related to the omnidirectional wheel shown in Figure
4.1.2, βi is known since the dimensions of the robot are known (αi is well known), and γi is
known as well since the chosen wheels are 45º omnidirectional wheels.

Figure 4.1.2. Reference systems related to the used omnidirectional wheel

40 of 114

Kinematic calculation Control of the robotic platform

Figure 4.1.3. Reference systems related to the robot and the wheels

In that figure, the reference systems related to the wheel and related to the rollers appear,∑
Ri and

∑
ri respectively, where the Ri1 is situated in the forward direction of the wheel,

while ri1 in the forward direction of the rollers. The set of reference systems is shown in
Figure 4.1.3, where the robot frame (∑R) and the wheel frames (∑R1,

∑
R2,

∑
R3,

∑
R4) are

shown.

As before, it is possible to define the rotation matrix Eq. 4.1.4 between both reference
systems.

(4.1.4) RRi
R (φi) =


cφi sφi 0
−sφi cφi 0

0 0 1

 , φi = αi + βi + γi

Since the posture of the robot has been referred to ∑W , the velocity vector η referred to∑
R is obtained in Eq. 4.1.5.

(4.1.5) η = RR
w(θ) · ξ̇ = RR

w(θ) ·


ẋ

ẏ

θ̇



The needed velocity in the wheel i in order to get η is calculated in Eq. 4.1.6, obtained
from [18], where the velocities are referred to ∑R.

(4.1.6)


ȮRi1

ȮRi2

0


R

=


ẋR − Li · sαi·θ̇
ẏR − Li·cαi·θ̇

0



41 of 114

Kinematic calculation Control of the robotic platform

Since the motion generator is the rollers, Eq. 4.1.7 transform the needed velocity to ∑ri

thanks to Eq. 4.1.4.

(4.1.7)


ȮRi1

ȮRi2

0


Ri

= RRi
R (φi) ·


ȮRi1

ȮRi2

0


R

Since ϕ̇Ri is the wheel speed, rRi is the wheel radius i, ϕ̇ri is the roller speed, rri is the
roller radius. The delivered speed by the wheel is rRiϕ̇Ri in Ri1 direction and the roller lineal
velocity is rriϕ̇ri in ri1 direction. So, passing the speed delivered by the wheel to ∑ri and
using Eq. 4.1.7, Eq. 4.1.8 is obtained.

(4.1.8)


rRiϕ̇Ricγi

rriϕ̇ri + rRiϕ̇Risγi

0

 =


sφi −cφi Licδi

cφi sφi Licδi

0 0 0

 η, δi = βi + γi

Motion constraint (Eq. 4.1.9) is obtained from the first row of the equation system shown
in Eq. 4.1.8.

(4.1.9)
[
−sφi cφi Li · cδi

]
·RR

w(θ) · ξ̇ + rRi · ϕ̇Ri · cγi = 0

In our case, the robot values are shown in Table 4.1.1.

Rueda i Li αi βi γi rRi

1 L 360− α π
2 − α1

π
4 r

2 L α π
2 − α2 −π

4 r
3 L 180− α π

2 − α3
π
4 r

4 L 180 + α π
2 − α4 −π

4 r

L 274.06mm
α 29.5º
r 76.2mm

Table 4.1.1. Kinematic parameters of our robot (recommended to take a
look at Figure 4.1.4). These parameters can be observed in Figure 3.5.8.

As before, the motion constraints equation of a robot composed of omnidirectional wheels
is shown in Eq. 4.1.10 (with Eq. 4.1.11 and 4.1.12). Substituting values, the results are shown
in Eq. 4.1.13 and 4.1.14.

(4.1.10) J1 ·RR
w(θ)·ξ̇ + J2·ϕ̇i = 0

42 of 114

Kinematic calculation Control of the robotic platform

(4.1.11) J1 =


−sφ1 cφ1 L1 · cδ1

−sφ2 cφ2 L2·cδ2

−sφ3 cφ3 L3·cδ3

−sφ4 cφ4 L4·cδ4



(4.1.12) J2 =


rR1·cγ1 0 0 0

0 rR2·cγ2 0 0
0 0 rR3·cγ3 0
0 0 0 rR4·cγ4



(4.1.13) J1 =
√

2
2


−1 −1 Lsα − Lcα
−1 1 Lsα + Lcα

−1 −1 Lsα − Lcα
−1 1 Lsα + Lcα



(4.1.14) J2 =
√

2
2 · r ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



More easily, it is possible to describe Eq. 4.1.10 according to Figure 4.1.4, where the
distances are well known. In this case, the results are detailed in Eq. 4.1.15.

(4.1.15) J1 =
√

2
2


−1 −1 −l1 − l2
−1 1 l1 + l2

−1 −1 l1 + l2

−1 1 −l1 − l2



43 of 114

Kinematic calculation Control of the robotic platform

Figure 4.1.4. Wheel parameters relative to the robot

The kinematic posture model for an omnidirectional robot is given by Eq. 4.1.5, while the
kinematic configuration model for that robot is given by Eq. 4.1.16, where S(q) is described
in Eq. 4.1.17.

(4.1.16) q̇ =



ξ̇

ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4


= S(q) · η

(4.1.17) S(q) =
 RR

w(θ)
E

 , E = −J−1
2 · J1

Substituting in Eq. 4.1.16 it is possible to obtain Eq. 4.1.18.

(4.1.18) E =


1
r

1
r

(l1+l2)
r

1
r
−1
r

−(l1+l2)
r

1
r

1
r

−(l1+l2)
r

1
r
−1
r

(l1+l2)
r



So, the kinematic model is presented in Eq. 4.1.19.

44 of 114

Dynamic calculation Control of the robotic platform

Kinematic model

(4.1.19) q̇ =



ẋ

ẏ

θ̇

ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4


=



cθ −sθ 0
sθ cθ 0
0 0 1
1
r

1
r

(l1+l2)
r

1
r
−1
r
− (l1+l2)

r
1
r

1
r
− (l1+l2)

r
1
r
−1
r

(l1+l2)
r


·


ẋR

˙yR

θ̇R



4.2. Dynamic calculation

In this section, the process of obtaining the robot dynamic model has been developed.
The main source used in this section to obtain this model has been [15].

The dynamic model for an omnidirectional robot can be calculated thanks to Eq. 4.2.1,
considering Eq. 4.2.2 and 4.2.3. So, Eq. 4.2.2 is a generic equation that will be used to
determine [T]ξ and [T]ϕ of Eq. 4.2.1.

(4.2.1) RR
w(θ) [T]ξ + ET [T]ϕ = ET τϕ

(4.2.2) [T]ψ = d

dt

(
∂T

∂ψ

)
− ∂T

∂ψ

(4.2.3) τϕ =
[
τϕ1 τϕ2 τϕ3 τϕ4

]
In these equations, T is the sum of robot kinetic energies, τϕi is the applied torque by

the wheel i, mR is the robot total mass, IRz is the robot total inertial moment and Iϕy is the
wheel inertial moment. For an omnidirectional robot, T can be expressed as shown in Eq.
4.2.4, where M , Iϕ and ϕ̇ have the values shown in Eq. 4.2.5-4.2.7.

(4.2.4) T = ˙ξT
(
RR
w(θ)

)T
·M·RR

w(θ)·ξ̇ + ˙ϕT·Iϕ·ϕ̇

(4.2.5) M = 1
2diag {mR,mR, IRz}

45 of 114

Dynamic calculation Control of the robotic platform

(4.2.6) Iϕ = 1
2diag {Iϕy, Iϕy, Iϕy, Iϕy}

(4.2.7) ϕ̇ =
[
ϕ̇1 ϕ̇2 ϕ̇3 ϕ̇4

]T
Developing Eq. 4.2.4, Eq. 4.2.8 is obtained.

(4.2.8) T = mR

2
(
ẋ2 + ẏ2

)
+ IRz

2 θ̇2 + Iϕy
2
(
ϕ̇2

1 + ϕ̇2
2 + ϕ̇2

3 + ϕ̇2
4

)
[T]ξ and [T]ϕ terms are given using Eq. 4.2.2, whose results are reflected in Eq. 4.2.9 and

4.2.11.

(4.2.9) [T]ξ = MR · ξ̈

(4.2.10) MR = diag {mR,mR, IRz} , ξ̈ =


ẍ

ÿ

θ̈



(4.2.11) [T]ϕ = Mϕ · ϕ̈

(4.2.12) Mϕ = diag {Iϕy} , ϕ̈


ϕ̈1

ϕ̈2

ϕ̈3

ϕ̈4


Upgrading Eq. 4.2.1 with the previous calculations, Eq. 4.2.13 is obtained. In order to

pass the accelerations from the world frame to the robot frame, Eq. 4.2.14 and 4.2.15 are
presented. The second one uses and derives the top of Eq. 4.1.19.

(4.2.13) RR
w(θ) ·MR·ξ̈ + ET ·Mϕ · ϕ̈ = ET τϕ

(4.2.14) ξ̈ = Rw
R(θ) · η̇ + Ṙw

R(θ)·η

(4.2.15) ϕ̈ = E · η̇

46 of 114

Dynamic calculation Control of the robotic platform

The result is shown in Eq. 4.2.16, with Eq. 4.2.17 and 4.2.18, where the dynamic model
of the omnidirectional robot is presented as the final model related to the operational space.

Robot dynamic model in the operational space

(4.2.16) M̄ · η̇ + C̄ · η = ET · τϕ

(4.2.17) M̄ = RR
w(θ) ·MR ·Rw

R(θ) + ET ·Mϕ · E

(4.2.18) C̄ = RR
w(θ)·MR·Ṙw

R(θ)

Since the compact form described in [19] (specified in Eq. 4.2.19) works in the robot
space (unlike η that is described in the operational space), it is necessary to apply the inverse
kinematic transformation calculated in Eq. 4.1.19 and specified in Eq. 4.2.20.

(4.2.19) M (q) · q̈ + C (q, q̇) · q̇ + g (q) = τ

(4.2.20) q̇ =


ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4

 =


1
r

1
r

(l1+l2)
r

1
r
−1
r
− (l1+l2)

r
1
r

1
r
− (l1+l2)

r
1
r
−1
r

(l1+l2)
r

·


ẋR

˙yR

θ̇R

 = K · η

Since K is not quadratic, the transformation must use the pseudo-inverse matrix, as shown
in Eq. 4.2.21.

(4.2.21) η = K+ · q̇, K+ = r

4


1 1 1 1
1 −1 1 −1
1

l1+l2
−1
l1+l2

−1
l1+l2

1
l1+l2


For the same reason (transform the data from the operational to the robot space), frame

transformation matrices, such as RR
w(θ) or Rw

R(θ) and the respecting derivates, must be trans-
formed thanks to K+. Since the only operational variable used by the frame transformation
matrices is θ, just know θ̇ (Eq. 4.2.22) and the transformation is done replacing the value of
θ.

(4.2.22) θ̇ = r

4 · (l1 + l2) · (ϕ̇1 − ϕ̇2 − ϕ̇3 + ϕ̇4)

47 of 114

Dynamic calculation Control of the robotic platform

Lastly, to convert the dynamic model to the compact form [19], Eq. 4.2.23 is presented
as the final model related to the robot space.

Robot dynamic model in the robot space

(4.2.23) M̄ · q̈ + C̄ · q̇ = τϕ

(4.2.24) M̄ =
(
ET

)−1
·RR

w(q) ·MR ·Rw
R(q) ·K+ +Mϕ · E·K+

(4.2.25) C̄ =
(
ET

)−1
·RR

w(q)·MR·Ṙw
R(q)·K+

In the compact form, M̄ is the inertial matrix, C̄ is the centrifuge and Coriolis matrix,
g(q) is the gravity vector and τ is the torque applied by the motors. The content of these
matrices is strongly important and relevant in the design of robotic arms, not so much for
the platform. Its use is quite relevant in the design of joint controllers. Even so, it is possible
to detail some important features about these matrices [19]:

• The inertial matrix is very important for the dynamic model (related to the kinematic
energy) and for the robot controller design (related to stability studies for robotic
arms).
• The centrifuge and Coriolis matrix are also important for stability studies for control
systems in robotic arms.
• The gravity vector is presented in a not designed robot, this is without gravity
torques of compensation, and in robot destined to move out of the horizontal plane
(since the robot presented in this thesis is destined to move in the horizontal plane,
this vector is not presented in the dynamic model).

Summary

In this chapter, the kinematic and dynamic models have been calculated.
The kinematic model relates the angular and linear velocity of the robot with the
velocity in each wheel.
The dynamic model has been determined to improve the quality of the robot move-
ments, making them softer, quality and providing security to the system and the en-
vironment.

48 of 114

CHAPTER 5

GraphSLAM for the robot self-location

In this chapter, the development of the self-localization of the robot has been carried out.
The structure of this chapter is the following:

Firstly, the project requirements and specifications are explained in the introduction section
with the aim of contextualizing this document. According to them, important decisions have
been taken in order to resolve the problem as well as possible, proposing the methodology
shown in Section 5.2.

Then, the position estimation is explained, detailing the used sensors and algorithms.

Later, with the objective of reducing the position error due to the inaccuracies of the estim-
ation, a loop closure system is developed and explained.

Finally, the obtained results testing the system are shown, detailing some conclusions.

5.1. Requirements and specifications

The developed robot in Chapter 3 must be localized within the environment to provide
its position with the corresponding radiation measurement.

It is known that the maximum permissible error in the relation between the position and
the radiation measurement is 10cm. This value is extremely reduced to guarantee that, in
case that the supposed and the real radiation in a determinate point of the accelerator are
quite different, operators or robots can go to the exact point and fix the problem (leakage,
breakage of a sensor, etc.).

The position in the ring is indicated in the main tunnel every ~32m, however, the position
of the posting signs is at a very high height and they are very small, so it is very complicated
to read the position and comply with the time constrains. So, in order to comply with the
objectives, another solution must be proposed.

5.2. Decision-maker

The proposal system of self-localization is composed of:

49

Decision-maker GraphSLAM for the robot self-location

• An Extended Kalman filter. The output of this system is an estimated position.
This block has been developed by Julia Kabalar, a colleague from the workgroup.
This Kalman filter integrates three different sources of data:
– Wheel odometry: It is the use of data from motion sensors to estimate the
change in position over time. In this case, the change in position is estimated
from the encoders linked to the wheels.

– IMU odometry: An inertial measurement unit is an electronic device that meas-
ures and reports a body’s specific force, angular rate and the orientation of the
body.

– Visual odometry: It is the process of determining the position and orientation
of the robot by analyzing the associated camera images. In this case, a tracking
camera has been used temporarily, while other technologies are developed.

• A 3D Mapper. This block has been developed by Sergio Villanueva, a colleague
from the workgroup. The 3D Mapper, known as scan matching system, takes an
estimated position as the input and improve this position thanks to some point clouds
recorded at the same time as the position estimation. Its methodology is throughout
the algorithm ICP9, using PCL10. All the information about the performance of this
block can be found in [20].
• A graph generator and graph optimizer, which takes as its input the scan matching
output (second estimated position). This block generates a graphSLAM problem,
where each node is a position. When a position is well known, the loop closure takes
part and all the positions are correct.

The performance structure of the SLAM system can be observed in Figure 5.2.1.

Figure 5.2.1. Structure of the SLAM system
9ICP: Iterative closest point
10PCL: Point Cloud Library

50 of 114

Main procedure GraphSLAM for the robot self-location

Since the Kalman filter and the 3D Mapper have been developed by other people, this
chapter has paid more attention to the Graph generator and Graph optimizer.

5.3. Main procedure

Attending to Figure 5.2.1, the SLAM process begins with the Extended Kalman filter,
which is used as sensor fusion and non-linear state estimation. The output of this block
generates results with a 1-2% error in around 100m (software tests done with the robot
CHARMbot mentioned in Section 2.2.1).

Although this value could seem tiny, it is very critical when the robot is working long
term due to the accumulative error. For instance, if the angular position θ is wrong, the
following positions, x, and y are getting worse. For this reason, it is necessary to improve
the results thanks to other means.

The output of the Extended Kalman filter is the input of the 3D Mapper block. This part
generates a 3D reconstruction of the environment and it can be used for scan matching. The
goal of scan matching is to find the relative pose or transform, between two robot positions
where the data is taken, in our case, where two point clouds (with color data in the case of
the RGBd camera) are taken.

Figure 5.3.1 shows the result of a scan matching in a reduced environment, this is, in a
room.

In that figure, it is possible to observe the following details:

• Figure 5.3.1a shows how α1, α2, and α3 between the walls are not exactly 90º when
the reconstruction is increasing. That is, those angles are 90º locally, but a small
error produces cumulative errors. It is possible to observe also in that picture that
the line between α1 and α2 suffers an error of curvature.
• Figure 5.3.1b shows how the walls are inclined regarding the previous one (recon-
struction carried out clockwise). This image shows how a simple reconstruction error
(green ellipse) can destroy the following steps (blue ellipse) in case there is no loop
closure.
• Figure 5.3.1c shows the results of accumulative errors during reconstruction. If there
is a loop closure, point clouds would come together by the pink line. In that case,
it is expected that all the previous positions are corrected and the reconstruction
would be better.

This problem is because the scan matching works perfectly locally, but not globally, where
there are accumulative errors. Any error in the estimation of the transformation between a
pair of two consecutive clouds will be passed on to all the subsequent clouds.

51 of 114

Main procedure GraphSLAM for the robot self-location

(a) Angle error between two walls (b) Inclination error

(c) Results of the accumulative errors

Figure 5.3.1. Errors and problems of scan matching in a reduced environment

Due to the problems produced by accumulative errors in the Kalman filter and the scan
matching, a Graph Generator, and Graph Optimizer have been implemented. The objective
of this block is the loop closure, to correct the point cloud positions and, in this way, improve
the reconstruction and the location of the robot in the environment.

52 of 114

Visual omodetry GraphSLAM for the robot self-location

5.4. Visual omodetry

The tracking camera previously detailed is used for visual odometry. However, other
techniques to find features in the taken pictures by the cameras are being developed, such
as:

• SIFT11. It is a feature detection algorithm in computer vision to detect and de-
scribe local features in images [21]. Taking two consecutive images (with a distance
threshold), it is possible to find the translation vector and rotation matrix between
them. This can be used by the EKF as visual odometry. In each picture, SIFT
finds features. Then, a matching system finds the correspondence between the fea-
tures of both images. A RANSAC filter is applied to the correspondence, removing
the wrong correspondences that are out of range. Lastly, an error filter is applied,
removing the correspondence whose average error is higher than a threshold. The
results can be observed in Figure 5.4.1.
• DSO12. It is a visual odometry method based on sparse and direct structure and
motion formulation [22]. To work the algorithm, it is necessary to calibrate de
camera (intrinsic, distortion and photometric calibration), having a fish-eye camera,
as detailed in [23], where the algorithm has been implemented in a whole system.
Several tests on the accelerator have been carried out with the code used in [23],
finding the following conclusions: "This is very vulnerable to scale issues, it is ne-
cessary a very accurate intrinsic and photometric calibration, almost impossible to
achieve without a calibration table. There are problems with proportionalities of the
distance, destroying the EKF. There would be problems closing the loop because it
closes its internal loop, so it is not recommendable to use this code in our system".

Other possible algorithms are SURF13, ORB14, BRIEF15, FAST16, and HARRIS. The
performance of each descriptor must be compared and the best one must be selected.

11SIFT: Scale-invariant feature transform
12DSO: Direct Sparse Odometry
13SURF: Speeded-Up Robust Features
14ORB: Oriented FAST and Rotated BRIEF
15BRIEF: Binary Robust Independent Elementary Features
16FAST: Features from accelerated segment test

53 of 114

Graph Generator and Optimizer GraphSLAM for the robot self-location

(a) Feature maps between images

(b) Results when applying recursive filters

Figure 5.4.1. Results of the SIFT algorithm on accelerator images.
Results when iterations are 80, the distance threshold is 50px and confidence is 90% as

RANSAC filter parameters.

Since visual odometry has not been fully developed, the tracking camera has been used
for testing.

5.5. Graph Generator and Optimizer

Thanks to the Kalman filter and the scan matching system, it is possible to estimate the
position of a taken point cloud with good accuracy. In order to remove (or minimize) the
accumulative error, a graph generator and optimizer has been developed.

The third block of the process, the Graph Generator, and Optimizer is an algorithm
developed with the objective of achievingto achieve SLAM, this is, to get a good position of
a robot in any kind of environment. However, this algorithm can be used to improve the

54 of 114

Graph Generator and Optimizer GraphSLAM for the robot self-location

reconstruction of the environment since the position of the different point cloud is optimized
and improved.

To mount a graph and optimize it, g2o17, a general framework for (hyper) graph optim-
ization, has been used. It is a C++ framework for performing the optimization of non-linear
least squares problems that can be embedded as a graph or in a hyper-graph18 [24].

5.5.1. Graph structure.

GraphSLAM is an over-constrained problem that shall be solved by least-squares. Some
basic features about the implemented graph are:

• Each node or vertex in the graph is a robot position (supposed by the scan matching
system).
• Each vertex has an associated point cloud, recorded in that position.
• Each edge in the graph is a position relationship between two vertices, given by the
scan matching system.
• The graph is over-constrained, this is, usually each vertex has more than one edge
connecting to other vertices.

The ideal situation (SLAM as perfect as possible) would be possible if the PC19 of each
vertex is compared with all the others, including the corresponding edge in case that the
correspondence between PCs is found. However, this situation is impossible since the system
must be a real-time application.

On the contrary, a new position of the scan matching can be registered in the graph in
case that there has been an increase in the output values of the EKF sufficiently large in
terms of angle, translation or time (meaning that any of these terms surpass a determined
threshold. This guarantees uniform distribution of frames in the scene, avoiding unnecessary
repetitions and guaranteeing the correct correspondence between PCs by the scan matching
system. In order to improve performance, an over-constrained graph has been implemented.
There are two options to link vertices with others (excluding the previous one):

• k-nn method20: Each vertex is compared with the K closest vertices. In this case,
it is known that the maximum comparative between PCs when a vertex is included
in the graph is K. This is a good notice because in case the robot is several times
in the same place, the scan matching would perform only with the closest vertices.

17g2o: General Graph Optimization
18Hyper-graph: An extension of a graph where an edge can connect multiple nodes and not only two
19PC: Point cloud
20k-nn: k-nearest neighbors

55 of 114

Graph Generator and Optimizer GraphSLAM for the robot self-location

• Neighbors within a radius: Each vertex is compared with the vertices that are
within a circle of radius R that surrounds the position of the vertex. In this case, it
is possible to select a known radius where the scan matching could find correctly the
relationship between PCs. Although the number of vertices to compare is very high,
it is possible to compare only with the K closest vertices to save time and ensure
the real-time feature.

In both cases, the system improves against cumulative errors, as shown in Figure 5.5.1,
where the first picture shows the problem of the accumulative errors, this is, a position error
induces error in the following positions. The second picture shows the previously explained
methodology, creating an optimizable over-constrained graph.

Both methodologies have been implemented thanks to PCL library, which allows using
the algorithm KdTree to search the neighbors. It has been explained in Section 5.5.3.

(a) Result of an accumu-
lative error in the graph

(b) Consequence of com-
paring PCs of a vertex
with the closest PCs

Figure 5.5.1. Cumulative error problem and way to reduce

Another advantage of this technique (neighbor search) is the loop closure. When the
robot is in a position where it already was, the system generes a loop. These loops are useful
to correct the previous position of the robot.

It is important to know that a graph whose vertices are connected only with the previous
and the following vertex is not optimizable since all the edge’s constraints are always satisfied.
The same occurs with a graph without loops, although an over-constrained graph could be
optimized, the error would be higher and higher if there is no loop closure.

Since the project demands that the robot has to complete a turn in the accelerator
complex with time constraints, it is expected that the robot does not come back to previous
positions, making it difficult to close the loop in the graph.

56 of 114

Graph Generator and Optimizer GraphSLAM for the robot self-location

To solve this problem, another technique has been implemented. Since the accelerator
door situation is well known (explained in Section 3.1), the idea is to detect them, set a fixed
vertex in the graph with its precise position and add the constraints between the robot and
that position. As shown in Figure 5.5.2, the origin position and the door position are well
known in the large environment (fixed vertices), so all the other vertices can be referred to
the fixed vertices and their position can be optimized when a known position is found.

(a) Beginning of the graph. 4 nodes have been located.

(b) Continuation of the graph. ‘n’ nodes have been located.

(c) Graph completed. The door detector has found the door and the scan matching
has calculated the relationship between the door position and the vertex ’n’, adding the
constraint and correcting the positions of all the vertices of the graph.

Figure 5.5.2. The technique to close the loop and correct the previous robot
positions.

In that picture, gray vertices are fixed, this is, its position is well known. The position
of the white vertices can be modified by the optimizer. The shown example uses the k-nn
method, being k = 2.

Everything together seems to complete a variation of a full SLAM system, understanding
that like a system that estimates the entire path in each iteration, unlike a full SLAM system
which estimates the entire path and the map in each iteration. In our case, the map is formed
at the end of the algorithm.

57 of 114

Graph Generator and Optimizer GraphSLAM for the robot self-location

(a) Full SLAM system. Po-
sitions (x) and map (m) are
optimized in each iteration.

(b) Partial full SLAM sys-
tem. Positions (x) are optim-
ized in each iteration

Figure 5.5.3. Graphical model of full and partial full SLAM system.
In the gray color box, the optimizable items. Gray circles are landmarks and constraints.

The last point to consider is the edge weights. In order to ease the optimizer work,
it possible to assign different weights to the constraints. An edge weight must reflect the
importance of that edge in the graph. They are reflected in the information matrix Ω, which
is the inverse of the covariance matrix.

5.5.2. g2o.

g2o implements a non-linear graph optimization using least-squares. The least-squares
method is a standard approach in regression analysis to approximate the solution of overde-
termined systems by minimizing the sum of the squares of the residuals made in the results
of every single equation [25]. So, g2o solves the problem by finding the minimum of the
function F (x) declared in Eq. 5.5.1. The main source for this section is the official paper
of g2o [24], where all the information can be found. It is strongly recommended to read this
paper.

(5.5.1) F (x) =
∑

(i,j)εC
e (xi, xj, zij)T ·Ωij · e (xi, xj, zij) =

∑
(i,j)εC

eij (x)T ·Ωij·eij (x)

(5.5.2) x∗ = argminx (F (x))

In that equation, x =
(
xT1 , ... , x

T
n

)T
is a vector of robot positions, zij and Ωij represent

respectively the mean and the information matrix of a constraint relating the positions xj
and xi, and e (xi, xj, zij) is a vector error function that measures how well the robot positions
xi and xj satisfy the constraint zij. It is 0 when xi and xj perfectly match the constraint,
this is, there is no error.

58 of 114

Graph Generator and Optimizer GraphSLAM for the robot self-location

A graph node i represents the robot position xi (6D pose, this is, position and orientation)
and an edge between the nodes i and j represents an ordered constraint between the two
robot positions xi and xj (expressed as a transformation matrix homogeneous), as shown in
Figure 5.5.4 [24], where the way of representing F (x) in a graph is detailed.

Figure 5.5.4. An example that illustrates how to represent an objective func-
tion by a graph.

If a good initial guess x̆ of the parameters is known, it is possible to obtain a numerical
solution using Gauss-Newton or Levenberg-Marquardt algorithms. Approximating the error
function by the first-order Taylor expansion around x̆, Eq. 5.5.3 is obtained, where Jij is the
Jacobian of eij (x) computed in x̆ and eij = eij (x̆).

(5.5.3) eij (x̆i + ∆xi, x̆j + ∆xj) = eij (x̆+ ∆x) ' eij + Jij ·∆x

Substituting Eq. 5.5.3 in Eq. 5.5.1, the local approximation Eq. 5.5.4 is obtained.

Fij (x̆+ ∆x) ' eTijΩijeij︸ ︷︷ ︸
cij

+2 eTijΩijJij︸ ︷︷ ︸
bij

∆x+ ∆xT JTijΩijJij︸ ︷︷ ︸
Hij

∆x(5.5.4)

= cij + 2bij∆x+ ∆xTHij∆x(5.5.5)

Thanks to the local approximation, from the initial function of F (x) it is possible to
obtain Eq. 5.5.6, where c = ∑

cij, b = ∑
bij and H = ∑

Hij.

F (x̆+ ∆x) '
∑

(i,j)εC
cij + 2bij∆x+ ∆xTHij∆x(5.5.6)

= c+ 2bT∆x+ ∆xTH∆x(5.5.7)

At this point, it is possible to minimize in ∆x (deriving F (x̆+ ∆x) concerning ∆x) by
solving the linear system indicated in Eq. 5.5.8, where H is the information matrix of the
system.

(5.5.8) H ·∆x∗ = −b

59 of 114

Graph Generator and Optimizer GraphSLAM for the robot self-location

Then, the solution is obtained by adding the increment ∆x∗ to the initial guess, as shown
in Eq. 5.5.9.

(5.5.9) x∗ = x̆+ ∆x∗

5.5.2.1. Non-linear solvers.

To solve these equations, two different non-linear solvers are presented. The general
approach assumes that space is Euclidean, which is not valid for several problems in SLAM.
Assuming this can lead to sub-optimal solutions in non-Euclidean cases. For this reason,
non-linear solvers have been implemented in the g2o framework.

The first one is the Gauss-Newton algorithm, which iterates the linearisation in Eq.
5.5.6, the solution in Eq. 5.5.8, and the update step in Eq. 5.5.9. In every iteration,
the previous solution is used as the linearization point and the initial guess until a given
termination criterion is met.

The second one is the Levenberg-Marquardt, or LM, algorithm, which introduces a
damping factor and backup actions to Gauss-Newton to control the convergence, replacing
the previous equations with Eq. 5.5.10. In that equation, λ is the damping factor: the higher
λ is the smaller the ∆x are. This is useful to control the step size in case of non-linear
surfaces and to control dynamically this factor. If the new error is lower than the previous
one, λ is decreased for the next iteration, otherwise, it is increased.

(5.5.10) (H + λI) ·∆x∗ = −b

5.5.2.2. Linear solvers.

In this case, five different linear solvers can be used:

(1) Dense Cholesky Decomposition. In linear algebra, it is a decomposition of a
Hermitian, positive definite matrix into the product of a lower triangular matrix
and its conjugate transpose, which is useful for efficient numerical solutions, this is,
A = L · L∗, where L is the lower triangular matrix and L∗ denotes the conjugate
transpose. When it is applicable, the Cholesky decomposition is roughly twice as
efficient as the LU decomposition (diagonal of L is composed of 1 values) for solving
systems of linear equations [26].

(2) CHOLMOD is a set of routines for factorizing sparse symmetric positive definite
matrices of form A or A ·AT to solve linear systems of the form L · x = b. Both this
information and the code source can be obtained in [27].

(3) CSparse refers to "Direct Methods for Sparse Linear Systems". Its objective is
to find the solution of the linear system A · x = b where A is a general square
non-singular sparse matrix. This kind of solver provides different types of iterative

60 of 114

Graph Generator and Optimizer GraphSLAM for the robot self-location

solvers based on factorization methods. As the CHOLMOD method, everything can
be found in [27].

(4) Eigen linear solver. This solver is implemented in the library Eigen [28], which
uses the sparse Cholesky solver. Its performance should be similar to the CSparse
solver. This solver allows that x and b would be dense or sparse.

(5) PCG. Preconditioned Conjugate Gradient is an iterative method that needs n it-
erations from a nxn matrix. This method is usually slower than the Cholesky
decomposition [24]. It applies to sparse systems that are too large to be handled by
a direct implementation such as the Cholesky decomposition and it is also strongly
recommended to be used to solve unconstrained optimization problems [29].

5.5.3. KdTree.

A k-d tree21 is a data structure used for organizing some number of points in a space with
k dimensions [31]. K-d trees are very useful for range and nearest neighbor searches, so it is
a good solution to find the closest vertices in the graph.

Figure 5.5.5. General 3-d tree

Our case is a three-dimensional tree since it is required to find the closest vertices in
(x, y, z). Each level of a 3-d tree splits all children along a specific dimension using a hyper-
plane that is perpendicular to the corresponding axis. At the root of the tree, all children
will be split based on the first dimension, this is, x value. Each level down in the tree divides
on the next dimension (y and after it continues with z), returning to the first dimension once
all others have been exhausted (Figure 5.5.5).

21k-d tree: k-dimensional tree

61 of 114

SLAM Algorithm GraphSLAM for the robot self-location

This information has been found in [31], where it is possible to find the source code and
practical examples to understand the algorithm.

5.6. SLAM Algorithm

An algorithm has been developed in order to solve the SLAM problem. The flowchart of
this implemented algorithm is shown in Figure 5.6.1, where all the points are explained.

Firstly, point 0 "Pose estimation (Kalman filter)" is responsible for determining the
estimate of the robot’s first position. This position is generated as mentioned before, this
is, like a sensor fusion. The output of this block is a position increment (a homogeneous
transformation matrix, as shown in Eq. 5.6.1) called R4x4.

(5.6.1) T =
 Rot3x3 tra3x1

0 1

 =
 Rotation Translation

0 1



Point 1 "Coordinate system transformation" consists in a frame change, this is,
a conversion between two coordinate systems (that of the robot movement and that of the
RGBd camera or LIDAR) thanks to the transformation matrix homogeneous, as shown in
Figure 5.6.2, which is known thanks to the mechanical design.

It is necessary to clarify that the test onboard has been carried out with the CHARMbot,
named in Section 2.2.1, and with the RGBd camera, so Point 1 is useful since the depth
camera is located according to Figure 5.6.2.

62 of 114

SLAM Algorithm GraphSLAM for the robot self-location

Figure 5.6.1. Flowchart of the graph optimization

63 of 114

SLAM Algorithm GraphSLAM for the robot self-location

Figure 5.6.2. Coordinate system transformation between the robot move-
ment center point and the sensor central point.

Since the presented design in Chapter 3 is still a prototype and it can be modified before
starting its construction, some topics are in discussion. One of them is the location of the
3D LIDAR, which seems to be the chosen sensor for the SLAM task instead of the RGBd
camera, whose maximum range is very limited, hindering this task. Some compelling reasons
to make this decision are:

• With a higher range, it is easier to find the correspondence between point clouds
since more features will appear in the large environment of the accelerator.
• With a higher range, since the correspondence is easier, it is possible to increase the
value of "Voxel size" that indicates the accuracy when capturing data. Increasing
this value the accuracy of the points and the recording time is lesser.

64 of 114

SLAM Algorithm GraphSLAM for the robot self-location

• Reducing the value of "Voxel size" is also useful to reduce the correspondence time,
which means a faster system, less likely to fail.
• Another advantage is the easiness of the loop closure. Since the range is higher, it
is possible to find known point clouds in the stored data.
• Since the 3D LIDAR does not provide color information, the correspondence time
between two point clouds will be lesser at the cost of being less precise.

The most likely location of the 3D LIDAR is the center of the robot. Removing the
top orange plate of the center, there is enough space for this sensor. The main problem
is space constrains when crossing the doors. Since the maximum space during this time is
400x200mm, the sensor must not reach this heigh. However, if the sensor is not at a higher
height, its field of view is completely useless. In order to fix this problem, a telescopic system
must be developed to lift the sensor during the survey and hiding it when it crossed the
doors.

Then, the output of this block is a position increment in the sensor reference system,
called C4x4, calculated according to Eq. 5.6.2.

(5.6.2) C4x4 = M4x4 ·R4x4

Point 2 "Point Cloud acquisition" consists in capture a point cloud (with RGB
information in case of the RGBd camera) to use that to improve the estimated position by
the Kalman filter. When the first PC is acquired, the pose estimation is the origin and the
system comes back to point 0. However, when there are some of them, the system continues
to Point 3.

Point 3 "Pose estimation (3D Mapper, comparing Point Clouds)" uses the scan
matching to improve the estimated position by the EKF. This block compares the taken point
cloud with the previous one, generating a homogeneous transformation matrix (Eq. 5.6.1)
which contains the relationship between both positions (the place where the point clouds
were taken). The output of this block is a position increment in the sensor reference system,
called S4x4.

Point 4 "Add vertex to the graph". The position increment S4x4 is summed to the
previous vertex position Vn−1, taken from the graph, obtaining the new vertex position Vn
according to Eq. 5.6.3. Then, the new position and the corresponding PC are added to the
graph in the form of a vertex. At this moment, the vertex is not connected to any. If there
are more than two vertices in the graph, the algorithm continues in point 5, otherwise, it
jumps to point 7.

(5.6.3) Vn = Vn−1 · S

65 of 114

SLAM Algorithm GraphSLAM for the robot self-location

Point 5 "Calculation of the k-nn". When the number of vertices is higher than two,
it means that it is possible to find a correspondence between the current PC and some PCs
from other vertices (excluding the previous one that has already found).

Previously to get this point, point 9 has been already got, so a kdTree is available in the
system. Thanks to that, it is possible to explore the tree, looking for the nearest neighbors.
Of course, as indicated in Figure 5.6.1, the vertices position in the graph are the most correct,
since there is an optimizer.

Depending on the chosen mode (k-nn or radius search), point 5 gives a specific number
of vertices, of course, the closest.

Point 6 "Point cloud comparative with the k nearest neighbors". At this point,
the PC associated with the vertex is compared with the PCs of the closest vertices. So,
depending on the number of the nearest neighbors found in point 5, the same number of
comparisons is made. The higher this number, the more precise and slow the algorithm will
be, so the midpoint must be found (usually between 2-4). The result of this point is a series
of position transformation.

Point 7 "Add edges to the graph" is responsible for adding the edges between vertices.
Since the added vertex is alone, all its edges are added to the graph, completing the graph
in this iteration. If the number of vertices is higher than two it is possible to optimize the
graph and the algorithm continues to point 8. Otherwise, the system jumps to point 9, since
between two vertices with a simple relationship the optimization is useless.

Point 8 "Graph optimization" is responsible for reducing the accumulative error and
correcting the vertices position when the loop is closed. The quality of the system is com-
pletely dependent on the performance of the optimizer. The optimization is carried out
solving the least-squares problem explained in Section 5.5.2, using the non-linear and linear
solvers explained in the same section.

Point 9 "Generation of a KdTree". Once the graph is optimized, the position of the
vertices is usually changed. The vertices position in the graph is introduced in the kdTree
algorithm explained in Section 5.5.3, generating a tree with the position of the vertices,
classified according to their values. It is used by point 5, where the work of finding the
nearest neighbors is significantly easier.

66 of 114

CHAPTER 6

GraphSLAM results

The first test has been carried out in only one dimension (1D), testing the performance
of the system and obtaining the result shown in Figure 6.0.1.

This test has been developed with good and bad odometry (generated in a simulated
way), obtaining good results in both cases, even when odometry is a disaster.

(a) Good odometry. (b) Bad odometry.

Figure 6.0.1. 1D test results.
In both cases, the camera has been moved in 3cm steps on the ’z’ axis (important to

observe the scale).

The second test has been carried out in two dimensions (2D), using a grid in a table,
where each corner reflects a known position. The result of this test is shown in Figure 6.0.2.

67

SLAM Algorithm GraphSLAM results

Figure 6.0.2. 2D test results.
The camera has been moved in different steps on the ’x’ and ’z’ camera axis.

In that figure, it is possible to observe the following details:

• Since the odometry has been generated in a simulation way, the blue line separates
from the ground truth line, as expected to happen with robot odometry.
• The 3D mapper output (the scan matching) generates a very good output, however,
this signal accumulates errors that have to be corrected.
• The graph optimizer output follows faithfully the ground truth trajectory since the
accumulative errors of the scan matching have been reduced.

When this test has been done, a radiation sensor was the object of the environment
reconstruction. The result is shown in Figure 6.0.3. In this picture, it is possible to observe
that the reconstruction is extremely good since the words of the radiation sensor can be read
easily, unlike if only the scan matching were used.

68 of 114

SLAM Algorithm GraphSLAM results

Figure 6.0.3. Radiation sensor reconstruction

To test the good performance of the system, another two tests have been developed, where
the followed path has been a zigzag trajectory, starting and finishing in the same point:

• Good behavior test of the over-constrained graph. This test consists of not closing
the loop with fixed vertices and lets the system close loops thanks to the edges
between nearby vertices. The result is shown in Figure 6.0.4. In this picture it is
possible to observe that, even if the endpoint is not fixed, interconnections between
vertices reduce the cumulative error, leaving the endpoint practically at the same
starting point.
• Good behavior test of the loop closure with fixed vertices in a non-over-constrained
graph. This test consists of starting and ending in a known position, correcting the
rest positions. The result is shown in Figure 6.0.5. In this picture, it is possible to
observe that, since the graph is not over-constrained, the vertices position has not
been modified notably, but it has improved according to the imposed restriction.

69 of 114

SLAM Algorithm GraphSLAM results

Figure 6.0.4. Good behavior test of the over-constrained graph

Figure 6.0.5. Good behavior test of the loop closure with fixed vertices

70 of 114

SLAM Algorithm GraphSLAM results

Summary

The responsible robotic platform of checking the good state of the sensors in tunnels
must have a proper localization in the ring to link the position with the radioactivity.
The only accessible landmarks from the robot (meeting the maximum times specified)
are the yellow doors located at a variable distance.
To get the objectives, a graphSLAM system has been proposed. Each vertex of the
graph corresponds to a robot position, while an edge corresponds to a constraint
between two positions.
The system starts estimating the position thanks to an EKF, which can use the wheel
odometry, the IMU odometry and the visual odometry (according to the user selects).
With the estimated position, a scan matching system (known as 3D Mapper) computes
a 3D transformation between two point clouds taken in two robot positions (the current
and the previous one). Finally, the graph generator and graph optimizer take part.
This last system uses the information given by the scan matching to generate a graph
according to the proposed algorithm in Section 5.6.
The obtained results show a superlative improvement concerning the generated odo-
metry and a reasonable improvement respecting to the scan matching output.

71 of 114

CHAPTER 7

Study of microcontrollers under radioactivity

In this chapter, a study of microcontrollers under radioactivity has been prepared. The
main objective is to dispose of a PCB able to support high quantities of irradiation in a
contaminated environment to its performance like an integrated controller in the robotic arm
joints. In these environments, the main problem is found in the microcontrollers, since it
is the first that breaks down due to radiation, while the rest of the components withstand
greater amounts of time.

The structure of this chapter is the following:

Firstly, the microcontrollers that have been studied are presented, then how they can be
programmed is explained. After that, the layout of the microcontrollers in the system is
detailed, from the electronic, electrical and communication point of view, deepening in the
communication protocol. Later, some motion patterns of servomotors controlled by the
microcontrollers are shown. Finally, different possible cases of failure in the microcontroller
are detailed.

7.1. System approach

The test consists of the radiation of four different cases of microcontrollers that control a
servomotor. Each case is set for different devices or different configurations. In this way, the
set is formed by:

(1) A low-cost circuit board, which has been developed manually, where an ATmegaS64M1
has been instanced. This microcontroller is the Radiation Hardened model of its fam-
ily and can be replaced by his homolog, the ATmega64M1. This PCB will be put
with its servomotor within the radioactive area.

(2) An Arduino board with its motor within the radioactive area.
(3) An Arduino board covered by shielding of lead, with its servomotor within the

radioactive area.
(4) An Arduino board outside of the radioactive area, with the servomotor inside.

Both microcontrollers, ATmega64M1 and ATmegaS64M1, are from the same manufac-
turer and the same family. For this reason, they have the same pin configuration (shown in
Figure 7.1.1).

73

System approach Study of microcontrollers under radioactivity

Figure 7.1.1. ATmega64M1 and ATmegaS64M1 Pinout

There are two possible ways to program a microcontroller:

(1) Through another microcontroller that performs like a firmware22 code source, this
is, as a programmer. This is the case of Arduino boards, which have two microcon-
trollers, one for reproducing the logic sequence and another for the programming
action.

(2) Through an external programmer which overwrites the bootloader 23.

The first option has been used in the case of Arduino boards, while the second option in
the case of the low-cost PCB (and in the cases when the serial port to communicate with the
programmer microcontroller of the Arduino boards does not work).

22Firmware: A computer program which establishes the logic that controls the electronic circuits of any
device from the lowest level
23Bootloader: Simple computer program that does not have the totality of the functionalities of the operating
system, which is designed exclusively to prepare everything the operating system needs to work.

74 of 114

Communication protocol Study of microcontrollers under radioactivity

The second option involves the AVR Pocket Programmer, which has been chosen due to
its low price and its proven performance to program ATmega microcontrollers. The process
guide to program a microcontroller thanks to this programmer is detailed in Appendix C,
where its components, the methodology to connect the items, the electrical scheme, the way of
programming and the way to upload the programs are described, following the requirements
imposed on [10, 11, 12].

The structure of the system to store important data during radioactive exposure is the
following:

Between the existing topologies, a bus topology (multipoint connexion way, this is, decent-
ralized architecture) has been chosen, where an Arduino Mega performs like the master of
the communication, controlling the times when the others devices will send data. The master
sends a request of information sequentially to the different nodes or slaves (Arduinos Uno
and PCB). When a node receives a request from the master, it sends the data following
the established protocol. Furthermore, there is an initial and final sequence that has to be
followed to guarantee proper communication.

Externally, a computer indicates the beginning of the sequence. When a program is executed,
the initial sequence is carried out and the master starts to send data to the computer. It
stores all the information while the motors are moving. After everything is finished, the
information is shown and stored in files.

In the case that a slave fails and stops sending data to the master, it is the turn of the next
slave. In this way, if this fact happens, the other slaves can continue sending information.

7.2. Communication protocol

The previous explanation is reflected in Figure 7.2.1, where the different letters indicate
the following:

• g: Global started.
• e: Global started signal received properly.
• i: Broadcast signal to start the motor motion.
• r: Motor motion has started.
• l: Start with data acquisition.
• n, o, p, q: Request for data to the slaves (identifiers for each one).
• data package: Information within a data package protocol where the slave origin
(a, b, c or d, each for each one), the actual time and the desired position and the
actual position of the motor are sent.
• f : Motor motion finished.
• s,0,0,0: Every motor motion finished.

75 of 114

Communication protocol Study of microcontrollers under radioactivity

Figure 7.2.1. Nodes and communication protocol between them

76 of 114

Electronic scheme Study of microcontrollers under radioactivity

The communication between the different nodes has been established through the RS-485
protocol24, using the RS-485 module, which performs like a transformer of Serial TTL25. The
RS-485 protocol is an industrial protocol widely used for its robustness, easy implementation
and good performance. Using it as a physical layer it is possible to implement an industrial
field bus.

7.3. Electronic scheme

The electronic scheme can be observed in Figure 7.3.1, where the following important
lines and components are shown:

• Arduino boards and low-cost PCB. Each one uses two TTL lines (serial communic-
ation lines), a PWM digital output, a digital output, and an analogic input.
• Converter DC/DC (12V-3.3V). Its function is to work as the power supply of the
low-cost PCB.
• RS-485 modules. On one side, the RS-485 lines (A and B) and the power lines (V+
and V-). On the other side, the receiver/sender switch and the TTL lines (one for
send and the other for receive).
• Servomotors. Each one has four lines: V+, V-, PWM signal (control) and an analogic
signal which indicates the actual position of the rotor.
• Line A and B: Communication channel that works with differential voltage. RS-485
protocol is defined as a differential multipoint transmission bus system, it is ideal
for transmitting at high speeds over long distances and through noisy channels since
it reduces the noise that appears in the voltages produced in the transmission line.
• The power supply of 12V, supplied by a source. It feeds all the motors and boards,
this is the whole system.

24RS-485 protocol: Standard defining the electrical characteristics of drivers and receivers for use in serial
communications systems.
25TTL Technology (Transistor-transistor logic): Method of serial communication, whose digital electronic
circuit uses bipolar transistors.

77 of 114

Electronic scheme Study of microcontrollers under radioactivity

Figure 7.3.1. Electronic scheme of the set

78 of 114

Tests Study of microcontrollers under radioactivity

7.4. Tests

Before bringing the whole system to the testing environment, some laboratory tests have
been carried out. Due to the material constraints, only one servomotor is available. The first
step has been to open the servomotor and get the position signal.

One this is done, the programs have been executed, where a step signal has been sent,
having the performance of Figure 7.4.1. As it is possible to see in this figure, some noise
signals are received when the servomotor is set at 0º. This noise is due to the cable that
connects the position signal of the motor and the analogic input in the microcontroller.
Furthermore, it is possible to appreciate that the servomotor takes around 750ms to go from
0 to 180º, with 20ms of response time.

Figure 7.4.1. Servomotor Parallax Standard performance (Step input)

Another program launched has been the corresponding of several ramp and step signals.
In this case, the result is shown in Figure 7.4.2, where it is possible to appreciate the men-
tioned noise from low angles. Besides, it is possible to see that the static position is not the
same in the steps.

When the program testing has been done, the number of connected microcontrollers to
the bus has been increased. Firstly, two microcontrollers have been connected, obtaining the
result of Figure 7.4.3. In this case, there is no signal of the servomotor’s position in any of
the microcontroller, having the analogic input in the air.

The next step is the connexion of the four microcontrollers to the bus line. In this case,
the result is shown in Figure 7.4.4, where the three Arduino boards and the low-cost board
are sending data to the master and it is sending to the computer.

79 of 114

Tests Study of microcontrollers under radioactivity

Figure 7.4.2. Servomotor Parallax Standard performance (Ramp and Step input)

The last thing to do is the test of the performance of the microcontrollers when a failure
occurs. This is the case of Figures 7.4.5, 7.4.6, 7.4.7 and 7.4.8, where the occurred failures
are explained in their caption.

Thanks to this background (generated causing the failures), it would be possible to de-
terminate what, when and how has been the problem in each microcontroller.

All the programs (Arduino and Matlab) can be found in the following repository: https://github.com/carlosprados11/Multiple-
servomotor-system-controlled-from-a-remote-machine-through-RS-485-protocol.git.

Summary

In order to prepare a study of microcontrollers under radioactivity, a set of four mi-
crocontrollers has been prepared. The selected items have been explained and also the
communication between them. It has been carried out developing a custom high-level
protocol to achieve that the master node collects the data from the others and it sends
the data to the computer. The physical connexion has been presented in a scheme
and some tests have been shown and explained. The result of this chapter is a system
ready for being tested in a laboratory.

80 of 114

Tests Study of microcontrollers under radioactivity

(a) Step signal

(b) Ramps and steps signal

Figure 7.4.3. Received signals from two microcontrollers

81 of 114

Tests Study of microcontrollers under radioactivity

Figure 7.4.4. Received signals from four microcontrollers

Figure 7.4.5. Failure of one microcontroller

82 of 114

Tests Study of microcontrollers under radioactivity

Figure 7.4.6. Failure of several microcontrollers in different moments

Figure 7.4.7. Completely signal lost failure

83 of 114

Tests Study of microcontrollers under radioactivity

Figure 7.4.8. Temporally signal lost failure

84 of 114

Project evaluation

CHAPTER 8

Conclusions and future development lines

In this chapter, the actual project state and the future development lines are presented
to continue with this project.

Objectives met.

During this project the following objectives have been satisfied:

• The mechatronic design of a robotic platform has been carried out according to the
requirements and specifications.
– Some decision has been taken, selecting the omnidirectional locomotion model
and selecting the proper sensors.

– The motor set has been chosen thanks to several equations of force, torque,
power, inertial moments, etc. The motor, the gearhead, the encoder, and the
controller have been selecting according to the results of the equations.

– To guarantee the proper performance of the chosen motor set, a motor verific-
ation experiment has been carried out.

– Two mechanical designs are presented, selecting the most compact after a sta-
bility study has been done.

– An electronic and electrical design has been presented for the motor connexions.
• The control of the robotic platform has been developed.

– The kinematic control has been calculated to move the robot.
– The dynamic control has also been calculated to move the robot in the best
way, this is, with gentle accelerations, guaranteeing a long life of the robot’s
materials.

• A graphSLAM approach has been presented to achieve a robot’s self-location.
– According to the requirements and specifications, a proposal system of self-
location has been presented, formed by three main blocks.

– The main procedure has been explained, detailing the performance of each block
and the steps and relation between them.

– The third block, the Graph Generator and Optimizer, has been specially ex-
plained. The graph structure has been presented to ease understanding.

– The performance of the used libraries for the third block has been explained.

87

Conclusions and future development lines

– The SLAM algorithm follows a flowchart to work. It has been explained and
detailed step by step, explaining each one as well as possible.

– The results show how the robot location is improved regarding EKF output
and regarding scan matching system output. Although odometry is very bad,
the system is able to locate correctly in the environment. It is also possible to
observe that the quality of the reconstructions is much better.

• A study of microcontrollers under radioactivity has been prepared, to find the more
proper microcontroller to locate in robots that work in radioactive environments.
– A high-level communication protocol has been created to communicate different
microcontrollers through RS-485 low-level protocol.

– An electronic scheme has been designed to connect all the components of the
system.

– The corresponding programs have been developed and uploaded to the micro-
controllers.

– Several tests have been carried out to check the performance of the whole sys-
tem. The result is a functional system ready to be taken to a test lab.

Future development lines.

The following future development lines are presented:

• Development of a telescopic system that lifts the 3D LIDAR in the robot. This
system must be down during the crossing of doors and it must be up during the
normal performance.
• Implement the controllers (kinematic and dynamic) at the software level.
• Development of a system that detects the yellow doors of the accelerator. Since the
position of these doors is well know, this system is very useful to correct the vertices
position in the graph and, then, a good SLAM system can be got.
• SIFT, SURF, ORB, BRIEF, FAST and HARRIS must be tested. The performance
of each descriptor must be compared and the best one must be selected to improve
the odometry and the EKF.
• Respect to the SLAM system, there are some improvements to do:

– With the RGBd camera, the scan matching system fails sometimes. This is
caused due to the small range of the camera. This range produces points very
located in a certain area of the environment and a moderate rotation movement
or a large translation movement can cause a bad correspondence between PCs.
For future development lines, it is strongly recommendable to use a 3D LIDAR
with a large range and field of view or reduce the linear and angular velocity of
the robot if the RGBd camera is used.

88 of 114

Conclusions and future development lines

– With the RGBd camera, it is important to check the angle difference between
PCs. This point is especially important when the graphSLAM system com-
pares PCs between the actual vertex and the nearest neighbors. Although the
points are close, if the camera orientation is contrary, the RGBd camera field
of view is completely different and then the scan matching system can not find
a correspondence between PCs. For future development lines, it is strongly re-
commendable to develop a system that checks the estimated position of the PCs
and, if there is much difference between the orientations, skip the comparison
between them.

– With the RGBd camera, it is known that the system can fail. In that case,
usually, it fails due to the lack of correspondence between PCs. If this occurs in
the first comparison (between the current position and the previous one), it is
strongly recommendable to guess that the new position has suffered the same
increase as the previous one.

• Concluding from the previous point, the most important future development line is
to change the RGBd camera for the 3D LIDAR, which is expected to provides better
results.
• Since the graphSLAM is expected to work efficiently according to the obtained res-
ults, a future development line consists of testing the entire system (EKF, scan
matching, and graph generator and optimizer), which is expected to work in refined
spaces with the RGBd camera and spacious environments with the 3D LIDAR.
• It can be useful to play with the information matrix, providing higher values to more
reliable edges.
• Since all the solvers (linear and non-linear) have been implemented. A future devel-
opment line consists in test all the solvers (when everything is integrated), to find
the best solution. It is also required to determine the best value to ’k’ when the
system is looking for the nearest neighbors.

An economic study of the project is presented for the future development lines, where the
complete cost is shown in Table 8.0.1, since this project beginning (six months ago), up to
the estimated time when the project is expected to be finished. It is strongly recommendable
to read previously in Appendix B..

89 of 114

Conclusions and future development lines

Study type U. Cost (€) Future time (mos) Time perc. (%) Cost (€)
Material 26358 0 100 26358
Staff 8190 18 25 2047.5

Resource 1019 18 25 254.75
Total cost (€) 28660.25

Table 8.0.1. The total cost to continue with the project and get a functional
robot

Since the staff company schedule is not known, the estimation time to finish this project
is two years since the project beginning.

90 of 114

Bibliography

[1] R. Nave. (2019, Sept 16). Radioactivity (not known ed.) [Online]. Available: http://hyperphysics.phy-
astr.gsu.edu/hbase/Nuclear/radact.html 5

[2] KEK. (2019, Sept 17). KEK (not known ed.) [Online]. Available: https://www.kek.jp/en/
[3] CERN. (2019, Sept 21). CERN home (not known ed.) [Online]. Available: https://home.cern/ 2, 7
[4] Wikipedia Org. (2019, Sept 21). CERN (2019, Sept 15 edition). [Online]. Available: ht-

tps://en.wikipedia.f/wiki/CERN 7
[5] CERN. (2019, Sept 23). CERN knowledge transfer (not known ed.) [Online]. Available:

https://kt.cern/technologies/train-inspection-monorail-tim 11
[6] Telerob. (2019, Sept 23). Telemax PRO (2019 edition) [Online]. Available:

https://www.telerob.com/en/products/telemax-family/telemax-pro 11
[7] M. Montemerlo, S. Thrun, D. Koller and B. Wegbreit, "FastSLAM: A Factored Solution to the Simul-

taneous Localization and Mapping Problem". 13
[8] G. Grisetti, R. Kümmerle, C. Stachniss and W. Burgard, "A Tutorial on Graph-Based SLAM". 13
[9] Wikipedia Org. (2020, Jan 06). GraphSLAM (2017, Dec 18 edition). [Online]. Available: ht-

tps://en.wikipedia.org/wiki/GraphSLAM 13
[10] Arduino. (2019, June 20). Arduino as ISP and Arduino Bootloaders (2019 edition) [Online]. Available:

https://www.arduino.cc/en/Tutorial/ArduinoISP 75
[11] Sparkfun. (2019. June 20). Pocket AVR Programmer Hookup Guide (2019 edition) [Online]. Available:

https://learn.sparkfun.com/tutorials/pocket-avr-programmer-hookup-guide/all#pogo-pins 75
[12] Sparkfun. (2019. June 20). Installing an Arduino Bootloader (2019 edition) [Online]. Available:

https://learn.sparkfun.com/tutorials/installing-an-arduino-bootloader/all 75
[13] "Mecatrónica", class notes for 42396, System engineering and automatic, Universidad de Valladolid,

2018. 22
[14] ‘Diseño y Control de Robots’, class notes for 53001562, System engineering and automatic, Universidad

de Madrid, 2019. 25
[15] A. Sáenz, E. Bugarin and V. Santibáñez, "Modelado Cinemático y Dinámico de un Robot Móvil Omni-

direccional de 4 Ruedas Considerando Dinámica de Actuadores", pp. 115-120. 39, 45
[16] Z. Hendzel and L. Rykala, "Modelling of dynamics of a wheeled mobile robot with mechanum wheels

with the use of lagrange equations of the second kind", vol. 22, pp. 81-99. 39
[17] N.M. Adam, A. Irawan, M. R. Daud, Z. M. Zain and S. N. S. Ali, "Dynamic Modeling and Analysis of

Omnidirectional Wheeled Robot: Turning Motion Analysis", vol. 10, pp. 103-108. 39
[18] F. P. Beer, E. R. J. Johnston, and E. R. Eisenberg, Mecánica Vectorial para Ingenierios: Dinámica.

McGraw-Hill Interamericana, 2007. 41
[19] R. Kelly, V. Santibáñez and A. Loria, "Control of robot manipulators in joint space". Second Edition.

Springer, London, U.K., 2005. 47, 48
[20] S. Villanueva, "Sistema de reconstruccion 3D y estimación de la posición de objetos en entornos no

estructurados mediante cámaras RGB-D", Master thesis, CAR, UPM, Madrid, Spain, 2020. 50

91

Bibliography

[21] Tony Lindeberg. Scale invariant feature transform. Scholarpedia, 7(5):10491, 2012. 53
[22] J. Engel, V. Koltun and D. Cremers, "Direct Sparse Odometry," in IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 40, no. 3, pp. 611-625, 1 March 2018. 53
[23] TUM (2020, Jan 21). DSO: Direct Sparse Odometry (2016, Nov 12 edition). [Online]. Available: ht-

tps://vision.in.tum.de/research/vslam/dso 53
[24] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige and W. Burgard, "G2o: A general framework for

graph optimization," 2011 IEEE International Conference on Robotics and Automation, Shanghai, 2011,
pp. 3607-3613. 55, 58, 59, 61

[25] Wikipedia Org. (2020, Jan 08). Least squares (2019, Dec 19 edition). [Online]. Available: ht-
tps://en.wikipedia.org/wiki/Least_squares 58

[26] Wikipedia Org. (2020, Jan 09). Cholesky decomposition (2019, Dec 28 edition). [Online]. Available:
https://en.wikipedia.org/wiki/Cholesky_decomposition 60

[27] Github. (2020, Jan 09). SuiteSparse (v.4.0.2 edition). [Online]. Available: ht-
tps://github.com/PetterS/SuiteSparse/tree/master/CHOLMOD 60, 61

[28] Eigen. (2020, Jan 09). Eigen (v.3.3.7 edition). [Online]. Available:
http://eigen.tuxfamily.org/index.php?title=Main_Page 61

[29] Wikipedia Org. (2020, Jan 09). Conjugate gradient method (2019, Dec 18 edition). [Online]. Available:
https://en.wikipedia.org/wiki/Conjugate_gradient_method 61

[30] Alexandru and E. Ichim, "RGB-D handheld mapping and modeling", Master thesis, School of Computer
and Communication, EPFL, Lausanne, Switzerland, 2013.

[31] PCL. (2020, Jan 10). How to use a KdTree to search (v.1.9.1 edition). [Online]. Available:
http://pointclouds.org/documentation/tutorials/kdtree_search.php

61, 62

92 of 114

Appendices

APPENDIX A

Project Gantt

95

APPENDIX B

Economical study

The economical study has been split into three different parts: material costs study for
the robot construction, staff costs study and resources cost study.

Firstly, a material cost study has been carried out. Here, the necessary material
equipment has been included, as shown in Table B.0.1. Since most of the items are pending
to be purchased to build the robot, this study is not the one corresponding to these months,
but it is useful to know the cost of robot materials.

In the second place, a staff costs study has been carried out. Here, the costs related to
the salary has been included, as shown in Table B.0.2.

In third place, a resource costs study has been carried out. Here, all the costs related
to the used materials to work, energy, tools, etc., have been included, as shown in Table
B.0.3.

The sum of all the costs is reflected in Table B.0.4, where the cost relative to these months
are detailed.

101

Economical study

Table B.0.1. Material cost study

Monthly salary (€) Number of months Total salary (€)
1365 6 8190

Table B.0.2. Staff costs study

102 of 114

Economical study

Resource Type Used (mos) Life (y) Used (%) Qty. U. cost (€) Cost (€)
Computer 6 8 6.25 1 800 50
Screen 6 10 5 2 50 5
Mouse 6 10 5 1 10 0.5

Keyboard Material 6 15 3.33 1 15 0.5
CHARMbot 2 20 0.83 1 30000 250

Tools 4 20 1.67 1 300 5
RGBd cam. 2 10 5 1 150 7.5

Light Energy 6 55 330
Water and water 6 8 48
Heater 6 40 240

Accelerator Mainte- 1 15 30
Office nance 6 10 60

Total (€) 1026.5

Table B.0.3. Resource costs study

Study type Cost (€)
Material 4600
Staff 8190

Resource 1019
Total 13809

Table B.0.4. The total cost of the project until now

Another economic study has been carried out in Chapter 8, where the future development
lines are explained, including the cost to continue with this project.

103 of 114

APPENDIX C

Methodology to program a microcontroller with an external
programmer

105

Methodology to program a microcontroller with an external programmer

This Appendix shows how to program a microcontroller without a programmer micro-
controller. Instead, the AVR Pocket Programmer has been used to program an AVR mi-
crocontroller, shown in Figure C.0.1, where it is possible to appreciate the most important
components.

Figure C.0.1. Components of AVR Pocket Programmer

The function of each component is:

• USB Interface: Data and power input (from a computer).
• ISP Interface: Output to send the programming signals to AVR.
• Target Power Select: Switch that allows selecting the power supply of the AVR
microcontroller (from the programmer or with its power).
• ATtiny2313: Programmer chip. Relation of the computer commands (input) with
the programming commands (output).
• 74AC123: Protection of the programmer chip, storing the previous programming
data (they are reset in each programming step).

In this Appendix, two different cases of programming are shown. The first case would
be the fact of the program an Arduino microcontroller (Figure C.0.2). It can be useful in
the case that the programming microcontroller is spoiled or to practice to program another
microcontroller.

106 of 114

Methodology to program a microcontroller with an external programmer

Figure C.0.2. Arduino Uno Rev3.
Yellow square: Programming microcontroller. Yellow ellipse: Pinout for the communication
with the programming microcontroller. Red square: Logic microcontroller. Red ellipse:

Pinout for the communication with the logic microcontroller.

In both cases, the programming methodology is through SPI26, which has four pins:

• SCK: Clock signal that indicates the transmission velocity.
• MISO: Master Input Slave Output. Data is received from the other integrated circuit
(from the programmer to the AVR).
• MOSI: Master Output Slave Input. Data is sent to the other integrated circuit (from
the AVR to the programmer).
• RST (SS, Slave Select, o CS, Chip Select): Enable the integrated circuit to which
the data is sent.

Delving into the first case, Arduino boards dispose of internal connections between the
logic microcontroller pinouts and the board pinouts. In this way, it is possible to communicate
with the AVR and program it.

So several programming signals join both devices (AVR microcontroller and programmer).
These constraints can be observed in Figure C.0.3.

26SPI: Serial Peripheral Interface. Common bus interface used to send data between microcontroller and
peripherals. It uses a clock (synchronous solution), a device selector and data lines.

107 of 114

Methodology to program a microcontroller with an external programmer

(a) Pinout of the
AVR Pocket Pro-
grammer

(b) Pinout of Ardu-
ino board for the pro-
gramming

Figure C.0.3. Pinout of each device

The supply voltage is transmitted if the board Switch is activated, otherwise, the supply
voltage is not connected to the target (the board Switch must not be connected in the case
that the microcontroller works with 3V, otherwise it will be damaged). In both cases, it is
high recommendable to use the own power supply of the microcontrollers.

In the second case, a PCB must be developed and manufactured, to be able to access
to all the pins we want to use. In this case, regarding Figure 7.1.1, where the microcontroller
ATmega64M1 pinout is shown, it is possible to find the following useful pins for the SPI
communication (shown in Figure C.0.4):

• Pin 8 (PB0): MISO.
• Pin 9 (PB1): MOSI.
• Pin 28 (PB7): SCK.

108 of 114

Methodology to program a microcontroller with an external programmer

Figure C.0.4. The necessary connection between the programmer and the
microcontroller

Then, to go forward and program the microcontroller or the Arduino microcontroller
(both cases) using the SDK27 of Arduino, follow the next steps is necessary:

• Perform the connections shown in Figure C.0.4.
• Switch off the Arduino or the microcontroller of the power supply.
• Supply it with the power supply of the programmer or through an external power
supply of 3.3V, how is indicated in Figure C.0.4.
• Stablish the programmer way in Arduino IDLE like: Tools -> Programmer -> US-
BtinyISP.
• Upload the program: Program -> Upload using programmer.
• Disconnect the programmer.

To recover the default way to program Arduino, with the programmer connected, it
must be selected: Tools -> Burn Bootloader, and the protocol must be restarted: Tools ->
Programmer -> AVRISP mkll.

27SDK: A Software Development Kit is a collection of software development tools in one installable package.

109 of 114

APPENDIX D

Datasheets

111

D.1. Reducer Datasheets

D.1. Reducer

112 of 114

D.2. Motor Datasheets

D.2. Motor

113 of 114

D.3. Encoder Datasheets

D.3. Encoder

114 of 114

	Acknowledgments
	Abstract
	Keywords

	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Objectives and project motivation

	Chapter 2. State of the art
	2.1. Facilities with radioactivity where robots take part
	2.1.1. DONES
	2.1.2. CERN

	2.2. Robots for inspection
	2.2.1. CERNbots
	2.2.2. TIM
	2.2.3. Telemax Pro

	2.3. Self-location
	2.3.1. EKF SLAM
	2.3.2. FastSLAM
	2.3.3. GraphSLAM

	Project development
	Chapter 3. Mechatronic design of a robotic platform
	3.1. Requirements and specifications
	3.2. Decision making
	3.3. Motor set selection
	3.3.1. Nominal force, torque, and power
	3.3.2. Maximum force, torque, and power
	3.3.3. Motor and gearhead selection
	3.3.4. Motor verification

	3.4. Devices selection
	3.5. Mechanical design
	3.5.1. Preliminary design
	3.5.2. Stability study
	3.5.3. Final design

	3.6. Electronic and electrical design

	Chapter 4. Control of the robotic platform
	4.1. Kinematic calculation
	4.2. Dynamic calculation

	Chapter 5. GraphSLAM for the robot self-location
	5.1. Requirements and specifications
	5.2. Decision-maker
	5.3. Main procedure
	5.4. Visual omodetry
	5.5. Graph Generator and Optimizer
	5.5.1. Graph structure
	5.5.2. g2o
	5.5.3. KdTree

	5.6. SLAM Algorithm

	Chapter 6. GraphSLAM results
	Chapter 7. Study of microcontrollers under radioactivity
	7.1. System approach
	7.2. Communication protocol
	7.3. Electronic scheme
	7.4. Tests

	Project evaluation
	Chapter 8. Conclusions and future development lines
	Objectives met
	Future development lines

	Bibliography

	Appendices
	Appendix A. Project Gantt
	Appendix B. Economical study
	Appendix C. Methodology to program a microcontroller with an external programmer
	Appendix D. Datasheets
	D.1. Reducer
	D.2. Motor
	D.3. Encoder

