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Abstract. The unprecedented computing resource needs of the ATLAS 

experiment at LHC have motivated the Collaboration to become a leader in 

exploiting High Performance Computers (HPCs). To meet the requirements 

of HPCs, the PanDA system has been equipped with two new components; 

Pilot 2 and Harvester, that were designed with HPCs in mind. While 

Harvester is a resource-facing service which provides resource provisioning 

and workload shaping, Pilot 2 is responsible for payload execution on the 

resource. The presentation focuses on Pilot 2, which is a complete rewrite of 

the original PanDA Pilot used by ATLAS and other experiments for well 

over a decade. Pilot 2 has a flexible and adaptive design that allows for 

plugins to be defined with streamlined workflows. In particular, it has 

plugins for specific hardware infrastructures (HPC/GPU clusters) as well as 

for dedicated workflows defined by the needs of an experiment. Examples 

of dedicated HPC workflows are discussed in which the Pilot either uses an 

MPI application for processing fine-grained event level service under the 

control of the Harvester service or acts like an MPI application itself and 

runs a set of job in an assemble. In addition to describing the technical details 

of these workflows, results are shown from its deployment on Titan (OLCF) 

and other HPCs in ATLAS.  

1 Introduction  

In the coming High-Luminosity Large Hadron Collider (HL-LHC) era, both ATLAS [1] 

and CMS [2] experiments are expected to produce up to an order of magnitude more data 

compared to the previous data taking. Storage and computing needs continue to grow at a 

much higher rate than what the flat budgets allow for. However, at the same time, the IT 
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landscapes, computing infrastructures and funding models are changing. The national science 

programmes are consolidating computing resources and encourage using cloud services as 

well as HPCs. ATLAS has been using heterogeneous resources for many years, and has 

successfully integrated multiple grids, clouds, and HPCs into its workflow management 

system. But heterogeneous resources are not always tailored for ATLAS workloads. New 

technologies have therefore recently been introduced to address and overcome some of the 

more challenging limitations while at the same time reducing operational manpower. 

1.1 Paradigm shift 

ATLAS has used PanDA [3] as the workload management system to control all the resources. 

Generic factories running on the PanDA servers submit Pilot wrapper scripts to the batch 

systems. When such a wrapper occupies a slot, it will download and launch the actual Pilot 

code. The Pilot asks the PanDA server for a suitable job, which is then downloaded, executed 

and monitored throughout its lifetime. Relevant metrics are reported back to the server at 

regular intervals. 

The Server-Pilot paradigm worked well for non-stop running on the grid with 250k+ cores 

for well over a decade, but on heterogeneous resources such as HPCs it worked less well. 

Different edge services and operational policies at the different HPCs led to major challenges 

with an already aging Pilot architecture, which led to different Pilot versions running on the 

grid and HPCs. There were also too many manual interventions needed to effectively fill the 

available CPU resources. To overcome these challenges, new technical solutions were 

needed and in 2016, the PanDA team launched the Harvester [4] and Pilot 2 [5] projects. 

2 Harvester in the PanDA system  

Harvester is a resource-facing service between the PanDA server and Pilots, and is used for 

resource provisioning and workload shaping. It is a lightweight stateless service that is 

running on a VObox or on an edge node on HPC centers to provide a uniform view for various 

resources. Harvester has a modular design for different resource types and workflows, and 

has a coherent implementation for HPCs. It provides better resource monitoring, timely 

optimization of CPU allocation among various resource types and removal of batch-level 

partitioning. The Harvester service enables a tight integration between the PanDA system 

and the resources needed for new workflows. 

3 Pilot 2 

Pilot 2 (henceforth referred to as “Pilot”) is a complete rewrite of the original PanDA Pilot 

[6] which was used in ATLAS for over a decade. Its architecture follows a component based 

approach which evolves the system according to modern functional use-cases, to facilitate 

coming feature requests from the PanDA users. It also has improved system flexibility and 

has enabled a clear workflow control. 

The main Pilot tasks are handled by controller components (Figure 1), such as Job 
Control, Data Control, Payload Control and Monitor Control. Job Control handles the job 
objects that are either downloaded from a server or read from preplaced files. Data Control 
takes care of replica lookups, selection and transfers. Payload Control prepares for execution, 
selects run mode, executes and monitors the payload until it finishes by verifying parameters 
that are relevant for the payload (e.g. size checks). Monitor Control keeps track of the Pilot 
itself and makes sure that it does not run longer than it is allowed to. It also monitors the 
threads spawned by the other components. The Information System component presents an 
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interface to a server-side database containing knowledge about the resource where the Pilot 
is running (e.g. which copy tool to use and where to read and write data). 

ATLAS requires that all 

payloads are executed in 

containers. This is achieved 

either by launching the entire 

Pilot in a container or by 

having the Pilot execute the 

payload in a container, which 

is more relevant since 

different payloads may 

require different container 

images which is only known 

after the Pilot has downloaded 

a job from the server. The 

container images are currently 

stored on CVMFS and 

DockerHub. 

  
 

Fig. 1. The various components that make up the PanDA Pilot. 
 

While any part of the code can be imported by an external user, some functionality can 

be accessed by simplified Pilot APIs that have been streamlined for external use to bypass 

complex function calls or data structures that otherwise would need to be defined. For 

example, the data API is used by Harvester for file transfers on and off HPCs. 

The Pilot supports different internal workflows such as normal grid mode, HPC mode 

and a stage-in mode (in development). Additional workflows can be designed, with all user 

specific details (e.g. ATLAS) kept in plugins and relevant code can be pulled in from the 

Pilot API, which means that the Pilot is a powerful package that can be tailormade for any 

user as well as for new workflows. The HPC workflows are described in more detail in the 

next section. 

3.1 HPC workflows  

Depending on the type of the HPC, the Pilot may either run payloads on the worker nodes 

like on any grid site, or in a simplified mode via a plugin. Grid-like execution is used when 

an HPC provides external connectivity on the worker nodes and enables access to external 

software areas. Limited connectivity execution is used when the worker nodes do not have 

outbound network access, in which case a plugin may be needed. On the Titan supercomputer 

at OLCF, a plugin was developed where the Pilot acts like an MPI application under the 

control of Harvester and runs a set of jobs in an assembly. In this case, Harvester takes care 

of prestaging input data, stage-out of output (using the Pilot data API) and handles all 

communications with the PanDA server. The Pilot intercommunicates with Harvester via the 

shared filesystem and reads the job definitions from pre-placed files and declares outputs for 

later processing by Harvester. Results from Titan, which is now retired, is discussed below. 

For Summit, the new supercomputer at OLCF, as well as for other HPCs, the approach is 

different. The main workflow is limited connectivity execution and HPC specifics are still 

being put in plugins (minor details only), and with the Pilot running in full mode. 

Another new workflow in active development is to support the new Raythena [7] tool, 

which is based on Ray [8], and will be used for running ATLAS Event Service [9] on HPCs. 

In this case, a Ray driver is in charge of communications with Harvester using the shared file 

system. A Ray actor communicates with the Pilot which is running the actual payload using 
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HTTP. With the Pilot running in full mode on the worker node, we get all the benefits and 

functionalities provided by the Pilot, especially job monitoring and error handling. 

4 HPCs in ATLAS 

ATLAS was able to utilize about half a billion hours of walltime usage on HPCs during 

2017/2018 and 0.34 billion hours during 2019 on 20+ HPCs (Figure 2). Pilot 2 was used 

either directly with Harvester (on especially US HPC resources) or in combination with the 

ARC Control Tower [10] on grid-like HPC resources, and other HPCs that do not use 

Harvester directly. 

During the production phase (2016-2019), 1.4 billion events were simulated on Titan in 

backfill mode (Figure 3). A tailormade version of the original PanDA Pilot was used between 

2016-mid 2018, while the new Pilot 2 version was used from mid 2018 until Titan was retired 

in 2019. Support for multiple HPCs are in active development (e.g. on Summit and NERSC 

with successful test jobs already run). 

 

Fig. 2. Walltime consumption in seconds during 2019 for jobs running on all HPCs used in ATLAS 
(list of HPCs is cut). 

 

Fig. 3. Events produced on the Titan supercomputer between 2016 and 2019 (as part of the Advanced 
Scientific Computing Research Leadership Computing Challenge (ALCC)). Red means allocation 
mode (using static and long running jobs) and blue means backfill mode (with dynamic shaping of job 
sizes). 
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4.1 ATLAS and the next generation HPCs 

The next generation of HPCs are evolving from pure computational facilities to resources for 

extreme data processing; e.g. Big Data, High Performance Data Analysis and Artificial 

Intelligence (Machine and Deep Learning). The architectures for these HPCs will be very 

different from the usual grid sites. The primary data storage will be large shared file systems. 

They will have burst buffers; fast NVMe, SSD dedicated storage for data processing to cope 

with I/O intensive payloads; nodes with over 100 cores with limited memory (1 GB per core 

or less); and limited outbound throughput on the nodes. Most of the computing power will 

be provided though heterogeneous architectures mixing CPUs and GPUs or FPGA 

accelerators (US and EU). 

ATLAS C/C++ code was originally designed and developed for single x86 CPU cores, 

but has been modified for multicore CPUs. The code can be recompiled for other CPU 

platforms as well, such as ARM and Power9. However, to use the large number of flops 

available on GPUs at the HPC centers, some of the kernel code needs to be reengineered and 

new algorithmic code must be developed. 

5 Conclusions 

Compared to present ATLAS levels, an order of magnitude more data is expected in the 

coming HL-LHC era. Innovation is ongoing to further improve the PanDA system with a 

strong focus on supporting workflows on HPCs. ATLAS has been using HPCs in production 

for many years, primarily for Monte Carlo simulation. ATLAS was able to utilize almost a 

billion hours of walltime usage on HPCs during 2017-2019. To handle this huge increase in 

usage, numerous innovations and improvements needed to be done. The new tools Harvester 

and Pilot 2 were designed with HPCs in mind. Harvester is a resource-facing service between 

PanDA Server and Pilots for resource provisioning and workload shaping, while Pilot 2 is a 

complete rewrite of the original PanDA Pilot which was used in the ATLAS experiment for 

over a decade, and is responsible for executing payloads on the worker nodes. Pilot 2 has so 

far been used on 15 HPCs with Harvester/ARC Control Tower and on five with local 

Harvester. Fully optimized use of existing and future HPC facilities is a long-term goal which 

ATLAS is consistently working towards. 
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