

Harnessing the power of supercomputers using
the PanDA Pilot 2 in the ATLAS Experiment

Paul Nilsson1,*, Alexey Anisenkov2,3, Doug Benjamin4, Wen Guan5, Tomas Javurek6, and
Danila Oleynik7,8

1Brookhaven National Laboratory, Physics Department, United States
2Budker Institute of Nuclear Physics, Russia
3Novosibirsk State University, Russia
4Argonne National Laboratory, United States
5University of Wisconsin-Madison, Department of Physics, United States
6CERN, European Laboratory for Particle Physics, Switzerland
7University of Texas at Arlington, Department of Physics, United States
8Joint Institute for Nuclear Research, Russia

Abstract. The unprecedented computing resource needs of the ATLAS

experiment at LHC have motivated the Collaboration to become a leader in

exploiting High Performance Computers (HPCs). To meet the requirements

of HPCs, the PanDA system has been equipped with two new components;

Pilot 2 and Harvester, that were designed with HPCs in mind. While

Harvester is a resource-facing service which provides resource provisioning

and workload shaping, Pilot 2 is responsible for payload execution on the

resource. The presentation focuses on Pilot 2, which is a complete rewrite of

the original PanDA Pilot used by ATLAS and other experiments for well

over a decade. Pilot 2 has a flexible and adaptive design that allows for

plugins to be defined with streamlined workflows. In particular, it has

plugins for specific hardware infrastructures (HPC/GPU clusters) as well as

for dedicated workflows defined by the needs of an experiment. Examples

of dedicated HPC workflows are discussed in which the Pilot either uses an

MPI application for processing fine-grained event level service under the

control of the Harvester service or acts like an MPI application itself and

runs a set of job in an assemble. In addition to describing the technical details

of these workflows, results are shown from its deployment on Titan (OLCF)

and other HPCs in ATLAS.

1 Introduction

In the coming High-Luminosity Large Hadron Collider (HL-LHC) era, both ATLAS [1]

and CMS [2] experiments are expected to produce up to an order of magnitude more data

compared to the previous data taking. Storage and computing needs continue to grow at a

much higher rate than what the flat budgets allow for. However, at the same time, the IT

* Corresponding author: Paul.Nilsson@cern.ch
Copyright 2020 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or
parts of it is allowed as specified in the CC-BY-4.0 license.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 03025 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503025

mailto:Paul.Nilsson@cern.ch

landscapes, computing infrastructures and funding models are changing. The national science

programmes are consolidating computing resources and encourage using cloud services as

well as HPCs. ATLAS has been using heterogeneous resources for many years, and has

successfully integrated multiple grids, clouds, and HPCs into its workflow management

system. But heterogeneous resources are not always tailored for ATLAS workloads. New

technologies have therefore recently been introduced to address and overcome some of the

more challenging limitations while at the same time reducing operational manpower.

1.1 Paradigm shift

ATLAS has used PanDA [3] as the workload management system to control all the resources.

Generic factories running on the PanDA servers submit Pilot wrapper scripts to the batch

systems. When such a wrapper occupies a slot, it will download and launch the actual Pilot

code. The Pilot asks the PanDA server for a suitable job, which is then downloaded, executed

and monitored throughout its lifetime. Relevant metrics are reported back to the server at

regular intervals.

The Server-Pilot paradigm worked well for non-stop running on the grid with 250k+ cores

for well over a decade, but on heterogeneous resources such as HPCs it worked less well.

Different edge services and operational policies at the different HPCs led to major challenges

with an already aging Pilot architecture, which led to different Pilot versions running on the

grid and HPCs. There were also too many manual interventions needed to effectively fill the

available CPU resources. To overcome these challenges, new technical solutions were

needed and in 2016, the PanDA team launched the Harvester [4] and Pilot 2 [5] projects.

2 Harvester in the PanDA system

Harvester is a resource-facing service between the PanDA server and Pilots, and is used for

resource provisioning and workload shaping. It is a lightweight stateless service that is

running on a VObox or on an edge node on HPC centers to provide a uniform view for various

resources. Harvester has a modular design for different resource types and workflows, and

has a coherent implementation for HPCs. It provides better resource monitoring, timely

optimization of CPU allocation among various resource types and removal of batch-level

partitioning. The Harvester service enables a tight integration between the PanDA system

and the resources needed for new workflows.

3 Pilot 2

Pilot 2 (henceforth referred to as “Pilot”) is a complete rewrite of the original PanDA Pilot

[6] which was used in ATLAS for over a decade. Its architecture follows a component based

approach which evolves the system according to modern functional use-cases, to facilitate

coming feature requests from the PanDA users. It also has improved system flexibility and

has enabled a clear workflow control.

The main Pilot tasks are handled by controller components (Figure 1), such as Job
Control, Data Control, Payload Control and Monitor Control. Job Control handles the job
objects that are either downloaded from a server or read from preplaced files. Data Control
takes care of replica lookups, selection and transfers. Payload Control prepares for execution,
selects run mode, executes and monitors the payload until it finishes by verifying parameters
that are relevant for the payload (e.g. size checks). Monitor Control keeps track of the Pilot
itself and makes sure that it does not run longer than it is allowed to. It also monitors the
threads spawned by the other components. The Information System component presents an

2

EPJ Web of Conferences 245, 03025 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503025

interface to a server-side database containing knowledge about the resource where the Pilot
is running (e.g. which copy tool to use and where to read and write data).

ATLAS requires that all

payloads are executed in

containers. This is achieved

either by launching the entire

Pilot in a container or by

having the Pilot execute the

payload in a container, which

is more relevant since

different payloads may

require different container

images which is only known

after the Pilot has downloaded

a job from the server. The

container images are currently

stored on CVMFS and

DockerHub.

Fig. 1. The various components that make up the PanDA Pilot.

While any part of the code can be imported by an external user, some functionality can

be accessed by simplified Pilot APIs that have been streamlined for external use to bypass

complex function calls or data structures that otherwise would need to be defined. For

example, the data API is used by Harvester for file transfers on and off HPCs.

The Pilot supports different internal workflows such as normal grid mode, HPC mode

and a stage-in mode (in development). Additional workflows can be designed, with all user

specific details (e.g. ATLAS) kept in plugins and relevant code can be pulled in from the

Pilot API, which means that the Pilot is a powerful package that can be tailormade for any

user as well as for new workflows. The HPC workflows are described in more detail in the

next section.

3.1 HPC workflows

Depending on the type of the HPC, the Pilot may either run payloads on the worker nodes

like on any grid site, or in a simplified mode via a plugin. Grid-like execution is used when

an HPC provides external connectivity on the worker nodes and enables access to external

software areas. Limited connectivity execution is used when the worker nodes do not have

outbound network access, in which case a plugin may be needed. On the Titan supercomputer

at OLCF, a plugin was developed where the Pilot acts like an MPI application under the

control of Harvester and runs a set of jobs in an assembly. In this case, Harvester takes care

of prestaging input data, stage-out of output (using the Pilot data API) and handles all

communications with the PanDA server. The Pilot intercommunicates with Harvester via the

shared filesystem and reads the job definitions from pre-placed files and declares outputs for

later processing by Harvester. Results from Titan, which is now retired, is discussed below.

For Summit, the new supercomputer at OLCF, as well as for other HPCs, the approach is

different. The main workflow is limited connectivity execution and HPC specifics are still

being put in plugins (minor details only), and with the Pilot running in full mode.

Another new workflow in active development is to support the new Raythena [7] tool,

which is based on Ray [8], and will be used for running ATLAS Event Service [9] on HPCs.

In this case, a Ray driver is in charge of communications with Harvester using the shared file

system. A Ray actor communicates with the Pilot which is running the actual payload using

3

EPJ Web of Conferences 245, 03025 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503025

HTTP. With the Pilot running in full mode on the worker node, we get all the benefits and

functionalities provided by the Pilot, especially job monitoring and error handling.

4 HPCs in ATLAS

ATLAS was able to utilize about half a billion hours of walltime usage on HPCs during

2017/2018 and 0.34 billion hours during 2019 on 20+ HPCs (Figure 2). Pilot 2 was used

either directly with Harvester (on especially US HPC resources) or in combination with the

ARC Control Tower [10] on grid-like HPC resources, and other HPCs that do not use

Harvester directly.

During the production phase (2016-2019), 1.4 billion events were simulated on Titan in

backfill mode (Figure 3). A tailormade version of the original PanDA Pilot was used between

2016-mid 2018, while the new Pilot 2 version was used from mid 2018 until Titan was retired

in 2019. Support for multiple HPCs are in active development (e.g. on Summit and NERSC

with successful test jobs already run).

Fig. 2. Walltime consumption in seconds during 2019 for jobs running on all HPCs used in ATLAS
(list of HPCs is cut).

Fig. 3. Events produced on the Titan supercomputer between 2016 and 2019 (as part of the Advanced
Scientific Computing Research Leadership Computing Challenge (ALCC)). Red means allocation
mode (using static and long running jobs) and blue means backfill mode (with dynamic shaping of job
sizes).

4

EPJ Web of Conferences 245, 03025 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503025

4.1 ATLAS and the next generation HPCs

The next generation of HPCs are evolving from pure computational facilities to resources for

extreme data processing; e.g. Big Data, High Performance Data Analysis and Artificial

Intelligence (Machine and Deep Learning). The architectures for these HPCs will be very

different from the usual grid sites. The primary data storage will be large shared file systems.

They will have burst buffers; fast NVMe, SSD dedicated storage for data processing to cope

with I/O intensive payloads; nodes with over 100 cores with limited memory (1 GB per core

or less); and limited outbound throughput on the nodes. Most of the computing power will

be provided though heterogeneous architectures mixing CPUs and GPUs or FPGA

accelerators (US and EU).

ATLAS C/C++ code was originally designed and developed for single x86 CPU cores,

but has been modified for multicore CPUs. The code can be recompiled for other CPU

platforms as well, such as ARM and Power9. However, to use the large number of flops

available on GPUs at the HPC centers, some of the kernel code needs to be reengineered and

new algorithmic code must be developed.

5 Conclusions

Compared to present ATLAS levels, an order of magnitude more data is expected in the

coming HL-LHC era. Innovation is ongoing to further improve the PanDA system with a

strong focus on supporting workflows on HPCs. ATLAS has been using HPCs in production

for many years, primarily for Monte Carlo simulation. ATLAS was able to utilize almost a

billion hours of walltime usage on HPCs during 2017-2019. To handle this huge increase in

usage, numerous innovations and improvements needed to be done. The new tools Harvester

and Pilot 2 were designed with HPCs in mind. Harvester is a resource-facing service between

PanDA Server and Pilots for resource provisioning and workload shaping, while Pilot 2 is a

complete rewrite of the original PanDA Pilot which was used in the ATLAS experiment for

over a decade, and is responsible for executing payloads on the worker nodes. Pilot 2 has so

far been used on 15 HPCs with Harvester/ARC Control Tower and on five with local

Harvester. Fully optimized use of existing and future HPC facilities is a long-term goal which

ATLAS is consistently working towards.

This material is based upon work supported by the U.S. Department of Energy, Office of Science,

Office of High Energy Physics, under contract number DE-SC0012704, and was funded in part by the

Russian Ministry of Education and Science under contract No 14.Z50.31.0024.

This research used resources of the National Energy Research Scientific Computing Center, a U.S.

Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-

05CH11231.

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of

Science User Facility supported under Contract DE-AC02-06CH11357.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge

National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC05-00OR22725.

References

1. ATLAS Collaboration, JINST 3 S08003 (2008)
2. CMS Collaboration, JINST 3 S08004 (2008)
3. T. Maeno et al., J. Phys. Conf. Ser. 331 072024 (2011)

5

EPJ Web of Conferences 245, 03025 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503025

4. T. Maeno et al., 23rd International Conference on Computing in High Energy and
Nuclear Physics, EPJ Web of Conferences, Volume 214 03030 (2019)

5. P. Nilsson et al., 23rd International Conference on Computing in High Energy and
Nuclear Physics, EPJ Web of Conferences, Volume 214 03054 (2019)

6. P. Nilsson et al., J. Phys.: Conf. Ser. 513 032071 (2014)
7. M. Muskinja et al., These proceedings (2019)
8. P. Moritz et al., Proceedings of the 13th USENIX Symposium on Operating Systems

Design and Implementation, 561 (2018)
9. P. Calafiura et al., J. Phys.: Conf. Series 664 092025 (2015)
10. M. Ellert et al., Future Generation Computer Systems 23 n.2 219-240 (2007)

6

EPJ Web of Conferences 245, 03025 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503025

