
A
TL

-S
O

FT
-P

R
O

C
-2

02
0-

03
0

14
M

ar
ch

20
20

Multi-threaded simulation for ATLAS: challenges and vali-
dation strategy

Marilena Bandieramonte1,2,∗, John Derek Chapman1,3, Justin Chiu1,4, Heather Gray1,5, and
Miha Muskinja1,5

1CERN, EP Department, Meyrin, 1211, Switzerland
2University of Pittsburgh, Pittsburgh, PA 15260, USA
3Cavendish Laboratory, University of Cambridge, Cambridge, CB2 1TN, UK
4University of Victoria, Victoria, BC V8P 5C2 Canada
5Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract. Estimations of the CPU resources that will be needed to produce sim-
ulated data for the future runs of the ATLAS experiment at the LHC, indicate
a compelling need to speed-up the process to reduce the computational time
required. While different fast simulation projects are ongoing (FastCaloSim,
FastChain, etc.), full Geant4 based simulation will still be heavily used and
is expected to consume the biggest portion of the total estimated processing
time. In order to run effectively on modern architectures and profit from multi-
core designs a migration of the Athena framework to a multi-threading pro-
cessing model has been performed in the last years. A multi-threaded simula-
tion based on AthenaMT and Geant4MT, enables substantial decreases in the
memory footprint of jobs, largely from shared geometry and cross-section ta-
bles. This approach scales better with respect to the multi-processing approach
(AthenaMP) especially on the architectures that are foreseen to be used in the
next LHC runs. In these proceedings we will report about the status of the
multi-threaded simulation in ATLAS, focusing on the different challenges of its
validation process. We will demonstrate the different tools and strategies that
have been used for debugging multi-threaded runs versus the corresponding se-
quential ones, in order to have a fully reproducible and consistent simulation
result.

1 Introduction

High-energy physics (HEP) experiments at the Large Hadron Collider (LHC) are preparing
for the next LHC runs that are respectively scheduled to start in 2021 (so called Run 3) and
at the end of 2027 (so called Run 4 or High-Luminosity phase - HL-LHC), performing and
planning major upgrades to their detectors. For example, during Run 3 the ALICE experiment
will increase the collision detection rate to 50kHz, while the number of collisions that the
LHCb experiment will have to process will grow to more than 40 times of what it does
today. The transition to the HL-LHC phase will involve substantial changes for the ATLAS

∗corresponding author e-mail: marilena.bandieramonte@cern.ch
Copyright 2020 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is
allowed as specified in the CC-BY-4.0 license.

Year

2018 2020 2022 2024 2026 2028 2030 2032

A
nn

ua
l C

P
U

 C
on

su
m

pt
io

n
[M

H
S

06
]

0

20

40

60

80

100

Run 2 Run 3 Run 4 Run 5

CPU resource needs

2017 Computing model

2018 estimates:
MC fast calo sim + standard reco
MC fast calo sim + fast reco
Generators speed up x2

Flat budget model
(+20%/year)

ATLAS Preliminary

Figure 1: Estimated CPU resources (in MHS06) needed for the years 2018 to 2032 for both
data and simulation processing. The plot updates the projection made in 2017 (which was
based on the Run 2 computing model) with updated LHC running conditions and revised
scenarios for future computing models [2].

[1] and CMS experiments. With HL-LHC the instantaneous luminosity will become 5 times
greater than its nominal value L0 = 1034cm−2s−1 (and up to 7.5 L0 as the ultimate limit),
by operating in a "leveled" mode, i.e. with constant luminosity over a significant length of
time, allowing to increase tenfold the integrated luminosity : 3000fb−1 at the end of life of
the HL-LHC, around 2037. The increase in the intensity of the beam will allow for collisions
where the number of proton-proton interactions (pile-up) will increase from the current value
of 60 to 200. All of this implies necessary changes to the detector hardware and software.
In particular, both experiments will modify their trigger systems to improve their quality and
speed, with the aim of recording 5 − 10 times the number of current events. As mentioned,
an increased luminosity implies a bigger number of events and therefore an increase in the
statistics collected which enables new physics studies and discoveries. However it should be
borne in mind that, in general, the amount of data that experiments will be able to collect and
process in the future is limited by constraints in terms of available budget for computational
and software resources and by the efficiency with which these resources are exploited.

Figure 1 shows ATLAS numbers that are particularly interesting in that they estimate
CPU resources (in MHS06) needed for the years 2018 to 2032 for both data and simula-
tion processing. These are compared to the projection (solid line) of what is expected to be
available in a flat budget scenario that assumes an increase of 20% per year, in light of the
technology trends at the start of 2018.

The brown squares show what would be the ATLAS computing needs if we would keep
the same computing model parameters from 2017. As can be seen, the gap between needs and
bare technological advances is significant. The blue points show what kind of improvement
is achievable in three different scenarios, which require a non negligible development effort:
(1) the top curve assumes that fast calorimeter simulation (FastCaloSim) is used for 75% of
the Monte Carlo simulation; (2) the middle curve assumes that, in addition, a faster version

of reconstruction will be used, which is seeded by the event generator information; (3) the
bottom curve, adds a speedup in the event generation assuming that the time is halved, either
by software improvements or by re-using some of the events. In Run 3, ATLAS plans to run
at least 50% of simulation with fast techniques (the aim is to reach 75%), but full Geant4
[3–5] simulation will be heavily used regardless. If we look at how this computational time
would be split into components in two of the different envisaged scenarios, the (1) represented
in Figure 2a and the (3) in Figure 2b, we can ultimately see that even in the best scenario case
the Full Simulation will be the largest CPU consumer and, together with the Fast Simulation
and the Fast Reconstruction will account for ' 40% of the total expected CPU consumption.

Data Proc

MC-Full(Sim)
MC-Full (Rec)

MC-Fast (Sim)

MC-Fast (Rec)

EvGen

HI

Analysis

ATLAS Preliminary. 2028 CPU resource needs
MC fast calo sim + standard reco

(a) CPU consumption if using FastCaloSim for
75% of the Monte Carlo simulation and stan-
dard reconstruction.

Data Proc

MC-Full(Sim)

MC-Full (Rec)

MC-Fast (Sim)

MC-Fast (Rec) EvGen

HI

Analysis

ATLAS Preliminary. 2028 CPU resource needs
MC fast calo sim + fast reco, generators speed up x2

(b) CPU consumption using faster version of
reconstruction, which is seeded by the event
generator information, and assuming event
generation is sped up by a factor of two.

Figure 2: Fraction of CPU resources needed in 2028 at the end of Run 4 for different pro-
cessing workflows.The “MC-Full” section in green is related to the fraction of time spent on
the full AtlasG4 simulation and divided in a simulation part “(Sim)” for the Geant4 simu-
lation and a reconstruction part “(Rec)” accounting the time spent reconstructing the events.
Similarly, the “MC-Fast” section in red shows this distribution for the time spent running the
FastCaloSim simulation [2].

It is clear that any performance optimization that could be done on the Full Simulation
would have a big impact on the overall picture. In this context, one of the biggest project
in which the ATLAS collaboration is concentrating its effort is the migration of the ATLAS
software framework, Athena [6, 7] to a multi-threaded design.

2 Motivation for AthenaMT

The reader is probably familiar with the plot in Figure 3 that shows the evolution trend of
CPUs over the past 50 years. It can be seen that faster single-threaded CPU performance
broke more than 10 years ago and while the number of transistors kept growing, a stagnation
of the CPU clock speed aroused, being overcome by an increase in the number of low-power
cores per CPU, that share a smaller pool of memory.

In order to run effectively on modern architectures and profit from multi-core designs a
Multi-Threaded (MT) design is needed and the MT approach is critical for heterogeneous
architectures (e.g. GPU, HPCs). Furthermore, if we concentrate on the ATLAS simulation,
it has to be noticed that the amount of Monte-Carlo that can be produced already limits many

Figure 3: History of Intel chip introductions by clock speed and number of transistors over
the past 50 years. [8]

physics analyses and with the increased luminosity much higher statistics of simulated events
will be needed, worsening the situation. The current ATLAS model, AthenaMP [9] shown
in Figure 4, relies on Linux’s copy-on-write mechanism for sharing memory pages between
forks: this approach allows for memory saving but it won’t scale for Run 3 and beyond. An
MT approach would instead scale better than the existing one especially on the architectures
that are foreseen to be used in the next LHC runs. This is why the ATLAS collaboration
undertook a migration activity of its computing model to a new multi-threaded design, called
AthenaMT [10, 11]. The goal is to move to a finer-grained task parallelism, with a better scal-
ing in terms of memory footprint, that can leverage new architectures easing the investigation
of heterogeneous computing architectures (e.g. use GPUs, FPGAs, etc.). Simulation, Digi-
tization and Reconstruction are moving to an MT paradigm using the AthenaMT/GaudiHive
[12] infrastructure. Production ready AthenaMT Simulation is considered critical for Run 3
and a blocker activity for Run 4.

2.1 AthenaMT and Geant4MT

AthenaMT is based on GaudiHive, a multi-threaded, concurrent-execution extension to Gaudi
[13]: its concurrency model is based on Intel R© Threading Building Blocks library (TBB) [14]
and the computation is broken down into tasks (building blocks) that can run in parallel. The
scheduling is driven by data-flow and events are processed in multiple threads. However,
Geant4 has its own approach to parallel processing, adopting a master-slave concurrency
model, using pthreads. A multi-threaded version of the Geant4 toolkit, Geant4MT [15] has
been available since the version 10 series introduced in 2014. It provides event-level paral-
lelism and thread safety is achieved using thread-local storage. The main Geant4MT compo-
nents must be thread-local. Instead GaudiHive provides task locality, not thread locality. It is
not easy to pin a Gaudi component to a specific Geant4 thread: one must decouple the Gaudi
components from the Geant4 core functionality. This explains why the coupling between
Gaudi and Geant4 is very tricky: Geant4 requires that thread-local objects are initialized in
their threads at the right time. Nevertheless, after solving some issues caused for example by

Figure 4: Schematic view of AthenaMP, based on Linux copy-on-write sharing mechanism
[2].

the way that TBB sometimes spawns extra-threads after the initialization phase, Geant4MT
has been successfully integrated in AthenaMT outside and inside of the Integrated Simulation
Framework (ISF), as will be described in the next section. This should enable memory sav-
ing coming from sharing the Geant4 geometry and the cross-section tables between different
threads.

3 Validation strategy and tools

Once the migration of ATLAS Simulation to a multi-threaded design was completed, de-
bugging and validation of the multi-threaded ATLAS simulation started. The scope of this
activity was to find and correct defects that arise in either Geant4 software, other external
packages, or ATLAS code. The adopted validation strategy was the following: first con-
centrate on differences between single-threaded simulation, and multi-threaded simulation
running in single thread mode, then after correcting problems that arise already in this simple
configuration, transition to debugging multiple threads in multi-threaded simulation. To help
this debugging activity the powerful Intel Inspector tool [16] has been used to locate memory
faults, deadlocks, and race conditions. These have brought to light a host of issues with the
thread-safety of ATLAS code and externals upon which it depends.

In order to reduce the complexity of the system analysed, the first milestone was to vali-
date the simulation outside of the ISF, with the goal of having a fully reproducible and con-
sistent simulation result. This is possible, despite the stochastic nature of any Monte Carlo
simulation, setting the seed of the Pseudo Random Number generator (PRNG) used in the
simulation, to the same value. In this way the output of the simulation process, that is stored
in the so called HITS files, is bitwise comparable between different runs that use the same
input file.

Initially, when simulating a ttbar event in sequential mode and multi-threaded mode with
one thread, the two simulations were diverging at some point. The divergence was observed
in the safety value that was retrieved while being in a specific volume. The source of the
discrepancy in the safety calculation between sequential and multi-threaded mode, was iden-
tified debugging the code with the GNU debugger (GDB). We found that the smartlessness
voxel density parameter in the MT job was not being set correctly. This resulted in a different

voxelization of the volume and consequently in a different safety calculation. Once this issue
has been solved the output of the sequential and single-threaded simulation resulted bitwise
identical.

The second step was to test the execution of the multi-threaded simulation with more than
one thread vs the corresponding sequential execution. This required some manipulation of
the output files in order to split the HITS of a MT execution in different files per event, in
order to compare the output of each event in the correct order and in a consistent way. This
comparison highlighted issues related to race conditions on different parts of the code:

• thread-unsafety causing differences in the hits of the LAr sensitive detector (1-2%)

• thread-unsafety causing differences in the hits of the Tile sensitive detector (1-5%)

• thread-unsafety in the CaloCalibrationHit code (50% of Dead material hits)

All these issues have been tracked down and solved. The next step was to confirm the re-
producibility of simulation with SUSY/Exotics extensions to the Geant4 physics enabled.
The following packages have been checked: Charginos (Stable and decaying), Neutralinos
(Decaying), Sleptons+Gauginos (Stable, Decaying taus, Decaying light) and Monopole. The
reproducibility in MT mode of the Monopole package revealed a thread-unsafety issue that
has been solved. At this point we had Geant4 running on multiple threads as part of an
AthenaMT job and outside of the ISF, giving identical output to Geant4 running in a stan-
dard Athena job. The next fundamental milestone was to validate the multi-threaded Geant4
full simulation when running it from inside ISF. ISF is not yet thread-safe and also the ini-
tialization chain of Geant4 simulation in MT mode needed to be re-organized and cleaned
up in order to run properly. This activity followed the same concept and validation strategy
steps as the first one, so after making reproducible the output when running with one thread
we concentrated on the thread-safety issues arising when running with multiple threads.

This validation activity has been successfully completed and now Geant4MT simulation
can run in a thread-safe way from inside the ISF and the output is bitwise identical and
reproducible w.r.t. the sequential runs.

4 Benchmarking AthenaMP vs AthenaMT

Once multi-threaded simulation was proved to be safe and functioning, we conducted a
benchmark campaign to assess performance and speedup scale factors of AthenaMT ver-
sus AthenaMP. These benchmarks were obtained running a standard ttbar full simulation.
The following plots were produced running on a local server, pitt-buildnode-01, with the
following specs:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 2
Model: 79
Model name: Intel(R) Xeon(R)CPU E5-2620 v4 @ 2.10GHz

It has to be noted that the machine has 2 CPUs with 8 cores each, so 16 physical cores, 32
logical cores (in hyper-threading regime). Results are averages of 5 separate runs (from 1-32

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 4 8 12 16 20 24 28 32

S
p
e
e
d
u
p

#threads/#processes

Wall-time speedup AthenaMT vs AthenaMP

Ideal
AthenaMT
AthenaMP

Figure 5: Wall-Time speedup of AthenaMT (blue) vs. AthenaMP (orange), compared with
the ideal linear scaling.

threads/processes) and the machine was quiet all the time. The speedup is defined as follows:

AthenaMT − S peedupnthreads = Wall − timeth1/Wall − timethn

AthenaMP − S peedupnprocs = Wall − timeproc1/Wall − timeprocn

4.1 Strong scaling benchmarks

The following results show strong scaling speedup factors of AthenaMT vs AthenaMP as
a function of the number of threads/number of processes when keeping constant the total
number of events processed to 100 ttbar events. Figure 5 shows the wall-time speedup of
AthenaMT in blue, versus AthenaMP in orange.

As can be seen, AthenaMT scales in a very similar way with respect to AthenaMP and
the speedup is almost linear up to the number of physical cores of the machine. However, in
the hyper-threading regime we observe a loss of scalability and the speedup almost reaches
a plateau, meaning that the code cannot profit from the number of logical cores available
with the hyperthreading technology. Also we notice that both in the case of AthenaMT and
AthenaMP even if up to 8 cores the code scales almost ideally, we observe a degradation of
the performance when trying to use more than 8 cores. This effect might be due to the fact
that 100 events are not keeping busy enough the threads/processes, and as a consequence, for
higher numbers of threads/processes the initialization time might be significant with respect
to the event loop time, impacting the overall results. For this reason a new benchmark cam-
paign, that is presented in the next paragraph, was conducted to measure the weak scaling
factors keeping constant the load per thread/process (i.e. 50 events).

Figure 6 shows the Proportional Set Size (PSS) that measures the portion of main memory
occupied by a process and it is composed of the private memory of that process plus the
proportion of shared memory with one or more other processes.

It can be noticed that the AthenaMT memory footprint scales better with the number of
threads, than AthenaMP with the number of processes. In particular we see an increase in the
memory occupancy of ∼ 27.25 MB per thread in AthenaMT while there is a ∼ 214.33 MB
increase per process in AthenaMP. This is the most significant memory occupancy metric in

 1

 2

 3

 4

 5

 6

 7

 0 4 8 12 16 20 24 28 32

M
e
m

o
ry

 [
G

B
]

#threads/#processes

Proportional Set Size AthenaMT vs AthenaMP

AthenaMT
AthenaMP

Figure 6: Memory Occupancy (Proportional Set Size) of AthenaMT (blue) vs. AthenaMP
(orange), as a function of the number of threads or processes, respectively.

 0

 10

 20

 30

 40

 50

 60

 0 4 8 12 16 20 24 28 32

M
e
m

o
ry

 [
G

B
]

#threads/#processes

Virtual Memory AthenaMT vs AthenaMP

AthenaMT
AthenaMP

Figure 7: Memory Occupancy (Vir-
tual Memory) of AthenaMT (blue) vs.
AthenaMP (orange), as a function of the
number of threads or processes, respec-
tively.

 0

 10

 20

 30

 40

 0 4 8 12 16 20 24 28 32

M
e
m

o
ry

 [
G

B
]

#threads/#processes

Resident Set Size AthenaMT vs AthenaMP

AthenaMT
AthenaMP

Figure 8: Memory Occupancy (Resi-
dent Set Size) of AthenaMT (blue) vs.
AthenaMP (orange), as a function of the
number of threads or processes, respec-
tively.

order to compare a multi-threaded application vs. a multi-process one. In fact, the PSS takes
into account both the memory that is shared between processes and between threads.

To explain the difference between the various memory occupancy metrics, Figure 7 shows
the Virtual Memory (VMEM) occupancy, while Figure 8 shows the Resident Set Size (RSS)
plot. The Virtual Memory metric includes all memory that the process can access, including
memory that is swapped out, memory that is allocated, but not used, and memory that comes
from shared libraries.

The RSS is the portion of memory occupied by a process that is held in main memory.
It does not include memory that is swapped out, but includes memory from shared libraries
as long as the pages from those libraries are actually in memory. It does include all stack
and heap memory. However this metric doesn’t consider if part of the memory occupied
by a process is shared with other processes, i.e. if a portion of memory is shared between
2 processes it will be counted twice. This explains why the memory footprint numbers of
VMEM and RSS are much higher for AthenaMP than AthenaMT. The latest 2 plots are

 0

 0.05

 0.1

 0.15

 0.2

 0 4 8 12 16 20 24 28 32

T
h
ro

u
g
h
p
u
t

[E
v.

/m
in

.]

#threads/#processes

Throughput[Ev./min.] AthenaMT vs AthenaMP

IdealMT
AthenaMT

IdealMP
AthenaMP

Figure 9: Wall-Time speedup of AthenaMT (blue) vs. AthenaMP (orange), compared with
the ideal linear scaling in case of weak scaling.

included only for educational purposes, since they don’t give a real indication of the memory
occupancy in the 2 different paradigms considered in this study.

4.2 Weak scaling benchmarks

As introduced in the previous paragraph, a second benchmark campaign was conducted to
assess the weak scaling performance of AthenaMT vs. AthenaMP. In this second benchmark
the load of each thread/process has been kept constant to 50 ttbar events. In this way we
ensure that each thread/process has a significant load to execute, in order to reduce the impact
of the initialization time on the overall execution time. Figure 9 shows the throughput in
events per minute, of the 2 paradigms as a function of the number of threads/processes and
with respect to their ideal scaling curves. AthenaMT shows again to scale in a very similar
way as AthenaMP which is an impressive achievement. As speculated, this time we can
observe that the gap between the ideal and the real curve is significantly reduced below 16
threads/processes, revealing an almost ideal scaling behaviour. Furthermore we notice that in
hyper-threading regime, the loss of performance is persistent, as expected.

5 Conclusions

With the new multi-core computing era, multi-threaded programming models became neces-
sary to exploit modern computing architectures. This paper presented the commissioning and
validation process of ATLAS multi-threaded simulation based on AthenaMT and Geant4MT,
describing the different challenges faced. We demonstrated the different tools and strategies
that have been used to successfully have a fully reproducible and bitwise consistent simula-
tion result when running in multi-threaded mode with respect to sequential mode. Benchmark
campaign results demonstrated that ATLAS multi-threaded simulation enables substantial de-
creases in the memory footprint of jobs while keeping an almost ideal scaling behaviour in
terms of speedup and throughput. This approach scales significantly better in terms of mem-
ory occupancy with respect to the multi-processing approach (AthenaMP) and this effect is
expected to be more visible on the architectures that are foreseen to be used in the future LHC
runs.

References

[1] The ATLAS Collaboration, Journal of Instrumentation 3, S08003 (2008)
[2] The ATLAS Collaboration, Computing and software public re-

sults, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
ComputingandSoftwarePublicResults

[3] S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A506, 250 (2003)
[4] J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)
[5] J. Allison et al., Nuclear Instruments and Methods in Physics Research Section A: Ac-

celerators, Spectrometers, Detectors and Associated Equipment 835, 186 (2016)
[6] The Athena Framework, https://atlassoftwaredocs.web.cern.ch/athena/
athena-intro/

[7] P. Calafiura, W. Lavrijsen, C. Leggett, M. Marino, D. Quarrie, The Athena control
framework in production, new developments and lessons learned, in Computing in high
energy physics and nuclear physics. Proceedings, Conference, CHEP’04, Interlaken,
Switzerland, September 27-October 1, 2004 (2005), pp. 456–458

[8] K. Rupp, 42 Years of Microprocessor Trend Data, https://www.karlrupp.net/
2018/02/42-years-of-microprocessor-trend-data/

[9] P. Calafiura, C. Leggett, R. Seuster, V. Tsulaia, P.V. Gemmeren, Journal of Physics:
Conference Series 664, 072050 (2015)

[10] P. Calafiura et al., Journal of Physics: Conference Series 664, 072031 (2015)
[11] C. Leggett et al., Journal of Physics: Conference Series 898, 042009 (2017)
[12] M. Clemencic, B. Hegner, P. Mato, D. Piparo, Journal of Physics: Conference Series

513, 022013 (2014)
[13] G. Barrand et al., Comput. Phys. Commun. 140, 45 (2001)
[14] Intel R© Threading Building Blocks, https://software.intel.com/en-us/tbb
[15] X. Dong et al., Journal of Physics: Conference Series 396, 052029 (2012)
[16] Intel R© Inspector, https://software.intel.com/en-us/inspector

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ ComputingandSoftwarePublicResults
https://atlassoftwaredocs.web.cern.ch/athena/athena-intro/
https://atlassoftwaredocs.web.cern.ch/athena/athena-intro/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://software.intel.com/en-us/tbb
https://software.intel.com/en-us/inspector

	Introduction
	Motivation for AthenaMT
	AthenaMT and Geant4MT

	Validation strategy and tools
	Benchmarking AthenaMP vs AthenaMT
	Strong scaling benchmarks
	Weak scaling benchmarks

	Conclusions

