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Abstract. Likelihoods associated with statistical fits in searches for new
physics are beginning to be published by LHC experiments on HEPData. The
first of these is the search for bottom-squark pair production by ATLAS. These
likelihoods adhere to a specification first defined by the HistFactory p.d.f. tem-
plate. This is per-se independent of its implementation in ROOT and it is useful
to be able to run statistical analysis outside of the ROOT and RooStats/RooFit
framework. We introduce a JSON schema that fully describes the HistFactory
statistical model and is sufficient to reproduce key results from published AT-
LAS analyses. Using two independent implementations of the model, one in
ROOT and one in pure Python, we reproduce the sbottom multi-b limits using
the published likelihoods on HEPData underscoring the implementation inde-
pendence and long-term viability of the archived data.

1 Introduction

Measurements in High Energy Physics (HEP) aim to determine the compatibility of observed
events with theoretical predictions. The relationship between them is often formalised in a
statistical model f(x|¢) describing the probability of data x given model parameters ¢. Given
observed data, the likelihood L(¢) then serves as the basis to test hypotheses on the parame-
ters ¢. For measurements based on binned data (histograms), the HistFactory [1] family of
statistical models has been widely used for likelihood construction in both Standard Model
(SM) measurements (e.g. Ref. [2]) as well as searches for new physics (e.g. Ref. [3]). A
declarative, plain-text format for describing HistFactory-based likelihoods [4] is presented
that is targeted for reinterpretation and long-term preservation in analysis data repositories
such as HEPData [5].
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2 HistFactory
2.1 Formalism

HistFactory statistical models — described in depth in Ref. [4] — center around the simul-
taneous measurement of disjoint binned distributions (channels) observed as event counts
n. For each channel, the overall expected event rate is the sum over a number of physics
processes (samples). The sample rates may be subject to parametrised variations, both to
express the effect of free parameters 1 and to account for systematic uncertainties as a func-
tion of constrained parameters ), whose impact on the expected event rates from the nominal
rates is limited by constraint terms. In a frequentist framework these constraint terms can
be viewed as auxiliary measurements with additional global observable data a, which paired
with the channel data n completes the observation x = (n, a). The full parameter set can be
partitioned into free and constrained parameters ¢ = (1, x), where a subset of the free param-
eters are declared parameters of interest (POI) ¢ (e.g. the signal strength) and all remaining
parameters as nuisance parameters 6.

free parameters of interest

l l
fxl@) = f(xIn, x) = f(xly, ?) (1)
constraineg nuisance parameters

The overall structure of a HistFactory probability model is then a product of the
analysis-specific model term describing the measurements of the channels and the analysis-
independent set of constraint terms:
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where within a certain integrated luminosity one observes n,, events given the expected rate
of events v, (1, ) as a function of unconstrained parameters 7 and constrained parameters y.
The latter has corresponding one-dimensional constraint terms ¢, (a,|x) with auxiliary data
a, constraining the parameter y. The expected event rates v,;, are defined as
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2.2 JSON Schema

The structure of the JSON specification of HistFactory models closely follows the original
XML-based specification [1]. The JSON specification for a HistFactory workspace is
a primary focus of Ref. [4], but a workspace can be summarised as consisting of a set of
channels (an analysis region) that include samples and possible parameterised modifiers, a
set of measurements (including the POI), and observations (the observed data). Listing 1
demonstrates a simple workspace representing the measurement of a single two-bin channel
with two samples: a signal sample and a background sample. The signal sample has an
unconstrained normalisation factor u, while the background sample carries an uncorrelated
shape systematic. The background uncertainties for the bins are 10% and 20% respectively.



"channels": [
{ "name": "singlechannel",
"samples": [
{ "name": "signal",
"data": [5.0, 10.0],
"modifiers": [ { "name": "mu", "type": "normfactor", "data": null} ]

{ "name": "background",
"data": [50.0, 60.0],
"modifiers": [ {"name": "uncorr_bkguncrt", "type": "shapesys", "data": [5.0,12.0]} ]

]

}
1,
"observations": [

{"name": "singlechannel", "data": [50, 60]}
1,
"measurements”: [

{ "name": "Measurement", "config": {"poi": "mu", "parameters": []} }

]
}

Listing 1: A toy example of a 2-bin single channel workspace with two samples. The signal
sample has expected event rates of 5.0 and 10.0 in each bin, while the background sample has
expected event rates of 50.0 and 60.0 in each bin. An experiment provided the observed event
rates of 50.0 and 60.0 for the bins in that channel. The uncorrelated shape systematic on the
background has 10% and 20% uncertainties in each bin, specified as absolute uncertainties
on the background sample rates. A single measurement is defined which specifies u as the
POI [4].

3 Likelihood Preservation and Result Reproduction

Through the use of the HistFactory JSON specification, the statistical model used in a
search for sbottom squarks [6] with the ATLAS detector [7], based on the full Run-2 dataset
using 139 fb~! of proton-proton collision data, was both preserved and reproduced. The
search for new physics performs hypothesis tests on a simplified model that is parameterised
by the masses of the sbottom squark b; and the neutralinos )22, )2? and defines three separate
statistical models. The full set of likelihoods for the three models is included as auxiliary
material of the HEPData record of the analysis [8] for preservation and can be streamed from
HEPData on demand. This is the first open publication of a full likelihood from an LHC
experiment, fulfilling a proposal from the first Workshop on Confidence Limits (2000) [9].

In a demonstration of the full encapsulation of the HistFactory model in the JSON
specification, a subset of the results from Ref. [6] are reproduced. The original analysis
workspaces are converted to a set of XML and ROOT [10] files via RooStats [11], from
which a JSON HistFactory workspace is made using the pyhf [12] libary’s xml2json
command-line tool. The subset of results are then reproduced using both a pyhf imple-
mentation and a ROOT implementation of the HistFactory model. pyhf implements the
HistFactory model purely within the scientific Python software stack, i.e. using the
scipy [13] and numpy [14] libraries. To convert from the JSON HistFactory workspace to
a ROOT readable format, the pyhf json2xml command-line tool is used to convert the JSON
to a set of XML and ROOT files, which are then converted into a RooFit workspace using the
hist2workspace command-line tool. The full process is illustrated in Figure 1.
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Figure 1: The diagram of the technical procedure to go from the original ROOT workspaces
provided by the analysis team, to the JSON workspaces used by pyhf, and finally the round-
trip ROOT workspaces. pyhf provides utilities to convert between two different HistFactory
specification formats [4].

In both model implementations the background-only fit from Ref. [6] is reproduced as
well as upper limits on the visible cross section of Beyond the Standard Model physics,
with excellent agreement as detailed in Ref. [4]. Based on the single-point hypothesis test
procedure at fixed 4 = 1.0, i.e. the nominal Beyond the Standard Model expectation, a set
of tests for all simulated grid points are performed to infer a 95% CL; exclusion contour.
Using the procedure described in Figure 1, the results obtained from the archived statistical
models using original ROOT, round-tripped ROOT, and pyhf are overlaid in Figure 2, showing
excellent agreement, with only minor numerical differences, validating the completeness of
the JSON HistFactory specification.

4 Reinterpretation

The preservation of the statistical model in a structured form also aids in the derivation of
new results through the method of reinterpretation. In reinterpretations a subset of the sam-
ples contributing to the expected event rates, most commonly those associated to Beyond the
Standard Model processes, are replaced with alternative predictions derived from a new the-
oretical model, while keeping the remaining estimates, typically those derived for Standard
Model processes, unchanged.
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Figure 2: Exclusion contours at the 95% CL in the m(b, ¥3) phase space for the m(¢?) =
60 GeV signal scenario using the SR with the best-expected sensitivity. The shaded band
shows the impact of the theory uncertainties on the SM background, and the experimental
uncertainty on both the background and the signal. The contours labeled ROOT are calculated
from the original workspaces of the analysis. From these original workspaces, xm12 j son was
run and pyhf was used to produce the contours labeled pyhf. Finally, json2xml was used
to generate XML and ROOT files, from which ROOT workspaces can be built, to produce the
contours labeled roundtrip. The overlaid expected and observed limits and the exclusion
contours, produced by pyhf and ROOT, reproduce the contours of Figure 8(a) in Ref. [6] with
excellent agreement. All curves are superimposed at the level of graphical precision [4].

The process of replacing certain samples of the original likelihood with updated ones can

be viewed as applying a patch p to the likelihood £ to derive a new one £': £ L 1. The
choice of JSON as a serialisation format for the likelihood also enables an unambiguous def-
inition of such likelihood patches using the JSONPatch format [15] — an ordered array of
transformations applied to the original document. The patch format provides a well-defined
target for reinterpretation tools to produce, when combined with the original likelihood, like-
lihoods for a reinterpretation. Using the 2-bin toy example in Listing 1, a JSON patch, seen
in Listing 2, can be applied to replace the nominal expected event rates, an array of two floats,
with new values. This patch, provided as a file patch. json, can be applied to the original
likelihood, stored in a file original. json, using the jsonpatch command-line tool' which
produces the result in Listing 3. The new JSON file can then be processed either through the
ROOT implementation or the pyhf implementation.

TFor example, running: jsonpatch original. json patch.json > new.json.



[{
"op": "replace",
"path": "/channels/0/samples/0/data",
"value": [8.0, 3.0]

1

Listing 2: A JSON patch with a single transformation to replace the nominal expected event
rates [4].

"channels": [
{ "name": "singlechannel",
"samples": [
{ "name": "signal",
"data": [8.0, 3.0],
"modifiers": [ { "name": "mu", "type": "normfactor", "data": null} ]
1,
{ "name": "background",
"data": [50.0, 60.0],
"modifiers": [ {"name": "uncorr_bkguncrt", "type": "shapesys", "data": [5.0,12.0]} ]
}
1
}
1,
"observations": [
{"name": "singlechannel", "data": [50, 601}
1,
"measurements": [
{ "name": "Measurement", "config": {"poi": "mu", "parameters": []} }

]

Listing 3: The result of applying the JSON patch in Listing 2 to Listing 1 [4].

5 Conclusions

HistFactory statistical models are widely used for published results within HEP to model
the analysis and perform statistical tests. The simple structure of HistFactory allows for
easily archiving the full statistical model in a JSON format introduced in Ref. [4], which is
optimised for long-term archival on data repositories such as HEPData. The ability to archive
the full models from a recent search for sbottom squarks using 139 fb~! of proton-proton
collision data recorded with the ATLAS detector is demonstrated for the first time by an LHC
experiment using the plain-text JSON specification. Finally, key statistical results of the
analysis are reproduced with two independent implementations of the HistFactory model
— the ROOT and Python scientific software ecosystems — underscoring the implementation
independence and long-term viability of the archived data.
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