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ABSTRACT

Based on the electron—fracton interaction, the Hall effect and resistivity in the normal
states of high-T, oxides are calculated by solving the quantum transport equations. The
numerical results show that, under certain conditions, the inplane resistivity exhibits a
nearly linear temperature dependence and the Hall angle exhibits a quadratic temperature

dependence.




Like the unusual nearly linear temperature dependence of the in-plane resistivity pz¢
in the "normal” metallic state of the cuprate superconductors , the strong temperature
dependence of the Hall effect is also puzzling anomalous. Experimental measurements
find that the reciprocal of the Hall coeflicient, 1/Ry is approximately linear in tem-
perature and furthermore the Hall angle cotfy varies as T2 for many cuprate systems
[1]. The Hall angle cotfy persists this power-law behavior even up to 500K, and even
in samples with higher impurity concentrations and reduced carrier densities for which
Ry and p,. do not have simple T’ dependencies [2].

The measurements demonstrate an apparent inconsistency that lies in the explana-
tion of the Hall data based on a usual Drude single model with isotropic scattering and
the conventional Boltzmann transport equations. Strong evidence exists also against
other scenarios based on multiple Drude bands or magnetic skew-scattering mecha-
nism [3]. Much effort has been devoted to the explanation of the puzzling and striking
anomalies such as a transverse relaxation rate due to spinon-spinon scattering [4], the
Fermi-liquid picture combined with an anisotropic scattering [5], cyclotron resonance
in a Drude model [6], a variant of bipolaron model [7] and localized fermions (8] and
so on.

Shortly after the discovery of high-T. cuprates superconductors, Butter and Blu-
men first suggested a possible explanation for the high-T. superconducting phase in
the Y-Ba-Cu-O system in the electron-fracton model [9]. Assuming that the distribu-
tion of oxygen deficiencies, which exist commonly in most high-T. cuprates. is strongly
disordered in the copper oxide planes, we can construct a two-dimensional percola-
tion network to simulate the distribution of oxygen holes. The doping oxygen holes
may affect significantly the distribution of the force constants related to the atomic
vibration. As we know, percolation networks appear to be homogeneous at length
scales L longer than the percolation correlation length £, and thus support propagat-

ing phonons. For shorter length scales L < £, however, the random networks exhibit

fractal characteristic so that one would expect localized vibrational excitations called
fractons [10]. The vibrational excitations on such a structure consist of phonons below
a crossover frequency w. and fractons over w.. In our previous works, we have studied
the temperature-dependence of the resistivity arising from the scattering of conduction
electrons off fractons and the results showed that this contribution to the resistivity
is nearly linear in temperature [11]. We also present a quantitative calculation of the
transition temperature T, and gap parameter of superconductors with fractal structure
[12].

The purpose of this paper is to investigate the contribution of electron-fracton
interaction to the in-plane conductivity 0., and to the Hall conductivity 7., (magnetic
field ﬁHé') by solving quantum transport equations proposed by Mahan and co-worker
[13]. We expect to see whether in-plane resistivity p,, varies as 1" and o,, varies as
T-% under certain conditions, and to find whether the interaction mechanism may
offer a possible explanation to the anomalous Hall effect in the normal state of high
-T. cuprates.

For steady-state transport phenomena in a metal, a many-body quantum transport

equation including a magnetic field derived by Hansch and Mahan[13] is
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where np(w) is an equilibrium Fermi distribution and 7, is a group velocity of electrons
given by Vsez, (<> are the Kadanof-Baym physical Green-functions. £~ reprents the
rate of conduction electrons scattered to leave from the configuration of energy w and
quasi-momentum §, &< is regarded as the rate of conduction electrons scattered to
arrive the corresponding energy-momentum configuration. In the case of one-fracton

processes, they can be expressed as
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where g; is electron-fracton scattering matrix element given by[11]
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Ag is the electron-fracton coupling constant and wf is fracton frequency, D is the fractal
dimensionality.

The Eq.(1) is obtained by assuming that the metal has a symmetrical Fermi surface
and we can make a standard approximation that the retarded self-energies ¥7(§,w)
have a negligible dependence upon wave vector ¢ and can use the shorthand notation
[Nw) = —ImY¥"(§,w). Solving Eq.(1) self- consistently with an ansatz:

(@) = (G wpnr() — 1 2T )
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we may deduce a simplified version
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where ¥(¢,w) is unknown vertex function and the other notations in Eq.(5) are

N_ =np(wg) + 1 = np(w - wyp)
Ny =nplwg) + np(w + wp)
V(=) = 4G+ F,w — wi)
W) =T+ Fw + )
When the width of the Landau levels is much less than the Fermi energy, a quasi-
classical treatment of the effect of the higher reduced field is sufficient. Then the group

velocity of electrons 7, in a weak field must satisfy @, = §/m”, m* is the effective mass

of electron. Thus following the similar treatment of Yi [14], we can expand the vertex

eff
2m*T{w)c

function v(g,w) in the order of the dimensionless parameter (w) =

g w) =3 R (Gw) (6)

Instituting Eq.(6) to Eq.(5) and comparing the order of A(w) in the two sides of the

equation, we have

ek - A (§,w ),
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and
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for n=1, 2, 3

where &, is the unit vector of magnetic field f. ¥O(q,w) in Eq.(7) is corresponding
to the zero-magnetic-field vertex function and it has been solved by Hansch in the Ref

(15]
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where A(g,w) = $(A(d,w)+ Mrﬁ(w;)—l) is another unknown function and A(w) is a function

determined bv the integral equation

Aw)y=1+n e du[(a® F(u) — af,F(u))A(u—+‘fl(nB(u) +np(u +w))
we [(u +w)
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The functions a?F(u) and o2 F(u) under the Debye approximation have been calcu-

lated in the previous paper [11]

o F(u) = Cu®/P2

o F(u) = Ctrusa‘/D—z (11)

where & is the fracton dimensionality.
The next step is to solve the first-order term of vertex function, ¥*)(§,w). Inserting

Eq.(9) into Eq.(8) and settingn=1, we have
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For the lowest-order approximation, (€ x §) - V;(#AAE‘ Sq) = %A/\E (€ x §)

Generally, for a unknown function X (¢§,w) which satisfy the following intergal equa-

tion
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k

where F(q,w) is given, comparing the Eq.(12) with the Eq.(7) and its solution Eq.(9),

we can write the formal solution of X(§,w) as

o L M w)
X =F
(§w) = F(q,w) A7) (14)
Therefore, we obtain

o € ” - =S
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and similarly, the solution of the vertex function of arbitrary order is

Y (G w) = (-1 G,w)
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for n=1.23... ,

Then, the final solution of the vertex function is

. N )= 1 . h(w) - -
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Knowing the vertex function ¥(q,w) which is linear in the electric field, we can

calculate the current density

j= 62/((% do Gy g (18)
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The longitudinal o,, and the transverse (Hall) 0., conductivities are then
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The factor of 2 is from the spin of degeneracy of electrons. Following the treatment of

Hansch from Eq.(6.9) to Eq(6,13) and (6.15) in Ref. [15] , we have
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where I'(w) is the imaginary part of self-energy given by [16]

Nw)=—-ImE(w) =7 /:FD dua® F(u)[2ng(w) + np(u + w) + np(u — u,')J (21)
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The in-plane resistivity p,. and the Hall angle cotfy are then

p — al‘I
rr —
02‘1: + Uzy
24
cotfy = === (22)
Oy

respectively.

Considering a high-temperature expansion of Eqs(10), (20)-(21) and assuming that
u/kT is small compared to one, we may expect a linear temperature dependence of
the reciprocal of longitudinal conductivity 1/o,., and the quadratic temperature de-
pendence of the reciprocal of the Hall conductivity 1/0,,, which return to the re-
sults derived from the conventional Boltzmann transport equations. However, we
should remember that this is under the high-temperature conditions, u/kT <« 1 or
kT >» wrp > 1000K". Therefore, in the intermediate temperature range, it is difficult
to get an analytical solution of the integral equation, we have to perform a numerical
calculation.

In the integral of 0., and oy, the infinity can be treated as a large but limited

value wyr while the energy of electrons has a large deviation from the Fermi energy e5

(eF is set to zero). Since the terminal values of conductivities o, and o, controlled by
the factor of np(wy ) will be very small compared to the limited part of the integrals.

For performing the numerical calculation we need some other parameters: the Fermi
wave vector kp = 0.35A7' [17], the effective mass of an electron m* = 5m,, and
correlation length ¢ = 204 {18} . For simplicity, we choose a coefficient in Eq.(11) to
make the function o? F'(u) normalized and the function o? (u) is then equal to 0.2 or so.
The calculated results of the in-plane resistivity p,,, the Hall conductivity o, and the
Hall angle cotfy are shown in Figs. 1-3 with the parameters, fracton Debye frequency
wrp = 2000k, fracton crossover frequency w. = 50K, and the maximum value of
energy in the numerical integrals (18) wy; = 10000K, with different external magnetic
fields. From the Figs. 1-3, we can see that the p,, vs T curve is still nearly linear as
we calculated previously. The cubed temperature dependence of the reciprocal of the
Hall conductivity 1/0, and the quadratic temperature of the Hall angle cot0y are well
agreement with the measurements of high-T. cuprates in the normal states. However,
if different parameters are used in the calculation, for example, assumming the wy; is
a function of temperature wy; o< T, then the results will exhibits another temperature
power-law.

We have also performed a similar calculation in the light of electron-phonon inter-
action under Debye approximation. It is difficult to find the conditions so that p,.
varies T and o, varies 772 simultaneously. The results reflect that the existence of
fractons essentially affect the physical properties of condensed matter. The fractons are
superlocalized with a special dispersion relation and they are a kind of high-energy ex-
citations, while the phonons are extended with frequencies less than w.. As Nakayama
et al. indicated [19], in ordered structures anharmonicity reduces thermal transport
but in random structures, anharmonicity is the cause of heat flow, which can account
for the thermal conductivity anomalies of amorphous solids at low temperatures. For

a two-dimensional percolation network, we have demonstrated that the superconduc-



tivity function o F(u) varying u~!-*® for fractons (it varies u for phonons) may result
in an increase in T, in fractal superconductors [11]. The superconductivity function
a?F(u) and the transport spectral function af, F(u) of fractons differing substantially
from those of phonons will also lead to the differences of their electrical transport
properties.

In conclusion, we have calculated the resistivity and the Hall conductivity via tem-
perature in the light of the fracton-electron interaction by solving the quantum trans-
port equations. The results indicate that, under some conditions, the resistivity from
the contribution of the fracton-electron interaction is nearly linear to temperature and
the Hall angle cotdy varies T2, which is qualitativelyﬁté?eement with the experimental
results in the normal state of high-7, cuprates. The electron-fracton interaction mech-
anism may offer a possible explanation to the electrical transport properties of high-T.

cuprates in the normal states.
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Figure 1: Temperature dependence of the in-plane resistivity p,, with the parameters

we=50K, wpp=2.0x10°K and wy;=1.0x10*K.
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Figure 2: Reciprocal of the Hall conductivity 1/, as a function of temperature cubed Figure 3: Hall angle cotfy as a function of temperature squared T? with the parameters
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