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Abstract

A Search for New Physics in the Dilepton Channel with the

ATLAS Detector at the LHC

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of

Brandeis University, Waltham, Massachusetts

by Eric Andrew Vitus Fitzgerald

This thesis presents a search for a new, neutral heavy gauge boson decaying to lepton pairs

using data from the ATLAS detector at the LHC. This search is performed in two channels,

using both electron-pair and muon-pair final states. The results use the full 2012 ATLAS

data set from pp collisions at a center-of-mass energy of
√
s = 8 TeV with an integrated

luminosity of 21 fb−1. No statistically significant signal is found, and limits are placed on a

variety of Z ′ models. A Sequential Standard Model Z ′, with identical couplings to fermions

as the Standard Model Z0 boson, is excluded at the 95% confidence level for masses lower

than 2.79 TeV in the electron channel, 2.53 TeV in the muon channels, and 2.90 TeV with the

channels combined. Limits are placed on additional Z ′ models based on the grand unification

group E6, with lower masses ranging from 2.43 to 2.58 TeV.
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Chapter 1

Introduction

The Standard Model describes the matter content and interactions of all the established

particles. It is composed of fermions that are in representations of the gauge group SU(3)C⊗

SU(2)L⊗U(1)Y , and the postulate of gauge invariance determines their interactions and the

intermediate gauge boson spectrum. There are 25 input parameters to the Standard Model,

and many particle interactions have been studied extensively in physics for more than 40

years to measure these parameters and test the predictions of the Standard Model. Thus

far, no significant deviation has been observed between the Standard Model’s predictions

and experimental results.

With the discovery of the Higgs boson in July 2012 [1, 2], the final piece of the Standard

Model has been measured. However, several questions remain about our observed universe

that do not appear in the Standard Model. For example, ‘Why is our universe made of

matter?’ or ‘Why do the parameters in the Standard Model have their observed values?’.

Many possible extensions of the Standard Model have been proposed to resolve some of these

questions, and these models often predict new particles and interactions which is generically

called “New Physics”. This thesis describes a search for one such new particle, a neutral
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gauge boson Z ′ that decays to leptons.

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research

(CERN) is the world’s leading high-energy physics facility. It collides two beams of pro-

tons with a center-of-mass energy
√
s = 8 TeV and an instantaneous luminosity of 7 ×

1033 cm−2s−1. CERN hosts numerous experiments, and at the LHC there are two general-

purpose detectors: A Toroidal LHC ApparatuS (ATLAS) and the Compact Muon Solenoid

(CMS). This thesis uses the data recorded at ATLAS during the 2012 operations to search

for a narrow resonant peak in the dilepton mass spectrum.

The search for new particles in the dilepton channel has a long history in physics and is a

traditional benchmark for limiting extensions of the Standard Model. Previous limits on the

mass of possible Z ′ bosons from the Large Electron-Positron collider and the Tevatron collider

range from 700 to 1800 GeV [3, 4, 5, 6, 7]. Limits from the Large Hadron Collider experiments

CMS and ATLAS place a 95% C.L. lower mass limit of 2590 GeV [8, 9]. This thesis searches

across two channels using electron-pair and muon-pair final states. No statistically significant

deviation from the Standard Model is observed, and 95% C.L. lower mass limits are placed.

The lower mass limit for the benchmark model is:

MZ′

SSM
> 2.90 TeV.

Mass limits are also placed on additional Z ′ bosons, ranging from 2.38-2.54 TeV. These are

currently the most stringent limits on possible Z ′ particles.

This thesis is organized as follows. The second chapter describes quantum field theory

and the Standard Model in some detail. There is also a discussion of some of the motivations

and mathematics behind a few extensions of the Standard Model that include Z ′ bosons. The

third chapter describes the experimental apparatus. The LHC and ATLAS are incredibly
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complex machines, and this only gives the briefest treatments of their technical marvel.

The last part of the third chapter describes how data taken from ATLAS is transformed

into computer files that encode the underlying physics events. The fourth chapter describes

how the event selection finds the lepton pairs in the data, in both the electron and muon

channels. The fifth chapter describes how, with the observed and simulated data, the search

and limits are placed on new Z ′ particles. A conclusion contains the results of the search

and an outlook for the remainder of the LHC program. In addition, five appendices are

included covering in more detail some of the technical aspects of data taking and analysis

techniques. These address the weighting and rescaling of the simulated data to the Standard

Model and associated systematic uncertainties, and the corrections applied to the electron

and muon channels. Throughout this thesis, I try and give a sense of the history to these

physics endeavors, for

“If I have seen farther it is by standing on the
shoulders of giants.”
— Isaac Newton
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Chapter 2

The Standard Model

The Standard Model of Particle Physics is a quantum field theory incorporating a wide

variety of phenomena observed in nature. It is the current best understanding of how the

universe works, and describes all fundamental interactions with the exception of gravity.

The Standard Model predicts the rates of all types of events in the LHC environment, and

these events are the largest background in the search for new physics at the LHC. This

chapter describes the theoretical underpinnings of the Standard Model and then discusses

possible extensions of this theory that can potentially resolve some of the outstanding issues

in particle physics.

2.1 History - From Dirac to Now

The revolution in modern physics came from the discovery of the Theory of Relativity (1905,

1915) by Albert Einstein [10, 11] and Quantum Theory (1920s) by Max Planck [12], Niels

Bohr [13, 14], Louis de Broglie [15], Erwin Schrödinger [16], Werner Heisenberg [17], Max

Born [18], and others. There was a need to unify the two theories by incorporating the
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relativistic concepts of space-time and causality with the probabilistic nature of waves &

particles and unitary time evolution in quantum mechanics. In 1928, Paul Dirac laid out

the first attempt at incorporating relativity with the quantum mechanics of electrons, which

led to the prediction of anti-particles [19, 20]. He followed this with the first attempt to

understand the quantum nature of the electromagnetic field by quantizing the photon as

an infinite set of quantum harmonic oscillators using creation and annihilation operators

[21]. However, it was quickly realized that these theories had problems where the first-order

perturbative corrections gave infinity as the answer [22, 23]. Throughout the 1930s, 40s, and

50s, much theoretical work was done to understand these quantum field theories.

The infinities arise due to the quantum nature of the corrections - during the intermediate

process the particles can essentially travel anywhere or take on any amount of energy, which

produces a divergence in the calculation. In 1947, Willis Lamb presented a result at the

Shelter Island Conference [24] showing a deviation in the fine structure in hydrogen that was

not predicted by standard quantum theory [25]. Hans Bethe, on the train ride home from

the conference, gave a first derivation of this shift using quantum field theory perturbations

and a simple cut-off to “regulate” the theory [26]. Since the final result is independent of

the cut-off, this is said to be “regularized” and is a valid physical result. Julian Schwinger

adopted a somewhat different approach by separating the divergences and showing they

cancel to calculate the anomalous magnetic moment of the electron [27], which was another

puzzling experimental result in shifts that did not correspond to the prediction of standard

quantum theory [28, 29, 30, 31]. In 1949, Wolfgang Pauli and Felix Villars formalized

this procedure, known as regularization, to show how seemingly divergent calculations in

perturbations can give sensible, finite results [32]. Richard Feynman [33, 34, 35], Julian

Schwinger [36, 37, 38, 39, 40, 41], and Sin-Itiro Tomonaga [42, 43, 44, 45] independently

in the 1950s all developed a fully covariant (that is, compatible with Special Relativity)
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and gauge invariant (a different problem arising from additional degrees of freedom in the

dynamics of the theory) formulation of how properly quantized electrons interact with the

quantum electromagnetic field. Freeman Dyson also made substantial contributions and

showed how the Feynman approach using the path-integral and “diagrams” is equivalent to

the more algebraic operator approach of Tomonaga and Schwinger [46, 47]. This theory,

known as Quantum Electro-Dynamics (QED), is considered the “crown jewel” of theoretical

particle physics [48].

The success of QED led to the further development of quantum field theories as a viable

set of theories to describe nature. In 1954, C. N. Yang and R. L. Mills extended the idea of

using the generators of the gauge symmetry (the charge in the case of QED) to cases where

they don’t commute [49]. These types of quantum field theories are known as Yang-Mills

or non-Abelian gauge theories. In 1960, Sheldon Glashow [50] applied the SU(2) symmetry

group to the weak interactions and showed the vector boson particle spectrum can reproduce

the known experimental results after partially breaking the symmetries, if one includes an

additional U(1) symmetry group. There was a problem, however, because the gauge bosons

of the partially broken symmetry were massless. This is a general property of gauge bosons

after the breaking or partial breaking of a symmetry, a result discovered by Yochiro Nambu

[51] and Jeffery Goldstone [52]. The resulting massless particles are called Nambu-Goldstone

bosons. To match the known experimental results, massive gauge bosons were needed but

these do not obey the symmetries of the theory. To solve this problem, Philip Anderson [53],

Francois Englert & Robert Brout [54], Peter Higgs [55], and Gerald Guralnik, Carl Hagan

& Tom Kibble [56], all independently developed what is known as the Higgs mechanism

that allowed for massive gauge bosons that preserved the underlying symmetry of the theory

after breaking local gauge invariance. In 1967, Steven Weinberg [57] and Abdus Salam

[58] applied the Higgs mechanism to the SU(2) ⊗ U(1) theory proposed by Glashow. The
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resulting theory describes the known interactions of leptons (electrons, muons, tau particles,

their anti-particles, as well as electron-, muon-, tau-neutrinos and anti-neutrinos) and forms

the basis of the Standard Model.

In addition to leptons, there is another class of particles called hadrons, with two sub-

classes: baryons (such as the proton and neutron) and mesons (such as the pion and kaon).

These particles interact in a much different fashion than the leptons, and there are many

more types of hadrons than the 12 species of leptons. The large number of species of

hadrons has led to it being called “The Particle Zoo” only somewhat in jest. In order to

classify all these hadrons, Kazuhiko Nishijima in 1955 [59] and Murray Gell-Mann in 1956

[60], proposed to assign a new quantum number “strangeness” in addition to the “isospin”

quantum number to each particle and organize the resulting spectrum into group multiplets.

Not every multiplet was filled, which led to the prediction of the Ω− particle, discovered

in 1964 [61]. The constituents of the hadrons carrying the quantum numbers were called

“quarks”. While the Quark Model served to classify the known hadrons, it did not explain

their interactions. In 1969, James Bjorken and E. Paschos [62] and Richard Feynman [63]

proposed hadrons were composed of point-like objects called “partons” that interacted (at

high enough energies) in a similar way to leptons. It was quickly realized quarks and partons

were the same objects, just described in different ways. The Parton Model showed how these

constituents interacted with leptons at high energy (uniting them with the Electro-Weak

Theory of Glashow, Salam, and Weinberg), while the Quark Model was an empirical study

of how they interacted amongst themselves at low energy. Uniting these two pictures, in 1973

David Gross and Frank Wilczek [64] and David Politzer [65] showed the gauge theory with the

SU(3) symmetry group exhibited precisely this behavior, called “asymptotic freedom.” The

strength of the coupling at low energies is very large, allowing the quarks to bind together

to form hadrons, while at high energies the coupling strength falls off and quarks behave as
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freely interacting partons. These two gauge theories, the SU(3) theory of the quarks and

SU(2) ⊗ U(1) theory of both the quarks and leptons, is the Standard Model.

Numerous other developments in the understanding of quantum field theories occurred in

the 1970s. Kenneth Wilson showed how the regularization of quantum field theories can be

used to study their behaviors at different energy scales in a process called “renormalization”

[66, 67], a key step to understanding the asymptotic freedom of the SU(3) gauge theory

of quark interactions. Martinus Veltman and Gerardus ’t Hooft showed that all gauge

theories can be properly regularized and renormalized [68]. Makoto Kobayashi and Toshihide

Maskawa, building upon earlier work by Nicola Cabibbo of “mixing” between quarks [69] and

the discovery of CP violation in the kaon meson system [70], predicted two new particles,

the bottom and top quarks [71]. Similar work extending the leptonic particle spectrum

was done by Bruno Pontecorvo [72] and Ziro Maki, Masami Nakagawa, and Shoichi Sakata

[73]. The theoretical understanding of the three “generations” of matter (quarks: up/down,

strange/charm, top/bottom. leptons: electron, muon, tau with neutrinos) and their gauge

theory interactions SU(3) and SU(2) ⊗ U(1), was mostly completed by 1980. In total

there are about 25 total free parameters, depending on how one counts neutrino masses and

mixing. These parameters and the interactions based on the symmetries of the theory have

been extensively measured and tested with no significant observed deviation in experimental

particle physics to date. It is an amazing testament to human ingenuity.

2.2 Quantum Field Theory

Quantum field theory is the tool used to understand particles and their interactions. It joins

the two modern physics successes of quantum mechanics and special relativity and can be

applied to a variety of problems using a variety of techniques under the heading of quantum
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field theory. This section will develop some of the basic structures of this important and

powerful tool. For a more complete treatment of quantum field theory, see the excellent

books by Michael Peskin and Daniel Schroeder [74], Steven Weinberg [75], Lowell Brown

[76], Lewis Ryder [77], or many, many others.

2.2.1 Lagrangian Dynamics

In Lagrangian mechanics, the quantity governing how a system behaves is the action. The

action S is the integral of the Lagrangian over time, or if the system includes spatial coordi-

nates as inputs, the integral of the Lagrangian density over both space and time. Throughout

this thesis, I will only be using fields, which have a value at every point in space and all

times and will denote the Lagrangian density L, and refer to it simply as the Lagrangian.

S =

∫

L d3xdt. (2.1)

The principle of least action states that classical solutions of a Lagrangian are at the field

configurations that extremize the action. The Lagrangian is a function of some set of fields

φ(x, t) and their derivatives ∂µφ(x, t). I will drop the explicit dependence on (x, t) for the

fields, but it is always implicitly there, and the volume element will be shortened to d3xdt =

d4x.

0 = δS =

∫

δL(φ, ∂µφ) d4x

0 =

∫ (
∂L

∂φ
δφ+

∂L

∂(∂µφ)
δ(∂µφ)

)

d4x

0 =

∫ (
∂L

∂φ
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)

− ∂µ

(
∂L

∂(∂µφ)

)

δφ

)

d4x
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The middle term is a total derivative and if we assume the field configuration is stable at

the boundaries, must vanish. The first and last terms each multiply δφ, however the change

is action must vanish for any small but arbitrary change in field configuration. This can

be factored out, and the two terms must cancel each other to satisfy the principle of least

action. These are the Lagrangian equations of motion:

0 =
∂L

∂φ
− ∂µ

(
∂L

∂(∂µφ)

)

. (2.2)

It should be noted that, while the Lagrangian formulation is the most popular for quan-

tum field theory, it is also possible to formulate quantum field theory using the Hamiltonian

as the fundamental quantity and the equations of motion that result from the fields and

their conjugate momenta.

Noether’s Theorem

One of the most remarkable results of Lagrangian theory shows how the symmetries of a

system are related to the conserved quantities in that system. This is called Noether’s

Theorem, for Emmy Noether [78]. It states that for a change in the field configuration of a

system, if it leaves the equations of motion intact, then there is a corresponding conservation

law. A symmetry is defined to be when the fields can be changed but leave this equations

of motion unchanged. The equations of motion are from the condition that the action is at

an extremum, so the Lagrangian can change at most by a total derivative. The field and

Lagrangian transform as:

φ→ φ+ αδφ, (2.3)

L→ L+ α∂µJ
µ, (2.4)
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where α is the deformation parameter and Jµ is a quantity that vanishes at the boundaries.

Varying the Lagrangian through the change in fields results in:

∂L

∂φ
αδφ+

∂L

∂(∂µφ)
αδ(∂µφ)

α
∂L

∂φ
δφ+ α∂µ

(
∂L

∂(∂µφ)
δφ

)

− α∂µ

(
∂L

∂(∂µφ)

)

δφ

α

(
∂L

∂φ
− ∂µ

(
∂L

∂(∂µφ)

))

δφ+ α∂µ

(
∂L

∂(∂µφ)
δφ

)

.

This change in field configuration is assumed to be a symmetry and therefore preserves the

equations of motion, so the first two terms cancel. The total derivative term must equal the

change in the Lagrangian Jµ, up to some piece whose derivative must vanish. This extra

piece I’ll call jµ:

Jµ =

(
∂L

∂(∂µφ)

)

δφ− jµ

⇒ ∂µj
µ = 0 & jµ =

(
∂L

∂(∂µφ)

)

δφ− Jµ. (2.5)

So if a symmetry of the fields can be found, there must exist a conserved current jµ. An

alternative way to think about this is to integrate the conserved current over all space and

time:

0 =

∫

∂µj
µ d4x =

∫

∂0j
0 dxdt−

∫

∇ ·~j dxdt

⇒ Q =

∫

j0 dx. (2.6)

Q is a constant which depends on the field configuration at the boundary and is constant in

time.

One of the best examples of this relation between symmetries and conservation laws

11



CHAPTER 2. THE STANDARD MODEL

is Lorentz symmetry, the local translation invariance in space and time coordinates. For

simplicity, I’ll illustrate using the Lagrangian for a single, massive scalar field:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2.

After a change in the coordinates, the field configuration transforms by a single derivative

for small enough changes (the first-order term in a Taylor expansion):

xµ → xµ + ǫµ

φ→ φ+ ǫµ∂µφ.

The Lagrangian must also only change by a single derivative:

L→ L+ ǫµ∂µL = L+ ǫν∂µ(δµνL).

The conserved Noether current in equation (2.5) uses the changes in the field configuration

δφ = ∂µφ and the Lagrangian J = δµνL, and in this example is:

T µν = (∂νφ)(∂µφ) − δµν

(
1

2
∂µφ∂

µφ− 1

2
m2φ2

)

0 = ∂µT
µ
ν

This is the stress-energy tensor for the single, massive scalar field theory. The transformation

used four different deformations, with the field changing in four directions (three spatial,

one time), which resulted in four conserved currents and four conserved charges. The four
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conserved charges can be calculated when µ = 0, using equation (2.6):

Q0 =

∫ (
1

2
∂0φ∂

0φ+
1

2
∂iφ∂

iφ+
1

2
m2φ2

)

dx, (2.7)

Qi =

∫
(
∂iφ∂

0φ
)
dx. (2.8)

The terms being integrated in equation (2.7) correspond to the Hamiltonian density, therefore

the first conserved quantity is the total energy of the system. The second equation (2.8) is the

total momentum of the system. In words, Lorentz symmetry or local translation invariance,

through Noether’s Theorem, gave rise to the conservation of energy and momentum. A

similar calculation, where the system is invariant under rotations xi → ωijx
j, leads to the

conservation of angular momentum. Special relativity is based on Lorentz symmetry which

includes invariance under coordinate boosts and rotations. Therefore, any theory that obeys

Lorentz symmetry will automatically conserved energy, momentum, and angular momentum.

All theories considered in this thesis will fall into this category.

The Interaction Picture and Path Integral

For a given initial state configuration, to evolve the configuration to a different state, the

time-evolution is a unitary operator and is determined by the Hamiltonian of the system.

The Hamiltonian can depend on the position and the momentum of the state.

〈φF |U(x, p, t) |φI〉 = 〈φF | e−iHT |φI〉 (2.9)

This is the propagation amplitude between the states. Without loss of generality, assume

the state is an eigenstate of the position operator. A complete set of quantum mechanical
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states can be inserted at any intermediate point:

〈φF | e−iHT
′′

[(
∏

j

∫

dxj

)

|xj〉 〈xj|
]

e−iHT
′ |φI〉 .

This can be done iteratively, using smaller and smaller time slices:

〈φF | e−iHǫ
[(
∏

j

∫

dxj

)

|xj〉 〈xj|
]

e−iHǫ · · · e−iHǫ
[(
∏

k

∫

dxk

)

|xk〉 〈xk|
]

e−iHǫ |φI〉 .

Each factor of e−iHǫ is a transition between two states. This can be done N times, with a

time step ǫ = T/N between each intermediate insertion. The amplitude between states that

must be calculated is:

〈φk+1| e−iHǫ |φk〉 .

In general, the Hamiltonian can contain terms which depend on the position, the momentum,

or both. If a term only depends on the position, the matrix element is simple to calculate

since the states are eigenstates of position:

∏

i

〈φk+1| f(xi) |φk〉 = f(xk)
∏

i

δ(xik − xik+1).

The left-hand side is in terms of states and operators, while the right-hand side is simply

a function which can be evaluated. The delta-functions can be re-written as exponentials

using a Fourier transform between position and momentum space:

δ(xk − xk+1) =

∫
dpk
2π

eipk·(xk−xk+1).
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For terms that depend only on the momentum, the position eigenstates can be transformed

into momentum eigenstates again using a Fourier transform:

∏

i

〈φk+1| g(pi) |φk〉 =
∏

i

∫
dpik
2π

g(pik)e
i
∑
pi
k
·(xi

k
−xi

k+1
).

For terms that contain mixtures of position and momentum operators, using the commu-

tation relations the operators can be ordered with the position operators on the left and

momentum operators on the right or vice-versa, called normal or anti-normal ordering. To

make the similarity between the k and k + 1 states more clear, there is also Weyl ordering

where the position operators between the two states are symmetrically placed on the left

and right hand sides. It is always possible to order the operators in this way.

Once properly ordered, the Hamiltonian between intermediate states can be evaluated.

〈φk+1| e−iǫH(x,p) |φk〉 =

(
∏

i

∫
dpik
2π

)

exp

[

−iǫH
(
qk + qk+1

2
, pk

)]

×ei
∑
pi
k
·(xi

k
−xi

k+1
)

(2.10)

For the N insertions, the full transition amplitude is:

〈φF | e−iHT |φI〉 =

(
N∏

k=1

∏

i

∫

dxik

∫
dpik
2π

)

× exp

[

i
N∑

k=1

(
∑

i

pik · (xik − xik+1) − ǫH

(
qk + qk+1

2
, pk

))]

.

The ǫ can be factored out, with the first term including
xi
k
−xi

k+1

ǫ
. Taking the limit N → ∞

or ǫ → 0, the exponential term changes to the continuous limit with ẋi and
∫
dt. Each

differential path dxk and dqk must be taken into account, which is denoted DxDp. The 2π
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is absorbed into this notation.

〈φF | e−iHT |φI〉 =

(
∏

i

∫

DxDp
)

×exp

[

i

∫ T

0

dt

(
∑

i

pikẋ
i −H(x, p)

)]

. (2.11)

The terms in the exponential is exactly the definition of the classical Lagrangian; once

integrated this is the classical action. The full “path integration” is over all positions and

momenta at each time in the integration, essentially the total phase space, weighted by the

classical action eiS. This was initially proposed by Dirac [21], Feynman applied this to non-

relativistic quantum mechanics [79] and then used it in his development of quantum field

theory [33].

For fields, the integration over phase space becomes an integration over all possible field

configurations:

〈φF | e−iHT |φI〉 =

∫

Dφ exp

[

i

∫ T

0

dtL(φ, ∂µφ)

]

. (2.12)

This is the expression for the transition amplitude for a field between an an initial state φI

and final state φF over time T , and is called the propagator. A similar quantity is called

the two-point correlation function, 〈0|T{φ(x1)φ(x2)} |0〉. This is the amplitude between two

vacuum states, with the time-ordered product of two field configurations as the operator

being evaluated. The time-ordering ensures that if x01 > x02, then the order of the fields in

the exponential behave correctly. In terms of the path-integral, this can be related to the

quantity:

∫

Dφ φ(x1)φ(x2) exp

[

i

∫ T

−T
d4xL(φ, ∂µφ)

]

.

Returning to the original expression (2.12) using the Hamiltonian time-evolution in terms

16
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of the path-integral, the transition amplitude can be split up into three factors. Each factor

is fixed at the start and end configurations determined by φI , φF , and the two intermediate

configurations φ1(x1) and φ2(x2):

∫∫

Dφ1Dφ2 φ1(~x1)φ2(~x2)〈φF |e−iH(T−x02)|φ2〉〈φ2|e−iH(x02−x01)|φ1〉〈φ1|e−iH(T−x01)|φI〉.

The completeness relation for φ1 and φ2 holds, except there is an additional factor of φ1(x1)

and φ2(x2). However by factoring out the time-dependence of the field operators into

eiHx
0

φ(~x)e−iHx
0

, they are not dynamic Heisenberg operators but static Schr odinger opera-

tors for the creation/annihilation of the fields. Then the completion relation 1 =
∫
Dφ |φ〉 〈φ|

can be used to eliminate the intermediate dynamic states:

〈φF | e−iH(T−x02)φSch(~x2)e
−iH(x02−x01)φSch(~x1)e

−iH(T−x01) |φI〉 .

If the time-ordering had been different, the signs and order for x1 and x2 would have

flipped, but otherwise this expression would be true, exactly as need for time-ordering.

Re-introducing the time-dependence for the intermediate operators returns to the standard

Heisenberg-picture of the correlation function:

〈φF | e−iHTT{φ(x1)φ(x2)}e−iHT |φI〉 .

To find the exact expression for the vacuum two-point correlation function, the initial and

final states should be projected solely onto the vacuum state. This can be done by introducing

a small imaginary component to the time, T → T (1 − iǫ), then taking the limit T → ∞.

17
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The state |φI〉 can be decomposed into eigenstates of H.

e−iHT |φI〉 =
∑

j

e−iEjT |j〉 〈j |φI〉 −→ e−iE0∞(1−iǫ)〈0 |φI〉 |0〉

This leaves a couple of factors that need to be removed to complete the relation between the

two-point vacuum correlation function and the path-integral formulation using field opera-

tors. These factors, the phase introduced by the small imaginary term and the normalization

factor from the overlap between the vacuum and initial states, also appear in the “bare” state

evolution after performing the same limit.

〈φF | e−iHT · e−iHT |φI〉 −→ 〈0 |φI〉 〈φF |0〉 〈0| e−iE0∞(1−iǫ) · e−iE0∞(1−iǫ) |0〉

Dividing the two results gives the correct two-point correlation function:

〈0|T{φ(x1)φ(x2)} |0〉 = lim
T→∞(1−iǫ)

∫
Dφ φ(x1)φ(x2) exp

[

i
∫ T

−T d
4xL(φ, ∂µφ)

]

∫
Dφ exp

[

i
∫ T

−T d
4xL(φ, ∂µφ)

] . (2.13)

Higher-order correlation functions can be obtained by simply inserting more factors of φ into

the time-ordering or the numerator path-integral.

Feynman Rules and Diagrams

To apply this to calculations, there needs to be a set of rules to follow for how to compute

these correlation functions. Instead of using the energy eigenfunction decomposition of the

fields, the fields are expanded in momentum space:

φ(x) →
∫

d4p

(2π)4
e−ip·xφ(p).
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The simplest Lagrangian, having only a kinetic and mass term, transforms into:

∫

d4x L0 =

∫

d4x

[
1

2
(∂µ)2 − 1

2
m2φ2

]

−→ −1

2

∫
d4p

(2π)4
(m2 − p2)|φ(p)|2.

The denominator for the correlation functions in (2.13) in terms of the path-integral changes

the Dφ into integration over every possible value of p taken on by φ(p):

∫

Dφ exp

[

i

∫

d4xL(φ, ∂µφ)

]

−→
(
∏

p

∫

dφp

)

exp

[

−i1
2

∫
d4p

(2π)4
(m2 − p2)|φp|2

]

=
∏

p

{∫

dφp exp

[

−i1
2

1

(2π)4
(m2 − p2)|φp|2

]}

=
∏

p

{√

π
−i2(2π)4

m2 − p2

}

.

Between the first and second lines, the integral over all p can be re-expressed as a sum, which

when combined with the product over all p, turns the path-integral into a product over each

separate momentum. Between the second and third lines, the standard Gaussian integration

is performed. However the integrand is purely imaginary, and in order to close the contour

integral a small rotation is performed in the complex plane in momentum space. To close

this contour, the rotation needed must close −i(m2 − p2), so in terms of p2 → p2 + iǫ. This

must match with what was done in the time-ordering projection, p0 → p0(1 + iǫ). The final

result for the denominator is:

∫

Dφ exp

[

i

∫

d4xL(φ, ∂µφ)

]

−→
∏

p

√

π
−i2(2π)4

m2 − p2 − iǫ
. (2.14)
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In the numerator, there are two additional factors of φ in the integration:

∫

Dφ φ(x1)φ(x2) exp

[

i

∫

d4xL(φ, ∂µφ)

]

−→
(
∏

p

∫

dφp

)
∫
d4p1 d

4p2
(2π)8

e−ip1·x1φp(p1)e
−ip2·x2φp(p2) exp

[

−i1
2

∫
d4p

(2π)4
(m2 − p2)|φp|2

]

.

For most values of p1 and p2, this integrand is zero by Fourier’s Theorem; only when p1 = ±p2
will this not automatically vanish. When p1 = +p2, the two φp factors have the same sign,

so the real and imaginary terms cancel each other. When p1 = −p2, the two φp terms are

conjugates because φ(−p) = φ∗(p). With the integrand positive definite, the same integration

tricks done for the “bare” denominator can be employed. The only change is when p = p1.

The product includes and additional factor of |φp|2 in the integration.

=

∫
d4p1
(2π)8

e−ip1·(x1−x2)

(
∏

p

∫

dφp

)

|φp1(p1)|2 exp

[

−i1
2

∫
d4p

(2π)4
(m2 − p2)|φp|2

]

=

∫
d4p1
(2π)8

e−ip1·(x1−x2)
∏

p

{∫

dφp |φp1(p1)|2 exp

[

−i1
2

1

(2π)4
(m2 − p2)|φp|2

]}

=

∫
d4p1
(2π)8

e−ip1·(x1−x2)

{
∏

p

√

π
−i2(2π)4

m2 − p2 − iǫ

}

× −i1
2
· 2(2π)4)

m2 − p2 − iǫ

The middle factor is precisely the product found for the denominator. Again, the analytic

continuation into the imaginary plane for p0 was employed to have the integral converge.

The two-point correlation function is, in analytic form:

〈0|T{φ(x1)φ(x2)} |0〉 =

∫
d4p

(2π)4
ie−ip·(x1−x2)

p2 −m2 + iǫ
≡ D(x1 − x2). (2.15)

This is the probability for a particle to propagate from a point x1 to x2. The phase +iǫ

ensures the proper time-ordering between x1 and x2. Higher-order correlation functions work
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very similarly. Each additional field in the correlation function acts as creation/annihilation

operator. Each set of fields must be paired off correctly in order to return to the vacuum

state. These are called “contractions”, and higher-order correlation functions are the sum

over all possible two-point contractions. Wick’s Theorem states that any order of correlation

functions can be reduced in such a manner. For example, the four-point correlation function

is:

〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)} |0〉 = D(x1 − x2)D(x3 − x4)

+D(x1 − x3)D(x2 − x4)

+D(x1 − x4)D(x2 − x3)

A clever and useful way to organize these calculations was developed by Richard Feynman,

and are called Feynman diagrams. For example, the two-point correlation function can be

drawn:

=
i

p2−m2+iǫ
.

The evolution from the vacuum state to the field configuration is called an external line:

= e−ip·x.

The calculation above assumed a free theory, there were no interactions to change how

the particle behaved. An additional interaction term can be added to the Lagrangian:

L→ L0 −
λ

4!
φ4.

The potential term, V = λ
4!
φ4, is positive-definite and bounds the theory at infinity. Assum-
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ing the interaction is small λ≪ 1, the action can be Taylor-expanded:

exp

[

i

∫

d4xL

]

≃ exp

[

i

∫

d4xL0

](

1 − i

∫

d4x
λ

4!
φ4 + · · ·

)

.

The expansion results in terms exactly like the four-point correlation function, however all

four fields are at the same point x. Moving to momentum space, the integrals over d4p

become δ-functions enforcing conservation of momentum. Evaluating this term leaves:

Perturbation = −iλ(2π)4δ(p1 + p2 + p3 + p4).

The initial factor of 1/4! in the interaction term ensured when we included all possible

combinations of φ4 in the Wick contractions the remaining perturbation did not have 4!.

The perturbation can be incorporated into Feynman diagrams:

= −iλ .

Spinors

Particles with non-integer spin obey anti-commutation relations rather than commutation

relations. This comes from a very deep relation between how particles with spin transform

under Lorentz transformations; for a full discussion of the link between spin, statistics, and

their (anti-)commutation relations, see Streater & Wightman’s PCT, Spin and Statistics,

and All That [80]. In order to find a representation of the Lorentz group that satisfies the

anti-commutation relations needed for fermionic statistics in 3+1 dimensions the minimum
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size of the representation is 4x4. These are the Dirac gamma matrices, γµ.

{γµ, γν} = 2ηµν

γ0 =

(

0 1

1 0

)

, γi =

(

0 σi

−σi 0

)

The generators of the Lorentz algebra are built up from the Dirac matrices:

Sµν =
i

4
[γµ, γν ] ,

Boosts: S0i =
i

4

[
γ0, γi

]
= − i

2

(

σi 0

0 −σi

)

,

Rotations: Sij =
i

4

[
γi, γj

]
=

1

2
ǫijk

(

σk 0

0 σk

)

.

Fields that transform under this representation of the Lorentz group are called spinors, and

all fermions such as electrons are these types of particles. The equation of motion for such

particles without any interactions is:

(iγµ∂µ −m)ψ = (i/∂ −m)ψ = 0.

The field ψ is a 4-component spinor. The term with γµ∂µ acts on both the Lorentz and

spinor indices of ψ such that the whole term transforms as a spinor. This also introduces the

Feynman slash notation, where any Lorentz vector contracted with a Dirac gamma matrix is

“slashed”, such as γµ∂µ ≡ /∂. The Lagrangian for such a particle should be a Lorentz scalar.

In order to construct a proper Lorentz scalar, the conjugate spinor is needed. However, due to

the extra factor of i in the Boosts matrices, this is not a unitary representation of the Lorentz

group. Therefore, the natural guess of ψ†ψ will not be invariant under boosts. Introducing
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an extra factor of γ0 ensures that boosts and rotations are preserved as a symmetry:

ψ†ψ → ψ†γ0ψ ≡ ψ̄ψ.

This preserves the full Lorentz symmetry. Another common set of notation is introduced

here, the “bar” notation for spinors, such as ψ†γ0 ≡ ψ̄. The full Lorentz-invariant, spin-1
2

Lagrangian is:

LDirac = ψ̄(iγµ∂µ −m)ψ. (2.16)

The Feynman rules for calculating propagation and interaction of particles were shown

for a simple scalar theory, called the Klein-Gordon theory. Particles with integer spin have

a very similar set of rules for how they propagate and interact. However, for particles with

non-integer spin such as electrons that obey anti-commutation relations, several of the results

we derived will not apply. Instead the integration uses Grassman variables which obey the

proper anti-commutation relations. Many of the same tools can still be applied, but modified

to take into account the behavior of the fermionic variables. The various rules for writing

Feynman diagrams are:
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Massless Vector Propagator =
−iηµν
p2+iǫ

,

Massless Vector External Line = ǫµ(p),

Massive Vector Propagator =
−i

p2−m2+iǫ

(
ηµν − pµpν

m2

)
,

Massive Vector External Line = ǫµ(p),

Fermion Propagator =
i(/p+m)

p2−m2+iǫ
,

Fermion External Line = us(p).

The external components for vector bosons are ǫµ, which denote their polarization. The

external component for fermions are spinors. Interaction rules will depend on the structure

of the perturbation potential in the Lagrangian.

2.2.2 Lie Algebras and Interactions

One of the most important discoveries in theoretical physics is the power of gauge symme-

try to describe how particles interact. This comes from assuming particles are states in a

Hilbert space that transform under the operation of a group, and that the physics results

are independent of the choice of transformation. Before fully describing the consequences

of this postulate, this section will describe a little group theory needed to understand this

theory. A wonderful textbook that covers this subject in full detail is Howard Georgi’s Lie

Algebras in Particle Physics [81].
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A Little Group Theory

A group is a set of elements with an operation that obeys the following four axioms:

1. Closure. For any two elements in the group, the result of their operation is in the

group.

∀ a, b ∈ G, a · b ∈ G.

2. Associativity. The calculation is independent of the order of operations.

∀ a, b, c ∈ G, (a · b) · c = a · (b · c)

NOTE: this is not the same as the calculation is independent of the order of the

elements! (In general a · b 6= b · a.)

3. Identity. There exists an element in the group that leaves every element of the group

the same under the operation on both sides.

∀ a ∈ G, ∃ e ∈ G such that e · a = a · e = a.

4. Inverse. For every element in the group, there is an element when operated together

gives the identity.

∀ a ∈ G, ∃ a−1 ∈ G such that a · a−1 = a−1 · a = e.

A representation is a mapping D of the group into a set of linear operators that obeys

the natural composition of the group, i.e. D(ab) = D(a)D(b), and preserves the identity

D(e) = 1. A subgroup is a group G whose elements are all in a group H. Trivial subgroups
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are the identity element and the whole group. Not all groups have them, but there are non-

trivial subgroups as well. One important fact about finite groups is there exists a unitary

representation for every finite group, one where D†(g) = D(g−1).

Suppose a group depends on a continuous parameter or set of parameters αa, i.e. the

elements of the group can be written g(αa). Then for infinitesimal αa, a representation of

the group can be written:

D(α) = 1 + iαaTa + O(α2).

The factor i is convention. The objects Ta are the “generators” of the group. Moving to

finite αa, this can be re-written:

D(α) = lim
N→∞

(

1 + i
αaTa
N

)N

= eiαaTa .

This is the exponential parameterization of a group. In general, the generators Ta will not

commute with each other. These form a Lie algebra defined by their commutation relations:

[
T a, T b

]
= ifabcT c. (2.17)

The constants fabc are the structure constants of the Lie algebra, and they uniquely define

the Lie algebra. The structure constants are completely anti-symmetric. If the structure

constants vanish so the generator(s) commute, this is called an Abelian algebra. Conversely,

all non-commuting algebras are called non-Abelian. The generators obey the Jacobi identity:

[
T a,
[
T b, T c

]]
+
[
T c,
[
T a, T b

]]
+
[
T b, [T c, T a]

]
= 0. (2.18)
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The representation of a group can act on states in a Hilbert space:

|s〉 → |s′〉 = D(g) |s〉 = eiα
aTa |s〉 .

A linear operator in the Hilbert space acts on a state and must return back a state because

of the group axioms. Therefore the operators in the Hilbert space must transform as:

O |s〉 → eiα
aTaO |s〉

= eiα
aTaOe−iαaTa

eiα
aTa |s〉

= O′ |s′〉
⇒ O′ = eiα

aTaOe−iαaTa

.

These algebras and their structure have profound consequences for particle physics.

2.2.3 Gauge Theory

Noether’s Theorem shows how a symmetry of a system leads to conserved currents and

charges. One such symmetry is “gauge symmetry”, where the fields themselves are symmetric

under certain transformations. Symmetric means in this case that the physics observables

remain the same under these gauge transformations. In classical electromagnetism with no

sources, all of the dynamics can be written in terms of a potential field, Aµ. The Lagrangian

is:

LEM = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ.

The Lagrangian, when put in terms of the fields Ei = F 0i and Bi = ǫijkFjk, is 1
2
(E2 − B2).

This is the kinetic energy of the EM field, not the total energy which is proportional to
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E2 +B2. The equations of motion are:

∂µF
µν = 0,

which are precisely Maxwell’s equations [82] with no currents or charges. The Lagrangian is

invariant under Lorentz transformations, so this theory obeys Special Relativity. In addition,

the field tensor Fµν is invariant under a certain class of changes in in the potential field, which

leaves the Lagrangian invariant as well:

Aµ → Aµ + ∂µλ(x) =⇒ Fµν → Fµν and LEM → LEM.

This is an example of a “gauge transformation”. Because the Lagrangian is invariant, all

observable physical results are independent of the choice of gauge function λ(x) and there

will be an associated conserved current with this symmetry. This section will explore how

this class of symmetries forms the basis for modern particle physics.

Abelian Gauge Theory

The fields for particles are postulated to be states in a Hilbert space that transform under a

representation of a Lie algebra. This transformation is assumed to be a gauge transformation

so the physics must remain invariant. The simplest example for a quantum field theory with

gauge symmetry is a complex scalar field:

L =
1

2
|∂µφ(x)|2 − 1

2
m2|φ(x)|2.

The Lagrangian for this theory is invariant under a change in phase of the field φ, i.e. the

field is multiplied by a complex number whose modulus is 1. This is an Abelian gauge theory,
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the generator is simply 1.

φ(x) → eiαφ(x) ⇒ L→ L

This is a “global” gauge transformation, every point of the field φ(x) is changed by the same

phase. If the gauge transformation parameter α instead depended on the position x, then

this would no longer be a symmetry of the theory. In this case, the gauge transformation

is said to be a “local” symmetry, and this is a much larger symmetry than the global

transformation case. What is needed to ensure that this theory is invariant under local gauge

transformations? Under this transformation, the Lagrangian adds the following terms:

φ(x) → eiα(x)φ(x),

⇒ L → L+
1

2

(
(∂µα)2|φ|2 + i(∂µα)(φ(∂µφ∗) − (∂µφ)φ∗)

)
.

In order to preserve local gauge symmetry, something else is needed to cancel these additional

terms. To do this, a new field is introduced Aµ that is also changes under the local gauge

transformation:

φ(x) → eiα(x)φ(x) and Aµ → Aµ + ∂µα(x).

Because a new field is introduced, a kinetic term is needed in the Lagrangian. This term

is −1
4
FµνF

µν , and the transformation of the field Aµ leaves this invariant, so no further

additional terms are added. In addition to the kinetic term for the new gauge field, there

must be interaction terms between φ and Aµ that cancel the terms added by the gauge

transformation of φ:

L→ L− 1

4
FµνF

µν +
1

2
(Aµ)2|φ|2 +

i

2
Aµ(φ(∂µφ∗) − (∂µφ)φ∗).
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The new interaction terms cancel the terms created when the derivative acted on the local

gauge transformation. This fact can be exploited to make the derivative term for φ manifestly

gauge invariant:

∂µφ(x) → (∂µ − iAµ(x))φ(x).

The new derivative interaction including the field Aµ is called the gauge covariant derivative.

In the same way that constructing terms using the covariant derivative ∂µ preserves Lorentz

symmetry, using the gauge covariant derivative preserves local gauge symmetry as well as

Lorentz symmetry. The strength of the interaction between the gauge field and the matter

field is denoted with a coupling constant, usually g or e.

Dµ ≡ ∂µ − igAµ(x) (2.19)

φ(x) → eig·α(x)φ(x) and Aµ → Aµ + ∂µα(x) (2.20)

The Lagrangian is now:

L =
1

2
|Dµφ(x)|2 − 1

2
m2|φ(x)|2 − 1

4
FµνF

µν . (2.21)

No additional interaction or kinetic terms are allowed as they would violate the postulated

gauge symmetry. In particular the field Aµ must remain massless in order to preserve gauge

invariance.

Now that the Lagrangian is invariant under local gauge symmetry, what are the associated
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conserved currents? First, the equations of motion for the two fields are:

∂µF
µν = ig[φ(∂νφ∗) − (∂νφ)φ∗] + 2g2Aν |φ|2

 ∂µF
µν = ig[φ(Dνφ)∗ − (Dνφ)φ∗],

∂µ[Dµφ] = −m2φ− igAµD
µφ

 0 = (DµD
µ +m2)φ and c.c.

The first term is Maxwell’s equations again, now with a source current built up from the

fields. If the coupling constant g is interpreted as a unit of charge carried by the field φ, this

is the total EM current carried by the field. The third line is exactly the same equations

of motion for a free scalar field, with the replacement ∂µ → Dµ. The conserved Noether

current is:

jµ = (Dµφ)(−igφ∗) + (Dµφ)∗(igφ)

= ig[φ(Dνφ)∗ − (Dνφ)φ∗].

The conserved current is the vector previously interpreted to be the EM current in Maxwell’s

equations. The µ = 0 term, integrated over all space, will correspond to the total charge and

the ji terms are the flow of charge into or out of the system. Therefore the postulate of local

gauge symmetry for a complex scalar field has led to electromagnetism and conservation of

charge.

The promotion of the global gauge transformation to a local symmetry required the intro-

duction of a new gauge field. This then reproduced Maxwell’s equations in the equations of

motion and the associated conserved quantity from Noether’s Theorem was the EM current.

This promotion can be accomplished with the minimal coupling prescription:

1. Promote gauge transformation to a local symmetry, φ(x) → eig·α(x)φ(x).
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2. Introduce gauge field Aµ → Aµ + ∂µα(x) with kinetic term −1
4
FµνF

µν .

3. Change all covariant derivatives of φ to gauge covariant derivatives,

∂µ → Dµ = ∂µ − igAµ(x).

4. Equations of motion and conserved currents are preserved, modified with the gauge

covariant derivative acting on the field φ.

This example was for a scalar field, but the same steps can be applied to a single spin-

1
2

particle such as the electron. The free Lagrangian, equations of motion, and conserved

current under a global gauge transformation are:

L = ψ̄(i/∂ −m)ψ,

0 = (i/∂ −m)ψ and conjugate,

jµ = gψ̄γµψ.

Promoting the global gauge symmetry to a local symmetry following the minimal coupling

prescription results in the QED Lagrangian. In this special case, the coupling constant is

traditionally denoted e, the electric charge of the electron:

L = ψ̄(i /D −m)ψ − 1

4
FµνF

µν ,

∂µF
µν = eψ̄γµψ,

0 = (i /D −m)ψ and conjugate,

jµ = eψ̄γµψ.

As before, the conserved current is the charge of the electron field density and enters into

Maxwell’s equations. The equations of motion for ψ is the Dirac equation for the electron,

including the interaction with the EM field.
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Non-Abelian Gauge Theory

The previous examples assumed that the gauge transformation α commuted with everything;

this is an example of Abelian gauge transformation. What if instead, the transformation

was generated by a non-Abelian Lie algebra. The non-commutative part can be represented

as in equation (2.17):

[
T a, T b

]
= ifabcT c.

The field is being gauge transformed by a phase, but now that phase depends on this algebra,

with a possible gauge rotation for each generator of the algebra:

ψ → exp[ig · αaT a]ψ.

The covariant derivative in equation (2.19) must include the factors from the algebra:

∂µ → Dµ = ∂µ − igAaµT
a.

Instead of a single new gauge field, there are as many gauge fields as the dimension of the

algebra, indicated by the index a. To see how Aaµ transforms under these non-Abelian gauge

transformation, insert this into the derivative term:

Dµψ →
(
∂µ − igAaµT

a + gauge field transformation
)

exp[ig · αaT a]ψ.
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The gauge field transformation must depend on T a. To simplify the calculations, assume

that α ≪ 1 and expand the exponential:

Dµψ →
(
∂µ − igAaµT

a − ig(δAaµ)T a
)

[1 + ig · αaT a]ψ
=

(
∂µ − igAaµT

a − ig(δAaµ)T a + ig(∂µα
a)T a

+igαaT a∂µ + g2Aaµα
bT aT b + g2(δAaµ)αbT aT b

)
ψ

The last term contains (δAaµ)αb, which must be at least quadratic in α and can be safely

dropped. The covariant derivative is a linear operator on the field ψ, and so must transform

as the field would normally to be gauge covariant. Therefore, the above expression must be

equal to:

exp[ig · αaT a]Dµψ = [1 + ig · αaT a]Dµψ

=
(
∂µ − igAaµT

a + igαaT a∂µ + g2Aaµα
bT bT a

)
ψ.

Equating and canceling terms, the transformation for Aaµ is:

g2Aaµα
bT bT a = −ig(δAaµ)T a + ig(∂µα

a)T a + g2Aaµα
bT aT b

0 = −i(δAaµ)T a + i(∂µα
a)T a + gAaµα

b
[
T a, T b

]

⇒ δAaµ = +∂µα
a − gfabcαbAcµ.

This transformation of Aaµ will not leave the field strength tensor Fµν invariant unlike the

Abelian case. Instead, the gauge field kinetic term FµνF
µν must remain invariant. The field

strength tensor F a
µν is modified to accommodate local gauge symmetry in such a way to

ensure the kinetic term F a
µνF

µν a is remains invariant:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν
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The extra terms in the field tensor produce new interactions between the gauge fields them-

selves. These self-interaction terms can have vertices with 3 or 4 gauge fields interacting at

one point. This is a self-interacting field theory first described by Yang and Mills for the

case when the T a are the Pauli matrices, the generators for SU(2).

Symmetry Breaking, Goldstone’s Theorem, & the Higgs Mechanism

An interesting class of phenomena happen when a symmetry of a system is broken. Breaking

a symmetry means re-arranging terms such that the original symmetry of the theory is no

longer manifest but the physical dynamics are made clear. A simple example is a set of N

scalar fields φi that can rotate into each other:

φi → Rijφj.

When N = 2, this is equivalent to a single complex scalar field and Rij is a phase rotation.

This is a real-valued generalization of that example, called the linear sigma model. For N

fields, the symmetry is O(N), the group of orthogonal rotations. The Lagrangian including

a φ4 interaction term is:

L =
1

2
(∂µφ

i)2 − 1

2
m2(φi)2 − λ

4
((φi)2)2.

This is manifestly invariant under the rotations Rij. If, instead of the standard mass term

the sign is flipped to be positive, then the potential will no longer be minimized at φi = 0.
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In this case the potential is minimized at some non-zero field value:

L =
1

2
(∂µφ

i)2 +
1

2
µ2(φi)2 − λ

4
((φi)2)2,

V = +m2(φi)2 − λ

4
((φi)2)2,

(φi)2min =
µ2

λ
.

The last line is a condition on the total value of all the fields combined. However because

of the rotational freedom, this can always be set so that only one field has a non-zero value.

Without loss of generality this can be chosen to be the N th field:

φimin =









0
...

0
µ√
λ









.

This minimum value µ√
λ

is often denoted v, which stands for “vacuum expectation value”

(VEV). The remaining N − 1 fields φi are unchanged, while the N th field can be written

v + σ(x) with σ(x) the dynamical part of the field. Returning to the original Lagrangian

and using the new designation for the N th field:

L =
1

2
(∂µφ

i)2 +
1

2
(∂µσ)2 +

1

2
µ2(φi)2 +

1

2
µ2(v + σ)2 − λ

4

(
(φi)2 + (v + σ)2

)2

=
1

2
(∂µφ

i)2 +
1

2
(∂µσ)2 − 1

2
(2µ2)σ2 −

√
λµσ3 −

√
λµσ(φi)2 − λ

4

(
(φi)2 + σ2

)2
.

The field that acquired a VEV now has a positive mass
√

2µ, while the remaining N−1 fields

are massless. The remaining fields have a manifest rotational invariance O(N − 1), which is

said to be unbroken and the original symmetry O(N) is said to be hidden or spontaneously

broken. This began as a theory where the physical dynamics were unclear due to the “wrong
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sign” on the mass term, but after spontaneous symmetry breaking, the dynamics are clear

and the original symmetry is hidden.

The N − 1 massless scalars appearing after the spontaneous symmetry breaking was not

an accident and is a general result in any field theory, called Goldstone’s Theorem. It states

that for every spontaneously broken continuous symmetry, there must be a corresponding

massless particle called a Goldstone boson. In this example with the group of orthogonal

rotations O(N), there are N(N−1)
2

possible rotations between the N original fields. After

breaking the symmetry, the manifest rotational group is O(N − 1) with (N−1)(N−2)
2

possible

rotations between the N − 1 fields. The difference is N(N−1)
2

− (N−1)(N−2)
2

= N − 1, exactly

the number of remaining massless particles. This is an exact result in quantum field theory,

and the particles can not acquire a mass term at any order in perturbation theory.

The Higgs mechanism is a clever trick that evades Goldstone’s theorem by instead giving

mass to the gauge fields in a theory. This can be demonstrated using the example of a

complex scalar field and an Abelian gauge field in equation (2.21), with a modified potential.

Again, the mass term will be sign will be “wrong” in the potential:

V = −1

2
µ2|φ|2 +

λ

4
(|φ|2)2.

In precisely the same way as the previous case, the field φ will acquire a VEV and sponta-

neously break the U(1) local gauge symmetry. The minimum is at the field value |φ|2 = µ2

λ
.

Using the U(1) symmetry, the minimum can be chosen to be purely real and positive at

v = +
√

µ2

λ
. The remaining dynamic parts of the field, corresponding to the real and imagi-

nary parts, will be denoted by σ and π:

φ(x) = v + (σ(x) + iπ(x)).
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According to the previous analysis, the σ field acquires a mass and the π field is the massless

Goldstone boson. The potential term is now:

V = −1

4
µ2v2 + µ2σ2 +

√
λµσ3 +

√
λµσπ2 +

λ

4
(σ2 + π2)2.

The σ field has mass mσ =
√

2µ and the π field is massless. The kinetic term including the

gauge field is now:

1

2
|Dµφ|2 =

1

2
|(∂µ − igAµ)(v + σ(x) + iπ(x))|2

=
1

2
|∂µσ + i∂µπ − igvAµ − igAµσ − igAµπ|2

=
1

2

[
(∂µσ)2 + (∂µπ)2 + g2v2AµA

µ + g2σ2AµA
µ + g2π2AµA

µ

−2gvAµ(∂µπ) − 2gσAµ(∂µπ) − 2gAµ(∂µπ)π

+g2vσAµA
µ + g2vπAµA

µ + g2σπAµA
µ
]
.

This explicitly shows the interactions between the scalar fields and the gauge field. In

addition to the interactions, there is now a term that only depends on A2:

1

2
g2v2AµA

µ =
1

2
m2
AA

2.

This is a mass term, so the gauge field has acquired a mass after breaking gauge symmetry.

The mass depends on the VEV acquired by the scalar field and the coupling constant. The

π field as the Goldstone boson has a variety of interactions with both σ and Aµ, but this is

not a physical field. The simplest way to understand this is to note that there is still the

underlying U(1) gauge symmetry between the σ and π fields. This can always be chosen to

ensure the field φ is purely real and removes the field π from the theory. By choosing an
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explicit gauge where π = 0 and a real VEV, the Lagrangian is now:

L = −1

4
FµνF

µν +
1

2
(∂µσ)2 +

1

2
m2
AAµA

µ +
1

2
m2
σσ

2

+
1

2
g2σ2AµA

µ +
1

2
g2vσAµA

µ −
√
λµσ3 +

λ

4
σ4 +

1

4
µ2v2.

The first line contains the kinetic and mass terms for both the remaining massive scalar

field and the gauge field. The second line contains the various cubic and quartic interactions

between the σ field and the gauge field as well as self-interactions. By acquiring a VEV and

spontaneously breaking the manifest gauge symmetry, the scalar field obtains a mass and

gives a mass to the gauge field while the expected massless Goldstone boson can be gauged

away. This is the Higgs mechanism. Colloquially, the gauge field Aµ is said to “eat” the

Goldstone boson and gain a mass. This example was for the Abelian case, and the same

process also works for the non-Abelian case where each of the gauge fields Aaµ gains a mass

through the Higgs mechanism.

2.2.4 Regularization & Renormalization

Historically, the largest impediment to using relativistic quantum field theory to calculate

how particles interact was the problem of infinities. At leading order the amplitudes calcu-

lated using Feynman diagrams or algebraic methods worked perfectly, but when quantum

corrections for these processes were calculated the result was divergent. To deal with these

divergences, a systematic program of “regularization” is needed. Pauli & Villars showed

the first such procedure in [32], where a large “cutoff” parameter Λ is introduced into the

calculations. Once all contributions at a given order in the perturbation series have been

calculated and added together, the final physical result should be independent of Λ → ∞.

A different procedure was introduced by ’t Hooft & Veltman in [68] called “dimensional reg-
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ularization”, where the divergent integrals are analytically continued away from the normal

four dimensions where they give infinity, evaluated, then returned back to four dimensions.

Both methods of regularization keep track of exactly how the calculations diverge. The next

step to deal with the infinities is to separate what is a physically measurable quantity from

the “bare” quantities of the theory. This is the process where the infinities are systemati-

cally gathered together and canceled in all physical processes, called “renormalization”. A

common method for dealing with this separation is to split the “bare” parameters of a given

theory into the physical quantities and a set of “counterterms”. By defining a consistent set

of renormalization conditions on the parameters, this can be done in a systematic way that

gives sensible results for all calculations in a theory.

A simple example of this is the basic scalar field theory with a φ4 interaction term. This

follows the treatment in Peskin & Schroeder’s textbook [74]. The Lagrangian is:

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4.

The quantities in the Lagrangian do not, a priori, have anything to do with the physical

quantities observed in the laboratory. Instead these should be labeled as bare quantities

m → m0 and λ → λ0. The field itself can also be shifted by the quantum corrections,

requiring field strength renormalization:

φ = Z1/2φR. (2.22)

This rescales the Lagrangian to:

L =
1

2
Z(∂µφR)2 − 1

2
m2

0Zφ
2
R − λ0

4!
Z2φ4

R.
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Now the physical parameters measured in the laboratory can be put in terms of the bare

parameters and Z, along with the appropriate counterterms to absorb any divergences that

arise. The physical quantities and counterterms are:

Z = 1 + δZ , m2
0Z = m2 + δm, λ0Z

2 = λ+ δλ. (2.23)

These are the parameters used in the Lagrangian:

L =
1

2
(∂µφR)2 − 1

2
m2φ2

R − λ

4!
φ4
R +

1

2
δZ(∂µφR)2 − 1

2
δmφ

2
R − δλ

4!
φ4
R.

The first three terms are exactly the standard φ4-theory, now with the renormalized field

and physical mass and coupling constant. The second set of three terms look very similar

to the first three, but have the counterterms in place of the physical quantities. These must

be included in the calculations to absorb the infinities. The resulting Feynman rules are:

Propagator = i
p2−m2+iǫ ,

Vertex = −iλ,

Propagator Counterterm = i(p2δZ − δm),

Vertex Counterterm = −iδλ.

For the counterterms to systematically absorb all infinities, a set of physical conditions are

imposed that must be true at all orders in the perturbation theory:

Full Propagator =
i

p2 −m2
+ terms with no poles

∣
∣
∣
∣
p2=m2

,

Full Vertex = −iλ
∣
∣
(p1+p2)2=(p3+p4)2=4m2 . (2.24)

The full propagator condition actually specifies two conditions. The first is that the location
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of the pole in the propagator must correspond to the physical mass. The other part of this

condition is that the residue must be 1, where a residue away from 1 would correspond to

a change in Z. The full vertex specifies that the measured coupling at threshold scattering

corresponds to the physical coupling constant. By consistently applying these conditions

order-by-order in perturbation theory, the superficial divergences can be regulated.

Applying these rules and conditions to the two-particle to two-particle scattering ampli-

tude will give the first-order renormalized corrections to the coupling constant. The sum of

leading- and first-order diagrams are: The second diagram from the left (the first one-loop

diagram) is:

1-loop diagram =
1

2
× (−iλ)

∫
d4k

(2π)2
i

(k + p1 + p2)2 −m2 + iǫ
(−iλ)

i

k2 −m2 + iǫ

=
λ2

2

∫
d4k

(2π)2
1

((k + p1 + p2)2 −m2) (k2 −m2)

= (−iλ2)2 × iF (p1 + p2).

The other two diagrams have the same set of integrals, with p2 → −p3 and p2 → −p4. This

changes the dependence from s to t and u, in Mandelstam variables, respectively. The full
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1-loop amplitude is now:

iM = −iλ+ (−iλ2)2 [iF (p1 + p2) + iF (p1 − p3) + iF (p1 − p4)] − iδλ. (2.25)

From the renormalization conditions in equation (2.24), the constraint on λ at s = 4m2,

t = u = 0 requires:

δλ = −λ2 [F (2m) + 2F (0)] .

The integral defining F (z) must be evaluated.

F (z) =
i

2

∫
d4k

(2π)2
1

((k + z)2 −m2) (k2 −m2)

Use Feynman parameters to combine denominators.

=
i

2

∫
d4k

(2π)2

∫ 1

0

dx
1

[x ((k + z)2 −m2) + (1 − x) (k2 −m2)]2

=
i

2

∫ 1

0

dx

∫
d4k

(2π)2
1

[k2 + 2xk · z + xz2 −m2]2

Complete the square and shift ℓ = k + xz.

=
i

2

∫ 1

0

dx

∫
d4ℓ

(2π)2
1

[ℓ2 + xz2 − x2z2 −m2]2

Wick rotate ℓ0 into − iℓ0 to Euclidean space.

= −1

2

∫ 1

0

dx

∫
d4ℓ

(2π)2
1

[ℓ2 + xz2 − x2z2 −m2]2

Shift into d dimensions.

= −1

2

∫ 1

0

dx

∫
ddℓ

(2π)d
1

[ℓ2 + xz2 − x2z2 −m2]2

Evaluate using the Γ-function.

= −1

2

∫ 1

0

dx
Γ
(
2 − d

2

)

(4π)d/2
1

[x2z2 − xz2 +m2]2−d/2

Let ǫ = 4 − d.

F (z) = −1

2

∫ 1

0

dx
1

(4π)2

[
2

ǫ
− log

(
x2z2 − xz2 +m2

)
− γ + log(4π) + O(ǫ2)

]
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This expression diverges as ǫ→ 0. With the condition setting δλ, the counterterm for λ is:

δλ=
λ2

2(4π)2

∫ 1

0

dx

[
6

ǫ
− log

(
(x2 − x)(4m2) +m2

)
− 2 log

(
m2
)
− 3γ + 3 log(4π)

]

.

The full 2 → 2 scattering amplitude at 1-loop is:

iM = −iλ− iλ2

32π2

∫ 1

0

dx

[

log

(
x(x− 1)s+m2

x(x− 1)4m2 +m2

)

+ log

(
x(x− 1)t+m2

m2

)

+ log

(
x(x− 1)u+m2

m2

)]

.

This is finite for fixed values of m2, s, t, and u, and can be numerically evaluated. A similar

calculation for the 1-loop propagator with the requirement of a pole at p2 = m2 and residue

of 1, forces the other counterterms to be:

δm = − λ

32π2

Γ
(
1 − d

2

)

(m2)1−d/2
,

δZ = 0.

It is somewhat special that δZ = 0 at 1-loop for this theory. At higher orders there are

non-zero corrections and most other theories will have non-zero corrections at first order.

Running Couplings & Scales

The calculation above depended on what renormalization conditions were set on the pa-

rameters of the theory. The final result is independent of the choices made, as long as the

calculations are done in the same way at every order in the perturbative expansion. A differ-

ent way to understand the way the renormalized parameters are organized is to understand

how they behave at any energy scale. It will turn out that the laboratory measured cou-
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plings in the theory can change or “flow” as a function of the energy scale, called a “running

coupling”.

The simplest example is the massless φ4 theory, the same theory as above with m0 = 0.

A mass in the theory introduces an energy scale into the theory. Setting it to 0 and removing

that scale helps understand the energy dependence without additional complications. The

physical n-point correlation function uses the renormalized fields, with the renormalization

conditions specified at the energy scale µ.

G(n) = 〈0|T {φR(x1) · · ·φR(xn)} |0〉 = Z−n/2 〈0|T {φ0(x1) · · ·φ0(xn)} |0〉

The renormalized G(n) is calculated at energy scale µ, but could have been calculated at a

different scale µ′. If a small shift in the scale µ → µ + δµ occurs, then the renormalized

parameters will have to shift accordingly to absorb the change:

µ → µ+ δµ

λ → λ+ δλ

φ → (1 + δφ)φ

G(n) → (1 + n · δφ)G(n).

The function G(n) can depend on the energy scale µ and coupling λ, so by the chain rule the

differential is:

δG(n) =
∂G(n)

∂µ
δµ+

∂G(n)

∂λ
δλ = n · δφG(n).
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This is usually re-written in terms of two dimensionless functions:

β ≡ µ

δµ
δλ,

γ ≡ − µ

δµ
δφ.

Putting this into the differential for G(n), multiplying by µ
δµ

, and re-arranging gives:

(

µ
∂

∂µ
+ β

∂

∂λ
+ nγ

)

G(n) = 0. (2.26)

This is the Callen-Symanzik equation, from Curtis Callen [83] and Kurt Symanzik [84]. It

shows that the two functions β and γ can account for any shift in the renormalization scale

µ.

For the φ4 theory calculated earlier, the 4-point vertex correction was calculated to 1-loop

in equation (2.25):

iM = −iλ+ (−iλ2)2 [iF (p1 + p2) + iF (p1 − p3) + iF (p1 − p4)] − iδλ.

This is not the 4-point correlation function because it does not include the incoming and

outgoing fields, but is related to it by factoring in the external propagators for each particle:

G(4) = [iM]
∏

1,2,3,4

(
i

p2i + iǫ

)

.

The Callen-Symanzik equation in this case with n = 4 is:

(

µ
∂

∂µ
+ β

∂

∂λ
+ 4γ

)

G(4) = 0.

It was asserted earlier that the 1-loop correction to the wavefunction δZ = 0 and therefore
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the change in the field δφ = 0. This means the γ-function vanishes at first order, leaving:

(

µ
∂

∂µ
+ β

∂

∂λ

)

G(4) = 0.

The renormalization condition used the first time was that the counterterms canceled at

s = 4m2, t = u = 0. There is no mass-scale in the theory now, so to make this as symmetric

as possible the renormalization condition will require the infinities cancel at s = t = u = −µ2.

The only term in G(4) that depends on the renormalization scale is the counterterm δλ:

δλ = (iλ)2 3F (−µ2)

=
3λ2

2

∫ 1

0

dx
Γ
(
2 − d

2

)

(4π)d/2
1

[x(1 − x)µ2]2−d/2

=
3λ2

2(4π)2

∫ 1

0

dx

[
2

ǫ
− log(µ2) − log(x(1 − x)) − γ + log(4π)

]

.

The derivative of this with respect to µ gives the first term in the Callen-Symanzik equation:

µ
∂

∂µ
G(4) = −i 3λ2

2(4π)2
(−2)

∏

1,2,3,4

(
i

p2i + iǫ

)

.

The second term can be calculated taking the derivative of G(4) with respect to λ. The β

function is proportional to δλ, which is order λ2. Matching powers, the only term needed for

the β function from the correlation function is the leading λ term:

∂

∂λ
G(4) = [−i+ O(λ)]

∏

1,2,3,4

(
i

p2i + iǫ

)

These two results can be inverted to solve for β at the first non-trivial term in λ:

β =
3λ2

(4π)2
+ O(λ3). (2.27)
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In general the first-order correction terms will only depend on the renormalization scale

inside a logarithm that must, by dimensional analysis, include the energy scale of the physical

process −Q2:

M ∝ log

(−Q2

µ2

)

.

The Callen-Symanzik equation can be re-written in terms of the physical scale Q rather than

the arbitrary renormalization scale µ:

[

Q2 ∂

∂Q2
+D − β

∂

∂λ
− nγ

]

G(n)(Q, λ) = 0.

D is the number of external powers of Q2 in the n-point amplitude. For n = 2 the two-point

correlation function, this gives D = 1; for n = 4 the scattering amplitude calculated, this

is D = 4, etc. If there is a solution of G at a fixed value of λ and Q2, this is an evolution

equation for that solution. Assuming there is a function λ̄ that can absorb the energy and

coupling constant dependence, this is fixed at the renormalization scale:

λ̄(−Q2 = µ2, λ) = λ.

The overall energy dependence can be factored out on dimensional grounds:

G(n) =
1

(Q2)D
G̃(n)(λ̄) × exp

[

−
∫ −q′2=−Q2

−q′2=µ
d log

(−q′2
µ2

)

(D − nγ(λ̄))

]

.

This can be inserted back into the Callen-Symanzik equation, and satisfies it if:

Q2 ∂λ̄

∂Q2
= β

∂λ̄

∂λ
.
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At first order, ∂λ̄
∂λ

= 1 + O(λ) and β can move between λ̄ and λ without introducing addi-

tional terms. The left hand side can be put back into the log variables to reintroduce the

renormalization scale:

d

d log
(

−Q2

µ2

) λ̄(Q, λ) = β(λ̄). (2.28)

This is the renormalization group equation, and the new “reduced coupling” λ̄ is said to be a

running coupling constant. Using the β-function in equation (2.27) and the renormalization

condition, the solution is:

3λ̄2

16π2
=

dλ̄

d log
(

−Q2

µ2

)

⇒ λ̄(Q, λ) =
λ

1 −
(

3λ
16π2

)
log
(

−Q2

µ2

) .

This running coupling organizes the logarithms from the divergent integrals in a very useful

way by showing how the coupling behaves as a function of energy. When Q→ 0, the reduced

coupling vanishes and the perturbative expansion is a reasonable approximation. However,

as Q ≫ µ the denominator will eventually become negative and return unphysical results.

At this point the perturbative expansion breaks down and is no longer reasonable. This is

due to the − sign in the denominator; if it were + then the reverse situation happens where

the coupling vanishes at very high energy, called “asymptotic freedom”.

2.3 The Standard Model

The Standard Model (SM) is an interacting quantum field theory with gauge invariance

including a set of fermions divided into two categories, quarks and leptons. Both categories
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interact under the electroweak gauge theory, while the quarks also interact with an additional

color gauge theory. The SM has successfully predicted the outcome of every laboratory test

thus far, making it perhaps the most successful theory in the history of humanity. This

section will describe some of the specifics of this remarkable theory.

2.3.1 A Model of Leptons - SU(2) ⊗ U(1)

The SM begins by postulating a gauge symmetry that the matter particles must be invariant

under. First proposed by Sheldon Glashow [50], the symmetry is SU(2)⊗U(1) and is called

the Electroweak force. The matter fields transform according to:

χ→ eigα
aτaeig

′βY χ.

The SU(2) transformation has coupling g and τa are the generators of SU(2) algebra. The

simplest generators are τa = 1
2
σa, the Pauli spin matrices, and this is the fundamental

representation of SU(2). This is called “weak isospin”, in analogy to the SU(2) isospin in

nucleons. The U(1) transformation has a coupling constant g′, and the Y is the generator

for U(1) and must be proportional to the identity. This is called “hypercharge”, in analogy

to the U(1) charge of QED. The transformation parameters are αa and β. The covariant

derivative is:

Dµ =
(
∂µ − igAaµτ

a − ig′BµY
)
. (2.29)

The fields Aaµ and Bµ are the gauge fields for the SU(2) and U(1) symmetries, respectively.

To match the observed phenomena, this should have a spontaneously broken symmetry

that leaves a single massless boson (corresponding to QED) and a set of massive bosons

(corresponding to the Weak force). This can be done using the Higgs mechanism, breaking

51



CHAPTER 2. THE STANDARD MODEL

the SU(2)L ⊗ U(1)Y → U(1)QED. The simplest Higgs sector that transforms under this

gauge symmetry is an SU(2) doublet of complex fields that can change phase under the

U(1):

Higgs = φ =

(

φ1 + iφ2

φ3 + iφ4

)

.

There are 4 degrees of freedom in this Higgs sector. The Higgs mechanism requires that this

field acquire a VEV due to a non-zero minimum in the potential. One gauge choice that

would break three of the symmetries is:

〈φ〉 =
1√
2

(

0

v

)

, v ∈ R.

This will leave a single massless gauge boson, three massive gauge bosons, and a single

massive scalar boson. The masses of the gauge bosons arise in the |Dµφ|2 term in the

Lagrangian, after inserting the VEV for the scalar field. The SU(2) generators are in the

fundamental representation with the Pauli matrices, while the U(1) generator is proportional

to the identity in this representation. To match the normalization of the generators between

the SU(2) and U(1) transformations, the generator Y ∝ 1
2
I under the SU(2) transformation

to preserve v ∈ R. The mass terms for the gauge fields are manifest after symmetry breaking:

mass terms =
1

2

(

0 v
)(

gAaµ
†τa† + g′Bµ

1

2
I

)(

gAaµτ
a + g′Bµ

1

2
I

)(

0

v

)

=
v2

8

[
g2
(
(A1

µ)2 + (A2
µ)2
)

+ (gA3
µ − g′Bµ)2

]
.
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The first pair of Aaµ combine together exactly as the raising and lowering operators in the

SU(2) algebra. These are the charged W± bosons of the Weak force:

W±
µ =

1√
2

(A1
µ ∓ iA2

µ), mW =
1

2
gv.

The second term mixes the A3
µ and Bµ gauge fields into another massive gauge boson. This

is the neutral Z0 boson of the Weak force:

Z0
µ =

1
√

g2 + g′2
(gA3

µ − g′Bµ), mZ =
1

2

√

g2 + g′2 v.

The normalization with
√

g2 + g′2 is convenient to describe the mixing between the gauge

fields. The remaining massless boson is the γ photon of the Electromagnetic force:

Aµ =
1

√

g2 + g′2
(g′A3

µ + gBµ), mA = 0.

The mixing between the two fields can be expressed in terms of a 2 × 2 mixing matrix:

(

Z0

γ

)

=





g√
g2+g′2

g′√
g2+g′2

− g′√
g2+g′2

g√
g2+g′2





(

A3

B

)

.

Treating this as rotation matrix, this defines the weak mixing angle or Weinberg angle:

cos θW =
g

√

g2 + g′2
, sin θW =

g′
√

g2 + g′2
, tan θW =

g′

g
.

The coupling of the fermions to the physical gauge fields is determined by the strength of the

gauge transformations and the mixing between the them. The SU(2) weak isospin couplings

is determined entirely by the representation of the fermion and g. The U(1) hypercharge,

however, can be any real number Y and leave the overall gauge transformation unchanged.
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Returning to the covariant derivative in (2.29) and using the physical fields of the theory

after spontaneous symmetry breaking:

Dµ =

(

∂µ − i
g√
2

(
W+
µ T

+ +W−
µ T

−)

−i 1
√

g2 + g′2
Z0
µ

(

g2T 3 − g′
2
Y
)

− i
gg′

√

g2 + g′2
Aµ
(
T 3 + Y

)

)

.

To match the field Aµ with the photon after symmetry breaking, the coupling constants and

generators must combine to form the electric charge for every particle:

Q|e| =
gg′

√

g2 + g′2

(
T 3 + Y

)

⇒ |e| =
gg′

√

g2 + g′2
,

& Q = T 3 + Y.

The value of T 3 is determined by the representation of the fermion under SU(2), and is

a postulate of the theory. Knowing the charge of the particle then determines the U(1)

coupling Y .

The relations between the couplings g and g′, the charges, and the mixing angle, allows

for a simplified covariant derivative in terms of the physical fields and couplings:

Dµ =

(

∂µ − i
e√

2 sin θW

(
W+
µ T

+ +W−
µ T

−)

−i e

sin θW cos θW
Z0
µ

(
T 3 −Q sin2 θW

)
− ieQAµ

)

.

Massive fermions have both left- and right-handed spinor components, however it is an

empirical fact of nature that the charged weak bosons W± only couple to the left-handed

components of fermions. This is not, a priori a problem, as the L and R components can
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be assigned to different gauge representations. In particular, the left-handed component can

be assigned the fundamental representation (doublet) under SU(2), while the right-handed

component is a singlet and does not transform. The problem comes from the mass terms in

the Lagrangian, which when broken into left- and right-handed components are:

Lmfermion
= −mψ̄LψR −mψ̄RψL.

These terms do not preserve gauge invariance and must be dropped from the theory, which

would leave only massless fermions and not describe our world. The way to generate mass

for fermions is to again use the Higgs sector. In particular, the terms of the form:

−λψψ̄Rφ†ψL + conjugate,

preserves gauge invariance. After symmetry breaking, the Higgs field acquires a VEV, and

these terms become:

− 1√
2
λψvψ̄RψL + − 1√

2
λψvψ̄LψR + interactions.

The mass of the fermions are now:

mψ =
1√
2
λψv.

The single VEV of the scalar field is now responsible for the masses of both the gauge bosons

and the fermions. This introduces a new set of Yukawa parameters that controls the masses

of the fermions, one for each flavor of quark and lepton.
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The full fermionic matter content is now:

EL =

(

νe

e−

)

L

, eR, νe,R, QL =

(

u

d

)

L

, uR, dR.

The representation shows that the left-handed lepton doublet has quantum numbers T 3 = ±1
2

and Y = −1
2
, giving the correct charges to e and νe. The left-handed quark doublet has the

same T 3 = ±1
2
, with Y = +1

6
to give the correct charges to the quarks. The right-handed

SU(2) singlets for both quarks and leptons have Y = Q. The right-handed neutrino is a

curious particle needed to generate a mass term for the neutrinos, but has no couplings with

the SM particles! These are referred to as “sterile neutrinos” and have been hypothesized

to help explain puzzles within the SM such as dark matter and the mass difference between

the neutrinos and charged leptons.

2.3.2 Quantum Chromodynamics - SU(3)

The other gauge symmetry of the SM is a non-Abelian gauge theory called Quantum Chro-

modynamics or the Strong force. This is an SU(3) Lie algebra, where all the quarks are

postulated to be in the fundamental representation and the leptons do not transform under

this gauge group. As a result of this interaction, the quarks will bind together and form

the hadronic sector of matter composed of mesons and baryons. The transformation and

covariant derivative are:

Q → eigSα
aλaQ,

Dµ = (∂µ − igSA
a
µλ

a).
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The Lie algebra SU(3) is generated by the 8 Gell-Mann matrices λa, in exact analogy to the

Pauli matrices for SU(2). This is not a broken symmetry, therefore the associated 8 gauge

bosons remain massless. These are called “gluons”, and are the carriers of the Strong force.

The quarks are in the fundamental representation of SU(3), which is dimension 3 so there

must be 3 different “colors” of each type of quark. The quarks bind together to form SU(3)

invariants. In the fundamental representation, there are only two possible invariant products

available:

δji Q̄
iQj & ǫijkQiQjQk.

The first product forms the mesons from a quark and anti-quark of the same color and

anti-color. The second anti-symmetric product forms the baryons out of three quarks (or

anti-quarks), one of each color. The existence of a new “color” quantum number resolved

some outstanding problems in the observed baryon spectrum where particles were observed

to have three of the same flavor of quark and in the same spin states. These should be

forbidden by the Pauli Exclusion Principle, but an additional quantum numbers allows the

fermions to be in different color states and the same flavor and spin states, evading the

theorem.

Asymptotic Freedom & Confinement

The quarks are bound into SU(3) invariants because of a special property of the gauge

theory. The β-function for this theory is:

β = −
(

11

3
C2(SU(3)) − 4

3
NfC(RSU(3))

)
g3S

(4π)2
.
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The two constants C2(SU(3)) and C(RSU(3)) are group theory constants, and only depend

on how the gauge fields and interacting fermions transform under the group action. The

gauge fields transform in the adjoint D†AµD since they are operators in the Hilbert space.

The invariant C2 for the adjoint representation is the dimension of the group, C2(SU(3)) =

NC = 3. The fermions are postulated to transform in the fundamental representation,

Tr[λaλb] = C(RSU(3))δ
ab = 1

2
δab. With these values, the β-function is:

β = −
(

11 − 2

3
Nf

)
g3S

(4π)2
= −b0

g3S
(4π)2

.

If Nf < 17, the β-function is negative unlike the φ4 example case result in equation (2.27).

When this is put into the running coupling constant evolution equation in equation (2.28),

the solution is:

αS(Q2) =
αS(µ2)

1 + αS(µ2) · b0
π

log
(
Q2

µ2

) .

Now as Q2 → ∞ the running coupling constant αS → 0. This is an example of asymptotic

freedom, where at higher energies the quarks behave more and more like a free theory without

interactions. At low energies, the coupling constant diverges and the theory becomes strongly

interacting. The energy scale where this occurs is labeled ΛQCD:

1 ≃ αS(µ2) · b0
π

log

(

µ2

Λ2
QCD

)

.

For QCD, this energy scale is ΛQCD ∼ 200 MeV. Near and below this energy scale, the

perturbative treatment breaks down. The color force between quarks inside hadrons is at

this scale and leads to a phenomena known as “confinement”. The Strong force keeps the
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quarks “confined” at this scale.

Another consequence of confinement is that there are no “free” quarks. If during a particle

scattering process a quark or gluon is emitted, it will “dress” itself or “hadronize” into a

color-singlet by pulling in gluons or quark-anti-quark pairs from the vacuum. In high-energy

collisions, these particles are observed as “jets”.

Form Factors & PDFs

A consequence of confinement and the breakdown in perturbation techniques for QCD is

that making predictions about how hadrons behave is quite difficult if not impossible. One

non-perturbative technique is to put the Lagrangian on a discrete lattice and directly evolve

the dynamics using the equations of motion. This is called lattice gauge theory, and is

very computationally intensive. Another technique is to parameterize the behavior of the

hadrons based on general symmetries of the theory. For example, the proton can interact

with a photon following the usual Feynman rules of a massless gauge boson interacting with

a fermion. However, the underlying dynamics of how the proton interacts depends on the

charged quarks at the confinement scale. Requiring Lorentz invariance, the coupling of the

proton must behave as:

= ψ̄P (p′)
[

γµF1(Q
2) + (p−p′)ν

4mP
[γµ, γν ]F2(Q

2)
]

ψP (p).

The two “form factors” F1,2(Q
2) contain all of the dynamics inside the proton, and by

Lorentz invariance can only depend on the momentum transferred Q2. The complicated

QCD internal dynamics have been reduced to measuring how the proton interacts with a

photon as a function of Q2.
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A similar problem occurs when trying to determine which quark or gluon will interact.

If each quark and gluon inside a hadron carries a fraction xi of the total momentum of the

hadron, then a set of function fi(x) can parameterize the evolution of the various partons

depending on their momentum inside the hadron, called “parton distribution functions”

(PDFs):

{
fu(x), fd(x), fs(x), fc(x), fb(x), ft(x), fg(x)

}
.

Baryons are formed from three quarks called “valence” quarks that carry the total quantum

numbers. But at energy scales near ΛQCD, many gluons and quark-anti-quark pairs can form

from the vacuum called the “sea”. For example, the proton has in total two u quarks and

one d quark based on the quantum numbers of the proton summed from the valence quarks.

The total momentum carried by all the partons must also sum to 1 to conserve momentum.

These provide constraints on the PDFs:

∫ 1

0

dx[fu(x) − fū(x)] = 2,

∫ 1

0

dx[fd(x) − fd̄(x)] = 1,

∫ 1

0

dx[fq(x) − fq̄(x)]q 6=u,d = 0,

∫ 1

0

dx
∑

i

xfi(x) = 1.

The PDFs also depend on the energy of the particle that is probing the proton, just as

the form factors depended on the Q2. PDFs can be measured in various deep-inelastic

scattering processes, such as studying e− + p → e− + X. By measuring the energy of the

electron before and after scattering the total momentum transferred Q2 is known, and by
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measuring the outgoing products X the parton scattered can be inferred.
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Figure 2.1: An example PDF, the MSTW2008NLO from [85], and the bands are the the
68% C.L. error bars. The left plot is at an energy scale of 3.16 GeV, while the right plot is
at an energy scale of 100 GeV or approximately the Z0 boson mass. The right plot shows
the u quark contribution enhanced at higher Q2 in the ranges below x =0.1-0.2.

PDFs are constructed out of a set of “eigenvectors” of the various functions describing

the physical content of the proton. For example, instead of simply using fu(x) and fd̄(x), the

combination fu(x) + fd̄(x) can be used to incorporate of these into a separate eigenfunction.

These sets of eigenfunctions are designed to be easier to measure and more robust for other

applications. Once the PDFs are well-measured, cross sections can be calculated using the

underlying quarks in the amplitudes then integrated over x to find the total cross section.

61



CHAPTER 2. THE STANDARD MODEL

For a final state containing particle (or particles) S and anything else denoted X:

σ(p(P1)p(P2) → S +X) =
∫ 1

0

dx1

∫ 1

0

dx2
∑

i,j

fi(x1)fj(x2)σ (i(x1P1) + j(x2P2) → S) ,

where i and j are the partons in the proton involved in the hard scattering process. The cross

section on the right involves single particles and can be computed perturbatively, and then

integrated using the PDFs such as those in figure 2.1 to get the final result for proton-proton

collisions.

2.3.3 Features of the Standard Model

There are a wide variety of phenomena described by the SM, and this section has only

touched on some of the important features involved in the proton collisions at the Large

Hadron Collider. I would just like to mention a few of these fascinating aspects of this re-

markable theory. The SM is an anomaly-free theory, due to cancellations between the quark

and leptons generation-by-generation. An anomaly is when a symmetry of the theory is

not consistent with regularization, and would indicate something fundamentally wrong with

the theory. The mass terms generated by the Higgs mechanism for the fermions allows for

additional unitary rotations between flavors of quarks. This means that the mass eigenstates

and electroweak eigenstates are not the same, leading to mixing between states. This also

introduces CP violation into the SM, which had been an accidental symmetry of the the-

ory. The mixing is captured in the Cabbibo-Kobayashi-Maskawa (CKM) matrix. A similar

situation arises in the lepton sector, where the neutrinos mix under the Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) matrix. This assumes the leptons acquire a mass in the same

manner as the quarks, while for neutrinos it is possible for them to acquire a Majorana mass
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term. In total, there are 25 parameters of the SM, comprising of the coupling constants (3),

the masses of the leptons and quarks (12), the fermion mixing angles (8), and the Higgs

VEV and mass (2). Measuring these 25 parameters allows, in principle, calculation of all

particle interactions measured in nature.

2.4 New Physics Beyond the Standard Model

The success of the SM leaves several puzzles remaining. To list a few of these problems:

• Why these 25 parameters and why do they have the values observed?

• Why are the quarks and leptons arranged in generations?

• Why is the charge quantized into {0,±1
3
,±2

3
,±1} of e since the hypercharge could take

on any value?

• The SM also allows for a term proportional to θǫµνρσFµνFρσ in the SU(3)C gauge sector

(this can be removed in the SU(2)L sector by a chiral rotation and is a total derivative

in the U(1)Y sector), which violates CP . This would lead to large CP violation in

the strong sector, but measurements indicate θ ≤ 10−10 [86]. Why is this term not

present?

• The Higgs boson, first measured at the LHC [1, 2], appears to have a mass of mh ∼ 126

GeV. However, as a scalar, the quantum corrections to δmh
∼ Λ2, are quadratic in the

cutoff. This can be renormalized, but is unlike the cases studied earlier where all the

corrections behaved as log(Λ2). This cutoff is expected at the Planck scale, Λ ∼ 1019

GeV. The quantum corrections must cancel this almost exactly and leave a physical
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mass at the scale of the VEV. The large difference between the Higgs VEV and Planck

scale indicates a “Hierarchy problem” in the physical corrections for the Higgs boson.

• Gravity is neglected in the SM, and a truly complete theory should incorporate all

known forces.

• The universe appears to be made of matter and not equal parts matter/anti-matter.

While the SM does have some CP violation which allows for some matter/anti-matter

asymmetry, this effect is not large enough to produce the observed asymmetry. What

is the source of the matter/anti-matter asymmetry in the universe?

• Observational astronomy shows that galaxies have much more matter than what is

visible in stars, called “dark matter” [87]. Cosmological observations also indicate that

the matter composition of the universe requires much more matter than is observed

in the visible objects [88]. The favored solution is to introduce a new, stable particle

called a “WIMP” (Weakly Interacting Massive Particle). This particle is estimated to

have a mass ∼ 500 GeV and an interaction strength about the same order as the Weak

force, although these are weak bounds. There is no candidate particle in the SM.

• Observing supernovae has shown that the universe’s expansion is accelerating [89, 90].

Cosmological observations also show that the energy budget of the universe must have

a “dark energy” component [88]. This can be accounted for in General Relativity by

introducing a cosmological constant term, but there is no mechanism in the SM to

produce this effect.

There are a variety of possible extensions of the SM that aim to remedy one or more of

these problems while maintaining the structure of the theory at the scales that have been

measured. This section will discuss some possibilities for physics beyond the SM, generically
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called new physics (NP). A nice textbook covering many of these extensions is Michael Dine’s

Supersymmetry and String Theory [91].

2.4.1 Gauge Unification

The success of gauge theory to describe particle physics, and in particular the Higgs mech-

anism for spontaneously breaking symmetry in the Electroweak sector, leads to a natural

question if this can be extended. The first such proposal was by Howard Georgi & Shel-

don Glashow [92]. The idea is to find a gauge group that contains SU(3) ⊗ SU(2) ⊗ U(1),

then use a set of scalar fields with VEVs to spontaneously break the larger gauge symmetry

to the SM. This will naturally group the fermions into generations, and, because the U(1)

hypercharge comes from a larger gauge symmetry, explains charge quantization.

SU(5) Unification

The smallest gauge group to postulate is SU(5), which allows for a very neat representation

of all the SM particles. Postulating the fermions to be in the fundamental representation,

the generators of SU(5) in this representation are a set of 24 5 × 5 Hermetian, traceless

matrices. After symmetry breaking, these should decompose into:

T aC =

(

λa 0

0 0

)

,

T iL =

(

0 0

0 τ i

)

,

TỸ =

√

3

5

(

−1
3
IC 0

0 1
2
IL

)

.
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This preserves the fundamental representation for the SU(3) and SU(2) fermions, and be-

cause of the traceless generator for TỸ automatically incorporates charge quantization. There

are two possible fundamental representations 5 and 5̄, and the easier choice is the 5̄ repre-

sentation. The matter content for this representation is:

5̄ =











d̄r

d̄g

d̄b

νe,L

eL











.

There are 11 remaining particles that need to be included in the SU(5). Another possibility

is the 10 representation, the anti-symmetric combination of two 5 representations:

10 =











0 ūb −ūg UL,r DL,r

−ūb 0 ūr UL,g DL,g

ūg −ūr 0 UL,b DL,b

−UL,r −UL,g −UL,b 0 ē

−DL,r −DL,g −DL,b −ē 0











.

Lastly there is a singlet for the right-handed neutrinos, νe,R. The full SM particle content is

contained in the representations:

SM = 5̄ ⊕ 10 ⊕ 1.

The first prediction of this theory is the gauge coupling for SU(3) and SU(2) are the

same because their couplings come from the same larger gauge group. Next, the relation

between the U(1) and SU(2) couplings can be studied. The hypercharge Yℓ of the lower

leptons in the 5̄ that transform under the remaining SU(2) is related to Ỹ by Ỹ =
√

3
5
· 1
2
Y .
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Defining the coupling g′ for the U(1), these are related by:

gỸ = g′
Y

2
,

where the 1
2

is the conventional normalization of the generators. The weak mixing angle is:

sin θW =
g′2

g2 + g′2
=

(
2Ỹ
Y

)2

1 +
(

2Ỹ
Y

)2 =
3

8
.

The Higgs mechanism breaks the 24 symmetry generators of SU(5) to the 8 + 3 + 1 = 12

generators of the SM. This leaves 12 new massive gauge bosons that will generically couple

quarks and leptons in the same interaction. These new massive bosons will mediate proton

decay, among the many new interactions.

Unfortunately, all of these predictions do not match the observed world. The gauge

couplings for SU(2) and SU(3) can potentially be the same at a very high energy (the

“Unification scale”), then the running couplings allows the two to flow down to their observed

values. However, using the observed values of the couplings in the SM at the energy scales

measured so far, the 3 couplings for the Strong, Weak, and Electromagnetic forces do not all

meet at the same point. The weak mixing angle can also receive large quantum corrections

due to the new particle content in the theory and then flow down to lower energies to the

observed value of ∼ 0.23, but typically requires new matter fields not observed. The bounds

on proton decay also require the mass of the new gauge bosons to be extremely heavy, of

order M5 > 1012 GeV.
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E6 Unification

Another popular unification gauge group is the “exceptional” Lie algebra E6. This gauge

group has a 27-dimensional fundamental representation and two maximal sub-algebras,

SU(6) × SU(2) and SU(3) × SU(3) × SU(3). One possible example of E6 unification uses

the SU(5) example from the previous subsection. While SU(5) is not a maximal sub-algebra

it is a regular sub-algebra of E6, and under this sub-algebra the fundamental representation

transforms as:

27 ∼ 5̄ ⊕ 10 ⊕ 1 ⊕ 5̄ ⊕ 5 ⊕ 1.

The first three representations are precisely the set needed for the SM and can be treated

in the same manner as above. The Higgs mechanism for breaking from E6 can work at a

much higher scale and, suitably coupled to the matter content, can give large masses to the

matter particles in the 5̄ ⊕ 5 ⊕ 1 representations. The higher-scale breaking can leave two

U(1)s from the algebra unbroken:

E6 → SU(5) ⊗ U(1) ⊗ U(1).

The particles associated with the U(1)s are new, heavy gauge bosons which can gain mass

through the addition of more Higgs fields and potentially couple to the matter fields of the

SM.

E6 is an appealing unification possibility because of the variety of ways of breaking the

gauge symmetry down to the SM. Besides the fundamental representation, there is a 78-

dimensional adjoint representation that can contain the SM particles and allows for even

more combinations of Higgs fields and symmetry breaking. The additional matter content
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of the theory also introduces more corrections to the simple SU(5) breaking done earlier,

evading many of the constraints observed in experiment. The E6 gauge group is also part of

one of the maximal sub-algebras of E8, which is one of the two possible anomaly-free gauge

groups in string theory (see below), and is a way to incorporate the SM into string theory.

2.4.2 Supersymmetry

Supersymmetry is the idea that for each particle there are a set of partner particles related

by a new class of symmetry generators. All of the symmetries studied so far, such as gauge

symmetry, involve bosonic commutation relations:

[T a, T b] = ifabcT c.

Interestingly, Sidney Coleman & Jeffery Mandula [93] proved a no-go theorem stating that

the only possible continuous transformations are the product of Lorentz transformations

and internal symmetries such as gauge transformations, or else the theory is trivial. Super-

symmetry postulates a new “superalgebra” with generators obeying fermionic commutation

relations. This mixes the spin indices (derived from Lorentz invariance) and the internal

gauge indices (derived from gauge invariance), and evades this no-go theorem due to the

anti-commuting structure of the superalgebra:

{Qa, Qb} = 2σµabPµ,

where Pµ is momentum 4-vector. The inclusion of supersymmetry with the internal gauge

and Poincaré symmetries was proved with the HaagLopuszanskiSohnius theorem [94]. These

generators can act on fermions and return a bosonic particle with otherwise the same set of

interactions. This leads to a very rich phenomenology, including at least one “superpartner”
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to every particle in the SM. Because of the explicit connection with Lorentz invariance, the

larger symmetries of General Relativity can be incorporated instead of Special Relativity,

leading to “Supergravity”. As with gauge unification, experimental searches have not found

any superpartners.

2.4.3 String Theory

Another avenue of research incorporates both of these concepts on a much larger scale.

The basic idea is that particles are not point-particles but rather 1-dimensional strings.

A rather interesting feature of this postulate is that these theories automatically contain

a massless spin-2 particle, which can be identified as the graviton. Thus string theory is

a natural candidate for a complete theory of quantum gravity. Another consequence of

string theory is that self-consistency of the algebra requires 26 or 10 space-time dimensions,

while anomaly cancellation allows only two gauge groups: SO(32) and E8 × E8 [95]. The

study of string theory led to the discovery of a correspondence between a special class of

conformal quantum field theories and a different class of Supergravity theories [96, 97], a

powerful new computational technique for quantum field theories. The natural energy scale

for quantum theory of gravity is at the Planck scale ∼ 1019 GeV, which is well beyond any

current testable energy regime. Because string theory naturally lives at such a high scale,

the number of possible low-energy solutions has been estimated beyond 10500 vacua [98].

Another possibility from string theory is that extra dimensions needed for the consistency

of the theory need not be “compact” but at a scale that can help resolve the hierarchy

problem. Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali proposed using branes in

string theory to localize the gauge-theory physics but let gravity propagate in the six other

“small” dimensions, changing the Planck scale as the cut-off for the theory [99, 100]. Lisa
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Randall and Raman Sundrum proposed using branes separated along one extra dimension

to generate the differences in the Planck and Electro-Weak scale to resolve the hierarchy

problem, and embed this into a larger string theory [101, 102]. String theory incorporates

many different possible extensions to the SM, including gauge unification, supersymmetry,

and extra dimensions, but there have been no direct observational evidence for physics

beyond the Standard Model.

2.5 New Particle Phenomenology

Each of these extensions adds to the possibilities for new physics beyond the Standard Model,

typically in the form of new particles. These can come in many varieties, and how they couple

to the known SM particles will depend on the details of the theory. To be detected at the

LHC, the new particles will have to couple to either quarks or gluons in the proton to

be produced in the collisions, then decay either directly or through a chain of decays into

observable particles in the detectors. This thesis is a search for new particles in the dilepton

channel, either electrons or muons. The dominant backgrounds in this search are the SM

processes that have an oppositely-charged lepton pair in the final state. The largest such

process is the direct production of two leptons through quark-anti-quark annihilation, the

Drell-Yan process [103, 104]. This process has the same initial and final states as the new

particle(s) in this search, and is therefore an irreducible background. This section will show

the expected background from this process and discuss the other SM backgrounds, as well

as how generic new, neutral, heavy gauge bosons would appear in this search.

The Drell-Yan process is a quark and an anti-quark of the same flavor and color annihi-

lating through either a photon or Z0 boson, which then decays into a lepton pair of either

electrons or muons. This calculation will work in the massless limit for both the quarks and
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leptons. Corrections due to the finite mass of these particles will be on the order of ∼ m2

ŝ
,

which is ∼ 10−6 for muons (the heaviest incoming/outgoing particle) near the Z-peak (lowest

end of the search region). The incoming quark momenta are in terms of the incoming proton

momenta and the fraction of the total energy they carry:

p1 = x1P1 = (x1E, 0, 0, x1E),

p2 = x1P2 = (x1E, 0, 0,−x1E).

The outgoing lepton momenta are k1 and k2. The Mandelstam variables will be of use later:

ŝ = (k1 + k2)
2 = (p1 + p2)

2 = q2 = x1x2s,

t̂ = (k1 − p1)
2 = (k2 − p2)

2 = −2(k1 · p1) = −2(k2 · p2),
û = (k1 − p2)

2 = (k2 − p1)
2 = −2(k1 · p2) = −2(k2 · p1).

In the massless limit the Mandelstam variables sum to zero, so ŝ + t̂ + û = 0. The matrix

element for the photon contribution is:

ℓ1, k1 ℓ2, k2

q1, p1 q2, p2

Z0/γ∗ = iMγ

iMγ = v̄(p2) [+ieQinγ
µ] u(p1)

[
−iηµν
q2+iǫ

]

ū(k1) [+ieQoutγ
ν ] v(k2)

= −ie2QinQout

q2
[v̄(p2)γ

µu(p1)] [ū(k1)γµv(k2)] .

The matrix element for the Z0 boson is similar, with the intermediate propagator changed
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to the massive vector and the vertices with the fermions changed to the SU(2) couplings:

iMZ = v̄(p2)

[
+ie

cos θw sin θw
(T 3

in −Qin sin2 θw)γµ
]

u(p1)

[ −i
q2 −m2

Z + iǫ

(

ηµν −
qµqν
m2
Z

)]

×ū(k1)

[
+ie

cos θw sin θw
(T 3

out −Qout sin2 θw)γν
]

v(k2)

The /q operators annihilate the spinors in the massless limit.

= −ie2 cincout
q2 −m2

Z

[v̄(p2)γ
µu(p1)] [ū(k1)γµv(k2)] .

When q2 is near the mass of the Z0 boson there will be additional contribution in the

denominator due to the finite width of Z0. This search is at energies sufficiently past mZ

these contributions are negligible. The coupling coefficients cin,out are:

cin =
1

cos θw sin θw
(T 3

in −Qin sin2 θw) , T 3
in =

{

±1

2
, 0

}

, Qin =

{

+
2

3
,−1

3

}

,

cout =
1

cos θw sin θw
(T 3

out −Qout sin2 θw) , T 3
out =

{

−1

2
, 0

}

, Qout = {−1}.

These two amplitudes add together, then are squared for the contribution to the cross-section:

iM = i
e2

q2

(

−QinQout + cincout
q2

q2 −m2
Z

)

[v̄(p2)γ
µu(p1)] [ū(k1)γµv(k2)]

|M|2 =
e4

q4

∣
∣
∣
∣
QinQout − cincout

q2

q2 −m2
Z

∣
∣
∣
∣

2
{
ηµν |v̄(p2)γ

µu(p1)|2 |ū(k1)γ
νv(k2)|2

}
.

The first factor is designated by F (in, out, q2). The matrix element needs to be averaged over

the initial quark states because the incoming protons are not polarized, and summed over

all the possible outgoing states. In order to calculate the contributions from the different

chiralities, the projection operators 1
2

(1 ± γ5) can be inserted and used. The amplitude for
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an incoming left-handed quark pair and outgoing left-handed lepton pair is:

|MLL|2 =
e4

q4
∣
∣F (L,L, q2)

∣
∣
2

×
{

ηµν

∣
∣
∣
∣
v̄(p2)γ

µ1

2

(
1 − γ5

)
u(p1)

∣
∣
∣
∣

2 ∣
∣
∣
∣
ū(k1)γ

ν 1

2

(
1 − γ5

)
v(k2)

∣
∣
∣
∣

2
}

.

The first squared set of incoming spinors and gamma matrices can be calculated using the

Dirac equation, summing over the spin states, and using the algebra for the γµ matrices:

∣
∣
∣
∣
v̄(p2)γ

µ1

2

(
1 − γ5

)
u(p1)

∣
∣
∣
∣

2

=
1

2

1

2

∑

spins

v̄(p2)γ
µ (1 − γ5)

2
u(p1)ū(p1)γ

ν (1 − γ5)

2
v(p2)

=
1

2
[(pµ1p

ν
2 + pν1p

µ
2) − ηµνp1 · p2 + iǫµνρσp1,ρp2,σ] .

This calculation is repeated for the other set of outgoing spinors, with the result multiplied

by 4 because the outgoing states are summed and not averaged over their spins. The only

other difference is exchanging the momenta p1 → k2 and p2 → k1:

∣
∣
∣
∣
ū(k1)γ

ν 1

2

(
1 − γ5

)
v(k2)

∣
∣
∣
∣

2

= 2 [(kµ1k
ν
2 + kν1k

µ
2 ) − ηµνk1 · k2 + iǫµνρσk2,ρk1,σ] .

Bringing these together and contracting the indices leaves:

〈|MLL|2〉 =
e4

q4
∣
∣F (L,L, q2)

∣
∣
2

[4(p1 · k2)(p2 · k1)] =
e4

ŝ2
∣
∣F (L,L, q2)

∣
∣
2 [
û2
]
.

This was for one set of incoming and outgoing states. Summing the contributions from each
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chirality contribution gives the final result:

〈|M|2〉 = |MRR|2 + |MLL|2 + |MRL|2 + |MLR|2

=
e4

ŝ2

[(∣
∣F (L,L, q2)

∣
∣
2

+
∣
∣F (R,R, q2)

∣
∣
2
)

û2

+
(∣
∣F (L,R, q2)

∣
∣
2

+
∣
∣F (R,L, q2)

∣
∣
2
)

t̂2
]

.

The differential cross section in the center-of-mass frame for 2 → 2 scattering is:

(
dσ

dΩ

)

CM

=
1

64π2ŝ
〈|M|2〉

=
α2
EM

4ŝ3

[(∣
∣F (L,L, q2)

∣
∣
2

+
∣
∣F (R,R, q2)

∣
∣
2
)

û2

+
(∣
∣F (L,R, q2)

∣
∣
2

+
∣
∣F (R,L, q2)

∣
∣
2
)

t̂2
]

.

This can be boosted along the z-axis and remain invariant; only boosts perpendicular to the

beam axis will change the cross section. Because of the boost invariance along the beam

axis, this formula is valid for all incoming values of xi.

In the CM frame, the variables used are {θ, φ}, while this matrix element was calculated

with the Mandelstam variables. A change of variables makes this relation a bit clearer:

t̂ = −2(k1 · p1) = − ŝ
2

(1 − cos θ)

dt̂ =
ŝ

2
d(cos θ).

The matrix element has azimuthal symmetry, so the dφ element can be integrated for an

additional factor of 2π. The relation ŝ+ t̂+ û = 0 can be used to eliminate û. The last factor

to be included is the incoming quark color, which must be the same for the two quarks to
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annihilate. This introduces an additional factor of 1
3
:

dσ

dt̂
(qq̄ → ℓℓ̄) =

πα2
EM

3ŝ2

[

−
∣
∣F (L,L, q2)

∣
∣
2 −

∣
∣F (R,R, q2)

∣
∣
2

+
(∣
∣F (L,R, q2)

∣
∣
2

+
∣
∣F (R,L, q2)

∣
∣
2
) t̂2

ŝ2

−
(∣
∣F (L,L, q2)

∣
∣
2

+
∣
∣F (R,R, q2)

∣
∣
2
) t̂2

ŝ2

]

. (2.30)

This is the leading-order cross section for the direct production of two leptons by a quark

and anti-quark.

P1 P2

X
X

ℓ1 ℓ2

q1 q2

Z0/γ∗

Figure 2.2: The Feynman diagram for the Drell-Yan process of lepton pair production at a
hadron collider. The other outgoing particles are labeled X and can be anything.

To find the pair production of leptons in proton collisions, the parton distribution func-

tions have to be summed over. The Feynman diagram for this is in Figure 2.2. The equation

for evaluating this in terms of the differential cross section already calculated for qq̄ → ℓℓ̄ is:

dσ

dx1 dx2 dt̂
(pp→ ℓℓ̄+X) =

∑

1,2

f1(x1)f2(x2)
dσ

dt̂
(q1q̄2 → ℓℓ̄).

Ideally, the cross section should be in terms of the physical variables measured in the detec-

tor, rather than ones that cannot be measured directly. Leptons are measured in terms of
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{pT , η, φ}, with a four-momentum of:

ℓµ = (pT cosh η, pT cosφ, pT sinφ, pT sinh η) .

The two Mandelstam variables in terms of the outgoing lepton momenta detector variables:

ŝ = 2p2T [1 + cosh(η1 − η2)] = x1x2E
2,

t̂ = −2x1EpT e
−η1 = −2x2EpT e

+η2 .

These equations can be inverted to solve for the Jacobian between {x1, x2, t̂} and {η1, η2, pT}:

x21 =
2p2T
E2

[1 + cosh(η1 − η2)] e
(η1+η2)

x21 =
2p2T
E2

[1 + cosh(η1 − η2)] e
−(η1+η2)

t̂2 = 8p4T [1 + cosh(η1 − η2)] e
(η2−η1)

∂(x1, x2, t̂)

∂(η1, η2, pT )
=

4p3T
E2

[1 + cosh(η1 − η2)] .

The differential can be symmetrized between the two leptons. Using azimuthal symmetry

the pT part can be squared using 2πpT dpT = d2pT , and because the this was calculated in

the CM frame the pT,1 = pT,2 = pT . The total cross section is:

dσ(pp→ ℓℓ̄+X)

dη1 dη2 d2pT
=
∑

1,2

f1(x1)f2(x2)
2p2T
πE2

[1 + cosh(η1 − η2)]
dσ

dt̂
(q1q̄2 → ℓℓ̄). (2.31)

Where the differential cross section from (2.30) is transformed into the appropriate detector-

level variables of the two leptons.

This will receive many corrections such as higher-order Feynman diagrams which con-

tribute to the running of the coupling constants, non-zero transverse momentum for the
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incoming quarks, diagrams that include more out-going particles in the hard scattering pro-

cess, and other QCD processes described in Section 2.3.2. Besides direct production through

an intermediate vector boson, there are two other dominant SM backgrounds that have two

opposite-sign leptons in the final state. One is diboson production where two vector bosons

are produced in the hard-scattering event and one or both decay leptonically. The other

is top quark production, either tt̄ through a QCD process or tW through an Electro-Weak

process, where the top quark decays via a W± boson, and each W± decays leptonically.

These will each add to the total lepton pair production cross section and must be included

in the search.

The search for a new neutral, intermediate vector boson will also add to the Drell-Yan

process, giving new channels to produce lepton pairs. The matrix element will look exactly

like the Drell-Yan case:

iMZ′ = −i cincout
q2 −m2

Z′

[v̄(p2)γ
µu(p1)] [ū(k1)γµv(k2)] .

The couplings {cin, cout} to the incoming and outgoing particles will depend on the underlying

theory of the new particle. This search looks for excess numbers of lepton pairs beyond what

is predicted by the SM. An excess would indicate a new production mechanism, and this is

expected to be around the pole mass of the new particle. Such new particles often arise in

gauge unification where a second Higgs mechanism breaks the larger symmetry at a higher

energy scale and gives rise to new massive vector bosons.
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The LHC & ATLAS

The current world leaders in probing the understanding of particle physics at the highest

energies are the experiments at the Large Hadron Collider (LHC) [105]. The LHC is an

accelerator complex at the Organisation Européenne pour la Recherche Nucléaire (CERN,

European Organization for Nuclear Research) colliding two high-energy beams of protons

or other nuclei at a variety of experiments. The seven experiments are: A Large Ion Col-

lider Experiment (ALICE) [106], LHC Beauty (LHCb) [107], LHC Forward (LHCf) [108],

Monopole and Exotics Detector At the LHC (MoEDAL) [109], Total Elastic and Diffractive

Cross Section Measurement (TOTEM) [110], and the two largest, general purpose experi-

ments, the Compact Muon Solenoid (CMS) [111] and A Toroidal LHC Apparatus (ATLAS)

[112]. In this chapter I will describe some of the history of experimental particle physics,

then detail the LHC complex and ATLAS experiment. Lastly I will discuss how ATLAS

reconstructs events and particles inside events used in the analysis of experimental particle

physics.
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3.1 History - From Rutherford to Now

The first modern particle physics experiment was Rutherford’s α-particle on gold nuclei

scattering experiment [113] in collaboration with Hans Geiger and Ernest Marsden in 1909-

10. This was the first experiment to probe the atomic structure and led to the discovery of

the nucleus. Beginning with this experiment and over the next 20 years, the only methods to

probe atomic and particle physics had to come from nature, either from radioactive sources or

cosmic rays. Cosmic rays would prove to be a bountiful avenue of research. Carl Anderson’s

study of cosmic rays discovered the positron [114] in 1932, then the muon with collaborator

Seth Neddermeyer [115] in 1937. The experiment used a cloud chamber inside a magnetic

field to see the tracks of incoming particles, with a lead plate in the middle. As the particle

passed through the plate some energy would be lost, and the side of the plate with the

less-bent track indicated where the particle came from. By measuring the curvature of the

track with a known magnetic field made it possible to estimate the charge-to-mass ratio.

Assuming a single-charged object (in units of the proton’s charge), the mass did not match a

known particle. This new particle was initially identified as the pion, however it was realized

it did not have the right properties and was instead called the mu meson and later called

simply the muon. In 1947, Cecil Powell and others used cosmic rays to discover the charged

pion by looking at emulsion tracks where the new particle decays into a muon [116].

Cosmic rays provide a source for new particles, but this is by passive detection of the not-

directly-produced particles. During the 1930s, Robert Van de Graff invented the eponymous

electrostatic generator [117], Ernest Lawrence [118] and Leo Szilard independently developed

the cyclotron, and John Cockcroft and Ernest Walton developed their own electrostatic

generator [119]. The idea of using groups of pulsed magnets synchronized together to form

a synchrotron was developed over several steps [120, 121, 122] during and after the war,
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and helped break the “cyclotron barrier” in terms of energy. All of these devices were able

to accelerate charged particles, typically protons or electrons, to much higher energies than

had be attainable in the laboratory before, and in the post-war era accelerating to higher

and higher energies led to many new discoveries. One of the first major accelerators to

become operational was the Berkeley Bevatron in 1954, accelerating protons to in excess of

6 GeV, leading to the discovery of the anti-proton by Emilio Segrè and Owen Chamberlain

in 1960 [123]. Other experiments used the new, higher-energy protons to discover new

particles dubbed the “particle zoo”. Luis Alvarez used a liquid hydrogen target “bubble

chamber”, invented earlier by Donald Glaser [124], inside a magnetic field to discover many

of these particles [125]. As particles passed through the liquid, they ionize the hydrogen. A

piston is used to decrease the pressure and bubbles form, leaving visible tracks where and

ionizing particle passed through. A picture is taken, then the piston re-pressurizes the liquid,

erasing the previous tracks. Electron scattering off gaseous hydrogen and helium by Robert

Hofstadter probed the structure of the nucleon [126] and gave the first true measurement of

the proton charge radius [127]. The Alternating Gradient Synchrotron (AGS) installed at

Brookhaven National Lab accelerated protons to 33.5 GeV and had much stronger focusing

of the output protons. The AGS began operation in 1960 and led to numerous discoveries

over its lifetime. Some of the most famous were the discovery of the muon neutrino by Leon

Lederman et al. [128], the discovery of the Ω− baryon by Barnes et al. [129], CP violation in

K-mesons by James Cronin and Val Fitch [70], and the discovery of the J/ψ meson by Sam

Ting et al. [130]. The last example aimed the accelerated protons on a Beryllium target,

then used a spectrometer to reconstruct pairs of electrons and positrons. The discovery was

made when an unexpected “bump” appeared in the reconstructed invariant mass spectrum

of the e+e− system, which indicated a new particle.

Besides an avenue for discovering new particles, the new generation of accelerators were
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used to study the nucleons in greater detail than had been done before. At the Stanford

Linear Accelerator Center (SLAC), the SLAC-MIT experiment scattering 20 GeV electrons

off various targets, in much the same way Rutherford’s scattering showed the point-like

nucleus, proved that the nucleons were made up of point-like quarks [131]. The scattered

electron’s energy was measured at fixed angles, and so the total energy imparted to the

proton or neutron could be calculated. The number of particles scattered at a given Q2

matched the expectation of a group of quarks, rather than a diffuse nucleus. At CERN,

using the Proton Synchrotron to accelerate protons into a target to produce a pion beam

which then decayed to muon-neutrinos, the first evidence of neutral weak currents were

observed in the bubble chamber Gargamelle [132, 133].

By the 1970s, a new idea was being developed at CERN that did not use a single beam

of high-energy particles. Instead, two beams circulating in a ring in opposite directions

are made to collide at designated interaction places. The first such complex, called the

Intersecting Storage Rings (ISR) used protons and went online in early 1971. The increase

in energy available in the collisions was amazing, and new experiments quickly followed suit.

In Germany, the accelerator complex Deutsches Elektronen Synchrotron (DESY) facility,

with the Positron-Elektron-Tandem-Ring-Anlage (PETRA, Positron-Electron Tandem Ring

Plant) collider, reached energies up to 31.6 GeV. The TASSO experiment and others observed

the first evidence of the gluon in 1979 [134, 135, 136, 137] by studying highly-transverse

“jets” coming from the interaction point. At CERN, two beams of protons and anti-protons

at the Super Proton anti-Proton Synchrotron (Spp̄S) collided at an energy of 540 GeV. Such

high energies were made possible by “Stochastic Cooling” invented by Simon van der Meer,

where the field of the accelerated (anti-)protons feeds into a loop that keeps the bunches of

(anti-)protons in the storage ring at the same energy and transverse momentum. The two

Underground Area experiments (UA1 & UA2) were the first to observe the direct production
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of W± bosons [138, 139] and then the direct production of the Z0 boson the following year

[140, 141]. By 1986, the Tevatron accelerator at Fermilab reached collision energies of 1.8 TeV

using protons and anti-protons. The two experiments, CDF and DØ, co-discovered the top

quark in 1995 [142, 143].

Another fruitful area of research has been precision measurements of the Standard Model

predictions. In the 1990’s there were two e+e− colliders operating at the Z0-peak, one at

CERN called the Large Electron-Positron collider (LEP), and the other at SLAC called the

Stanford Linear Collider (SLC). Experiments at both colliders performed extensive tests on

SM parameters and predictions. One interesting measurement looked for so-called “invisible”

events where the Z0 → νν̄. The neutrinos do not interact and are not observed at all, but by

running the collisions slightly above the mass of the Z0, a photon is radiated to have the Z0

be “on-shell”. Counting events with nothing but the single photon, compared to the number

of events with the single photon and a lepton pair or two jets, provides an estimate on the

number of neutrino species in the SM [144]. At DESY, electrons and protons were accelerated

at Hadron-Elektron-Ring-Anlage (Hadron-Electron Ring Plant, HERA) and collided to study

the parton distribution functions of the proton over a large kinematic range and search for

new physics [145]. At lower energies but higher luminosities, experiments at SLAC and

KEK called BaBar and BELLE studied B-mesons to probe the SM’s predictions about CP

violation and how different flavors of quarks interact [146, 147].

A common thread throughout these experiments and discoveries is the drive for higher

energies. Each step into the “Energy Frontier” [148] has brought rich rewards in understand-

ing how particles interact and what particles there are in the universe. The LHC is the next

advancement into that understanding, and already a major discovery has been made with

the announcement of the detection of the Higgs Boson made in July 2012 [1, 2].
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3.2 The Large Hadron Collider

The LHC is a high-energy physics accelerator located at CERN outside Geneva, Switzerland.

It is the world’s largest machine [149], and is designed to collide bunches of protons at

a center-of-mass (CM) energy of 14 TeV and instantaneous luminosity of 1034 cm−2s−1,

reaching a total of ∼ 100 fb−1 of integrated luminosity of data per year of operation [105].

To save on construction costs the beams and detectors are placed in the LEP ring, with the

construction of two new caverns to accommodate the general purpose experiments ATLAS

and CMS, and additional tunnels for upgraded beam transfer and controls.

Construction was completed in 2008 and initial beams were circulated on September 10th,

2008. Due to an electrical fault and subsequent quenching incident on September 19th, 2008

[150], full operations were delayed by more than one year. This also led to the decision

to begin operations at a lower CM energy of 7 TeV and lower instantaneous luminosity of

∼ 1032 cm−2s−1 during the initial data-taking runs in 2010 and 2011 to reduce the strain on

the magnets. The data-taking runs during 2012 saw increases in the CM energy to 8 TeV

and instantaneous luminosity to ∼ 7 × 1033 cm−2s−1, resulting in over 20 fb−1 of integrated

luminosity recorded by both primary experiments. Further upgrades are expected to have

the LHC reach or exceed its design capabilities in terms of CM energy and instantaneous

luminosity during future data-taking runs, expected to begin in late 2014. This section will

describe how the LHC delivers these proton collisions to the various experiments at CERN.

A much fuller account of the LHC design and operation can be found in the LHC Technical

Design Report [151, 152, 153].
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Figure 3.1: An aerial view of CERN, with the LHC ring superimposed on the surface. The
major experiments and other accelerating rings are also shown. “CERN / Aerial view of the
CERN”, c© Maximilien Brice and Ars Electronica, used under a Creative Commons license.

3.2.1 Beam Energy & Luminosity

The performance of the experiments in the search for new physics and the study of the

Standard Model depends on two parameters of the LHC proton beams, the energy and the

luminosity. The energy of the colliding protons is determined by how strong the magnets

must be to keep the beams traveling in a circle. The dipole magnets that are the primary

magnets to keep the beam inside the ring have a mean field of 8.33 T, and the LHC ring is

26.7 km in circumference, giving a peak total energy for the protons of 7 TeV. The luminosity
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is determined by several factors such as how many protons are kept together in a bunch,

how many bunches there are in the ring, and how small of a bunch can be maintained in the

ring. The luminosity formula is:

L =
N2
b nbfrevγr
4πǫnβ∗

F,

where F =

[

1 +

(
θcσz
2σ∗

)2
]−1/2

.

Nb is the number of protons in the bunch, nb is the number of bunches in the ring, frev is

the revolution frequency, γr is the relativistic gamma factor of the particles being collided,

ǫn is the normalized transverse beam emittance, β∗ is the beta function at the interaction

point (IP), and F is the geometric factor due to the crossing angle at the IP. The geometric

factor’s factors are: θc is the crossing angle, σz is the length of the proton bunch, and σ∗ the

transverse beam size.

For protons at 4 TeV of energy, which were the operating conditions during the 2012 data

taking runs, the relativistic gamma factor is γr ∼ 4250 and they travel around the ring at

about frev ∼ 11, 000 Hz. The bunches were spaced 50 ns apart, with 1755 bunches stored in

each beam and each bunch containing ∼ 1011 protons, depending on beam conditions during

the run. The mechanical size of the LHC magnet apertures limits the beam size to 1.2 mm

outside of the IPs, which requires a maximum transverse beam emittance of ǫn = 3.75 µm,

although the typical value during running was 2.3 µm. The other factors all depend on how

tightly focused the bunch can be made at the IP. The β∗ was adjusted for the 2012 run down

to 0.6 m at the ATLAS IP, with a geometric factor of F ∼ 0.81. These combined to give an

average instantaneous luminosity of ∼ 7× 1033 cm−2s−1 during the 2012 physics data taking

run.
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The integrated luminosity delivered to the experiments for physics analysis is determined

by the instantaneous luminosity, which is determined by the beam parameters discussed

above. The dominant loss of the beam intensity is due to the collisions at the high-luminosity

IPs at ATLAS and CMS. The number of protons lost over time is determined by how many

interactions occur between the beams:

dN

dt
= −σtotL(t)k.

Where the factors are: σtot is the total inelastic nuclear scattering cross section between

protons, σtot ∼ 1025 cm2 (100 mbar), L(t) is the instantaneous luminosity proportional to

N(t)2, and k is the number of high-intensity interaction points, k = 2. The other experiments

such as LHCb are operated at much lower luminosities, in particular maintaining a much

larger β∗ and smaller F geometric factor at their interaction points, and do not contribute

as much to the beam decay. The initial nuclear decay time be:

τnuc =
N0

2σtotL0

.

Solving these equations, the instantaneous luminosity and beam intensity are:

L(t) =
L0

(

1 + t
τnuc

)2 ,

N(t) =
N0

1 + t
τnuc

.

Other effects can cause luminosity loss, such as beam-beam interactions, intrabeam scatter-

ing (IBS), scattering from residual particles, and RF noise. The biggest source of IBS is

the Touschek effect when charged particles in a bunch scatter off each other, transferring
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Figure 3.2: Left: Total luminosity delivered to the ATLAS experiment by the LHC during
the three data-taking years of Run I. Right: Average number of interactions during a bunch
crossing during the 2011 and 2012 data-taking years. From [154].

momentum to the transverse directions and out of the beam aperture. Approximating the

various luminosity losses as an exponential decay, the lifetimes add inversely:

1

τtot
=

1

τIBS
+

1

τgas
+

1

τnuc,1/e
.

The net estimated luminosity lifetime for the beams in the LHC is:

1

τtot
∼ 15 hr.

The instantaneous luminosity is monitored at the ATLAS and CMS detectors by Beam

RAte of Neutrals (BRAN) detectors [155], placed inside the neutral particle absorbers (TAN)

used to protect the insertion and separation dipole magnets which are placed 141 m from

the IP on both sides. The BRANs are 10 cm × 10 cm Argon gas ionization chambers,

which are radiation hard against the extremely high radiation environment in the forward

region. These are flux monitors measuring the incident rate of neutral particles (γ, n) by
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Figure 3.3: A high-pileup event showing Z0 → µµ. There are 25 reconstructed vertices,
where each vertex has at least 3 tracks, and each track has at least 3 Pixel and 6 SCT hits.
The track colors correspond to the associated vertex, and the bright yellow tracks are the
high-pT muon pair that form the Z0 candidate. From [156].

measuring electromagnetic and hadronic showers inside the TAN which is proportional to

the pp collision rate. The readout rate is fast enough for bunch-by-bunch interaction and

luminosity estimates and is accurate to better than 1% during normal operations. The total

luminosity and average interactions per crossing for ATLAS are shown in Figure 3.2. A

typical example of a bunch crossing at ATLAS is shown in Figure 3.3.
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3.2.2 Accelerator Complex

The beams of protons collided at the LHC require many stages to reach the final collision

point at the required energy and luminosity. The full accelerator complex is shown in Figure

3.4. The protons are accelerated initially through the Alvarez Proton Linac (LINAC2) to

energies of 50 MeV. The beam then moves to the Proton Synchrotron Booster (PSB) and is

accelerated to energies of 1.4 GeV, where it moves to the Proton Synchrotron (PS) and is

then accelerated to 25 GeV. From the PS, the beam is put into the Super Proton Synchrotron

(SPS), site of the former UA1 and UA2 experiments, and accelerated to 450 GeV. Once at

these energies, the beam can finally be placed into the LHC ring and accelerated to the final

energy of 4 TeV. Each stage of acceleration requires tight control of the emittance due to

the strict requirements of the LHC magnet’s aperture limit. During the initial acceleration

phases, at low energies, synchrotrons suffer from “space charge” effects due to the Coulomb

forces between the low-speed particles, which result in “tune shifts” and can destabilize the

beams.

The PSB is fed 50 MeV protons from the Linac, which accelerates them to 1.4 GeV. This

is done with up to 4 bunches inside the PSB ring. The bunches are then injected into the

PS, which splits the 6 PSB bunches (either 3+3 or 4+2 from the PSB) into the bunches for

the LHC. Once these bunches have been split (each bunch is split 12 times, giving 72 total

bunches), they are accelerated to 25 GeV and injected into the SPS. The cycling time for

the PS is 3.6 seconds. Inside the SPS ring, either 3 or 4 PS batches fill the ring, and then

the protons are accelerated to 450 GeV. The cycling time for the SPS is 21.6 seconds, after

which the 288 bunches are injected into the LHC ring. This is done 12 times to fill the LHC

ring, with a total time of about 4 minutes per beam. Once the LHC ring is filled, it takes

∼ 20 minutes for the protons to be accelerated from 450 GeV to 4 TeV.
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Figure 3.4: The accelerator complex at CERN. From [157].

3.2.3 The LHC Magnets & RF System

The LHC proton beams are primarily controlled with 1232 main dipole magnets (MB), using

Niobium-Titanium (NbTi) superconducting cables cooled to 1.9 K with a bath of superfluid

He-II. These magnets perform the main bending to keep the beams traveling in the ring. 392

main quadrupole magnets (MQ) are also cooled in the same manner as the dipole magnets

and are used to keep the beams focused. These magnets are designed with a twin aperture

to save space in the LEP tunnel. These two sets of magnets do the main work of keeping

the beams in the ring and focused, but many other magnets are needed to fully control the

beams. A cross section picture of a standard dipole magnet is shown in Figure 3.5. There

are 6028 orbit corrector magnets of dipole (MCBx), sextupole (MCSx), octuple (MCOx),
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Figure 3.5: A cross section of a dipole magnet for the LHC. From [158].

decapole (MCDx), and dodecapole (MCTx) designs working with the dipole magnets to

keep the beams in their arcs. 336 octupole (MO) and 688 + 64 sextupole (MS & MSS)

magnets provide lattice corrections in the short straight sections of the ring. Further lattice

corrections and beam focusing, as well as final focusing for the IPs, are provided by an

additional 702 quadrupole (MQx) magnets. There are 70 dipole (MBx), 42 “kicker” (MKx),

and 40 sextupole (MSx) magnets to insert the beams into the ring, bend them to collide at

the IPs, separate the beams after a collision point, and eject them for a beam dump. These

magnets all work in conjunction to form the LHC magnet system controlling the two proton

beams needed for the experiments.

To accelerate the beams to 4 TeV and then maintain that energy due to synchrotron and
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other energy losses, 16 radio frequency (RF) single-cell superconducting cavities are used, 8

per beam [159]. Each cavity operates at 400 MHz, and can deliver up to 2 MV of accelerating

voltage per beam at top energy. The acceleration gain during ramp-up of the beams is

485 keV per revolution, which corresponds to 275 kW of power supplied by the RF cavities.

The cavities are assembled into cryomodules containing four single cavities. At Point 4

on the LHC ring the four cryomodules are installed, with two before (US45) and two after

(UX45) the IP. Each beam is accelerated by one cryomodule per side. Special single aperture

dipole magnets (MBRS & MBRB) are used to separate and combine the beams at the RF

cryomodules. Each RF cavity is powered by a klystron, which is kept in a separate cavern

away from the beam and cavities to prevent possible interference and resonant phenomena.

They are coupled with a 3-port junction circulator to prevent reflections from the cavity and

fed to the cavities by a ∼ 22 m long half-λ waveguide. The RF cavities also provide bunch

spacing control. When the beams are initially injected from the SPS, the bunch spacing is

1.71 ns. At full energy after 20 minutes of acceleration, the bunch spacing is down to 1.06 ns,

and the energy spread for the beams has fallen from 8.8 × 10−4 to 2.2 × 10−4.

3.2.4 Controls

The beams at full energy correspond to ∼250 MJ of total energy, and the magnet system

once fully cooled contains ∼500 MJ of stored energy. The beams travel in a beam pipe

kept at 1.9 or 4.5 K or room temperature for operations, depending on the magnet system

the beam is passing through. The vacuum system must maintain 10−10 − 10−11 mbar at

the room temperature sections across more than 80 m3 of total beam pipe volume. The

temperature and vacuum requirements must be tightly controlled to prevent the beam from

nuclear scatterings between the beams and gas molecules in the beam pipe. Image currents
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in the beam pipe also generate heat in the cryogenic systems, while electrons stripped from

the beam pipe surface can form clouds (SEY, secondary electron yields) that interact with

the beams and dissipate energy. All of these sources of energy loss and scattering in the

beams leads to instabilities that must be monitored and corrected. The fields of the proton

bunches can be measured to correct for deviations from the normal range. The magnets must

be monitored to prevent quenching, the rapid energy loss when a superconductor transits

to a normal conductor when the material heats up past the critical temperature. A huge

number of protections are in place for the vacuum, cryogenic, and power systems for the

beams, magnets, and RF components of the LHC.

3.3 The ATLAS Detector

The ATLAS detector (A Toroidal LHC ApparatuS) was proposed as one of the primary LHC

experiments in 1994 and approved in 1995 to begin design and R&D work, and principle

construction was completed in 2008. ATLAS is cylindrically shaped, measuring 22 m across

by 46 m long and weighing approximately 7000 tons. ATLAS is a general-purpose detec-

tor designed to detect all the particles coming from a collision and is comprised of several

subsystems. Each subsystem has a specific detection purpose and is designed to handle the

high-luminosity environment of the LHC. The general requirements for ATLAS are precision

calorimetry for EM and hadronic particles, momentum tracking for muons, efficient parti-

cle tracking and identification, with as large acceptance as possible in the azimuthal and

polar angles. A large-scale cutaway picture of ATLAS, with annotations of the different

subsystems, is shown in Figure 3.6. This section will describe each of the subsystems in the

detector, with further detail available in the ATLAS Technical Design Report [160, 161].

ATLAS uses a right-handed coordinate system with the beam axis defining the z-axis,
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Figure 3.6: An annotated diagram of the full ATLAS detector. From [162].

the positive x-axis points towards the center of the LHC ring, and the positive y-axis points

upwards away from the center of the earth. The nominal IP is the origin of the coordinate

system. Because of the cylindrical geometry of the detector, ATLAS also uses a coordinate
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system with the azimuthal and polar angles defined as:

φ = arctan
(y

x

)

,

θ = arctan

(√

x2 + y2

z

)

,

η = − ln tan

(
θ

2

)

.

The pseudo-rapidity (η) is a common particle physics convention. For cases where the particle

is massless or E ≫ m this closely approximates the rapidity, and boosts between Lorentz

frames can simply add η. The momenta of particles coming from the collision are split into

the transverse plane from the beam axis and along the z-axis:

pT =
√

p2x + p2y.

The transverse energy for a particle is:

ET =
√

m2 + p2T .

The incoming particles have very little initial transverse momenta, and because of the az-

imuthal symmetry of the collision, the outgoing particles total transverse momenta (px and

py) should sum to zero. Undetected particles such as neutrinos can appear as large “missing

transverse energy” (MET), when the vector sum of the transverse momenta does not add to

zero. ATLAS has two halves, and these are designated the A side (defined with positive z

or η) and the C side (defined with negative z or η). The “B side” is the plane at z = 0 or

η = 0.

The motion of particles is determined by 6 total parameters: the initial position and
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momentum of the particle. Neutral particles will travel in a straight line and charged particles

will bend in the magnetic fields, following a fixed trajectory. This path constraint reduces

the motion to 5 parameters. In ATLAS, these parameters are:

• q/pT , this is fit from the path radius of the particle measured passing through the

magnetic field;

• φ, the azimuthal coordinate of the particle, determined by the direction of motion of

the particle at the point of closest approach;

• d0, the impact parameter defined as the transverse distance of closest approach to the

beam axis;

• 1/ tan θ, the polar angle of the particle, determined by the direction of motion of the

particle at the point of closest approach;

• z0, the impact parameter defined as the longitudinal distance at the point of closest

approach.

Particle separation is defined in terms of the angular variables, using a cone in η-φ space:

∆R =
√

(∆η)2 + (∆φ)2.

3.3.1 General Detector Strategy

Particles have just a few intrinsic characteristics that can be measured in the lab. Their mass,

spin, and parity are from their representation in the Lorentz group (specifically the “Little

group” [75]), while their quantum numbers such as charge are from their representation in

the various gauge groups. To identify a particle uniquely, the detector needs to measure the
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total energy, the momenta, and the charge of the particle. How the particle interacts with

the material in the detector also helps with identification. Different detectors will perform

one or more of these tasks, such as measuring the energy, momentum, charge, or separating

different particles. The specific sets of detectors will depend on the requirements of the

experiment as well as the expected physics output from the collisions.

Generally speaking, there are three time scales for particles created in collisions. Stable or

long-lived particles, such as electrons, muons, pions, kaons, protons, neutrons, and photons,

will travel into the detector and interact, with typical lifetimes of > 10−8 s. Their decays

can only occur through the weak force and are suppressed due to very limited phase space

and decay channels. These particles can either come from the collision directly or through

the decay of short-lived particles. There are two time scales that determine “short-lived”,

and this depends on how the particle decays. If the particle decays through a W± boson into

a limited phase space, for example tau leptons, B mesons, and D mesons, then the typical

lifetimes are ∼ 10−13-10−12 s. If the particle can decay electromagnetically or through the

strong force, for example the π0, J/ψ, and excited B and D mesons, then the lifetimes are

≤ 10−16 s. The lifetime of the short-lived particles is important for detection. The particles

that decay weakly will travel ∼1 mm before decay, which is separated enough from the initial

collision point that it can be observed as a displaced vertex. Particles with much shorter

lifetimes can only be observed through their decay products. A picture of the ATLAS

detector showing the different types of SM particles and where and how they interact is

shown in Figure 3.7.

Most particles in the SM can be detected either directly or through their decay products,

however there is one important exception. Neutrinos do not have any electric charge or color

and can only interact through a W± or Z0 boson. The cross section for this is extremely small

and they will travel straight through the detector (and in fact hundreds of miles through the
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Figure 3.7: A cross section of the ATLAS detector, showing where the different types of
particles interact with the various detectors. Each sub-detector performs a function to
measure the energy or charge and momentum of a specific class of particles. From [162].

earth) before interacting once. Neutrinos will show up as missing transverse energy after the

total transverse momenta of all the other particles has been summed.

Particle charge and momentum can be measured by tracking the trajectory of the particle

in a constant magnetic field:

p⊥ = qBR.

The magnetic field orthogonal to the motion is B and the radius of the path is R. The

direction of bending in the magnetic field indicates the charge q of the particle. For a
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particle with the same charge as the proton, in typical units measured in an experiment this

formula becomes:

p⊥[GeV] = 0.3 B[T] R[m].

Tracking detectors can use a variety of materials that ionize as the particle passes through

the medium. The ionization trail can then be read out to measure the track whose radius

measures the particle momentum. Different ionization behavior can also be used in particle

identification.

The energy of a particle can be measured by absorbing the particle and adding up the total

energy deposited. As a particle passes through material it will interact with the electrons and

nuclei inside the material radiating new secondary particles in a “shower”. A typical design

is a sampling calorimeter where layers of absorbing material are placed between scintillating

material layers that produce light proportional to the amount of ionizing particles passing

through. The initial energy of the showering particle is measured by reading out over many

layers and adding up the total deposited energy. The sampling also shows the shape of the

shower, which is useful for separating between photons and electrons.

Electrons and photons interact with the electrons in the material through Raman and

Compton scattering or Bremsstrahlung by emitting additional photons or photons converting

into e+e− pairs. The length that determines the size of a shower is called a radiation length

X0, where one radiation length results in ∼ 1/e of the energy lost through scattering. This

depends inversely on the number of electrons per nucleus squared, making high-Z material

such as lead useful for shortening this length. Once the electron is below ∼ 100 GeV, the

process is dominated by ionization. In the ionization regime, the particles interact fewer times

and can travel further before losing the same fraction of energy. For particles with a few
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Figure 3.8: An electron shower inside the ATLAS “accordion” electromagnetic calorimeter.
From [162].

hundred GeV in energy observed in LHC processes, ∼25 X0 is needed for the calorimeter to

fully contain an EM shower, with sampling throughout. The ATLAS “accordion” calorimeter

is shown in Figure 3.8, with a typical showering electron event.

Hadrons interact via the strong force and will scatter off nuclei, losing energy by radiating

pions and other low-energy hadronic particles in a similar fashion to the electromagnetic

showering. Because the underlying processes are dominated by very different physics, the

length scale is quite different and is called the interaction length λI . The interaction length

is defined as the distance 1/e particles have not interacted. In this case to make the material

as absorbing as possible requires a large nucleus and a lattice layout with the smallest inter-

nuclear spacing. The interaction length scales with density, so higher density materials are
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the most useful. The shape of hadronic showers are much more spread out than EM showers.

Due to the size needed to contain these showers, cheaper elements such as iron, or common

alloys like brass are typically used. A hadronic calorimeter will usually have 10− 12 λI with

sampling material to contain and measure jets coming from the collisions.

3.3.2 Magnets

The magnet system is extremely important for charged particle identification and measuring

the momentum of charged particles. ATLAS uses two different magnet systems [163], a

central solenoid and an outer toroid system. The solenoid surrounds the inner detector and

produces a uniform magnetic field for tracking all charged particles from the collision. The

outer toroid has three components, a barrel toroid and two endcap toroids. The toroid

magnets are outside the calorimeters and are in place to help track muons.

Solenoid

The ATLAS Central Solenoid [164] (CS) provides a uniform axial magnetic field for the

inner detector tracking. The CS is a cylinder with an inner diameter of 2.44 m and outer

diameter of 2.63 m, and 5.3 m long centered about the IP. It is placed between the tracking

system of the inner detector and the electromagnetic calorimeters. The placement before the

calorimeters requires the CS to use a minimal amount of materials to ensure less interference

with the calorimetery. Outside of the calorimeters, an iron yoke is in place to return the

magnetic flux of the solenoid and limit interference with the outer toroid system.

The CS uses NbTi/Cu Rutherford cables as the superconducting material to carry the

currents generating the magnetic field, surrounded by pure Al to support the cables. The

superconducting cables are indirectly cooled by liquid helium, operating at a temperature of
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4.5 K. Each cable contains 12 superconducting strands, and the cables are pitched 4.5 mm

center-to-center. There are 1173 total turns along the length of the CS, corresponding to

9.1 km total length of superconducting cable. The operational load of 7600 A provides 2 T

of magnetic field strength throughout the central volume, with a peak field of 2.6 T at the

boundary of the CS and a total energy stored in the magnetic field of 38 MJ.

Toroid

The ATLAS toroid system has three components: a barrel toroid [165] (BT) and two endcap

toroids [166] (ECTs), to provide the muon spectrometer with a magnetic field for tacking.

Each toroid is built of 8 coils using NbTi/Cu superconducting cables, as in the CS. The cables

are in a “flat pancake” layout and arrayed in a “race track” configuration winding through

the coils. To accommodate the muon spectrometer and give maximum coverage, the toroids

feature an open-air design to allow detector chambers to be placed between and inside the

coils. The air-core toroids also have much smaller energy loss and multiple scattering for the

muons compared to an iron-core magnet system, allowing for a more precise measurement

of their momenta.

The BT has an inner radius of 4.72 m and outer radius of 10.04 m with a length of

25.26 m. There are 8 coils, pitched at 45◦ azimuthally about the beam axis. The BT

is shown in Figure 3.9 with the 8-fold symmetry design. Inside the coils there are two

“pancakes” of superconducting cables and each pancake contains 2 layers of cables. These

cables use the same technology as the CS, surrounding the superconductor with pure Al and

indirectly cooling with liquid He down to an operating temperature of 4.5 K. Each pancake

wraps 30 times around the racetrack, giving 120 total turns in the coil and 56 km of total

length of the superconducting cables. The operating current is 20.5 kA giving a peak field

of 3.85 T at the inner surface of the coils. Due to the spacing between the coils, the average
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Figure 3.9: The iconic view of the ATLAS detector. This shows the 8-fold azimuthal sym-
metry of the toroid magnet system, where the 8 coils have orange tape. This also shows the
size of the ATLAS detector. c©CERN, from [162].

field throughout the BT is ∼ 0.6 T. The figure of merit that determines the total bending of

a charged particle, and therefore the resolution of the momentum measurement, is
∫
~B× d~ℓ.

This averages ∼2-4 T·m in the barrel. During normal operation the BT has a total stored

energy of 1 GJ.

The two ECTs are designed similar to the BT, with 8 coils pitched at 45◦ azimuthally

about the beam axis. The ECTs coils are rotated by 22.5◦ from the BT coils to allow them

to fit between the BT at the ends, and have overlapping magnetic field. The ECTs are could

have been integrated with the BT for greater uniformity of the field, however for construction

purposes and ease-of-access to the inner components of the detector a separate design was

adopted. A single ECT has an inner radius of 0.825 m and outer radius of 5.35 m with

an axial length of 5 m. Inside the coils the ECTs follows a similar design and operating
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procedure as the BT, with two pancakes of superconducting cables, each pancake containing

2 layers of cables, wrapping 29 times around the coil for 116 total turns. At the operating

current of 20 kA, the peak field is 4.1 T and this produces an average field of ∼1 T throughout

the ECT. The field integral
∫
~B × d~ℓ averages ∼4-8 T·m in the end caps. During normal

operation each ECT has a total stored energy of 200 MJ.

3.3.3 Inner Detector

The ATLAS Inner Detector [167, 168] (ID) contains three subsystems of high-resolution

tracking detectors placed inside the 2 T magnetic field of the central solenoid. The resolution

requirements are designed to provide excellent measurements of the momentum of charged

particles as well as the positions of the (many) vertices in the LHC environment. The inner

two subsystems, a silicon pixel detector and a silicon microstrip detector, use semiconductor

technology to achieve the high-granularity needed for these measurements. The innermost

subsystem is the Pixel detector with 3 layers in the barrel region. The middle subsystem is

the silicon microstrip detector (SCT) with 4 layers in the barrel region. The outer subsystem

of the ID is a straw tube tracker (TRT) where charged particles radiate when transitioning

between the plastic of the tube and the gas inside. The relatively economical design of the

straws allows for a large number of tubes and high hit multiplicity, typically 36 hits per track.

The ID must fit inside the CS and LAr cryostat, limiting the size to a maximum outer radius

of 1.15 m. The ID is placed inside the calorimeters, so the material budget is minimized

to allow for more precise calorimetery and to minimize photon conversions. The ID has a

central barrel and two identical endcaps. The barrel is 1.6 m long and is centered at the IP,

the endcaps extend the ID to ±3.5 m. A schematic of the ID and the three subsystems is

shown in Figure 3.10.
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Figure 3.10: The layout of the ATLAS inner detector. From [169].

Pixel Detector

The Pixel detector [170] is the silicon-based detector that is the closest to the IP. The barrel

section has one removable innermost barrel layer 4 cm from the nominal beam axis and two

additional barrel layers 10 and 13 cm from the beam axis. The Pixel barrel extends ±0.4 m

about the nominal IP, giving an η coverage up to ±1.7. The endcap is a set of five disks in

the azimuthal plane orthogonal to the beam with an inner radius 11 cm and outer radius

20 cm. The five disks are placed between ±0.4 m and ±0.78 m, extending the η coverage to

1.7-2.5. The complete Pixel detector totals to 140 million detector elements and 2.3 m2 of

pixel surface area. Each pixel is 50 µm in the Rφ direction and 300 µm in the z direction.

Most tracks will have 3 or 4 pixel layer hits, and the resolution for each layer is 12 µm in

the Rφ direction and 66 µm in the z direction. The three layers of the Pixel detector are

the dominant contribution to the resolution of the track impact parameters for outgoing

particles and their performance is crucial in tagging separated vertices for b- and τ -physics.

The Pixel detector is modular, with 1500 barrel modules and 700 endcap modules using
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similar layouts and identical readout chips. Each readout chip contains the amplifier and

buffering for the trigger readout, serving 24×160 pixels, and each is directly bump-bonded

onto the substrate. A single barrel module is 62.4 mm long by 22.4 mm wide and has

61440 pixel elements with 16 readout chips. The support structure and readout electronics

constitute only ∼0.1-0.2 radiation lengths of material except in the services region around

η ∼ ±1.7. Due to the proximity to the IP, the Pixel detector must be radiation hard. The

readout chips are the most susceptible to the high-radiation environment. At peak luminosity

operations they are expected to receive 30 kGy of ionizing radiation and 5 × 1013 neutrons

per cm2 per year. Special design and materials are needed to ensure proper operations.

Semiconductor Tracker

The Semiconductor Tracker (SCT) is a silicon microstrip-based detector and is the middle

subsystem of the ID. The central part of the SCT consists of 4 barrel layers placed at radii of

30.0, 37.3, 44.7, and 52.0 cm from the nominal beam axis, extending ±80 cm in z giving an η

coverage of ±1.4. The two identical endcaps of the SCT have 9 disks in the azimuthal plane

perpendicular to the beam axis, placed from 80 to 280 cm along the beam axis. The disks

have an outer radius of 56.0 cm and inner radii varying from 26.0 cm for the disks closest

to the IP to 43.9 cm for the disk furthest from the IP. The η coverage for the SCT endcaps

extends from 1.4-2.5. Figure 3.10 show the barrel layers aligned with the beam axis and the

endcap disks surrounding the beam facing the IP. Each microstrip detector is 6.36 cm ×

6.40 cm, and the strips have a pitch width of 80 µm. The SCT totals to 61.1 m2 of silicon

surface area and 6.2 million readout channels. A typical track will have ∼8 SCT layer hits,

and the resolution for each layer is 16 µm in the Rφ direction and 580 µm in the z direction.

An SCT barrel module has four microstrip detectors joined together. Two individual

microstrip detectors are bonded together to form a 12.8 cm long device, and these are glued

107



CHAPTER 3. THE LHC & ATLAS

back-to-back to a heat sink and support plate. The strips are glued at a 40 mrad pitch angle

to allow for separation in the z direction. The endcaps use strips arranged both azimuthally

and radially, and feature a tapered strip size to accommodate the geometry of the disks. The

modules are mounted on a carbon-fiber support frame to limit the total material budget,

which adds up to ∼0.1-0.2 radiation lengths. With the additional separation from the IP,

the radiation doses for the detectors and readout electronics is reduced by a factor of 3-5.

Transition Radiation Tracker

The Transition Radiation Tracker (TRT) is the outer subsystem of the ID and uses many

gas-filled straw tubes to provide a near-continuous tracking measurement. The plastic straw

tubes and gas mixture allow for a high number of track hit measurements at a relatively

lower cost. The TRT uses small-diameter tubes to reduce occupancy and handle the high

rates in the LHC environment. Each straw is 4 mm in diameter and has a 30 µm wire to

readout tracking hits. The straws are filled with a gas mixture of 70% Xe, 27% CO2, and

3% O2. For each straw there are two read out hits from a passing charged particle: the low-

threshold drift time of the ionized charged passing through the gas and the high-threshold

hit associated with the transition radiation (TR) of a charged particle passing between the

plastic straw and gas mixture. The low-threshold ionization hits typically deposit ∼few-

hundred eV of energy, while a high-threshold TR hit deposits ∼few keV of energy. The drift

time allows for a spatial resolution of 170 µm per straw, while the TR hits allows for particle

identification. Straws with hits that do not match the expected TR for the track are called

“outliers”.

The barrel of the TRT has an inner radius of 0.56 m and outer radius of 1.07 m and

extends to ±0.8 m along the beam axis, giving an η coverage up to ±0.7. In the barrel there

are 50000 straws each split in two at the middle plane η = 0 to reduce occupancy. The
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tubes are arranged parallel to the beam in layers of constant radii with between 329 and 793

straw tubes per layer, and a typical barrel track will have 36 tube hits. The endcaps have

18 wheels of tubes, with the tubes arranged radially. The endcap extends the axial coverage

from 0.8 m to 3.4 m, increasing the η coverage to 0.7-2.5. The first 14 endcap wheels have

an inner radius of 0.64 m and outer radius of 1.03 m, with the first 7 wheels have twice as

many straw tubes as the second 7 wheels to keep the number of tube hits approximately

constant as a function of η. The last 4 wheels have an inner radius of 0.48 m to extend the

endcap η coverage. See Figure 3.10 for the layout of the TRT with respect to the beam and

other ID components.

The rates at which the straws can be readout depends on the type of hit. The standard

low-threshold drift time can be measured at a rate of 20 MHz, although the efficiency of a

single tube falls to 60% at this high rate. The high-threshold TR hit deposits much more

energy and can be measured at a rate of 1 MHz. The readout times lead to high straw hit

occupancy of ∼0.4 for the inner barrel layers at the nominal luminosity. The high occupancy

require special gating for the readout electronics to allow for more efficient tube operations.

3.3.4 Electromagnetic Calorimeter

The electromagnetic calorimeter [171, 172] (ECAL) is designed to measure the energy of

electrons and photons coming from the collisions and decaying particles. It is a sampling

calorimeter covering the pseudo-rapidity range |η| < 3.2, split into a barrel and two identical

endcaps. The ECAL uses lead as the absorbing material and liquid argon (LAr) as the

ionizing detector in an accordion structure for full azimuthal coverage and high granularity.

The readouts only need to be placed at the front and back of the detector. The ECAL

is placed outside the central solenoid, with an inner radius of 1.15 m and outer radius of
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2.25 m. The layout and placement of the ECAL is shown in Figure 3.11. Because of the

detectors, support structure, and electronics totaling to ∼ 2.3X0 between the ECAL and

the IP, a presampler is placed after the central solenoid to estimate the energy loss due to

this material. Due to the large amount of material for the cooling, vacuum, and electronic

readouts for the ID and calorimeter services, the space around z = ±3.4 m is not usable for

physics analysis, corresponding to a “crack” in coverage at 1.37 < |η| < 1.52.

Barrel

The ECAL barrel is 6.8 m long split into two identical half-barrels, centered about the IP

with a small gap of 6 mm at η = 0, and has pseudo-rapidity coverage up to |η| < 1.475.

The presampler at a radius of 1.15 m covers up to |η| < 1.5. The barrel accordion shape

radiates outward from the beam axis. The accordion design is shown in Figure 3.11. The

lead absorber plates have a thickness of 1.5 or 1.1 mm for |η| < 0.8 or |η| > 0.8, with a

constant LAr gap of 2.1 mm. Between layers is a Cu/kapton electrode with high voltage

to read out the ionization from the showering particles, with 101,760 channels total plus

7808 channels for the presampler. The granularity of the ECAL in the different η regions is

listed in Table 3.1. The design is to ensure a consistent amount of material crossed by the

incoming particles as a function of η. The barrel has 3 sampling layers plus the presampler.

At η = 0, the first layer is 4.3 X0, the second layer is 16 X0, and the third layer is 2.0 X0.

The presampler is a single layer of LAr and electrodes. The total amount of material for the

ECAL barrel is 24 - 35 X0, growing with η.

Endcap

The ECAL endcaps are split into two parts: a precision physics outer wheel with coverage

1.375 < |η| < 2.5 and a more coarsely grained inner wheel (forward calorimeter) between
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Figure 3.11: Top: layout of the ATLAS Liquid Argon calorimeter. Bottom: the sampling
tower structure of the barrel ECAL. The strip towers show the granularity of the three layers
in the ECAL. From [173].
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EM Calorimeter Barrel Endcap
Coverage |η| < 1.475 1.375 < |η| < 3.2
Longitudinal 3 samplings 2 samplings 1.375 < |η| < 1.5

segmentation 3 samplings 1.5 < |η| < 2.5
2 samplings 2.5 < |η| < 3.2

Granularity (∆η × ∆φ) (∆η × ∆φ)
Sampling 1 0.003 × 0.1 0.025 × 0.1 1.375 < |η| < 1.5

0.003 × 0.1 1.5 < |η| < 1.8
0.004 × 0.1 1.8 < |η| < 2.0
0.006 × 0.1 2.0 < |η| < 2.5
0.1 × 0.1 2.5 < |η| < 3.2

Sampling 2 0.025 × 0.025 0.025 × 0.025 1.375 < |η| < 2.5
0.1 × 0.1 2.5 < |η| < 3.2

Sampling 2 0.05 × 0.025 0.05 × 0.025 1.375 < |η| < 2.5
Presampler Barrel Endcap
Coverage |η| < 1.52 1.5 < |η| < 1.8
Longitudinal 3 samplings 2 samplings

segmentation
Granularity 0.025 × 0.1 0.025 × 0.1

Table 3.1: Pseudo-rapidity coverage, granularity, and longitudinal segmentation of the ECAL
and Presampler. From [160], Table 1-3.

2.5 < |η| < 3.2. The geometry of the accordion design is more complicated to ensure

uniformity of material crossed. The lead absorber plates have a thickness of 1.7 or 2.2 mm

for 1.375 < |η| < 2.5 or 2.5 < |η| < 3.2. The amplitude of the accordion waves increases

with radius, so the LAr gap increases in depth from 0.9 to 2.8 mm and 1.8 to 3.1 mm. There

are 62,208 channels to read out for both endcaps, with an additional 1536 channels for the

presampler before |η| < 1.8. The total amount of material for an ECAL endcap is 26 - 38 X0,

growing with η. See Figure 3.11 for the endcap layout and Table 3.1 for the coverage and

granularity of the calorimeter.
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Figure 3.12: The ATLAS calorimeters including the hadronic tile calorimeter barrel and ex-
tended barrel sections, and the endcap and forward LAr calorimeters. From [162], c©CERN.

3.3.5 Hadronic Calorimeter

The hadronic calorimeter [171, 174] (HCAL) is designed to measure the energy of particles

that are bound states of quarks and gluons. Because these particles interact with the strong

force, they behave differently than the electrons and photons that shower in the ECAL.

The HCAL is a sampling calorimeter covering the pseudo-rapidity range |η| < 4.9, split

into a barrel, an extended barrel, two endcaps, and two forward calorimeters. In the barrel,

the HCAL uses a tile design with iron absorbing plates and scintillating tiles. The endcap

and forward calorimeters use either a copper or lead absorbing material with LAr as the

scintillating material.
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Barrel

The HCAL barrel has two parts: a central barrel with η range up to |η| < 1.0 and two

extended barrels up to 0.8 < |η| < 1.7. These extend from an inner radius of 2.28 m to

an outer radius of 4.23 m. Figure 3.12 shows the layout of the HCAL barrel and endcaps

with respect to the ID and ECAL. The materials used are iron tiles as the absorber and

scintillating tiles. Both sets of tiles are 3 mm thick, stacked perpendicular to the beam

axis and staggered over the three sampling regions. The structure is periodic in z, with

the staggering increasing with z to scale with η. The scintillating tiles are read out by a

wavelength shifting (WLS) guide into photo-multiplier tubes (PMTs). The three segmented

layers are 1.4, 4.0, and 1.8 λI deep at η = 0 and growing with η. The total amount of

material before the HCAL grows with η from 1.8 to 2.5 λI , and the total amount of material

before the muon spectrometer increases with η but is always greater than 11 λI . The larger

granularity in the HCAL means fewer channels to be read out compared to the ECAL, with

10,000 channels in the barrel.

There is a gap of 68 cm between the barrel and the extended barrel to allow for cabling,

cooling, vacuum, and other ID or CS services. The extended barrel has the same segmenta-

tion structure as the barrel in the azimuthal direction, but varies in the radial direction to

maintain uniform granularity in η-φ. See Table 3.2 for the coverage and granularity of the

HCAL. To compensate for the gap between the two barrel components, an Intermediate Tile

Calorimeter (ITC) is fit between them. The ITC has 2 sampling sections, starting at the

outer radius moving inwards. The outer section is 31 cm thick and extends 45 cm toward the

interior. The inner section is 9 cm thick and extends an additional 45 cm toward the beam

axis. In addition to these two sampling sections, a scintillating tile is extended down the

rest of the face of the extended barrel calorimeter to measure the losses due to the material
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Hadronic Calorimeter Barrel Extended Barrel
Coverage |η| < 1.0 0.8 < |η| < 1.7
Longitudinal segmentation 3 samplings 3 samplings
Granularity (∆η × ∆φ)
Samplings 1 and 2 0.1 × 0.1 0.1 × 0.1
Sampling 3 0.2 × 0.1 0.2 × 0.1
Hadronic LAr Endcap
Coverage 1.5 < |η| < 3.2
Longitudinal segmentation 3 samplings
Granularity (∆η × ∆φ)

0.1 × 0.1 1.5 < |η| < 2.5
0.2 × 0.2 2.5 < |η| < 3.2

Forward Calorimeter Endcap
Coverage 3.1 < |η| < 4.9
Longitudinal segmentation 3 samplings
Granularity (∆η × ∆φ)

∼ 0.2 × 0.2

Table 3.2: Pseudo-rapidity coverage, granularity, and longitudinal segmentation of the
Hadronic calorimeters. From [160], Table 1-3.

in the services region. The total η coverage of the ITC is from 1.0 < |η| < 1.6. The total

material in the extended barrel region ranges from 10-15 λI .

Endcap

The HCAL endcaps have two parts: a standard LAr calorimeter between 1.5 < |η| < 3.2

and a high-density forward LAr calorimeter (FCAL) from 3.2 < |η| < 4.9. Their coverage

and granularity is listed in Table 3.2. The LAr endcaps are divided into two wheels that are

stacked back-to-back in z. The inner wheel uses 25 mm thick copper plates with a LAr gap

of 8.5 mm. This is divided into two readout segments of 8 and 16 layers deep. The outer

wheel has 50 mm thick copper plates and a LAr gap of 8.5 mm in one readout segment of

16 layers. This makes up about 12 λI of material, and is quite uniform in η.
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The FCAL is starts at z = 4.6 m from the nominal IP, and is just 8 cm from the beam

axis. This is a very high-radiation environment, but is required to find far-forward jets and

fully account for all the energy in a collision. This is segmented into three sections: the first

uses copper absorbing plates and the other two use tungsten plates. The plates are drilled

with holes and have slightly smaller diameter copper rods inserted and set at positive high

voltage. The channels between the absorbing medium and rods are filled with LAr and are

spaced just 250, 375, and 500 µm for the first, second, and third layers. As there are no

detectors behind the FCAL the total absorbing material is less important that the other

parts of the HCAL, and the total material is about 9 λI . In total, there are 3,584 channels

to be read out from both FCALs.

3.3.6 Muon Spectrometer

The ATLAS Muon Spectrometer [175] has two parts: a barrel region for the central region

|η| < 1.0 and two endcap regions extending from 1.0 < |η| < 2.7. The detector design is to

track muons passing from the inner detectors and calorimeters through the outer toroidal

field. Using two types of precision chambers, the bending of the tracks can be measured

to determine the muon’s momenta. The chambers are placed into layers (also called sta-

tions), and the 8-fold azimuthal symmetry of the toroids dictates a 16-fold symmetry of the

chambers in each layer, half that line up azimuthally with the coils and half that are spaced

between the coils. The chambers lined up with the coils are small chambers (S chambers),

and the chambers lined up between the coils are large chambers (L chambers). Chambers

are designated Barrel (B chambers) and Endcap (E chambers), and placed either Inner (I

chambers), Middle (M chambers), or Outer (O chambers). The layout of the barrel chambers

in this pattern is shown in the upper portion of Figure 3.13. The lower part of Figure 3.13
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shows the layer structure in both the barrel and endcaps for the large and small sectors.

There are also trigger chambers used to accept both low- and high-energy muon events as

well as to measure the non-bending (φ) coordinate.

In the barrel region the precision measurements are done by monitored drift tubes

(MDTs), arranged in three layers in concentric cylinders about beam axis. The first layer

is placed inside the barrel toroid coils (BIS/BIL chambers) at a radius of ∼5 m; the second

is placed in the middle of the coils (BMS/BML chambers) at a radius of ∼7.5 m; and the

third is placed outside the coils (BOS/BOL chambers) at a radius of ∼10 m. In the region

about the “feet” of the ATLAS detector where the support structure for the inner detectors

and calorimeters is placed, special chambers (BIM,BIR chambers) are put in to ensure full

coverage. This arrangement provides three precision tracking points along the z coordinate

to fit the bending of the measured muon track. The groups of chambers that a muon would

pass through coming from the IP form a projective tower. They are aligned using an optical

system with lasers and CCD cameras with video pixel targets and readouts to measure the

relative positions of the chambers in a tower to a precision of 50 µm. The alignment preci-

sion determines how well the muon track’s bending radius is measured. The total bending

depends on the total magnetic field a muon travels through, which is shown in Figure 3.14.

The endcap regions have two types of precision chambers arranged into wheels in the

r-φ plane. They are principally covered by MDTs, except in the region |η| > 2.0 for the

inner layer where cathode strip chambers (CSCs) are used due the higher particle rates. The

occupancy of MDTs would be unacceptably high. The inner layer or “small wheel” is placed

inside the endcap toroid (EIS,EIL chambers) at z = ±7 m; the middle layer or “large wheel”

is placed outside the endcap toroid (EMS,EML chambers) at z = ±14 m; and the outer layer

or “outer wheel” is placed on the cavern walls (EOS,EOL chambers) at z = ±21-23 m. These

stations provide the typical three precision tracking points in the η-region 1.3 < |η| < 2.7,
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Figure 3.13: The ATLAS muon spectrometer. Top: Azimuthal view showing the 8-fold
symmetry and Large/Small sector differences. Bottom: “Quarters” view in the r-z plane for
both the Large and Small sectors. From [175].
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measuring the muon r coordinate. Due to the size limitation of the outer wheel, extra endcap

chambers (EES,EEL chambers) are place about the endcap toroids at z = ±10 m. These

chambers provide coverage in the “transition region” 1.0 < |η| < 1.4 between the barrel

toroid and endcap toroid’s magnetic fields. The relative alignment is also done by an optical

system.

The trigger chambers perform three functions: high-speed timing to assist in bunch-

crossing identification, simple triggering methods with well-defined pT cutoffs, and measuring

the second coordinate φ. In the barrel region, three layers of resistive plate chambers (RPCs)

are arranged with one layer attached to the inside and one outside of the BM chambers and

the third layer attached to the inside of the BO chambers. In the endcap regions, three layers

of thin-gap chambers (TGCs) are arranged with one layer attached inside the EM chambers

and two layers spaced outside the EM chambers.

Monitored Drift Tubes

The largest number of precision chambers in the muon spectrometer are monitored drift

tubes. These are aluminum tubes with 400 µm thick walls, 30 mm diameter, with a 50 µm

diameter tungsten-rhenium wire at the center. The single-tube position resolution is ∼80 µm

based on drift-time readout. The tubes are grouped into chambers. Each chamber is formed

from monolayers of tubes glued together and stacked up into multilayers. The inner chambers

(BI,EI) have 4×2 monolayers glued together, while the middle and outer chambers have 3×2

monolayers. The two sets of multilayers are mounted on opposite sides of a rigid support

structure. The glueing and structure support can accurately position the tubes in a single

chamber up to ∼10-15 µm depending on the size of the structure. Each chamber has a

set of optical alignment equipment to monitor any deformations of the chamber itself with

respect to normal. The gas mixture is 93% Ar and 7% CO2, at 3 bar of pressure. The tubes
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Figure 3.14: The total bending power of the ATLAS muon spectrometer toroidal field in
the different η regions. In the barrel (|η| < 1.05), the red curve corresponds to the Large
sectors and the black curve to the Small sectors. In the endcaps (|η| > 1.05), the red curve
corresponds to the Small sectors and the black curve to the Large sectors. From [175].

are read out from one end with a current-sensitive preamplifier, followed by a differential

amplifier, shaping amplifier and discriminator. The shaping amplifier also corrects the drift-

time measurement using the integrated signal. There are 1194 total MDT chambers and

370,000 total readout channels, covering 5500 m2 of area and containing 800 m3 of gas.

Cathode Strip Chambers

The other precision chambers are cathode strip chambers in the inner layer of the endcaps.

These are multi-wire proportional chambers with cathode strip readout. The cathode-anode

strip spacing is equal to the anode wire pitch. The readout strips are aligned orthogonal to

the anode wires. Position is measured from the charge induced on the cathode strips due

120



CHAPTER 3. THE LHC & ATLAS

Figure 3.15: A layout of a typical MDT chamber for the muon system showing the layers of
tubes, support structure, and alignment sensors. From [176].

to the charge avalanche formed by the ionization trail of a muon on the anode wire. The

spatial resolution is improved by interpolating the charge sharing between cathode strips.

The anode wire pitch is 2.54 mm and the cathode readout strips are 5.08 mm apart. The

second coordinate is measured from cathode strips aligned parallel to the anode wires, which

also form the second anode of the chamber. The chambers are arranged in 4×2 layers, the

same as the other EI MDT chambers. The gas mixture used is 30% argon, 50% carbon

dioxide, and 20% carbon tetrafluoride. The fast drift times of the CSC (30 ns) allow for

them to be used as part of the trigger system. The readout is a charge preamplifier into

analog storage, which is used in the level-1 trigger. There are 32 total CSC chambers and

67,000 total readout channels, covering 27 m2 of area and containing 1.1 m3 of gas.
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Resistive Plate Chambers

The barrel trigger chambers are resistive plate chambers (RPC) with timing resolution of

1.5 ns. They are placed around the MDT chambers in the barrel, as shown in Figure 3.16.

There are two parallel high-resistance bakelite plates 2 mm thick, separated by 2 mm with

insulating polycarbonate spacers. There is a gas mixture of tetrafluoroethane between the

plates, with some sulfur hexafluoride to allow for lower operating voltages. There are no

wires in the design, which allows for a simple structure and manufacture. Between the two

plates, a 4.5 kV/mm uniform electric field is applied via graphite electrodes painted onto

the backs of the plates. Ionizing electrons form avalanches between the plates, which is

detected by capacitively-coupled strips outside the two plates. There are two sets of strips:

one set of η strips in the bending plane, and one set of φ strips pitched between 30.0 and

39.5 mm. A complete chamber has two detector layers and four sets of readout strips. There

are 596 RPC chambers and 355,000 total readout channels covering 3650 m2 of area. The

geometrical coverage of the barrel is about 80% of the total area.

Thin Gap Chambers

The endcap trigger chambers are thin gap multiwire proportional chambers (TGCs). They

are placed around the MDT and CSC chambers in the endcap, as shown in Figure 3.16. The

anode wires are pitched 1.8 mm apart, further than the spacing between the cathode strips of

2.8 mm. The anode wires are arranged parallel to the MDT wires in the bending plane and

provide the readout for the trigger information. The cathode strips are arrayed orthogonally

to the wires and measure the second φ coordinate. The gas mixture used is 55% carbon

dioxide and 45% n-pentane (n-C5H12), which is highly quenching to prevent streamers but

is also flammable and demands adequate safety precautions. The applied voltage is 3.1 kV,
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Figure 3.16: ATLAS muon trigger chambers, showing the typical trajectories of low- and
high-pT muons. From [177].

with a uniform electric field and small wire spacing to ensure short drift times. The TGCs

are formed in doublets and triplets, with either two or three anode wire sets sandwiched

between 20 mm thick honeycomb spacers and graphite cathode strips. There are 192 TGC

chambers and 440,000 total readout channels covering 2900 m2 of area. The geometrical

coverage of the endcap is about 99% of the total area.

3.4 Acceptance & Reconstruction at ATLAS

The detectors described above work together to reconstruct all the outgoing stable particles

produced after the initial collision. A trigger is employed to select events that pass certain
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criteria and then save those events for later analysis. After the event has been saved to long-

term data storage, offline reconstruction begins. Offline reconstruction employs a variety of

algorithms to reconstruct what types of particles and their the energy and momenta were

produced in an event as precisely as possible. This “reprocessed” data is then used for

analyses. This section covers how the events are selected with a trigger menu, then discusses

how electrons and muons, the two objects used in the search for new physics in this thesis,

are reconstructed from the detector information.

3.4.1 Trigger

The trigger system is based on three levels to perform event selection for long-term data

storage and analysis [178]. The total nuclear cross section is ∼ 100 mbarn at LHC energies

[179]. At the LHC luminosity there are ∼ 7 × 108 interactions per second. Each event

uses 1.5 MB of information to store the hit information from all the sub-detectors. The

total data acquisition rate can only accept about 600 MB/s, or ∼ 400 Hz of events from

the different detectors, and therefore a rejection factor of ∼ 2 × 106 is needed. Most of

the interactions are ‘minimum-bias’ events, either elastic scattering or soft QCD processes,

which can be ignored in the search for new physics and other less-common SM processes.

The three levels of the trigger are the level-1, level-2, and event filter, where the level-2

and event filter are together called the high-level trigger. A trigger chain is one selection

sequence from level-1 through the event filter triggers. The trigger menu is the full set of

trigger chains, including their pre-scaling factors. A typical trigger menu has ∼ 500 chains

and is decided before data taking begins. The most common sets of triggers for the 2012

data taking runs are shown in Table 3.3. Approximately 35% of the readout bandwidth is

used by the electron/photon triggers, and an additional 25% is used by the muon triggers.

124



CHAPTER 3. THE LHC & ATLAS

Areas selected by
First Level Trigger

Regions of Interest (RoI)

Level 1

Level 2

Pipeline 
memory

Derandomizer

Read-Out Driver

Read-Out Buffer

Processor farm

Data Storage

Level 3

Switch-Farm
interface

ROD

Event building

~2 µs

< 10 ms

RoI

DETECTOR

Figure 3.17: Left: How the trigger determines the Regions of Interest in an event, by sin-
gling out the region(s) that meet the LVL1 trigger threshold in the calorimeters or muon
spectrometer. Right: Data acquisition at ATLAS, showing the data flow through the three
trigger stages and event readout. Level 3 is the event filter stage described in the text. From
[178].

The remaining 40% use hadronic triggers is some fashion, such as jets, MET, taus, b-physics,

etc.

The level-1 trigger (LVL1) makes a course-grained initial selection after finding one or

more Region-of-Interest (RoI), shown in Figure 3.17, in an η-φ cone within the calorimeters

or muon spectrometer. The RoI can come from energy deposited in the ECAL or HCAL,
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Trigger Type Offline Selection LVL1 EF (kHz) (Hz)
Single Lepton Single Muon, pT > 25 GeV 15 GeV 24 GeV + Iso 8 45

Single Electron, pT > 25 GeV 18 GeV 24 GeV 17 70
Two Leptons Di-Muon, 2 × pT > 15 GeV 2 × 10 GeV 2 × 13 GeV 1 5

Di-Muon, pT > 20, 10 GeV 15 GeV 18,8 GeV 8 8
Di-Electron, 2 × pT > 15 GeV 2 × 10 GeV 2 × 12 GeV 6 8
Di-Tau, pT > 45, 30 GeV 15,11 GeV 29,20 GeV 12 12

Two Photons Di-Photon, 2 × pT > 25 GeV 2 × 10 GeV 2 × 20 GeV 6 10
Di-Photon (loose), pT > 40, 30 GeV 16,12 GeV 35,25 GeV 6 7

Single Jet Jet, ET > 360 GeV 75 GeV 360 GeV 2 5
Multi-Jet 5 jets, 5 × ET > 55 GeV 4 × 15 GeV 5 × 55 GeV 1 8
b-Jets b tag + 3 jets, 3 × ET > 45 GeV 4 × 15 GeV 4 × 45 GeV + b-tag 1 4
MET MET > 360 GeV 40 GeV 80 GeV 2 17
TOTAL < 75 ∼ 400

Table 3.3: The most common unprescaled trigger menu chains for 2012 data taking. From [178], Slide 19.
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Minimum Bias

Electrons/photons

Jets/taus/missing E
T

Muons/B-physics

ATLASTrigger Operation 2012

Jets/missing E
T
(delayed)

B-physics (delayed)

Figure 3.18: ATLAS Trigger stream rates for 2012 data taking, showing the total event-
writing rate due to the various triggers. From [180].

or from the muon trigger chambers in the MS. This reduces the event rate from a peak

of ∼ 30 MHz to ∼ 65 kHz, and reduces the data output to ∼ 100 GB/s. The detectors

are continuously operating and being monitored in the front-end (FE) electronics. A LVL1

trigger decision is made using course-grained information from the calorimeters (both ECAL

and HCAL) and the muon trigger system. The LVL1 trigger can be a single object, such

as a high-pT muon or large energy deposit in the calorimeters, or more generic multi-object

events such as two photons or multi-jets. The LVL1 trigger is hard-wired into the electronics

to reduce latency between collision and trigger decision, with ∼ 2.0 µs as the total time for

reading in detectors, trigger decision, and readout to the next level. When a trigger decision

is made for an event, the FEs of the detectors are read out to readout drivers (RODs), then

into readout buffers (ROBs) for the level-2 trigger. Between the RODs and ROBs there are

intermediate buffers called ‘derandomizers’ that average out the data rate from the LVL1

trigger to match the total bandwidth of the RODs.

The level-2 trigger (LVL2) uses the RoI defined in the LVL1, and uses the full granularity
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of the triggered detector systems as well as the other detectors in the same RoI. The LVL2

trigger uses some fast software algorithms to do track matching or calorimeter clustering,

and tightens the physics requirements on the objects in the event. The latency for the LVL2

trigger is about 60 ms. The LVL2 trigger reduces the event rate from ∼ 65 kHz to ∼ 5 kHz,

and reduces the data output to ∼ 7.5 GB/s. The full detector data is kept in the ROBs

until a LVL2 decision is made, then either discarded or moved to the third and final trigger

stage.

The event filter (EF) is the last level of the trigger and uses the full event information

from all the detectors. After the LVL2 acceptance, the data is moved to the sub-farm input

(SFI) then to the event filter network. The EF builds the full event and applies offline

software to perform tracking, electron selection, and calorimeter clustering. The EF trigger

requirements are very close or the same as the final physics requirements for the objects

in the event filter network. The latency for the EF is about 1 second, and it reduces the

event rate from ∼ 5 kHz to ∼ 400 Hz and data output to ∼ 600 MB/s. The 2012 trigger

stream rates for ATLAS are shown in Figure 3.18, and this is the data-flow to the ATLAS

permanent data storage for use in analyses.

3.4.2 Reconstructing Electrons

The electron and photon (E/gamma) triggers are based on energy deposited in the ECAL.

For the LVL1 trigger, the single-electron requirement is 18 GeV in a cluster in the ECAL,

while the di-electron or di-photon requires 2×10 GeV in two isolated clusters in the ECAL. At

LVL2 trigger, track matching between the calorimeter energy deposit and the inner detector

in the RoI provides rejection of electron events, while the cluster shape in the calorimeter

also provides discrimination for photons and electrons from jets. The ratio between the
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energy deposited in the ECAL compared to the HCAL in the RoI can reject jets. At the EF

level, full cluster-shape algorithms can be applied as well as simple track reconstruction for

electrons. The single-electron reconstruction efficiency varies from 95-99% depending on the

η and pT of the electron. The efficiency is best in the barrel region (|η| < 1.3) and improves

with increasing pT .

There are three electron reconstruction algorithms: the standard electron algorithm for

isolated, high-pT electrons; the soft electron algorithm for low-pT electrons and electrons in

jets; and a forward-electron algorithm for tracks with |η| > 2.5 where the inner detector does

not provide tracking information. The remaining parts of this section will only discuss the

standard electron algorithm as these are the only electrons used in this analysis.

The first step in electron reconstruction is electron identification [181]. A variety of

discriminating variables are used to both identify E/gamma objects and discriminate between

electrons and photons. Figure 3.19 shows what photon and π0 events look like in the ECAL.

Hadronic leakage, the amount of transverse energy deposited in the same η-φ region in the

HCAL compared to the ECAL, discriminates E/gamma from jets. Most of the energy from

EM showers are deposited in the second compartment of the ECAL, where the bulk of the

material is located. The lateral shower width and shape in the second compartment also

discriminates from softer jets, as EM showers are more narrow than hadronic showers. The

more finely-grained first compartment of the ECAL discriminates between two collimated

photons coming from π0 or η particles, which can fake electrons. These calorimeter cuts

provide a strong rejection of hadronic objects faking as electrons. After the calorimeter cuts,

track matching discriminates between electrons and photons. Track matching has several

parts. Track quality cuts are applied to the ID tracks to reject noise and converted photons.

The track in the ID must be in the same η-φ cone as the ECAL. The measured momenta in

the ID must also match the deposited energy in the ECAL. The number of TRT straw hits
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Figure 3.19: Two E/gamma events in the ECAL. Left: A single, isolated photon. Right: A
π0 event showing the double peak from the decay to two photons. Electron identification
needs to discriminate between these types of events in the ECAL, using clustering (to remove
π0 or non-prompt conversions), track matching (to remove prompt photons), and hadronic
leakage (to remove π± and jets). From [182].

can reduce the mis-identification of charged pions and kaons as electrons as well. Finally,

an isolation requirement is applied so that the electron is the only object in the η-φ cone

∆R < 0.2.

After identification, the standard electron reconstruction begins with clusterization [183].

This uses a sliding window clusterization algorithm, which works in three steps. The first

step is tower building, where the ECAL is divided into a grid of Nη-Nφ elements (200×256).

This segments the η-φ grid into squares of 0.025×0.025. A window built from a fixed number

of towers (5×5) is then slid about the grid, and if the Ewindow
T is above the threshold Ethresh

T

(3 GeV) the position is saved. The size of the window and threshold energy have been

optimized from simulations of the detector for the best efficiency while limiting fake pre-
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clusters due to noise. With this initial window position, the second step is to form the

pre-clusters. A smaller position window is scanned with Npos
η -Npos

φ (3 × 3). These position

windows form the pre-clusters. If two pre-clusters are within 2 η or 2 φ towers, the pre-cluster

with the largest ET is kept. The pre-clusters then seed the final clusters for the final step.

The final clusters are filled with towers of size 3× 5, 3× 7, 5× 5, 7× 7. After the clusters are

filled, they are corrected based on electron or photon identification.

Inside the final clusters, the full electron reconstruction is performed using the ECAL

shower shape and track matching with the ID. These are similar to the procedure in electron

identification, but more finely-grained and applied to find the electron track parameters. The

energy in the ECAL is corrected based on the shower shape, using the track matching data

as well. Electrons traversing the ID must cross ∼ 1-2 X0 of material before the ECAL and

can lose a significant fraction of their energy due to bremsstrahlung. A Gaussian sum filter

approach is applied to the entire electron reconstruction to correct for the bremsstrahlung

[184], refitting every electron track parameter. These corrected and refitted parameters are

the final track parameters used for physics analysis.

Electrons are classified based on their identification and reconstruction, and are called

“loose”, “medium”, and “tight”. The efficiency for reconstructing loose electrons as a func-

tion of η and ET is shown in Figure 3.20, and is better than 95% in the range used for this

analysis. Loose electrons only use the hadronic leakage and coarse shower shape variables

to pass the electron definition. Medium electrons use the fine-grained information in the

first compartment of the ECAL for the shower shape to further reject jets and π0. In ad-

dition, a track in the ID with in the same η range with Pixel and SCT hits and transverse

impact parameter d0 must match the ECAL. Tight electrons have additional track matching

requirements. The matched track must be in the same ∆φ range, with tighter restrictions

on ∆η and d0. The track hit requirements in the Pixel, SCT, and TRT subsystems of the
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Figure 3.20: Left: Electron reconstruction efficiency vs. the measured η of the electron,
comparing the early 2012 data results to the 2011 data. The efficiency is best in the barrel,
and decreases in the endcaps. Right: Electron reconstruction efficiency vs. the measured
ET of the electron, using two different 2012 datasets to compare low- and high-ET . Electron
reconstruction efficiency improves with ET . From [182].

ID are all tightened. Lastly, the measured momentum in the ID must match the energy

deposited in the ECAL.

The energy resolution of the sampling ECAL has been measured in a test beam [185],

and found to be:

σE
E

=
a√
E

⊕ b , a = 10.1 ± 0.1%
√

GeV and b = 0.17 ± 0.04%.

This is the dominant source of uncertainty for the measurement of high energy electrons in

the ATLAS detector. There are a set of prescriptions [186] for the measured electrons to

adjust the measured energy to the correct, calibrated energy scale.
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3.4.3 Reconstructing Muons

The muon trigger is based on a coincidence between the trigger chambers in the MS, working

from the inside-out [187]. The trigger chamber layout is shown in Figure 3.16, with the

general shape of a high-pT muon path in the different regions. The angle between the

line formed by the hits in the trigger chambers and the IP is a fast measure of the pT

and is the primary LVL1 muon trigger, requiring pT > 15 GeV. The LVL2 trigger has a fast

reconstruction algorithm for muons in the RoI identified by the LVL1 trigger, and tightens the

pT requirement. At the EF level, an additional isolation requirement is applied to the single

muon trigger. First, the sum of the pT of the tracks in an η-φ cone ∆R < 0.2 is calculated.

A track is included in the sum if it has pT > 1 GeV and |z0(track)−z0(muon)| < 6 mm. The

isolation requirement is (
∑
pT,tracks/pT,µ) < 0.12, and the final pT requirement is 24 GeV.

Muon trigger efficiency during the 2012 data taking is shown in Figure 3.21. The primary

single-muon trigger is ∼ 70% efficient in the barrel and ∼ 90% efficient in the endcaps,

including geometric acceptance.

Muon reconstruction in ATLAS begins in the muon spectrometer. There are two standard

muon reconstruction algorithms, called “chains”, for muon tracks in the MS: Muonboy [189]

and MOORE [190]. There are also two low-pT reconstruction algorithms for muons based

on ID tracks which do not use the spectrometer, called MuGirl [191] and MuTag [189].

Muons in ATLAS are classified by how much reconstruction information is used. The most

robust muons are “combined” (CB) muons, which uses both MS track information and ID

track information that have been matched together. There are two algorithms that can

do this combination: Staco [189] paired with the Muonboy MS reconstruction and Muid

[192] paired with the MOORE MS reconstruction. “Standalone” (SA) muons are Staco or

Muid MS tracks, done with Muonboy or MOORE respectively, without a matched ID track.
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Figure 3.21: Left: Muon trigger efficiency in the barrel (|η| < 1.05) for the mu24i tight
trigger. Right: Muon trigger efficiency in the endcap (|η| > 1.05) for the mu24i tight
trigger. This is seeded by the L1 MU15 trigger. Both use a tag-and-probe method for
Z0 → µµ decays to calculate the efficiencies. The efficiencies also include the geometric
acceptance of the trigger chambers in their respective regions. From [188].

“Segment-Tagged” (ST) muons use either MuGirl or MuTag with some segments in the MS

where the Muonboy or MOORE algorithms fail to fully reconstruct the track. These are

used to recover inefficiencies where the MS has only 1 or 2 layers to reconstruct the muon

track, particularly in the region |η| > 2.5. “Calorimeter-Tagged” (Calo) muons use either

MuGirl or MuTag without any MS information, instead using the energy deposited in the

calorimeters parameterized as a minimum ionizing particle (MIP). These are used to recover

inefficiencies where there is no MS coverage, especially in the services region at |η| < 0.1.

The remaining parts of this section will only discuss the MOORE and Muid algorithms, as

this is the method used for muon reconstruction and combination for this analysis.

Muons are identified in the MS based on the hit patterns in the various subsystems.

Muons are MIPs in the gas detectors with small multiple scattering, while hadronic particles

such as pions or kaons that have passed through the calorimeters will shower much more and

have a larger average multiple scattering angle. Once a muon has been identified, the track
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Figure 3.22: Left: Muon reconstruction efficiency vs. η. Right: Muon reconstruction ef-
ficiency vs. pT . These are for combined muons only, and show the high reconstruction
efficiency for muons in the dataset. From [188].

reconstruction can begin. The event information is broken up into different levels of data

objects, beginning with hits, then segments, roads, and finally tracks. The final output is

stored in a “container”. The combined muon reconstruction efficiency for a triggered muon

object is shown in Figure 3.22, and past the trigger threshold is better than 95%.

The MOORE algorithm first processes hits in the φ-plane. The toroid has minimal

bending in the φ direction and the track can be approximated as a straight line. The RPC,

TGC, and CSC φ hits build up the PhiSegments. The toroidal field bends in the Rz-plane;

however, over the distance of a single precision layer in the MS, such as one MDT or CSC

chamber, the bending power is negligible and can be approximated as a straight line. The

tubes that have hits reconstruct a straight line, and the pattern recognition uses the hits

inside a single layer to define a θ coordinate with respect to the straight line for each tube

center. These straight lines form CrudeRZSegments. With the two segments filled for the

event, MOORE loops over all PhiSegments, then over each CrudeRZSegment within the same

region as the chamber with the PhiSegments. The CrudeRZSegments are analyzed with a
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different pattern recognition algorithm to produce “fine” RZSegments. The RZSegments

and PhiSegments are then grouped into a road. If a road contains segments from more than

one layer, a fit is attempted to merge them together. If successful, the road is accepted

for further processing, otherwise the one-layer roads are used. The roads are then passed

on for further processing. The last phase is to make tracks. This loops over all the roads,

assigning all the hits from the precision chambers without trigger chambers (the inner and

outer layers) to that road. A correction is applied to account for the material inside the MS

which results in multiple scattering and energy loss. Each hit assigned to the road is then

accepted or rejected based on how much it contributes to χ2 of the track pattern recognition.

The tracks are the roads after rejecting high-residual hits and corrections due to material.

The tracks are filled based on their first measured point in the MS, with the parameters d0,

z0, φ, cot θ, and q/pT .

Muid uses the MOORE reconstructed muons in the MS, and matches them to the IP and

tracks in the ID. The first step uses the MOORE track, then extrapolates it back to the IP

through the magnetic field and detectors. Moving backwards through the calorimeters, the

energy loss is corrected as a parameterized function of η and pT and uses the energy deposited

in the calorimeters in the same η-φ region. It then finds the point of closest approach to

the IP and uses that point for basis of the track parameters. This is saved in the Muid SA

track container. If an ID track is in the same η-φ region, then a match is attempted. Tracks

are combined using hits from the sub-detectors of the ID, as Muid attempts to rebuild the

roads using the ID hit information. If the combined fit satisfies the χ2 probability cutoff,

the result is kept in the Muid CB track container. All of the information for the ID tracks

are also kept in their own container.

The resolution of the reconstructed muon tracks is discussed in Appendix E.
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Analysis Event Selection

One of the goals of ATLAS and the LHC is to search for, and hopefully find, new physics

beyond the Standard Model. There are a wide variety of models that describe possible new

physics, with hundreds of different analyses being performed at the experiments at the LHC

testing various examples. This thesis will describe one such search, Z ′ → ℓℓ. This search

reconstructs the dilepton invariant mass spectrum in both the electron and muon channels,

then tests it for peaks deviating from the SM prediction which would indicate the presence of

a new particle. The dilepton channel has traditionally been a fruitful avenue for discovering

new physics, such as the J/ψ meson and Z0 boson. The advantage of this search is that

the system is fully reconstructed with a well known and simulated SM background. This

search uses the 2012 data taking run of 8 TeV pp collisions at the LHC, with an integrated

luminosity of approximately 21 fb−1. This chapter describes how events are selected from

the ATLAS data set, and how the SM expectation is simulated and produced to compare to

the observed data.

137



CHAPTER 4. ANALYSIS EVENT SELECTION

4.1 Data & Monte Carlo Samples

There are two types of input files analyzed: data from the ATLAS detectors and Monte Carlo

(MC) samples that simulate the expected SM background and Z ′ signals. The data collected

at ATLAS undergoes several stages of processing to move from the individual hit information

for each event inside the sub-detectors to the final files that are analyzed in this thesis. The

MC samples involve several stages of simulation and processing before being analyzed. This

section will describe the simulation steps for MC samples, and the processing stages for both

Data and MC. The analysis is done using ROOT, a C++ based object-oriented data analysis

framework [193, 194, 195]. The Data and MC processing for ATLAS are done in the Athena

framework [196].

4.1.1 Processing Data

Processing the event information from the ATLAS detector into files usable for analysis

involves a huge amount of computing and networking, detailed in the ATLAS Computing

TDR [197] and the report on analysis computing for 2012 [198]. The output from the event

filter farm (the final stage of the trigger, see Section 3.4.1) raw data stream is saved to both

tape and disk storage at CERN (Tier-0), as well as distributed to the 12 Tier-1 sites around

the world so that two copies of the full raw dataset are maintained. The raw data contains the

hit information from each channel in the sub-detectors and is approximately 0.8 MB/event

in size. The raw data is reprocessed at the Tier-0 into Event Summary Data (ESD) files,

after reconstruction of the objects in the event. The size is approximately 0.5 MB/event

and these are also distributed to the Tier-1 sites. The ESD is designed so that direct access

to the raw files is not necessary. The format of ESDs are ROOT POOL (Pool Of persistent

Objects for LHC) files, intended for long-term storage. The ESDs are reprocessed into
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Analysis Object Data (AOD) files, which are reduced event representations with extraneous

information filtered out. This format contains physics objects such as electrons and muons as

well as event-level information such as trigger data. AODs are approximately 250 kB/event

and are also stored in ROOT POOL format. A full set of AODs are distributed to each

Tier-1 site. In addition to these data formats, there are TAG files that contain the metadata

information for each event, such as trigger information and identification of objects of interest

for analyses within an event. These files are only 1 kB/event and are designed for fast event

selection from analysis queries.

The AOD files are still quite large, have the entire dataset stored, and contain the full

event information. Most analyses are only interested in a subset of the full dataset and

only need some of the event information; for example this thesis requires two high-energy

leptons and only needs the information associated with those leptons. The AODs are further

processed into Derived Physics Data (DPD) files, now in their third iteration of formatting

called D3PDs. These files are only filled with physics objects and event-level information

with very limited detector-level information, for example the η value for each identified muon

or number of interaction vertices in the event. Analysis groups determine what information

should be stored in their set of D3PDs, with a large variety of D3PDs being processed from

the AODs. The D3PDs can range from 5-260 kB/event and are ROOT-readable files using

the TTree structure called ntuples. The data files used for this analysis are:

• data12 8TeV.run-number.physics Egamma.merge.NTUP ZPRIMEEE.*

• data12 8TeV.run-number.physics Muons.merge.NTUP ZPRIMEMM.*

The run numbers for 2012 range from 00200804-00216432. The “*” designates the merging

and reprocessing tags; the reprocessing tags used for this analysis are p1344 p1345 corre-

sponding to Athena release 17.2.7.x.
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A Good Runs List (GRL) is used to monitor the ATLAS detector’s status and remove

events when the relevant sub-detectors were not operational. For example if the cryostat for

the ECAL experienced a problem causing a portion to be off-line for part of a run, events

using the ECAL will not be included in the analysis. The GRLs used for the electron and

muon analyses are:

• data12 8TeV.periodAllYear DetStatus-v61-pro14-02 DQDefects-00-01-00 PHYS

StandardGRL All Good.xml,

• data12 8TeV.periodAllYear DetStatus-v61-pro14-02 DQDefects-00-01-00 PHYS

CombinedPerf Muon Muon.xml.

4.1.2 Monte Carlo Generation

The simulated data is produced over several stages and then reprocessed using the same

reconstruction algorithms as in the data samples. There are a variety of MC event genera-

tors that can perform these simulations in general, with different generators specializing in

different types of physics processes. The MC generators have as inputs the physics process

being simulated, the various parameters for the LHC environment such as the proton beam

energies, the PDF set being used, the QCD parameters for both the PDF and matrix am-

plitude calculation, and other phenomenological parameters. The MC generation begins by

calculating the cross section of the physics process being simulated by calculating the matrix

element, evaluating the PDF, estimating the phase space, etc. If the matrix elements are al-

ready known, they can be input as well. The generation then simulates the hard process that

takes the incoming particles from the protons through the physics process being simulated.

The physics process inputs will specify a set of intermediate particle(s), and, depending on

the samples being generated, will also specify the outgoing particles as well.
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The output of the generator is the four-momenta of the stable and semi-stable particles

outgoing from the simulated process. These are the particles that will be simulated passing

through the detector. The initial hard process will have just a few particles such as quarks,

gluons, leptons, or photons. The event generator will take these “bare” particles and evolve

them through parton-showers, hadronization, and decays of very short-lived particles. For

example, if the underlying process being simulated is top-quark pair-production (tt̄), the

initial top quarks will decay into b-quarks which hadronize into B mesons. The W bosons

from the initial top decay will themselves decay, and there can also be gluons radiated which

shower into soft jets. All of these particles are processed during the generator simulation;

the generator has the masses, lifetimes, and branching ratios of all the SM particles as

well as hypothesized particles from beyond the SM. The longer-lived particles with lifetimes

∼ 10−12−13 s, such as B mesons, D mesons, and τ leptons, can be simulated with either the

same generator or a special, separate generator that is interfaced with the initial generator.

In addition to the hard process, a varying number of other, softer interactions are simulated

to account for the multiple interactions that occur during one bunch crossing. The final

output includes all of the information about the underlying events as well as the stable and

long-lived particles that will interact with the detector.

The long-lived particles are then simulated passing through the detector. This is done

using GEANT4 (GEometry ANd Tracking) [199, 200, 201], an object-oriented, C++-based

software that is “a toolkit for the simulation of the passage of particles through matter”. A

team of physicists and programmers have input the entire ATLAS detector into GEANT4

[202], including all of the detectors, services, and inert materials. The behavior of the

particles such as multiple scattering, ionization, and photon conversion is done in GEANT4,

and the detector response is output. The simulated detector response is then digitized into

hits, and the trigger decisions are done using the same set of algorithms coded into the
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trigger menu. Customized digitization and triggering for MC event generation in ATLAS is

available in the Athena framework. After simulation of the detector response to an event,

the digitized hits undergo the same reprocessing as the data hits, from ESDs to AODs to

D3PDs for use in analyses. The output for MC files is typically ∼ 20% larger than the output

for standard data files due to keeping the “truth” information of the underlying simulated

event.

This analysis makes use of several MC generators for simulating the SM backgrounds and

expected Z ′ signals. Pythia [203] is a leading-order (LO) event generator, where the matrix

elements for the hard process are evaluated at LO and the parton-showers and hadronization

are done using a leading-log approximation that is estimated from empirical data. Pythia

can be interfaced with Photos [204] to more accurately simulate final state radiation (FSR),

which is the emission of a photon by a charged particle similar to the parton-shower in

QCD. Pythia is noted for being more accurate when simulating electro-weak processes.

Powheg [205] is a next-to-leading-order (NLO) event generator, where the hard process

is evaluated at NLO in QCD using the input PDF. While Powheg event generator does

have parton-shower and hadronization algorithms, it can be interfaced with Pythia for

this stage of the simulation [206]. MC@NLO [207] is another next-to-leading-order event

generator interfaced with Herwig [208, 209] for parton-showering and hadronization. The

multiple parton interactions simulation of the underlying event can be made more accurate

by including the Jimmy library [210]. Herwig also contains a LO event generator which

has been tuned to the ATLAS operating conditions [211].
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4.2 Z ′ Search Requirements

This search for a new particle in the dilepton spectrum interprets the possible finding as a

new, neutral, heavy, spin-1 gauge boson. Generically, this new particle will couple to all the

fermions in the SM in a vector/axial-vector coupling:

LZ′ ⊂ Z ′
µ

∑

i

f̄i
(
gV,i − gA,iγ

5
)
γµfi,

where the index i covers both quarks and leptons, and includes all the colors, flavors, and

chiralities (L & R) for each generation. The Z ′ can induce flavor-changing Z ′ currents with

non-diagonal fermion terms, although the bounds on this for charged fermions are very strict

[212]. There can also be mixing between a new Z ′ particle and the Z0 boson; however, this

has been measured in LEP I [213] and found to be quite small, with the mixing angle limited

to ΘZ-Z′ < 0.01 depending on the model analyzed. The values of gi will depend on the

theory from which the Z ′ is derived. For a Z ′ directly produced at a collider (through the

s-channel), the decay width into a fermion pair (when MZ′ ≫ mf ) is given by:

Γ(Z ′ → ℓℓ) =

[
∑

j

(
g2ℓ,V,j + g2ℓ,A,j

)

]

MZ′

12π
,

where the index j is the sum over colors and chiralities for the fermion flavor. This can also

be used to calculate the expected production cross section from the colliding quarks at tree

level by including the color factor and integrating over the PDF. Once the gi are known, the

production and decay of the Z ′ can be calculated and compared to experimental data.

The benchmark signal searched for is the Sequential Standard Model (SSM) Z ′. This

model has all of the same couplings to the fermions (both leptons and quarks) as the SM Z0

boson. Because the couplings are the same, the width of the new particle as a function of
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its mass is very similar to the Z0 boson, ∼3%. This is not a theoretically motivated model;

instead the limits placed on this model serve as a way to compare results from different

experiments. In addition to the SSM Z ′, limits are placed on a set of possible new particles

based on the E6 gauge group [214, 215]. The E6 gauge group is a possible GUT discussed

in Section 2.4.1. Labeling the two quantum charges associated with the two U(1)s ψ and χ,

the two heavy, neutral gauge bosons can mix under their interactions with the SM particle:

Z ′ = Z ′
ψ cos θψ-χ + Z ′

χ sin θψ-χ.

The Z ′ candidate is the lowest-mass mixed particle. The mixing angle θψ-χ can range from

−π/2 to π/2, with 0 corresponding to Z ′ = Z ′
ψ and π/2 corresponding to Z ′ = Z ′

χ. Limits

are also placed on four other models with varying mixing angles, θ = {−0.29π, 0.129π, 0.21π,

0.42π} and labeled Z ′
η, Z

′
S, Z

′
I , Z

′
N respectively. Each model couples differently to the quarks

and leptons in the SM and has a different width as a function of mass, ranging from 0.5%

for Z ′
ψ to 1.2% for Z ′

χ or Z ′
S.

The expectation for new physics from GUTs is that new particles will appear at a scale

higher than the electro-weak scale, therefore this search for Z ′ particles is in the high-mass

region above the Z0 peak. The search method uses the Z0 boson peak to calibrate and

normalize the SM background and analyses in the mass region from 130 GeV and above,

with an event selection optimized for acceptance and resolution of these high-energy leptons.

4.2.1 Expected Z ′ Signal

The Z ′ signal templates are derived from the Drell-Yan (DY) process simulated in Pythia8

with the MSTW2008LO PDF (Martin-Stirling-Thorne-Watt Parton Distribution Functions,

see Section 2.3.2) [85, 216]. The Pythia8 DY spectrum is generated in mass bins from 75 to
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>3000 GeV, with 16 samples in total with mass ranges {75-120, 120-250, 250-400, 400-600,

600-800, 800-1000, 1000-1250, 1250-1500, 1500-1750, 1750-2000, 2000-2250, 2250-2500, 2500-

2750, 2750-3000, 3000+}. Each sample contains ∼100,000 events, except the first sample

from 75-120 GeV which has ∼300,000 events. Each sample is produced separately, and is

called a “run” in the same terminology as the data taking of the real detector. The MC runs

for the Pythia8 samples are:

• mc12 8TeV.run-number.Pythia8 AUMSTW2008LO DYee mass.merge.

NTUP SMWZ.*

• mc12 8TeV.run-number.Pythia8 AUMSTW2008LO DYmumu mass.merge.

NTUP SMWZ.*

The run numbers range from 145963-145978 for the electron samples and 145979-145994 for

the muon samples. The reconstruction and processing tags are r3542 r3549 p1328. The high

statistics throughout the spectrum ensures accurate representation of the expected signal.

The signal templates are made by reweighting the DY spectrum from the Z0/γ∗ cross

section to the Z ′ cross section for each model. This is done with a 2-dimensional weighting

function:

W(mℓℓ, qin) =
|MZ′ |2
|MDY |2

. (4.1)

The inputs are the truth dilepton invariant mass mℓℓ and flavor of the incoming quark qin

that annihilates to form the Z ′. The couplings for the Z ′ are assumed to be universal across

different generations. The phase space and spin-dependence is expected to be the same for

both DY and Z ′. This weighting ignores the quantum mechanical interference that will take

place between two processes with the same incoming and outgoing states. The effects of
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interference are expected to be small for masses much larger than mZ . After specifying a

pole mass for the given Z ′ template, this weight can be calculated and applied event-by-

event for all the DY samples to form the expected signal. The signal template is the entire

dilepton mass spectrum being measured in the search, filled with what the Z ′ would appear

as in the mass plot. The signal templates are generated for the SSM Z ′ over the pole mass

range from 150-3500 GeV in steps of 50 GeV, for 68 mass points total. Some representative

signal templates for the SSM Z ′ can be seen in their respective channel sections below. The

electron signal templates are found in Figure 4.3, and the muon signal templates are found

in Figures 4.6.

The signal templates are used for the search and limit setting. In addition there are

also some smaller, dedicated samples of Z ′
SSM at fixed mass generated for validation, signal

studies, and visualization. These are generated with Pythia8 and the same MSTW2008LO

PDF, at mass points of {500, 1000, 1500, 2000, 2500, 3000} GeV and ∼20,000 events per

sample. The dedicated samples are:

• mc12 8TeV.run-number.Pythia8 AUMSTW2008LO Zprime ee SSMmass.

merge.NTUP SMWZ.*

• mc12 8TeV.run-number.Pythia8 AUMSTW2008LO Zprime mumu SSMmass.

merge.NTUP SMWZ.*

The run numbers range from 158019-158024 for the electron samples and 158025-158030 for

the muon samples, and the same reprocessing tags as the DY samples. These samples are

generated with interference with the SM DY process included, and have a cut-off at half the

pole mass to prevent the DY events from dominating the spectrum. To weight these events
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with respect to the standard Z ′ signals, Equation (4.1) becomes

W(mℓℓ, qin) =
|MDY+Z′|2
|MDY |2

.

By including the effects of interference, small discrepancies can be seen at the point of

maximal interference between the reweighted signal templates at a given pole mass and the

generated fixed-mass samples. See Figure 4.1 for the mass spectrum plot of these dedicated

signal samples compared to the reweighted template signal samples described above. This

could be recovered by including the angular information from the decay leptons (cos θ∗) in

the weighting function, but this effect has been ignored due to the negligible impact on the

analysis.

The production of the Z ′ must come from the partons inside the proton, therefore the

PDF choice made will have an effect on the expected cross section for the signal as a function

of mℓℓ. The eigenvectors for the PDF are each varied at the 90% C.L., as well as αS(mZ),

and the resulting change in expected cross section is measured. The Z ′ signal samples are

generated using the MSTW20008LO PDF set, which has 20 eigenvectors and their 68% and

90% C.L. values and the αS(mZ) variation. The nominal cross section value is calculated by

generating 100 K events using Pythia, then each eigenvector and αS is varied at their ±90%

values and the cross section is again estimated by generating 100 K events for each variation,

giving 42 total varied cross sections at each mass point. The asymmetric uncertainty is:

∆σ+ =

√
√
√
√

21∑

i=1

(
Max(σ+

i − σ0, σ
−
i − σ0, 0)

)2
,

∆σ− =

√
√
√
√

21∑

i=1

(
Max(σ0 − σ+

i , σ0 − σ−
i , 0)

)2
.
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Figure 4.1: Left: Dielectron invariant mass overlaid with dedicated 2000 GeV SSM sample
and reweighted signal template. Right: Dimuon invariant mass with the same histograms.
This shows the reweighting procedure reproduces the expected signal in the same way as the
dedicated samples. In both cases the interference with the SM DY background is included,
and both sets of samples follow the SM background in the 1000-1500 GeV range. For the
dedicated samples (the dark blue histogram), the production is cut-off at half the pole mass
value, 1000 GeV, leaving low mass tails below this value. From [217], Appendix I, Figure
99.

The values σ+
i and σ−

i are the cross sections from varying the ith parameter up or down, and

σ0 is the nominal value. The resulting variation is shown in Table 4.1. The PDF variation

could have potentially affected the signal acceptance as well, but variation in acceptance

was found to be < 0.2% for the 3000 GeV Z ′ signal and has been neglected. The PDF

uncertainty on the signal is not used in the search or limit-setting because it is already

included in the Drell-Yan systematic uncertainties, but it is included in the visualization to

denote the theoretical uncertainties on the Z ′ signal.
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4.2.2 Standard Model Backgrounds

The dominant backgrounds in the search for new physics in the dilepton channel are processes

with two real leptons in the final state. The largest such background is the Drell-Yan

process, the direct production of leptons through a Z0/γ∗. This process is described in

detail in Section 2.5. This background has the same initial and final states and therefore is

an irreducible background. The peak at the Z0 mass is used to normalize the MC estimated

background. There are also reducible backgrounds from top-quark and diboson production,

where one or both of the gauge bosons decay leptonically. All of these backgrounds are

simulated with other interaction vertices in the underlying event, due to other protons in

the bunches colliding. These other vertices contribute many soft particles to the event which

must be reconstructed and included, which is referred to as “pileup”. Figure 3.3 shows a

typical pileup situation with more than 20 vertices during a Z0 event. The detector response,

trigger efficiency, and reconstruction precision can all potentially depend on the pileup. The

MC events are re-weighted using a tool to ensure the pileup for each type of event is the

Z ′ mass Uncertainty using
[GeV] MSTW2008LO

200 +5.6% -4.7%
500 +4.0% -5.0%

1000 +6.8% -6.7%
1500 +11.0% -10.6%
2000 +17.6% -18.3%
2500 +30.1% -29.7%
3000 +42.5% -42.3%
3500 +51.6% -52.8%
4000 +62.1% -60.5%
4500 +71.1% -71.9%

Table 4.1: Uncertainty on Z ′ cross sections due to PDF and αS variations at the 90% C.L.
From Appendix F, Table 37 in [217].
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same as seen in data.

Drell-Yan

The Drell-Yan (DY) background is simulated with Powheg interfaced with Pythia8 for

parton-showering and hadronization, and uses the CT10 PDF (The Coordinated Theoretical-

Experimental Project on QCD Parton Distribution Function) [218]. The DY spectrum is

generated with 18 different samples over different bins in the invariant mass between 60 and

>3000 GeV, similar to the Pythia8 samples used for the signal generation. The mass ranges

are {60+, 110-120, 120-180, 180-250, 250-400, 400-600, 600-800, 800-1000, 1000-1250, 1250-

1500, 1500-1750, 1750-2000, 2000-2250, 2250-2500, 2500-2750, 2750-3000, 3000+}. The first

sample is an “unbinned”, inclusive simulation of pp → Z0/γ∗ + X → ℓℓ̄ + X, with a cutoff

of the dilepton invariant mass at 60 GeV and contains ∼30 million events. The samples are:

• mc12 8TeV.147806.PowhegPythia8 AU2CT10 Zee.merge.NTUP SMWZ.*

• mc12 8TeV.run-number.PowhegPythia8 AU2CT10 DYee mass.

merge.NTUP SMWZ.*

• mc12 8TeV.147807.PowhegPythia8 AU2CT10 Zmumu.merge.NTUP SMWZ.*

• mc12 8TeV.run-number.PowhegPythia8 AU2CT10 DYmumu mass.

merge.NTUP SMWZ.*

The run numbers range from 129503-129518 for the mass-binned electron samples and

129522-129538 for the mass-binned muon samples. The reconstruction and processing tags

are r3549 p1328. The 110-120 GeV samples contain ∼2.2 million events, the 120-180 GeV

samples contain ∼3.3 million events, and the rest of the samples all contain ∼100,000 events

each. The high statistics throughout the mass range ensures accurate simulation of the
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mℓℓ [GeV] 250 500 1000 1500 2000 2500 3000 3500 4000 4500
KNNLO = σNNLO

σNLO
1.049 1.065 1.071 1.076 1.096 1.121 1.136 1.149 1.189 1.238

Table 4.2: K-factors obtained for Powheg DY samples from FEWZ. From [217], Table 2.

spectrum. When joining the samples together to form the complete spectrum, a cut is ap-

plied to the unbinned sample on the truth-level dilepton invariant mass at 110 GeV to avoid

double-counting events in the range above this point.

The matrix elements for the events generated in Powheg are at NLO in QCD, therefore

the production cross section used to scale the MC to data is also at NLO. NNLO generators

are not yet available for this process, instead the NNLO QCD calculation for Z0/γ∗ pro-

duction is calculated using FEWZ (Fully Exclusive W and Z Production) [219] in the LHC

environment. The resulting cross section as a function of Q2 momentum transfer, or truth

dilepton invariant mass, is used to weight the generated events to NNLO. The ratio of the

NNLO to NLO cross sections are the weights used and are called mass-dependent K-factors.

The FEWZ corrections include NNLO QCD effects, NLO EW effects, real weak-boson emis-

sion, and photon-induced corrections. Final state radiation of a real photon (FSR) is already

accounted for using Photos; other corrections such as initial and final state photon virtual

photon emission which interferes with the amplitudes and real initial state radiation (ISR)

must be included. A table showing some of the K-factor weights is shown in Table 4.2.

See Appendix A for further details. The total cross section for Z0/γ∗ production has been

calculated to NNLO precision in the mass range above 60 GeV. The uncertainty on the cross

section 4% and is treated as a systematic error. The other systematic uncertainties for the

DY process associated with the PDFs are discussed in Appendix B.
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Top

The background due to top quark production is simulated using the MC@NLO event gener-

ator with the CT10 PDF set, with both tt̄ events and single-top t+W events included. The

generated events are interfaced with Jimmy to describe the multiple parton interactions and

Herwig to describe the parton-showering and hadronization. The samples are:

• mc12 8TeV.105200.McAtNloJimmy CT10 ttbar LeptonFilter.merge.NTUP SMWZ.*

• mc12 8TeV.108346.McAtNloJimmy AUET2CT10 SingleTopWtChanIncl.merge.

NTUP SMWZ.*

The reconstruction and processing tags are r3549 p1328. These are inclusive samples with

final states that have both electrons and muons, and are used in both analysis channels. The

samples are added together to form the total “Top” background.

The cross sections calculated in MC@NLO for the tt̄ process is 208.13 pb and for the

single-top process is 20.67 pb. These processes have been calculated to NNLO in QCD in

the LHC environment with a top quark mass of 172.5 GeV with the top++ 2.0 program

[220, 221, 222, 223, 224, 225], and includes the resummation of the NNLO leading-logarithmic

terms due to soft gluon radiation. The uncertainties due to the PDF set eigenvectors,

variations between PDF sets, value of αS(mZ), and renormalization and factorization scales

are included in the systematic uncertainty. The top quark mass is also varied by ±1 GeV,

and the resulting change in cross section is added in quadrature with the other systematic

uncertainties. The computed cross sections are 253±15 pb for tt̄ and 22.4 ± 1.5 pb for tW .

The computed cross sections are used to scale the Top backgrounds from the generated NLO

cross section values to the NNLO values and an overall systematic uncertainty of 6% is

assigned to the Top background.
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The generated MC samples for the Top background have no events at high dilepton in-

variant mass due to the limited phase space. To fill the entire mass range with an estimate of

the Top background, a binned χ2 fit is used over the low-to-mid mass range and extrapolated

to the full mass range. The primary fitting function used is the “dijet” function:

fdijet(x) = a · xb · xc·ln(x).

The fit range is varied over the range from 150 to 1000 GeV until the χ2 probability is closest

to 0.5, ensuring the errors from the fit parameters are similar to the statistical errors of the

Top distribution. The fit range is 191.5-733.9 GeV, and the fit is used from 561 GeV (the

stitching point) and beyond, see Figure 4.2. The fit is converted into a binned histogram,

and extended to the full mass range, then stitched onto the MC distribution. The parameter

errors from the fit are used to calculate “statistical” errors for the distribution using ROOT’s

built-in TH1:IntegralError() function. Two systematic errors are calculated for the fit ex-

trapolations. The first varies the starting and ending bins of the fit range, each changed by

±2 bins, resulting in 25 different fits. The systematic error assigned is the maximum differ-

ence between the central values of the nominal fit used and the 25 different varied fits. The

second systematic error is evaluated by using a different fit function, an “inverse monomial”

function:

fmono(x) =
a

(x+ b)c
.

This function is used to fit the Top distribution over the same range, and varied over the

same 25 bins. Again, the maximum difference between the central values and the nominal

fit is used as the systematic error. The two sources of error are added in quadrature to form

the full systematic error from the fits. This is combined with the systematic uncertainty due
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Figure 4.2: Left: The nominal fit for the Top background in the muon channel. The black
histogram is the Top background and statistical errors, the blue lines show the fit range, and
the pink dashed line is the stitching point. Right: The resulting final distribution is shown,
with the “statistical” errors in green and the combined errors in red.

to the Top cross section after the stitching point.

Diboson

The background due to diboson production is simulated using the Herwig event generator

with the CTEQ6L1 PDF set, at LO in QCD. There are three processes simulated, WW ,

WZ, and ZZ, with 2.5 M, 1 M, and 250 K events each, respectively. The samples are:

• mc12 8TeV.105985.Herwig AUET2CTEQ6L1 WW.merge.NTUP SMWZ.*

• mc12 8TeV.105986.Herwig AUET2CTEQ6L1 ZZ.merge.NTUP SMWZ.*

• mc12 8TeV.105987.Herwig AUET2CTEQ6L1 WZ.merge.NTUP SMWZ.*

The reconstruction and processing tags are r3549 p1328. These are inclusive, unbinned

samples with final states that have both electrons and muons and are used in both analysis

channels.

Again due to limited phase space at high dilepton invariant mass, these samples are

inadequate for the full mass range. Instead, dedicated samples with 10000 events each are
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created for each diboson channel and each lepton flavor covering the dilepton invariant mass

over the ranges 400-1000 GeV and 1000+ GeV, resulting in 12 new samples:

• mc12 8TeV.run-number.Herwig AUET2CTEQ6L1 diboson filter lepton mass-range.

merge.NTUP SMWZ.*

The run numbers are from 180451-180462, diboson can be WW , WZ, or ZZ, lepton flavor

can be ee or mm, and the mass range can be 400M1000 or 1000M. The reconstruction and

processing tags are r3549 p1328. When stitching the binned samples with the unbinned

samples, a cut is placed on the truth dilepton invariant mass in the unbinned samples to

only keep events below 400 GeV.

The diboson production cross section was calculated in Herwig at LO in QCD, however

these cross sections have all be computed to NLO [226]. The inclusive diboson cross sections

at NLO are 21.7 pb, 6.6 pb, and 1.6 pb for WW , WZ, and ZZ, respectively. These values

are used to scale the individual samples, then the samples are added together and treated

as a single “Diboson” background. The theoretical uncertainty is 5% for the cross section

values and is treated as a systematic uncertainty.

4.3 Electron Channel

The electron channel event selection and resulting invariant mass spectrum used in the search

for a Z ′ are detailed here. This includes the event selection, corrections applied to events, the

estimated backgrounds, and comparisons between the data and Monte Carlo background.
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4.3.1 Electron Event Selection

The events with a dielectron pair are selected using the following criteria, applied in the

order listed. “Flags” are simple TRUE/FALSE Boolean variables that indicate if an event

experienced an error during operations. The event-level cuts are applied first.

1. Event is in the Physics All Good Standard Good Runs List - ensures the detector is

in good working order.

2. Event passes trigger EF g35 loose g25 loose - ensures an electron/photon triggered the

event.

3. Event passes “incomplete event” flag, coreFlags - removes events with a trigger or

readout error.

4. Event has at least 2 electrons - only use events with at least one dielectron pair to

analyze.

5. Event has at least 1 primary vertex with at least 3 tracks - ensures a “hard process”

was recorded.

6. Event passes LAr Calorimeter error flag - removes events with an ECAL error or noise

burst.

7. Event passes Tile Calorimeter error flag - removes events with an HCAL error or noise

burst.

After the event-level cuts, the electron-level cuts are applied. The analysis loops over all the

electrons stored in an event, and there must be at least two electrons that pass the listed

cuts.
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8. Both electrons Author must be 1 or 3 - the algorithms used to reconstruct the electrons,

these are the standard E/gamma algorithms.

9. Both electrons η must be in the barrel or endcap and not in the forward endcap or the

“crack” region: |η| < 2.47 and 1.37 < |η| < 1.52 - ensures electrons are in the “best”

regions of the detector.

10. Both electrons pass electron object quality in the calorimeter flag - removes electrons

with bad cluster/shower shapes.

11. The leading electron must have pT > 40 GeV and the subleading electron must have

pT > 30 GeV - matches with trigger event filter requirements and removes low-energy

events.

12. Both electrons pass isEM medium++ identification - hit and shower shape variables

for electron identification.

13. The electron transverse energy is isolated in a cone of ∆R < 0.2. The total corrected

transverse energy of all other particles in this cone must be less than 0.007 × ET +

5.0 GeV for the leading electron. For subleading electrons, the total must be less than

0.022 × ET + 6.0 GeV. The values have been tuned studying MC samples to remove

electrons from hadronic decays in flight while maximizing signal to noise in the search

region.

After the electron-level cuts, the dielectron cuts are applied.

14. At least 2 electrons must pass the above cuts; if more than 2 pass the cuts, use the

event with the two electrons with the highest scalar summed pT . This ensures at

most one candidate per event, which is assumed as part of the search and limit-setting

framework.
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15. Invariant mass of final electron pair must have mee > 80 GeV - dielectron event is in

the normalization or search region.

There is not an explicit opposite-charge requirement due to the unknown charge misidenti-

fication rate for electrons at high momenta. The diphoton trigger EF g35 loose g25 loose is

used as it is based solely on ECAL information and does not require any hits in the ID. This

is to prevent any inefficiencies due to track matching at the Trigger or Event Filter stages.

The isEM medium++ requirement on both electrons includes the required hit information

in the ID and ECAL, see [227].

4.3.2 Electron Event Corrections

For data samples, the only correction applied is to the measured energy scale. A tool is

provided by the ATLAS E/gamma performance group to perform this correction [186]. The

tool uses the electron energy and η to rescale the measured value. The rescaling values are

calibrated using Z0 peak data.

In Monte Carlo samples, four different corrections are applied. The first is a smearing of

the MC electron energy to obtain the same energy resolution observed in data [186]. This

is done with the same tool as the data energy rescaling. The second is a reweighting of the

MC event based on the ET and η of the two electrons in the event. Small differences in the

electron reconstruction and identification efficiency between data and MC as a function of

η and ET have been measured. The E/gamma performance group provides a tool to apply

scale factors [228] to bring them into better agreement. The third and fourth corrections are

two other scale factors, one for the isolation requirement and one for the trigger item used

in event selection. Both are consistent with 1.00 to within 1%. A full discussion of the scale

factors can be found in Appendix C.
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4.3.3 Electron Z ′ Signal

The electron channel expected Z ′ signal templates are in Figure 4.3. These are created by

the procedure outlined in Section 4.2.1. The global acceptance for the SSM Z ′ over the mass

range between 150 and 3500 GeV is also shown.
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Figure 4.3: Z ′ signal templates at representative mass points for the dielectron selection
(left), and the detector acceptance times efficiency for the expected signal (right).

4.3.4 Electron Background Estimation

The total SM background estimation for the electron channel is done in two parts. The first

part is the “real” background due to two real electrons being produced in the event. This is

estimated using generated Monte Carlo samples. The second part is the “fake” background

due to one or more jets in an event “faking” the signal of an electron. This is estimated

using a data-driven method. The two parts are then added together to form the expected

total background that will be compared to the data.
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Real Dielectron Backgrounds

The SM background due to two real electrons is dominated by the three processes discussed

in Section 4.2.2: Drell-Yan, Top, and Diboson. These are MC events, where a truth-level

cut is applied to only keep events with at least two true electrons in order to prevent double-

counting with the fake dielectron background. After scaling the different backgrounds by

their calculated cross sections to a nominal integrated luminosity of 1 fb−1, the samples are

added together and scaled to the expected luminosity. In both the total MC and the data

(after including the events due to fake electrons, see below), the number of events in the

invariant mass window from 80-110 GeV are added up, and the full MC mass distribution

is rescaled to match the data. The scaling is found to be 1.021, within the luminosity

uncertainty of 2.8%.

Fake Dielectron Backgrounds

The background due to at least one electron being misidentified from a jet in the calorimeter

is estimated using the “fake factor” or “matrix” method. The idea is to loosen some of

the electron identification criteria and estimate the rate at which the looser objects are

reconstructed as electrons. This is a data-driven method and uses the full 2012 data set of

∼21 fb−1. The details for this estimation can be found in Appendix D.

4.3.5 Electron Data - Monte Carlo Comparison

The dielectron invariant mass spectrum after event selection is shown in Figure 4.4. This

includes the data and expected SM background, and shows the ratio between the two with

the systematic errors included. In addition, the SSM Z ′ model at two mass points are

overlaid to demonstrate possible signal shape. The pT distributions for the leading and

160



CHAPTER 4. ANALYSIS EVENT SELECTION

subleading electrons are shown in Figure 4.5. The electron event selection numbers over 7

mass bins is listed in Table 4.3, including statistical, systematic, and combined errors for

each background.
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Figure 4.4: The dielectron invariant mass spectrum after event selection. The binning is constant in log(mee).
The Top and Dijet & W+jets backgrounds have been fit and extrapolated to cover the full mass range. Two
representative Z ′ signals have been overlaid. The ratio in the lower plot shows the agreement between the observed
and expected distributions. The error bars on the data points are statistical and the band in the ratio plot is the
combined systematic error.
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mee [GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500

Z0/γ∗ 4243000± 4000 121600± 400 13980± 70 1322± 7 70.03± 0.27 10.01± 0.04 0.00823± 0.00004
Top 4330± 240 8200± 600 2900± 500 200± 80 3.1± 0 0.16± 0 0.00005± 0
Diboson 6650± 40 1880± 21 680± 13 94.4± 1.8 5.90± 0.21 1.035± 0.024 0.00006± 0.00005
Dijet, W+jet 1300± 600 3930± 230 1290± 190 230± 50 9± 0 0.9± 0 0.0022± 0
Total 4256000± 4000 135600± 700 18800± 500 1850± 90 87.99± 0.35 12.10± 0.05 0.01051± 0.00006
Data 4257744 136200 18986 1862 99 9 0

mee [GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500

Z0/γ∗ 4240000± 230000 122000± 7000 14000± 800 1320± 70 70± 5 10.0± 1.0 0.008± 0.004
Top 4330± 260 8200± 500 2850± 170 198± 13 3.1± 0.8 0.16± 0.08 0.00005± 0.00009
Diboson 6650± 330 1880± 90 680± 33 94± 5 5.90± 0.29 1.03± 0.05 0.00006± 0.000003
Dijet, W+jet 1260± 240 3900± 800 1290± 260 230± 50 9.0± 2.3 0.9± 0.5 0.002± 0.004
Total 4260000± 230000 136000± 7000 18800± 800 1850± 80 88± 5 12.1± 1.1 0.011± 0.005
Data 4257744 136200 18986 1862 99 9 0

mee [GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500

Z0/γ∗ 4240000± 230000 122000± 7000 14000± 800 1320± 70 70± 5 10.0± 1.0 0.008± 0.004
Top 4300± 400 8200± 700 2900± 500 200± 80 3.1± 0.8 0.16± 0.08 0.00005± 0.00009
Diboson 6650± 330 1880± 90 680± 40 94± 5 5.9± 0.4 1.03± 0.06 0.00006± 0.00005
Dijet, W+jet 1300± 700 3900± 800 1290± 320 230± 70 9.0± 2.3 0.9± 0.5 0.002± 0.004
Total 4260000± 230000 136000± 7000 18800± 1000 1850± 120 88± 5 12.1± 1.1 0.011± 0.005
Data 4257744 136200 18986 1862 99 9 0

Table 4.3: Dielectron event yield tables with statistical (top), systematic (middle) and total (bottom) uncertainties.
The first column is used to normalize the MC total to the observed data total.
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Figure 4.5: Leading (left) and subleading (right) electron kinematic distributions after event
selection. The top row are the pT distributions, the middle row are the η distributions, and
the bottom row are the φ distributions.

164



CHAPTER 4. ANALYSIS EVENT SELECTION

4.4 Muon Channel

The muon channel event selection and resulting invariant mass spectrum used in the search

for a Z ′ are detailed here. This includes the event selection, corrections applied to events, the

estimated backgrounds, and comparisons between the data and Monte Carlo background.

4.4.1 Muon Event Selection

The events with a dimuon pair are selected using the following criteria, applied in the order

listed. The event-level cuts are applied first.

1. Event is in the Muon Combined Performance Good Runs List - ensures the muon

tracking portion of the detector is in good working order.

2. Event passes “incomplete event” flag, coreFlags - removes events with a trigger error.

3. Event passes trigger EF mu24i tight OR EF mu36 tight - ensures a muon triggered

the event.

4. Event has at least 1 primary vertex with at least 3 tracks - ensures a “hard process”

was recorded.

After the event-level cuts, the muon-level cuts are applied. In each event there must be at

least two muons that pass the listed cuts.

5. Muons must be Muid combined - reconstruction with tracks in both the MS and ID.

6. Muons must have pT > 25 GeV - matches with trigger event filter requirements and

removes low-energy events.

7. Muons must pass hit requirements in the ID - ensures well-measured track in the ID.
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8. Muons must have a transverse impact parameter d0 within 0.2 mm of the primary

vertex - ensures muons come from the hard process and reduces cosmic ray background.

9. Muons must have a longitudinal impact parameter z0 within 1.0 mm of the primary

vertex - ensures muons come from the hard process and reduces cosmic ray background.

10. Muons must be isolated in a cone of ∆R < 0.3 with the transverse momenta of all

other particles in the cone totaling less than 5% of the muon pT - reduces background

from hadronic decays.

11. Muons must pass hit requirements in the MS - ensures well-measured track in the MS.

After the muon-level cuts, the dimuon cuts are applied.

12. At least 2 muons must pass the above cuts.

13. Dimuon pairs are formed from opposite-sign muons; if more than one pair can be

formed, use the pair with the highest summed pT . This ensures at most one candidates

per event, which is assumed as part of the search and limit-setting framework.

14. Invariant mass of final muon pair must have mµµ > 80 GeV - the dimuon event is in

the normalization or search region.

Details about the ID and MS hit requirements are listed below, based on the recommen-

dation of the Muon Combined Performance group (MCP). There are two different selection

criteria for the MS hits with different resolutions for the expected Z ′ signal, resulting in two

muon channels used in this search. The “tight” muon channel uses the standard selection for

both muons labeled the “tight” muon channel. The “loose” muon channel uses a modified

selection in the MS only for the second muon to increase the detector acceptance. These

selections are described below, with further details found in Appendix E.
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Inner Detector Hit Requirements

The hit requirements in the ID as recommended by the MCP are required by all muons in

the event selection. These are:

• At least 1 BLayer hit, ignoring dead sensors.

• At least 1 Pixel hit, including dead sensors.

• At least 5 SCT hits, including dead sensors.

• No more than 2 dead sensors crossed in Pixel or SCT.

• If 0.1 < |η| < 1.9, at least 6 TRT hits including TRT outliers, and outlier fraction

< 0.9.

• If |η| < 0.1 OR |η| > 1.9, if there are at least 6 TRT hits including TRT outliers,

require outlier fraction < 0.9. Otherwise, no TRT requirement.

Standard Muon Spectrometer Hit Requirements

The standard hit requirements in the MS as recommended by the MCP are:

• Three-station hit requirements must satisfy one of the following:

– At least 3 hits in each layer of BI, BM, BO drift chambers.

– At least 3 hits in each layer of EI, EE, EM drift chambers.

– At least 3 hits in each layer of EI, EM, EO drift chambers.

– At least 3 hits in each layer of EM, EO drift chambers AND at least 2 “unspoiled”

eta hits in the CSC chambers.
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• At least 1 φ hit in 2 layers of RPC/TGC/CSC chambers.

• No hits in the BIS7/8 or BEE chambers.

• The significance between the pT measured in the ID standalone track and the MS

standalone track must be less than 5.0. The error used is the estimated track fit

covariance.

significance =
pIDT − pMS

T
√

σ2
pID
T

+ σ2
pMS
T

< 5.0. (4.2)

These requirements are used for both muons in the tight channel and one muon in the loose

channel. Between 2011 and 2012 data taking at ATLAS, one complete side of EE chambers

was installed on the C side and 3 large EE chambers were installed on the A side, which led

to a 15% gain in relative acceptance for the expected Z ′ signal. Details of these chambers’

performance can be found in Appendix E.

Two-Station Muon Spectrometer Hit Requirements

The two-station hit requirements in the MS are:

• At least 5 hits in the BI and BO drift chambers.

• At least 1 φ hit in 1 layer of RPCs.

• No hits in the BIS7/8 or any endcap chambers.

• No hits in the following barrel towers, which are excluded due to residual misalignment:

– Sectors 4 or 6, with |η| > 0.85.

– Sector 9, with 0.2 < |η| < 0.35.
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– Sector 13, with 0.0 < |η| < 0.2.

• The significance, defined above in Equation 4.2, between the pT measured in the ID

standalone track and the MS standalone track must be less than 3.0. The error used

is the estimated track fit covariance.

In this analysis, the loose channel requires a selected two-station muon must be paired with

a three-station muon of the opposite charge. The higher hit requirement in the BI and BO

chambers allows for a better measurement of the angle of the track segment with respect to

the primary vertex. The BI and BO chambers requirement allows for the maximum amount

of total bending between measurements due to the magnetic field. This improves the two-

station performance, although the resolution remains worse than for three-station selection

muons. See Appendix E for details. There is an 8% gain in relative acceptance for the

expected Z ′ signal by including these muons.

4.4.2 Muon Event Corrections

No corrections are applied to muons in the data. In the Monte Carlo events, a correction

is applied to the pT to obtain the same momentum resolution observed in data. A tool is

provided by the Muon Combined Performance group to perform this correction [229]. This

correction “smears” the simulated muon momentum in both the ID and MS based on the

pT and η of the muon. The smearing parameters are calibrated using Z0 → µµ peak data.

A full discussion of muon resolution and smearing can be found in Appendix E.

4.4.3 Muon Z ′ Signal

The muon channel expected Z ′ signal templates for the tight and loose channel are in Figure

4.6. These are created by the procedure outlined in Section 4.2.1. The global acceptances
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for the SSM Z ′ over the mass range between 150 and 3500 GeV are also shown for the two

channels.
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Figure 4.6: Left: Z ′ signal templates at representative mass points. Right: The detector
acceptance times efficiency for the expected signal. Top: Tight channel. Bottom: Loose
channel.

4.4.4 Muon Background Estimation

The total background estimation for the muon channel is done solely through generated

Monte Carlo samples. The “fake” rate for single muons has been estimated to be less than

1 part in 5× 10−4 at pT = 20 GeV, and improves with pT . This is a negligible effect for this
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analysis.

Real Dimuon Backgrounds

The Standard Model background due to two real muons is dominated by the three processes

discussed in Section 4.2.2: Drell-Yan, Top, and Diboson. After scaling the different back-

grounds by their cross sections to a nominal luminosity of 1 fb−1, the samples are added

together and scaled to the expected luminosity. In both the total MC and the data, the

number of events in the invariant mass window from 80-110 GeV are added up, and the full

MC mass distribution is rescaled to match the data. The scaling is found to be 0.976 in the

tight channel, within the luminosity uncertainty of 2.8%. The scaling is found to be 0.921

in the loose channel, with more limited statistics in both data and MC.

4.4.5 Muon Data - Monte Carlo Comparison

The dimuon invariant mass spectrum after event selection for the tight selection channel is

shown in Figure 4.7 and for the loose selection channel in Figure 4.9. This includes the data

and expected SM background and shows the ratio between the two with the systematic errors

included. In addition, the SSM Z ′ model at two mass points are overlaid to demonstrate

possible signal shape. The pT , η, and φ distributions for the leading and subleading muons

for the tight selection channel are shown in Figure 4.8 and for the loose selection channel in

Figure 4.10. The muon event yields over 7 mass bins in the tight channel are listed in Table

4.4 and for the loose channel in Table 4.5, including statistical, systematic, and combined

errors for each background.

The total muon channel, the sum of the tight and loose channels, is included for visual

purposes but is not used in the search or limit setting. The invariant mass spectrum is in
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Figure 4.11, the leading and subleading pT distributions are in Figure 4.12, and the event

totals are listed in Table 4.6.

172



C
H
A
P
T
E
R

4
.

A
N
A
L
Y
S
IS

E
V
E
N
T

S
E
L
E
C
T
IO

N

90100 200 300 400 1000 2000 3000

E
ve

nt
s

-310

-210

-110

1

10

210

310

410

510

610

710
 InternalATLAS
 Tight Searchµµ →Z’ 

-1 L dt = 20 fb∫
 = 8 TeVs

Data 2012

*γZ/

Top

Diboson

Z’ (1500 GeV)

Z’ (2500 GeV)

 [GeV]µµm
90100 200 300 400 500 1000 2000 3000 4000

O
bs

er
ve

d/
E

xp
ec

te
d

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Figure 4.7: The dimuon invariant mass spectrum in the tight channel after event selection. The binning is constant
in log(mµµ). The Top background has been fit and extrapolated to cover the full mass range. Two representative
Z ′ signals have been overlaid. The ratio in the lower plot shows the agreement between the observed and expected
distributions. The error bars on the data points are statistical and the band in the ratio plot is the combined
systematic error.
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mµµ[GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500
Z0/γ∗ 4762000± 9000 105000± 1000 10200± 600 900± 70 46± 4 6.7± 0.8 0.029± 0.015
Top 4100± 200 6600± 500 2100± 400 140± 80 2.6± 0.5 0.14± 0.05 0± 0
Diboson 6600± 200 1430± 160 490± 130 61± 15 4.0± 2.1 0.65± 0.30 0.0018± 0.0018
Total 4773000± 9400 113000± 1100 12900± 700 1110± 120 52± 5 7.5± 0.9 0.031± 0.016
Data 4772951 112913 12681 1065 45 8 0

mµµ[GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500
Z0/γ∗ 4760000± 320000 105000± 7000 10200± 700 900± 60 45.7± 3.5 6.7± 0.8 0.029± 0.016
Top 4050± 240 6600± 400 2140± 130 145± 13 2.6± 1.5 0.14± 0.13 0± 0
Diboson 6560± 330 1430± 70 492± 25 61± 3 3.95± 0.20 0.646± 0.032 0.0018± 0.0001
Total 4770000± 320000 113000± 7000 12900± 700 1110± 60 52± 4 7.5± 0.8 0.031± 0.016
Data 4772951 112913 12681 1065 45 8 0

mµµ[GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500
Z0/γ∗ 4760000± 320000 105000± 7000 10200± 1000 900± 100 46± 5 6.7± 1.1 0.029± 0.022
Top 4050± 320 6600± 600 2100± 400 140± 80 2.6± 1.6 0.14± 0.14 0± 0
Diboson 6560± 370 1430± 170 490± 130 61± 16 4.0± 2.1 0.65± 0.30 0.0018± 0.0018
Total 4770000± 320000 113000± 8000 12900± 1000 1110± 130 52± 6 7.5± 1.2 0.031± 0.023
Data 4772951 112913 12681 1065 45 8 0

Table 4.4: Dimuon event yield tables for the tight channel with statistical (top), systematic (middle) and total
(bottom) uncertainties. The first column is used to normalize the MC total to the observed data total.
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Figure 4.8: Leading (left) and subleading (right) distributions in the muon tight chan-
nel after event selection. The top row are the pT distributions, the middle row are the η
distributions, and the bottom row are the φ distributions.
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Figure 4.9: The dimuon invariant mass spectrum in the loose channel after event selection. The binning is constant
in log(mµµ). The Top background has been fit and extrapolated to cover the full mass range. Two representative
Z ′ signals have been overlaid. The ratio in the lower plot shows the agreement between the observed and expected
distributions. The error bars on the data points are statistical and the band in the ratio plot is the combined
systematic error.
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mµµ[GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500
Z0/γ∗ 302000± 2300 6510± 230 600± 150 58± 18 3.4± 1.1 0.55± 0.23 0.005± 0.004
Top 340± 60 500± 120 160± 80 12.9± 2.9 0.37± 0.25 0.03± 0.04 0± 0
Diboson 440± 40 100± 40 33± 24 3.0± 2.2 0.24± 0.22 0.05± 0.04 0.0006± 0.0006
Total 302800± 2300 7110± 270 790± 170 74± 18 4.0± 1.2 0.63± 0.25 0.005± 0.005
Data 302788 7098 798 57 4 0 0

mµµ[GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500
Z0/γ∗ 302000± 20000 6500± 500 600± 40 58± 4 3.36± 0.26 0.55± 0.06 0.0046± 0.0025
Top 344± 21 500± 30 158± 11 13± 7 0.4± 0.4 0.03± 0.04 0± 0
Diboson 444± 22 98± 5 32.6± 1.6 3.00± 0.15 0.243± 0.012 0.0471± 0.0024 0.00059± 0.00003
Total 303000± 20000 7100± 500 790± 40 74± 8 4.0± 0.5 0.63± 0.08 0.0052± 0.0026
Data 302788 7098 798 57 4 0 0

mµµ[GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500
Z0/γ∗ 302000± 21000 6500± 500 600± 150 58± 18 3.4± 1.1 0.55± 0.23 0.005± 0.005
Top 340± 60 500± 120 160± 80 13± 8 0.4± 0.5 0.03± 0.06 0± 0
Diboson 440± 50 100± 40 33± 24 3.0± 2.2 0.24± 0.22 0.05± 0.04 0.0006± 0.0006
Total 303000± 21000 7100± 500 790± 180 74± 20 4.0± 1.3 0.63± 0.26 0.0053± 0.0053
Data 302788 7098 798 57 4 0 0

Table 4.5: Dimuon event yield tables for the loose channel with statistical (top), systematic (middle) and total
(bottom) uncertainties. The first column is used to normalize the MC total to the observed data total.
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Figure 4.10: Leading (left) and subleading (right) distributions in the muon loose chan-
nel after event selection. The top row are the pT distributions, the middle row are the η
distributions, and the bottom row are the φ distributions.
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Figure 4.11: The dimuon invariant mass spectrum in the tight + loose channel after event selection. The
binning is constant in log(mµµ). The Top background has been fit and extrapolated to cover the full mass range.
Two representative Z ′ signals have been overlaid. The ratio in the lower plot shows the agreement between the
observed and expected distributions. The error bars on the data points are statistical and the band in the ratio
plot is the combined systematic error.
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mµµ[GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500
Z0/γ∗ 5064300± 9700 111500± 1000 10800± 600 960± 80 49± 4 7.3± 0.8 0.034± 0.015
Top 4400± 220 7070± 470 2300± 400 160± 80 3.0± 0.5 0.18± 0.06 0± 0
Diboson 7010± 170 1530± 160 520± 130 64± 15 4.2± 2.1 0.69± 0.30 0.0024± 0.0019
Total 5075700± 9700 120100± 1100 13700± 800 1180± 120 56± 5 8.2± 0.9 0.036± 0.017
Data 5075739 120011 13479 1122 49 8 0

mµµ[GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500
Z0/γ∗ 5060000± 320000 111000± 7000 10800± 700 960± 60 49± 3 7.3± 0.8 0.034± 0.012
Top 4400± 240 7100± 400 2300± 130 158± 14 3.0± 1.6 0.18± 0.14 0± 0
Diboson 7010± 330 1530± 70 524± 25 64.0± 3.0 4.20± 0.20 0.693± 0.032 0.0024± 0.0001
Total 5080000± 320000 120000± 7000 13700± 700 1180± 60 56± 4 8.2± 0.8 0.036± 0.016
Data 5075739 120011 13479 1122 49 8 0

mµµ[GeV] 80 - 110 110 - 200 200 - 400 400 - 800 800 - 1200 1200 - 3000 3000 - 4500
Z0/γ∗ 5060000± 320000 111000± 8000 11000± 1000 1000± 100 49± 5 7.3± 1.1 0.034± 0.022
Top 4400± 330 7100± 600 2300± 400 160± 80 3.0± 1.7 0.18± 0.15 0± 0
Diboson 7010± 370 1530± 180 520± 130 64± 16 4.2± 2.1 0.69± 0.30 0.0024± 0.0019
Total 5080000± 320000 120000± 8000 13700± 1100 1180± 130 56± 6 8.2± 1.2 0.036± 0.023
Data 5075739 120011 13479 1122 49 8 0

Table 4.6: Dimuon event yield tables for the tight + loose channel with statistical (top), systematic (middle)
and total (bottom) uncertainties. The first column is used to normalize the MC total to the observed data total.
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Figure 4.12: Leading (left) and subleading (right) distributions in the muon tight + loose
channel after event selection. The top row are the pT distributions, the middle row are the
η distributions, and the bottom row are the φ distributions.
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4.5 Systematic Uncertainties

The MC is normalized to the data in the Z0 peak region which cancels all mass-independent

systematic errors such as the total luminosity error. However, there are still mass-dependent

systematic uncertainties which must be accounted for. These are typically small in the

low-mass range and grow at higher mass. The systematics are incorporated using nuisance

parameters in the likelihood function. Systematic uncertainties with an error less than 3%

of the total background at 3 TeV are ignored. This is to limit the amount of computation

needed and because of the negligible effect small systematics have on the search and limit

setting.

The different sources of uncertainty are broken into groups between theoretical and ex-

perimental errors. The theoretical systematic uncertainties were discussed in Section 4.2.2.

The dominant theoretical uncertainties come from the PDF used in calculating the various

processes, and this is discussed in detail in Appendix B. The list of theoretical systematic

uncertainties considered is:

• Z0/γ∗ total cross section uncertainty, estimated at 4% of the total DY contribution.

• PDF uncertainty, propagated from the eigenvector set errors, using MSTW2008NNLO

as the nominal PDF. This is split into 4 groups based on their behavior as a function

of invariant mass.

• PDF choice uncertainty, envelope comparing central values of different PDFs to the

nominal PDF.

• PDF scale uncertainty, calculated by varying the factorization and renormalization

scale in the nominal PDF.
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• PDF αS(mZ) uncertainty, calculated by varying αS in the nominal PDF.

• Electro-Weak uncertainty, propagated from the errors in the rescaling of the DY MC

to include the additional EW effects. This is split into 2 groups based on their origin:

higher-order and photon-induced corrections.

• Top total cross section uncertainty, estimated at 6% of the total Top contribution.

• Diboson total cross section uncertainty, estimated at 5% of the total Diboson contri-

bution.

All of these have been evaluated as a function of the true invariant mass of the system.

When including the systematics in the search and limit setting, they should be applied as a

function of the reconstructed invariant mass. Each event in the MC has saved the true and

reconstructed invariant mass, so the proper systematic error can be evaluated event-by-event.

The cumulative effect of the systematic variation on the expected background can then be

estimated. This is done by using three histograms. The first histogram is the nominal

reconstructed invariant mass spectrum of the expected background. The second and third

histograms are the reconstructed invariant mass spectra after varying one of the systematics

up and down as a function of the true mass of the MC simulation. Calculating the ratios

of the second and third histograms to the first, evaluated bin-by-bin in the reconstructed

invariant mass and keeping the largest % change, is the systematic error as a function of

the reconstructed invariant mass. See Figure 4.13 for a comparison between the systematic

error evaluated as a function of the true and reconstructed invariant mass.

The experimental systematic uncertainties come from a variety of sources and are listed

here:

• Beam energy uncertainty, estimated at 0.65% of 4 TeV/beam [230]. This is propagated
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Figure 4.13: PDF Choice systematic uncertainty as a function of invariant mass in the
tight dimuon channel. This shows the difference between the systematic error evaluated
as a function of the true and reconstructed invariant mass. The black histogram is the %
systematic error evaluated at the true invariant mass. The red histogram is the % systematic
error evaluated at the reconstructed invariant mass, using the procedure outlined in the
text. The red histogram is “smeared” due to the worsening resolution of the high-pT muons
from the larger invariant mass events. Before the start of the search region at 130 GeV
the reconstructed systematic error is not needed (red histogram) and is set to zero. The
reconstructed systematic error histograms are computed for each systematic error in each
channel.

to the DY background using VRAP with the MSTW2008NNLO PDF to compute the

change in nominal DY production and is treated like a theoretical systematic. See

Appendix B.

• Electron fake rates uncertainty from QCD multi-jets and W+jets, extrapolated to high

invariant mass from fits by increasing the background by +1σ. See Appendix D.

• Muon resolution is measured at the Z0 peak and the uncertainties are extrapolated to

high-pT and invariant mass. See Appendix E.

184



CHAPTER 4. ANALYSIS EVENT SELECTION

• Top background uncertainty, calculated by systematically varying the Top background

fits to high invariant mass.

These are known in terms of the reconstructed invariant mass and apply to the total back-

ground.

The systematic uncertainties are only applied to the expected SM background, with the

exception of the overall normalization (the DY cross section), in a procedure described in

Section 5.2. The values of the systematic errors at the benchmark invariant mass points of

1, 2, and 3 TeV are listed in Table 4.7. In particular, due to the small contribution of the

Diboson and Top backgrounds to the overall background, even though their systematics are

relatively large, their contribution to the total systematic uncertainty is considered negligible.

1 TeV 2 TeV 3 TeV
Source Electron Muon Electron Muon Electron Muon
DY Cross Section 4% 4% 4% 4% 4% 4%
PDF Variation 5% 5% 11% 12% 30% 17%
PDF Choice — — 7% 6% 22% 12%
αS — — 3% 3% 5% 4%
Electro-Weak — — — 3% 4% 3%
Photon-Induced — — 3% 3% 6% 4%
Beam Energy — — — 3% 5% 3%
Fake Jets 3% N/A 5% N/A 21% N/A
Resolution N/A 3% N/A 3% (7%) N/A 8% (13%)
Diboson — — — — — —
Top — — — — — —
Total 7% 7% 15% 15% (16%) 44% 24% (26%)

Table 4.7: A summary of the systematic uncertainties in the electron and muon channels at
three mass points. A “-” indicates the uncertainty is negligible (below 3%), while an “N/A”
indicates the uncertainty does not apply to that channel. For the muon channel the listed
terms are for the tight channel and the terms in parentheses are for the loose analysis, if it
differs.
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Chapter 5

Z ′ Search & Limit Setting

The search for new physics begins with the expected background from the Standard Model

and tests the observed data for deviations from that expectation. The SM expectations

were calculated in the previous chapter, as well as possible signals for new Z ′ particles. This

chapter will describe how the input invariant mass spectra from the expected SM background,

Z ′ signal templates, and observed data are analyzed to perform this search as well as the

results.

5.1 History - Prior Z ′ Searchs to Now

The dilepton channel has been a common search mode for new physics for decades, with

the successful searches contributing to the completion and understanding of the SM. After

the direct production and observed decay of the Z0 boson in the dilepton channel at UA1

and UA2 [140, 141], many experiments have searched for new Z ′ particles in this channel at

higher energies. Some of these results are shown in Table 5.1 at the end of this section.

The most recent and stringent results come from the LHC experiments ATLAS and CMS.
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The ATLAS direct search Z ′ → ℓℓ used the 2011 data set, and combined both the ee and

µµ channels with 5.0 fb−1 of data in both channels collected at
√
s = 7 TeV. The lower

mass limit on an SSM Z ′ was set at 2220 GeV at the 95% C.L. [8]. CMS has also performed

this direct search, Z ′ → ℓℓ combining the ee and µµ channels. Their most recent results

combined the 5 fb−1 at
√
s = 7 TeV 2011 data with 4 fb−1 at

√
s = 8 TeV 2012 data. The

lower mass limit on an SSM Z ′ was set at 2590 GeV at the 95% C.L. [9].

The previous set of direct searches was performed by DØ and CDF, the two primary

experiments at the Tevatron. Each performed a direct search in both the e+e− and µ+µ−

channels. The DØ search in the ee channel put a lower mass limit of 1023 GeV limit on an

SSM Z ′ at the 95% C.L. [4], and in the µµ channel a lower mass limit of 680 GeV [5]. The

CDF search in the ee channel found a lower mass limit of 963 GeV [6] and in the µµ channel

a lower mass limit of 1071 GeV [7], both for an SSM Z ′.

Besides direct searches such as those at the Tevatron, there have been indirect searches

for new particles coupling to lepton pairs. At LEP II, four different experiments (ALEPH,

DELPHI, L3, and OPAL) performed measurements of the e+e− → ff̄ differential cross sec-

tion, where the fermions can be quarks or leptons. This search used the Forward-Backward

asymmetry (AFB), which compares the outgoing fermion/anti-fermion directions to the in-

coming electron/positron directions (cos θ, the polar angle between the incoming electron

and outgoing fermion). The SM is a chiral theory with different couplings for the left- and

right-handed particles, so that after averaging over both chiralities the different couplings

determine the preferred directions for the outgoing fermion/anti-fermion compared to the

incoming electron/positron. A new particle such as a Z ′ would change the cross section

behavior as a function of cos θ at high energies. For example, by measuring the asymmetry

at an energy of
√
s = 33.5 GeV in the e+e− → µ+µ− channel, this type of analysis was

used with the JADE experiment data at the PETRA collider to constrain the mass of the
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Z0 boson before its direct production and measurement [231]. The LEP II result scans over

a larger energy range and combines many channels (ee after subtracting out Bhabha scat-

tering, with µµ & ττ in the lepton channel, and cc̄ & bb̄ in the heavy quark channel) and

measures the AFB for each one. These are all combined using the ZFITTER [232, 233, 234]

package and compared to the SM expectation. Any deviations in the asymmetry can be

interpreted as due to a new particle interfering with the Z0/γ∗ process. The constraints on

an SSM Z ′ from this search gives a lower mass limit of 1787 GeV [3].

In addition to the direct and indirect searches, there are searches for Z ′ particles in

other channels at both the Tevatron and the LHC experiments. Due to the lower precision

reconstructing the non-leptonic channels, these all have weaker mass limits than the dilepton

searches. In the leptonic channel, Z ′ → ττ has been searched for at CDF [235] and CMS

[236], but due to the τ decays having neutrinos, the limits are weaker. The hadronic decay

channel Z ′ → tt̄ has been studied at DØ [237], CDF [238], ATLAS [239], and CMS [240].

Decays to light quarks observed as jets have also been studied at CDF [241] and CMS [242].

The new Z ′ could also couple to the bosons in the EW theory, and searches for resonances

in the diboson channel Z ′ → W+W− have been performed at DØ [243] and CDF [244].
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Z ′ Model Mass Limit [GeV]
Experiment

√
s [TeV] Channel Data [fb−1] ψ N η I S χ SSM

LEP II 0.130-0.209 Indirect ∼2.8 481 — 434 — — 673 1787
DØ 1.96 Z ′ → eē 5.4 891 874 923 772 822 903 1023
DØ 1.96 Z ′ → µµ̄ 0.25 — — — — — — 680

CDF 1.96 Z ′ → eē 2.5 851 837 877 735 792 862 963
CDF 1.96 Z ′ → µµ̄ 4.6 917 900 938 817 858 930 1071

ATLAS 7.0 Z ′ → ℓℓ̄ 5.0 1790 1790 1870 1860 1910 1970 2220
CMS 7.0 & 8.0 Z ′ → ℓℓ̄ 5.3 & 4.1 2270 — — — — — 2590

Table 5.1: The observed 95% C.L. mass limits for a variety of Z ′ models from various experiments. The LEP II
results combine the output from the four experiments, each with an integrated luminosity of ∼700 pb−1. The full
combination and result is from Table 3.15 in [3]. The DØ results in the ee channel are from Table III in [4] and µµ
channel from [5]. The CDF results in the ee channel are from Table II in [6] and µµ channel from Table I in [7].
The ATLAS results combined the ee and µµ channels and are from Tables 5 & 6 in [8]. The CMS results combined
data from

√
s = 7 and 8 TeV and the ee and µµ channels, the results are from Table 2 in [9].
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5.2 Bayesian Search & Limit Setting

This search takes a Bayesian approach to determining whether or not a signal has been

observed, and in the absence of a signal, the lower limits placed on the signal mass. A note

on the search and limit setting procedures written for the ATLAS Exotics group can be

found here [245].

Bayes’ theorem states [246]:

P (A|B) =
P (B|A)P (B)

P (A)
,

where P (A|B) is the conditional probability of A occurring given B. This can heuristically be

derived from the probability of both A and B occurring and the definition of the conditional

probability:

P (A and B) = P (A|B)P (A) = P (B|A)P (B).

A note by Louis Lyons on Bayesian and Frequentist interpretations in particle physics and

how they differ can be found in [247]. In this search, we observe a distribution of measured

data and would like to know what this says about a parameter hypothesized from some new

physics, for example the production and decay of a Z ′ to leptons (σB)Z′ given the couplings

from a particular model. Bayes’ theorem cast in this form reads:

p((σB)Z′|data) = L(data|(σB)Z′) × π((σB)Z′). (5.1)

This is the form of Bayes’ theorem used in this analysis. The second term on the right-hand

side is prior probability density for this hypothesis and essentially contains what we do (or

don’t) know about this parameter before the measurement. The first term on the right is
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the likelihood function of observing this particular accumulation of data given the value of

the parameter (hypothesis). The term on the left is the posterior probability distribution

and contains the probabilistic distribution of the parameter value, taking into account the

measured data and prior information of the parameter. In this analysis, since there is no

previous sign of new physics, a uniform (flat) prior is used throughout the search region.

The search is based on Poisson statistics both within each bin and across all the bins in

the search region. The likelihood to observe nobs events with an expectation of N events in

Poisson statistics is:

L(nobs|N) =
Nnobse−N

nobs!
.

This is maximized at nobs = N . To include multiple bins, the product for each set of

observations is taken bin-by-bin and maximized. The total likelihood is computed by taking

the Poisson distribution for each bin in the search region, and the systematics are included

by using a nuisance parameter θ. These are assumed to have Gaussian priors, and included

by spreading out the N expected events in each bin:

L(data|(σB)Z′ , θi) =

Nbin∏

k=1

µnk

k e
−µk

nk!

Nsys∏

i

Gaus(θi, 0, 1),

µk =
∑

j=1,2

NjTj,k (1 + θiǫijk) .

In each bin k there are an observed number of entries nk in the data. For the parameter

µk, j = 1 is the hypothesized signal contribution and j = 2 is the expected background

contribution. The Nj are the total number of events in signal and background and Tj,k are
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the fraction of the total events expected in the kth bin:

N1 = (A · ε)Z′ × (σB)Z′ × Luminosity,

N2 = NBkg,
Nbin∑

k=1

Tj,k = 1.

For each nuisance parameter θi, ǫijk is the systematic uncertainty on the template j in the

kth bin. The likelihood is a function of N1, which in turn can be converted into the parameter

(σB)Z′ . The systematic errors are only applied to the background template, except for the

overall normalization error due to the DY cross section uncertainty, and all are assumed to

be Gaussian.

The template functions Tj,k allow for more detailed tests of the expected SM background

by including the shape information of the Z ′. This avoids the simple “bump-hunting” and

allows for a more directed search of new physics by using different templates. The template

shape fitting can also help avoid false signals due to fluctuations or possible experimental

errors such as poor MC background modeling. The template shapes are more robust and

more sensitive for searches for new physics compared to the simple counting experiments

because they can include several bins in a range of the invariant mass. By including multiple

bins in the template, each with different Signal to Background ratios, the likelihood can

better help constrain or enhance a signal contribution in the observed data.

The number of signal events N1 depends on the luminosity, which would require incorpo-

rating the uncertainty associated with the total data taken. Instead, this analysis uses the

normalization about the Z0 peak to determine the number of signal events NZ′ and in turn,
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the production and decay rate (σB)Z′ .

(σB)Z′ = (σB)Z0

NZ′ × (A · ε)Z0

NZ0 × (A · ε)Z′

(5.2)

The normalization about the Z0 peak has a systematic uncertainty of 4% due to the DY

cross section uncertainty. However, since the expected background was scaled to the observed

data, this is only applied to the signal templates and not the expected background. This

uses the formula for the event count for any given scattering process:

N = L × (σB) × (A · ε) .

This normalization procedure allows for a simple conversion between the signal events count

and the physics quantity (σB)Z′ .

The likelihoods are computed using Markov Chain Monte Carlo (MCMC) with the

Bayesian Analysis Toolkit (BAT) [248]. This is a software framework designed to take

in observed data, expected backgrounds, and hypothesized signals for a variety of models

in particle physics and perform various Bayesian analyses. BAT treats the parameters of

interest and nuisance parameters in the appropriate way and uses MCMC to sample the

parameter spaces for maximization or integration.

To combine the analysis channels, combined likelihood is defined as the product of the two

channel’s Poisson probabilities bin-by-bin. Both are written in terms of the same parameter

of interest, and this allows for systematics that are correlated across channels to be taken
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care of in a consistent way.

L(data|(σB)Z′ , θi) =

Nchan∏

l=1

Nbin∏

k=1

µ
nl,k

l,k e
−µl,k

nl,k!

Nsys∏

i

Gaus(θi, 0, 1)

µl,k =
∑

j=1,2

Nl,jTl,j,k (1 + θiǫijkl)

The search and limits will be performed for all the channels separately as well as combined

together.

5.2.1 Bayesian Search

Two different tests are done during the search for a Z ′ signal, one is a global search for a

Z ′ signal and the other is a local search for deviations from the expected SM background.

The global search looks for the values of mass mZ′ and event rate NZ′ that are most like

that observed in data. The local search looks for large deviations from the expected SM

background bin-by-bin.

The global search looks across all the bins in the search region and finds the best possible

values for the new physics parameters of interest. This is a counting experiment for each bin

in the invariant mass spectrum across the full set of bins because the full likelihood function

is the product of each single bin likelihood. The likelihood is calculated two times, once

assuming a signal in addition to the expected background (S + B) and once assuming only

the SM background (B). The significance is rated using a p-value, which is the probability of

observing an outcome that is at least as signal-like as what was actually measured, assuming

no signal is actually present. The significance is calculated from a log-likelihood ratio (LLR)
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test based on the Neyman-Pearson lemma [249]:

LLR = −2 ln
L′(data|S + B, θ̂i)

L′(data|B, θ̃i)
.

This corresponds to a χ2 difference between the background and signal+background hy-

potheses. The signal templates assume a shape for the Z ′ and have two degrees of freedom:

mZ′ and NZ′ . Because the details of a possible Z ′ signal are a priori unknown, the likelihood

is maximized to find the best-fitting mZ′ and NZ′ in the observed data and the p-value is

then computed for this signal point. A common convention in particle physics is that a

p-value less than 1.35 × 10−3 is considered “evidence” for a signal and a p-value less than

2.87× 10−7 is considered “discovery” of a signal. These values are the one-sided integrals of

a unit Gaussian beyond +3σ and +5σ, respectively.

The two likelihoods used in the LLR are computed in different ways using BAT. The S+B

likelihood is maximized over the θ̂i using the observed data and finding the best-fit values of

the parameters of interest mZ′ and NZ′ . The background-only likelihood is maximized over

the θ̃i by performing 1,000 pseudo-experiments (PE) with the expected background only and

assuming no Z ′ signal. Each PE samples 10,000 variations in the nuisance parameters using

MCMC to generate a set of pseudo-data, and selects the peak value. The LLR distribution

is computed for each PE, with the resulting p-value:

p = P (LLRPE > LLRobs | SM only) .

The best-fit NZ′ is converted to (σB)Z′ for ease of comparison using Equation (5.2). As

this scans the full available parameter space, it automatically takes into account the “look-

elsewhere” effect.

The second search is a simple local significance test for each bin in the search region.
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This is implemented using a tool developed by Choudalakis and Casadei [250]. The tool

uses the statistical and systematic errors in each bin to compute a local significance for the

observed data deviation from the expected SM background.

5.2.2 Bayesian Limit Setting

In the absence of a Z ′ signal, an upper limit is set on the cross section times branching fraction

and lower limit is set on the mass. In this case, rather than maximizing the likelihood,

the likelihood can be reduced from a function of both the parameter of interest and the

systematic nuisance parameters to just a function of the parameter of interest, through the

marginalization procedure. This is essentially “integrating out” the uncertainty by including

all the variations weighted by their respective Gaussian error:

L′(data|(σB)Z′) =

∫

· · ·
∫

L(data|(σB)Z′ , θi)

Nsys∏

i

dθi.

The marginalization is computed using MCMC with BAT. This can work two ways, de-

pending on the inclusion of the observed data or not. When including the observed data,

the marginalization in BAT works to maximize the the reduced likelihood with respect to

the parameter of interest. When not including the observed data, instead a series of pseudo-

data distributions are generated. These called pseudo-experiments (PE) and are generated

by using the expected signal and background distribution and varying all the sources of

systematic uncertainties across the distribution. The systematic variations are sampled to

produce 10,000 pseudo-data distributions (ensembles) for each PE to ensure statistical ac-

curacy. 1,000 PE in total are generated, and the resulting likelihood values for each PE is

used to estimate the maximum reduced likelihood.

The marginalization is performed in both data and with PE for each of the 68 signal
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templates generated, discussed in Section 4.2.1. Each of the signal templates was generated

at a fixed mass mZ′ with a computed template shape Tl,j,k. This leaves the only remaining

signal parameter NZ′ , or using Equation (5.2) and transforming this into a physics quantity,

(σB)Z′ . For each signal template, a 95% C.L. upper bound is place on (σB)Z′ . This is done

by transforming the reduced likelihood into a posterior probability using Bayes’ theorem, as

seen in Equation 5.1. To do this, we assume a uniform (flat) prior in (σB)Z′ , i.e. π((σB)Z′) =

constant. The 95% C.L. upper limit is at the point where 95% of the posterior probability

is covered, and this value is the upper limit (σB)95Z′ :

0.95 =

∫ (σB)95
Z′

0 L′(data|(σB)Z′) × π((σB)Z′) d(σB)Z′

∫∞
0

L′(data|(σB)Z′) × π((σB)Z′) d(σB)Z′

.

The “data” can be both the observed data and the generated pseudo-data from the PE. The

limits on (σB)Z′ are then interpolated between the template mass points. Each Z ′ model has

a defined (σB)Z′ as a function of mZ′ curve, and where this curve intersects the interpolated

limit curve of (σB)95Z′ is the corresponding mass limit for that model.

5.3 ATLAS Search for a Z ′

This section describes the results of the ATLAS search for a new, neutral heavy gauge boson

using the dilepton invariant mass distributions. The inputs are the observed data using the

ATLAS detector, simulated MC events for the expected Standard Model background, and

simulated MC signal expectation templates using the SSM Z ′ as the model.
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5.3.1 The Global σB and MZ ′ Search

The observed invariant mass distributions are scanned to find the most signal-like MZ′

and σZ′ by comparing the background-only and signal+background hypothesis using a log-

likelihood ratio. A set of 1000 PE invariant mass distributions are generated from the

expected SM background distributions only, taking into account the systematic variations.

These are scanned for the most signal-like point in the pseudo-data with the same LLR

method as the observed data. The observed LLR is compared to the distribution of LLR

values from the 1000 PE and assigned a p-value. The observed p-values are 12% in the

dielectron channel, 98% in the dimuon channel (combining the tight and loose selections),

and 48% in the combined dilepton channel. The 2D scanning “heat map” for the various

channels are shown in Figure 5.1. No statistically significant signal is observed in the data.
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Figure 5.1: The LLR search for a Z ′ signal in the various dilepton invariant mass histograms.
Upper Left: Dielectron channel. Upper Right: Dimuon channel, combining the tight and
loose selections. Bottom: Combined dilepton channel. The circles represent the “most-
signal-like” points and the p-value is the global probability to observe such a deviation in
the data assuming background-only.
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5.3.2 Local Significance Search

The local significance is calculated for each mass bin across the search region for each analysis

channel. This includes both the statistical and systematic errors for the observed data and

expected MC background. A table of the largest significance deviations are listed in Table

5.2. The histograms with uncertainties and significance insets are shown in Figure 5.2. No

statistically significant deviation is seen in the data.

+ Significance - Significance
Channel σ mℓℓ σ mℓℓ

ee +1.3 1060 -1.1 340
µµ Loose +1.2 227 -1.9 543
µµ Tight +0.7 1820 -1.8 930
µµ Total +0.6 1820 -2.0 930

Table 5.2: Largest positive and negative local significance deviations in all analysis channels.
The total muon channel is dominated by the tight muon channel.
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Figure 5.2: Local significance of deviations including statistical and systematic uncertainties
between data and the expected SM background for each bin in the search region from 128
to 4500 GeV. These are for the separate channels, with dielectron (top left), dimuon tight
+ loose (top right), dimuon tight (lower left), and dimuon loose (lower right) selections.
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5.4 ATLAS Limits on a Z ′

No statistically significant deviation is observed in the data to indicate a possible Z ′ signal.

Instead, 95% C.L. limits are placed on the benchmark SSM Z ′ model and six Z ′ models

from an E6-derived gauge unification model. The limits are calculated for three channels,

the dielectron, the dimuon, and the combined channel. The dimuon channel combines the

tight and loose channels as two independent channels for the likelihood, and the combined

channel combines the electron, tight muon, and loose muon channels as three independent

channels in the likelihood. The lower mass limit from these three channels for the benchmark

SSM Z ′ and the limits from the combined channel for the various E6 models are listed in

Table 5.3. The interpolated observed and expected (σB)Z′ as a function of mZ′ for these

channels are shown in Figure 5.3. The width of the SSM Z ′ curve corresponds to the

theoretical uncertainty on the parameters of the model. The two other models shown are

the Z ′
χ and Z ′

ψ, which have the largest and smallest (σB)Z′ vs. mZ′ of the E6 models. The

mass point where the limit curve intersects the theoretical model curve is the lower mass

limit on that model.

ee µµ ℓℓ
Observed Limit [TeV] 2.79 2.53 2.90
Expected Limit [TeV] 2.76 2.53 2.87

Combined Channel Z ′
ψ Z ′

N Z ′
η Z ′

I Z ′
SQ Z ′

χ

Observed Limit [TeV] 2.43 2.43 2.49 2.46 2.51 2.58
Expected Limit [TeV] 2.38 2.38 2.45 2.41 2.47 2.55

Table 5.3: Upper Table: The 95% C.L. mass limits for the SSM Z ′ in the three analysis
channels. The µµ limit is the combination of the tight and loose muon channels. Lower
Table: The 95% C.L. mass limits for the E6-derived Z ′ in the combined channel.
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Figure 5.3: Expected and observed 95% C.L. limits on (σB)Z′ as a function of mZ′ in the
various analysis channels. Upper Left: Dielectron channel. Upper Right: Dimuon channel,
combining the Tight and Loose selections. Bottom: Combined dilepton channel. The green
and yellow bands show the ±1σ and ±2σ posterior errors on the expected (σB)Z′ limit. The
thickness of the SSM Z ′ band indicates the theoretical uncertainty on the model parameters,
and applies to the other theory curves as well.
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Chapter 6

Conclusion

During the 2012 year of operation of the LHC at
√
s = 8 TeV, the ATLAS detector recorded

over 20 fb−1 of data. This data was used to perform a search for new, neutral heavy gauge

bosons as signal for physics beyond the Standard Model. The search looked in the dilep-

ton decay channel, Z ′ → ℓℓ, in the invariant mass region above the Z0 boson peak. The

dilepton channel is able to fully reconstruct the intermediate particle, allowing for a precise

measurement of its properties.

The analysis was split into three different channels: an electron channel, a tight muon

channel, and a loose muon channel. Several corrections have been applied to the simulated

expected Standard Model background in the various channels to more accurately model the

known physics processes. In addition, a variety of systematic errors from both theoreti-

cal and experimental sources were evaluated and used in the search. The channels were

searched both independently and in combination. The search scanned the dilepton invariant

mass distribution searching for the largest deviations from the expected Standard Model

background. The search returned the most signal-like Z ′ point in the combined channel at

MZ′ = 280 GeV and σZ′ = 11.5 nb, with a p-value of 0.48.
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None of the searches yielded a statistically significant result and in the absence of a signal

of new physics, limits were placed on a variety of Z ′ models. The limits are a Bayesian 95%

C.L. lower limit on the mass of the Z ′. In the benchmark model of the Sequential Standard

Model, where the Z ′ has identical couplings as the Standard Model Z0 boson, the combined

limit from the three channels is:

MZ′

SSM
> 2.90 TeV.

Lower mass limits were also placed on a variety of E6-motivated Z ′ boson, ranging from

2.38-2.54 TeV. Previous limits on the SSM Z ′ from LEP II are 1.79 TeV, from the Tevatron

range from 0.68-1.07 TeV, from CMS are 2.59 TeV, and from ATLAS are 2.22 TeV. These

new limits are the strongest on this class of models in the world.

Discovery of new physics is ATLAS’s primary goal. The discovery of the Higgs boson

has been a triumph for the physics program at the LHC and CERN, but it only fills in the

final piece of the Standard Model puzzle. The LHC is expected to operate for approximately

20 more years at a higher center-of-mass energy and higher instantaneous luminosity, and

the various experiments will periodically receive detector upgrades. While so far Nature

has shown herself to be very “Standard”, the hope is that continued work by the ATLAS

Collaboration, the LHC operators, and all of the personnel at CERN can help resolve some

of the unanswered questions in physics or maybe even discover a new puzzle to solve!

205



Appendix A

Drell-Yan Cross Section Corrections

The Drell-Yan production of lepton pairs is the dominant background in this search for new

particles. Therefore, correctly modeling this to the best available precision is of the utmost

importance. The MC generated is up to NLO in QCD and LO in EW, and includes real

photon FSR using Photos. The production cross section for Z0/γ∗ has been calculated up

to NNLO in QCD and NLO in EW, and should be used to correct the MC to this order. The

NLO EW corrections include real weak-boson emission, initial and final state photon virtual

photon emission which interferes with the amplitudes, and real photon initial state radiation

(ISR). A full description of the corrections describe here can be found in the Dilepton Search

Support Note [217], and all figures are tables are taken from there.

The motivation for these corrections, aside from working at higher-order in the SM back-

grounds, is that it allows for a well-defined and consistent choice of schemes between QCD

and EW. A comparison of the FEWZ program at NLO using the same PDF set as the MC

generators is shown in Table A.1. This shows the difference due to the parameter schemes.

To avoid tuning between the external calculations in QCD and different MC EW schemes,
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the mass-dependent K-factor is defined as:

σbest(mℓℓ) = K(mℓℓ) × σMC(mℓℓ),

K(mℓℓ) =
σbest(mℓℓ)

σMC(mℓℓ)
.

The “best” cross section is the highest-order consistent calculation possible, using NNLO

QCD calculations with the MSTW2008NNLO PDF set and NLO EW corrections excluding

FSR. This requires the MC samples to be re-weighted to the best-possible theory values. As

a cross-check, this correction method is run for both the Powheg (NLO) and Pythia (LO)

DY samples throughout.

A.1 QCD NNLO Corrections

The mass-dependent cross sections are calculated to NNLO in QCD using FEWZ [219] and

VRAP [251]. Both interface with the LHAPDF library [252, 253] to utilize the large variety

of PDF sets to study systematic differences. The comparisons to various PDFs are made in

Figure A.1. In the mass range from 10 to 1500 GeV, the QCD K-factor is ∼+10% across all

PDF sets. Above 1500 GeV, there is a larger variation due to the lack of constraint on the

PDFs at high Bjorken-x. This shows that there is no preferred PDF set, so a choice is made

to obtain a “nominal” K-factor and uncertainties will be centered about this choice. The

nominal choice made is to use the MSTWNNLO PDF [85]. The nominal QCD K-factors

are the first part of the overall K-factor applied.

The uncertainties associated with the NNLO QCD predictions derive from the uncer-

tainties (90% CL) taken from the set of eigenvectors of the nominal PDF. There is also

the uncertainty due to the QCD coupling αS, again using the 90% CL, covering the range
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mlower
ℓℓ mupper

ℓℓ
dσNLO,FEWZ

dmℓℓ

dσNLO,Powheg

dmℓℓ
∆stat [%] ∆match [%] ∆stat,match [%]

66 116 2.17e+01 2.16e+01 0.0 0.3 0.0
116 140 3.53e-01 3.54e-01 0.2 -0.4 0.2
140 169 1.07e-01 1.08e-01 0.2 -1.1 0.2
169 204 4.02e-02 4.11e-02 0.3 -2.2 0.3
204 246 1.63e-02 1.65e-02 0.5 -1.4 0.5
246 297 6.76e-03 6.94e-03 0.4 -2.5 0.4
297 359 2.80e-03 2.88e-03 0.6 -2.6 0.5
359 433 1.15e-03 1.18e-03 0.7 -1.8 0.7
433 522 4.70e-04 4.82e-04 0.5 -2.6 0.4
522 631 1.86e-04 1.94e-04 0.6 -3.9 0.6
631 761 7.11e-05 7.32e-05 0.4 -3.0 0.4
761 919 2.61e-05 2.70e-05 0.4 -3.4 0.4
919 1110 9.03e-06 9.28e-06 0.4 -2.7 0.4
1110 1339 2.91e-06 3.01e-06 0.4 -3.1 0.4
1339 1617 8.62e-07 8.91e-07 0.3 -3.3 0.3
1617 1951 2.26e-07 2.34e-07 0.3 -3.1 0.3
1951 2355 5.13e-08 5.31e-08 0.3 -3.3 0.3
2355 2843 9.52e-09 9.87e-09 0.3 -3.5 0.3
2843 3432 1.33e-09 1.39e-09 0.3 -4.0 0.3
3432 4142 1.23e-10 1.28e-10 0.8 -3.9 0.7
4142 5000 5.76e-12 5.83e-12 3.2 -1.2 3.1

Table A.1: NLO NC Drell-Yan production differential cross sections using the CT10 PDF
set calculated with FEWZ (Gµ scheme) and the Powheg generated cross section for the
given invariant mass bins. The masses are in GeV, and the cross sections are in pb/GeV.
The statistical error ∆stat is fully dominated by Powheg. The deviation between external
and MC cross sections is evaluated per mass bin with ∆match = 100 × (1 − σFEWZ/σPowheg),
and the statistical MC error is propagated to ∆stat,match. From [217], Appendix E, Table 36.
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Figure A.1: Higher-order QCD corrections for the two MC DY samples, using NNLO PDF
sets. The upper plot shows the ratio of six NNLO QCD prediction to CT10 NLO used in
Powheg, the lower plot uses the same PDF sets compared to MSTW LO used in Pythia.
From [217], Appendix E, Figure 85.

0.11365 ≤ αS(MZ) ≤ 0.12044, with nominal value αS(MZ) = 0.11707. Due to the larger

variation of the different PDF sets, an additional uncertainty was assigned to the PDF choice.

The 90% variation of the nominal PDF with the eigenvectors covered four of the PDF set

choices central values. The ABM11 PDF was not covered by this variation, so a systematic

is assigned between the central value of this PDF and the 90% variation of the nominal
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PDF. This PDF Choice systematic is only non-zero above 1500 GeV and below 500 GeV.

Lastly, VRAP allows the variation in the renormalization and factorization scales. The scale

variations take into account further higher-order QCD effects and differences between the

conventions used by the PDF sets. The scales were varied by factors of 1/2 and 2, due to

the uncertainty ranging as high as 100%.

A.2 EW NLO Corrections

The higher-order EW corrections are calculated separately at LO in QCD, and then applied

additively to the higher-order QCD values. The EW correction total cross section is assumed

to be the same for all orders in QCD. The additional EW correction factor is calculated

using the Horace event generator [254]. These are then added as a constant additional

cross section to the QCD total, independent of the order of the QCD corrections. This

approached was checked using the Sanc MC generator [255, 256] up to 1500 GeV. The

comparisons between the higher-order EW corrections at LO and NNLO in QCD are shown

in Figure A.2. The resulting systematic uncertainty from this correction as a function of

truth dilepton invariant mass is also shown. The additive approach is also used in the

FEWZ package, however the subtraction schemes differ between the two programs. Varying

the schemes and comparing the results from the two packages for the inclusion of higher-order

EW corrections, show excellent agreement of 0.2-0.3%.

The largest EW correction is the photon-induced dilepton cross section, coming from

lepton pair production due to emission of virtual photons. This is calculated at LO in QCD

using the MRST2004QED PDF [257]. This includes higher-order QED corrections, and the

additive factor is again assumed independent of QCD order. The uncertainties are mostly

due to the effective quark masses used, either a constituent or current quark model, and
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Figure A.2: Upper plot: Higher-order EW corrections across LO and NNLO QCD orders,
comparing the factored and additive results. This shows the additive results, obtained from
factoring at a lower order, is consistent across QCD orders. Lower plot: Systematic uncer-
tainty due to the additional EW corrections as a function of mℓℓ. From [217], Appendix E,
Figure 87.

the photon contribution to the PDF. The total uncertainty can be seen in Figure A.3. The

photon-induced cross section contribution is found to be lepton-flavor independent over the

mass ranges being studied. The corrections were again cross-checked in Sanc.
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Figure A.3: Uncertainty due to the photon-induced cross section as a function of mℓℓ. The
nominal value is calculated in FEWZ using Powheg with MSTWNNLO and includes the
higher-order EW corrections. The correction and upper and lower uncertainty bands come
from the LO corrections added to the nominal value, based on the different quark mass
schemes. From [217], Appendix E, Figure 89.

Another source of EW corrections comes from the emission of real W± or Z0 bosons, in

the same manner as photon emission in QED. This process is not included in the Herwig

diboson samples, which only simulates the direct production of two real EW bosons. Using

MadGraph 5.4 [258], the EW boson radiation is calculated with respect to the DY process

at LO in QCD, using the method described in [259]. Again, the input PDF set, the αS(mZ)

value, and renormalization and factorization scales are all varied and added as a systematic

uncertainty.
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A.3 Total Corrections

The total mass-dependent K-factors calculated for the Powheg samples are shown in Figure

A.4. The samples are reweighted to the overall “best” theory available (MSTWNNLO PDF,

Gµ scheme) before FSR (which is included after interfacing with Photos). The K-factor

is fit with a smooth function over the full mass range, and the resulting fit values are used

in the analysis. The reweighting was repeated for the Pythia LO DY samples as a cross

check, and the results for the cross sections are compared between the two sets of samples

in Figure A.5. The agreement shows the consistency of this reweighting approach.
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Figure A.5: The resulting cross sections after reweighting both Pythia LO DY samples and
Powheg NLO DY samples are compared across the full mass range. The error bars are the
statistical uncertainty only. This shows excellent agreement between the two, and validates
this as a consistent reweighting scheme. From [217], Appendix E, Figure 92.
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Appendix B

Drell-Yan Systematics

The Drell-Yan component is the largest background in the dilepton search for new physics,

and the understanding of that background is crucial to determining if a signal is present.

Appendix A discussed how the simulated Monte Carlo samples are scaled to the most up-

to-date theoretical predictions. This appendix will discuss the uncertainties associated with

the Drell-Yan process. This is separated into PDF uncertainty, other QCD uncertainties,

higher-order Electro-Weak uncertainties, and the LHC beam energy uncertainty. A complete

description can be found in the Dilepton Search Support Note [217], and all figures are tables

are taken from there.

B.1 PDF Uncertainty

Each PDF has a set of eigenvectors in the parton function space, with errors from the

measurements and theoretical uncertainties used to create the PDF. An example PDF is

shown in Figure 2.1. Varying the value of the eigenvectors can systematically change the

expected amount of Drell-Yan events observed in a hadronic collider environment, and this
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must be accounted for in the systematic errors. The nominal PDF used to calculate the

Drell-Yan cross section is the MSTW 2008 NNLO [85], which contains 20 eigenvectors. In

[85] Table 5 on page 52 shows the contributions to the errors for the eigenvectors from the

individual parton functions.

The eigenvectors are varied at the 90% C.L. errors, and the change to the Drell-Yan

cross section as a function of Q2 (or invariant mass, mℓℓ) is calculated using VRAP [251].

Ideally, each eigenvector should be given its own systematic nuisance parameter in the search

and limit setting procedure described in Section 5.2. However, this would involve a huge

amount of computing power in the statistical framework and is impractical. The simplest

option would be to sum in quadrature all of the errors for the 20 eigenvectors into a single

systematic nuisance parameter, which was done in the previous iteration of this analysis

[8]. This treats the uncertainties on the eigenvectors at low and high invariant mass as

uncorrelated, but this leads to an over-constraint due to the different behaviors over the

mass range.

Instead, the PDF eigenvectors are grouped into bundles corresponding to their uncer-

tainty behavior as a function of Q2. Four groups are used, corresponding to the eigenvectors

dominant in the low mass range (mℓℓ < 400 GeV), a middle mass range (400 < mℓℓ < 1500

GeV), a high mass range (mℓℓ > 1500 GeV), and a group that is not dominant anywhere

but still has a non-negligible contribution. The eigenvectors for each group are listed below,

and the sign associated with each eigenvector indicates whether the errors are inverted or

not to follow the behavior of the group as a whole. A (−) sign indicates the down variation

has been exchanged with the up variation and vice-versa, while a (+) sign preserves the

up/down variation.

• Group A. Eigenvectors 2(+), 13(+), 14(−), 17(−), 18(+), and 20(+). It is not domi-
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nant anywhere, but has a non-negligible contribution.

• Group B. Eigenvectors 3(−), 4(−), 9(+), and 11(+). It is dominant in the mass range

mℓℓ < 400 GeV.

• Group C. Eigenvectors 1(+), 5(+), 7(+), and 8(−). It is dominant in the mass range

400 < mℓℓ < 1500 GeV.

• Group D. Eigenvectors 10(+), 12(+), 15(−), 16(−), and 19(+). It is dominant in the

mass range mℓℓ > 1500 GeV.

Eigenvector 6 does not match any of the groups; it corresponds principally to the s− s̄ sea

contributions to the PDF and has a negligible impact on the overall Drell-Yan uncertainty,

so it is ignored in these systematic errors. The largest single uncertainty in the high mass

range comes from eigenvector 12 in Group D, which corresponds to the d − ū contribution

to the PDF.

For each group, the total asymmetric uncertainty from the eigenvectors is calculated at

each mass point as:

∆σ+
G = sgnG

√
√
√
√

∣
∣
∣
∣
∣

NG∑

i=1

sgn(σ+
i − σ0) · (σ+

i − σ0)2

∣
∣
∣
∣
∣
,

∆σ−
G = sgnG

√
√
√
√

∣
∣
∣
∣
∣

NG∑

i=1

sgn(σ−
i − σ0) · (σ−

i − σ0)2

∣
∣
∣
∣
∣
.

The sum is over the PDF eigenvectors for the group, σ0 is the cross section from the central

value of the nominal PDF, and σ±
i is the cross section from the upward (downward) variation

of the ith eigenvector, or downward (upward) if that eigenvector error is inverted. The overall

sign sgnG is the sign of the sum inside the square root. The asymmetric uncertainties are
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Figure B.1: The total asymmetric uncertainty on the Drell-Yan cross section as a function
of invariant mass mℓℓ. The four eigenvector groups are shown in color, and the black is the
total symmetric uncertainty following the MSTW2008 prescription. The left plot shows the
lower mass range below mℓℓ < 1500 GeV, and the right plot shows the full mass range. From
[217], Appendix G, Figure 98.

plotted in Figure B.1, along with the total symmetric uncertainty following the MSTW2008

prescription which includes all the eigenvectors.

A cross check was performed comparing the symmetric sum in quadrature of the cal-

culated uncertainties using FEWZ [219]. This showed good agreement with the total un-

certainty as calculated with VRAP above, after symmetrizing and summing in quadrature.

Below 3500 GeV the two methods agreed to within 0.35%, and are within 1% below 4500

GeV.

B.2 PDF Choice, Scale, and αS Uncertainty

The PDF set has the eigenvectors corresponding to the parton contributions to the proton,

however there are additional inputs to a PDF that should be taken into account. The strength

of the QCD coupling (αS(mZ)) and the scale at which the theoretical inputs are renormalized
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(µR) and factorized (µF ) can change the PDF outputs. There are other PDF sets available

besides the one chosen as the nominal central value, and a systematic comparison between

PDF sets is included. In Appendix A, the inclusion of higher-order electro-weak and photon-

induced also introduced systematic errors from the theoretical inputs.

The systematic uncertainty due to αS is measured by varying the input value between

0.11365 and 0.12044, the 90% C.L. αS(mZ) limits used in MSTW 2008. The difference

in the cross section value computed in VRAP from the nominal value is the asymmetric

uncertainty.

The systematic uncertainty due to µR and µF is measured by varying them both simulta-

neously up by a factor of two and down by a factor of half. The maximum difference between

the cross sections computed in VRAP and the nominal value is the symmetric uncertainty.

The systematic uncertainty due to varying which PDF set is used in the calculations

is measured by changing the input PDF set in the VRAP calculations, leaving the input

coupling αS and scales µR and µF the same. Four other PDF sets were considered:

• CT10NNLO [218].

• NNPDF2.3 [260].

• ABM11 [261].

• HERAPDF1.5 [262].

The difference in the cross section calculated between central value of these PDF sets

and the nominal MSTW2008NNLO is compared to the 90% C.L. values from the nomi-

nal MSTW2008NNLO PDF set. Three out of four had nominal values within the 90% C.L.

variation throughout the mass range; the only PDF set showing larger deviations is ABM11.
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Figure B.2: The total asymmetric uncertainty on the Drell-Yan cross section as a function
of invariant mass mℓℓ. The colors correspond to each source as calculated in this Appendix.
The black curve is the total symmetric uncertainty following the MSTW2008 prescription,
for comparison with the PDF eigenvector uncertainties in Figure B.1. The left plot shows
the lower mass range below mℓℓ < 1500 GeV, and the right plot shows the full mass range.
From [217], Appendix G, Figure 100.

The difference is included as an additional uncertainty, to account for different theoretical

modeling between the PDF collaborations.

The Monte Carlo has been scaled to include higher-order electro-weak processes in the

Drell-Yan process, as described in Section A.2. This scaling also includes the errors from

the underlying theoretical inputs, and these are included as systematics. The systematic

uncertainties can be seen in Figure A.2 and Figure A.3. The uncertainty due to HO EW loops

is very small until 1500 GeV, while the uncertainty due to the photon-induced corrections

are larger.

Each of these systematics are plotted together in Figure B.2, with the MSTW2008 PDF

90% C.L. to show their relative systematic contribution with respect to the PDF set uncer-

tainties.
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B.3 Beam Energy Uncertainty

One additional systematic uncertainty is applied to the Drell-Yan process, which comes from

an experimental rather than theoretical source. The beam energy at the LHC was measured

to be Pbeam = 3988±5(stat)±26(sys) GeV [230]. The production cross section was calculated

in VRAP using the MSTW2008NNLO PDF, varying the two input beam energies up and

down from their nominal values. See Figure B.3 for the behavior as a function of the invariant

mass of the dilepton system. The ratio from the nominal value is the systematic uncertainty

quoted for the search and limit setting.

Figure B.3: The relative uncertainty on the Drell-Yan and W± production cross section due
to the input beam energy, as calculated in VRAP. From [263].
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Electron Scale Factors

Scale factors are applied to the electron events to better match the simulated Monte Carlo

with the observed data. This is done to prevent any mis-modeling in the simulations of the

trigger or showering from affecting the expected data. The scale factors are calculated by

studying the efficiency in the data and MC in the same way, and the scale factor is defined

as:

SF =
εDATA
εMC

.

The efficiencies are calculated using the “Tag & Probe” method, where a sample of dielectron

events are used from Z0 → e+e− decays. If the sample has an appropriate “Tag” electron,

the efficiency is calculated for the “Probe” electrons by computing the ratio between the

passing probe electrons (NP ) and all possible probe electrons (N0):

ε =
NP

N0

.
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The errors on the efficiencies are calculated following [264], Equation 14:

(δε)
2 =

(1 − 2ε)δ2P + ε2δ20
N2

0

.

The δ2P,0 factors are the Poisson errors on the NP,0.

Because the selection is asymmetric between the leading and sub-leading electrons, the

scale factors will be different between them. In the two cases studied, the trigger event-level

cut and the isolation electron-level cut, each case has its own event, tag, and probe selection

to study the scale factors.

C.1 Trigger Scale Factors

The electron event selection uses the EF g35 loose g25 loose diphoton trigger. The leading

electron should fire the first leg and the sub-leading electron should fire the second leg,

however the event filter does not store which object fired which leg of the trigger. Instead,

single-photon triggers are looked at separately for the leading and sub-leading electron cases.

There is no EF g25 loose (or EF g35 loose) trigger, and the closest single-photon trigger is

the EF g20 loose trigger. This trigger was operating in “RERUN-RESURRECTED” mode,

which means the trigger is re-evaluated over the whole trigger chain if any unprescaled photon

trigger was fired. To approximate the single triggers EF g25 loose (or EF g35 loose), the

electron must be matched to the EF g20 loose trigger and the LVL1 triggers L1 EM12 (or

L1 EM16V ), with a cut on the uncorrected ET in the ECAL cluster at 25 (35) GeV.

The sample of Z0 → e+e− decays used for the tag & probe study must pass the following

selection:

• Event passes a single-electron trigger EF e24vhi medium1 or EF e60 medium1. The
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first trigger applies an isolation cut and a hadronic leakage cut; the second trigger does

not in order to regain some lost high-ET electrons.

• Event has no data errors from Calorimeters or coreFlags.

• Event has a good primary vertex with at least 3 tracks.

• Event has at least 2 electrons with author 1 or 3, and in the standard acceptable η

range.

Pileup and z-vertex reweighting are also applied to the MC. In this sample, one tag electron

is required. The tag electron must satisfy the following:

• Tag electron must pass object quality in the calorimeters.

• Tag electron ET > 25 GeV.

• Tag electron must pass isEM tight++.

• Tag electron must match the trigger object.

If a tag electron is found, all other electrons in the event are checked for probe status with

the following criteria:

• Probe electron ET > 15 GeV.

• Probe electron must pass isEM identification.

• Probe electron track in the ID must have at least 7 Silicon hits and at least 1 Pixel

hit.

• Probe electron charge must be opposite to the tag electron.
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• Probe electron must be loosely matched to a truth electron (in MC only).

• The invariant mass of the tag & probe pair should be in the mass window about the

Z0 peak.

All tag & probe pair combinations are considered. The trigger efficiencies are calculated in

data and MC as the ratio between the number of probe electrons that are matched to the

approximated trigger object and the total number of probe electrons. These are divided up

into ET and η bins, and leading and sub-leading electrons. The scale factors are the average

efficiency in data divided by the average efficiency in MC, for each bin and leading/sub-

leading electrons.

Systematics uncertainties for the efficiencies are calculated by varying the selection on

the probe electrons in the following ways:

• The invariant mass window of the tag & probe pair is varied over three windows:

– 75-105 GeV, 80-100 GeV, 85-95 GeV

• The probe electron isEM identification is varied between medium++ and tight++.

There are six combinations of efficiencies in data and MC, and six SFs calculated. The

average over the six values is the nominal central value of the SF applied in this analysis. The

statistical error is the average over the statistical errors in each calculation. The systematic

error is the RMS from the six values SF values. The SFs over ET and η bins for the leading

and sub-leading electrons are shown in Figure C.1, and listed in Table C.1. The η region

corresponding to the “crack” (1.37 < |η| < 1.52) is shown in the SF calculation, but is

excluded in the analysis.
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Figure C.1: Upper Left: Leading electron (∼EF g35 loose) SFs as a function of ET . Upper
Right: Sub-leading electron (∼EF g25 loose) SFs as a function of ET . Lower plots are the
same, as a function of η. From [217], Appendix L, Figures 119,120.
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ET [GeV ] Subleading electron(EF g25 loose) Leading electron(EF g35 loose)
30 - 35 0.9983 ± 0.0002 ± 0.0005
35 - 40 0.9992 ± 0.0001 ± 0.0002 0.9939 ± 0.0003 ± 0.0098
40 - 45 0.9996 ± 0.0001 ± 0.0002 0.9985 ± 0.0001 ± 0.0002
45 - 50 0.9996 ± 0.0001 ± 0.0001 0.9984 ± 0.0001 ± 0.0004
50 - 60 0.9993 ± 0.0001 ± 0.0002 0.9980 ± 0.0002 ± 0.0009
60 - 70 0.9996 ± 0.0002 ± 0.0001 0.9992 ± 0.0002 ± 0.0003
70 - 80 0.9998 ± 0.0003 ± 0.0001 0.9997 ± 0.0003 ± 0.0001
80 - 100 0.9994 ± 0.0004 ± 0.0002 0.9994 ± 0.0004 ± 0.0002
100 - 110 0.9990 ± 0.0008 ± 0.0010 0.9990 ± 0.0008 ± 0.0010
110 - 125 1.0001 ± 0.0008 ± 0.0004 1.0001 ± 0.0008 ± 0.0004
125 - 150 0.9995 ± 0.0010 ± 0.0004 0.9995 ± 0.0010 ± 0.0004
150 - 200 0.9988 ± 0.0009 ± 0.0005 0.9988 ± 0.0009 ± 0.0005
200 - 400 0.9990 ± 0.0010 ± 0.0005 0.9990 ± 0.0010 ± 0.0005
400 - 1000 0.9939 ± 0.0061 ± 0.0043 0.9939 ± 0.0061 ± 0.0043

η Subleading electron(EF g25 loose) Leading electron(EF g35 loose)
-2.47, -2.01 0.9999 ± 0.0002 ± 0.0001 0.9999 ± 0.0002 ± 0.0001
-2.01, -1.52 0.9994 ± 0.0001 ± 0.0003 0.9993 ± 0.0002 ± 0.0001
-1.52, -1.37 0.9957 ± 0.0015 ± 0.0013 0.9732 ± 0.0020 ± 0.0101
-1.37, -0.8 0.9996 ± 0.0000 ± 0.0003 0.9996 ± 0.0000 ± 0.0003
-0.8, -0.1 0.9999 ± 0.0000 ± 0.0001 0.9999 ± 0.0000 ± 0.0001
-0.1, 0 0.9999 ± 0.0001 ± 0.0001 0.9998 ± 0.0001 ± 0.0001
0, 0.1 0.9993 ± 0.0001 ± 0.0005 0.9993 ± 0.0001 ± 0.0005
0.1, 0.8 0.9998 ± 0.0000 ± 0.0001 0.9998 ± 0.0000 ± 0.0002
0.8, 1.37 0.9996 ± 0.0000 ± 0.0002 0.9996 ± 0.0000 ± 0.0002
1.37, 1.52 0.9987 ± 0.0014 ± 0.0011 0.9811 ± 0.0019 ± 0.0069
1.52, 2.01 0.9994 ± 0.0001 ± 0.0002 0.9985 ± 0.0002 ± 0.0005
2.01, 2.47 1.0009 ± 0.0002 ± 0.0007 1.0009 ± 0.0002 ± 0.0006

Table C.1: Trigger SFs for leading and subleading electrons vs ET and η with statistical and
systematic errors. From [217], Appendix L, Tables 45,46.
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C.2 Isolation Scale Factors

A similar procedure is followed for the isolation scale factors, with the criteria for the tag and

probe electrons modified for this selection. The isolation cut is designed to eliminate QCD

and W+jets backgrounds, but the scale factors should only be applied to the real electron

background. The non-electron background is subtracted from the total probe background

for the scale factors and will be considered in Appendix D.

Most of the selection from Section C.1 is applied to this tag & probe selection, and the

tag electron selection is identical. Previously, the probe electron leading and sub-leading

difference was the trigger selection, now this is modified to the ET and isolation cuts. The

probe electron selection criteria are:

• Probe electron is medium++.

• Probe electron (leading) ET > 40 GeV.

• Probe electron (leading) el Etcone20 pt corrected> 0.007ET + 5 GeV.

• Probe electron (sub-leading) ET > 30 GeV.

• Probe electron (sub-leading) el Etcone20 pt corrected> 0.022ET + 6 GeV.

The variations of the selection for the systematic uncertainty and to determine the central

SF value are also modified from the previous selection.

• The probe electron isEM identification is varied between medium++ and tight++.

• The invariant mass window of the tag & probe pair is varied over three windows.

– 75-105 GeV, 80-100 GeV, 85-95 GeV
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• The templates used for background subtraction for the probe electron are varied be-

tween three choices:

– Same-sign electron pair failed loose++.

– Opposite-sign electron pair failed TRT and Wstot cuts.

– Probe electron fails pT dependent track isolation cut: el ptcone40
pT

> 0.05.

There are 18 combinations of efficiencies in data and MC, and six SFs are calculated. The

central value of the SF is used as the nominal SF applied, and is the average over the six

values. The statistical error is the average over the statistical errors in each calculation.

The systematic error is the RMS from the SF values. The SFs over ET and η bins for the

leading and sub-leading electrons are shown in Figure C.2, and listed in Table C.2. The η

region corresponding to the “crack” (1.37 < |η| < 1.52) is shown in the SF calculation, but

is excluded in the analysis.
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Figure C.2: Upper Left: Leading electron isolation SFs as a function of ET . Upper Right:
Sub-leading electron isolation SFs as a function of ET . Lower plots are the same, but as a
function of η. From [217], Appendix M, Figures 122,123.
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ET [GeV ] Subleading electron SF Leading electron SF
30 - 35 0.9996 ± 0.0001 ± 0.0002
35 - 40 0.9998 ± 0.0001 ± 0.0001
40 - 45 0.9998 ± 0.0000 ± 0.0000 0.9995 ± 0.0001 ± 0.0001
45 - 50 1.0000 ± 0.0000 ± 0.0000 0.9995 ± 0.0001 ± 0.0000
50 - 60 0.9997 ± 0.0001 ± 0.0000 0.9993 ± 0.0001 ± 0.0000
60 - 70 0.9996 ± 0.0001 ± 0.0001 0.9988 ± 0.0003 ± 0.0001
70 - 80 0.9990 ± 0.0003 ± 0.0001 0.9983 ± 0.0004 ± 0.0002
80 - 100 0.9992 ± 0.0007 ± 0.0002 0.9979 ± 0.0008 ± 0.0002
100 - 125 0.9989 ± 0.0007 ± 0.0003 0.9972 ± 0.0012 ± 0.0003
125 - 150 0.9984 ± 0.0012 ± 0.0005 0.9957 ± 0.0021 ± 0.0003
150 - 200 0.9962 ± 0.0011 ± 0.0007 0.9919 ± 0.0023 ± 0.0012
200 - 400 0.9993 ± 0.0029 ± 0.0016 0.9978 ± 0.0048 ± 0.0010
400 - 1000 1.0184 ± 0.0207 ± 0.0021 0.9931 ± 0.0248 ± 0.0014

η Subleading electron SF Leading electron SF
-2.47, -2.01 0.9999 ± 0.0001 ± 0.0000 1.0000 ± 0.0002 ± 0.0001
-2.01, -1.52 1.0003 ± 0.0001 ± 0.0001 1.0006 ± 0.0002 ± 0.0000
-1.52, -1.37 0.0000 ± 0.0000 ± 0.0000 0.0000 ± 0.0000 ± 0.0000
-1.37, -0.80 0.9997 ± 0.0001 ± 0.0001 0.9988 ± 0.0002 ± 0.0001
-0.80, -0.10 0.9997 ± 0.0001 ± 0.0001 0.9992 ± 0.0001 ± 0.0001
-0.10, 0.00 0.9998 ± 0.0001 ± 0.0001 0.9993 ± 0.0003 ± 0.0000
0.00, 0.10 0.9998 ± 0.0001 ± 0.0001 0.9993 ± 0.0002 ± 0.0000
0.10, 0.80 0.9997 ± 0.0001 ± 0.0001 0.9994 ± 0.0001 ± 0.0000
0.80, 1.37 0.9996 ± 0.0001 ± 0.0001 0.9985 ± 0.0002 ± 0.0001
1.37, 1.52 0.0000 ± 0.0000 ± 0.0000 0.0000 ± 0.0000 ± 0.0000
1.52, 2.01 0.9999 ± 0.0002 ± 0.0001 1.0003 ± 0.0002 ± 0.0001
2.01, 2.47 1.0001 ± 0.0001 ± 0.0001 1.0000 ± 0.0001 ± 0.0000

Table C.2: Isolation SFs for leading and subleading electrons vs ET and η with statistical
and systematic errors. From [217], Appendix L, Tables 47,48.
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Electron Fake Factors

The background for electrons where one or both are mis-identified from a jet in the EM

calorimeter (“fakes”) is estimated using the “fake factor” or “matrix” method. The idea is to

loosen some of the electron identification criteria from the standard tight criteria and compare

the rate looser objects pass as electrons to the tight selection, and use that comparison to

estimate the rate tight selected non-electron objects pass electron identification. Several

variations are performed to evaluate statistical and systematic uncertainties. This is a data-

driven method, using the full 2012 ATLAS data set of about 21 fb−1.

D.1 Matrix Method

The matrix method looks at electrons that either pass the tight or loose selections NT/L.

These are measurable, and can be related to the “true” quantities of the real or fake electrons

NR/F . The matrix method analyzes the ratios between real/fake (R/F ) and tight/loose

(T/L) selections. The probability that a true fake in the loose selection also passes the tight

selection is the “fake rate” and the probability that a true real electron in the loose selection
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also passes the tight selection is the “real rate”.

fi =
NF
T,i

NF
L,i

, ri =
NR
T,i

NR
L,i

.

The i designates the leading or sub-leading electron, and the N
R/F
T/L are the number of

tight/loose objects coming from real/fake electrons. Ideally, the fake rate should be 0 and

the real rate should be 1, independent of the loose selection. In this analysis the leading and

sub-leading electron selections are different and they will have different fake and real rates.

The selection comes in pairs, so there are four total choices for the measurable quantities:

NTT , NTL, NLT , and NLL, and four choices for the true quantities: NRR, NRF , NFR, and

NFF . The two sets of four are related by a matrix equation:
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The part of concern for the analysis is the number of tight-tight pairs NTT that come from

fake objects. The top row of the matrix gives:

N fakes
TT = r1f2NRF + f1r2NFR

︸ ︷︷ ︸

N ℓ+jets
TT

+ f1f2NFF
︸ ︷︷ ︸

Ndijet
TT

. (D.1)

The matrix can be inverted to solve for the real and fake quantities in terms of the measured
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tight and loose selections.
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Define the lead factor α ≡ 1
(r1−f1)(r2−f2) . Inserting the measured quantities for the true

quantities, the number of fake tight-tight objects reconstructed in Equation (D.1) is now:

N fakes
TT = α [f1f2(1 − r1r2) − r1f2(1 − r2) − f1r2(1 − r1)]NTT

+α [r1r2f2(1 − f1)]NTL

+α [r1f1r2(1 − f2)]NLT

−α [r1f1r2f2]NLL. (D.2)

The problem is reduced to measured quantities, provided there are reasonable estimates of

the fake rates fi and real rates ri for the leading and sub-leading electrons.

Equation D.2 can be further simplified with an approximation that the real electron

contribution to the tight selection is ideal (ri = 1). Simplifying Equation (D.2) with this

approximation:

N fakes
TT =

f2
1 − f2

NTL +
f1

1 − f1
NLT − f2

1 − f2

f1
1 − f1

NLL.

The coefficients are called the “fake factors”. Using the definition of the fake rate, this can

be simplified in terms of the number of objects in the tight and loose selections:

Fi =
fi

1 − fi
=

NF
T,i/N

F
L,i

1 −NF
T,i/N

F
L,i

=
NF
T,i

NF
L,i −NF

T,i

.
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The tight selection is a subset of the loose selection so the difference is the number of objects

that fail the tight selection. In the denominator, this becomes:

NF
L,i −NF

T,i = NF
fail T,i. (D.3)

The fake factor is now the ratio of the two sets of fake objects in the dataset, those that pass

the tight selection to those that fail.

F fail T
i =

NF
T,i

NF
fail T,i

(D.4)

N fakes
TT = F fail T

2 NTL + F fail T
1 NLT − F fail T

1 F fail T
2 NLL (D.5)

The fake factor is derived from the fake rate, and to evaluate it depends on finding a sample

that contains a large amount of true fakes.

The tight selection is the standard signal selection used in the analysis, including the

pT and isolation cuts for the leading and sub-leading electrons as well as the electron iden-

tification isEM medium++. This identification includes shower shape and track matching

requirements. The loose selection must satisfy the pT cuts, but not the isolation cuts, and the

electron identification requirement used isEM loose++ without track matching. A second

loose selection, designed to give a cleaner sample of fake objects and provide a systematic

check, changes the electron identification requirement to isEM medium++ but fails the track

matching requirement. The fake factor from Equation (D.4) for this selection is designated:

F fail track
i =

NF
T,i

NF
fail track,i

. (D.6)

The loose selection is changed and must be applied to all the NT/L in Equation (D.5).
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D.2 Real Electron Rates

The real electron rates ri are the rates that a true leading and sub-leading electron are

correctly identified in the tight selection as an electron. This requires a sample of true

electrons, either in data or Monte Carlo. This is estimated in MC, where the objects can

be matched to the truth electrons in the simulation. The MC samples of leading and sub-

leading electrons are the mass-binned Drell-Yan MC described in Section 4.2.2. The tight

and loose selections follow the requirements described above.

The real electron rates estimated from the MC, including applying the appropriate scale

factors, for the leading and sub-leading electrons are shown in Figure D.1. The rates are

binned in pT and split into three η regions in the barrel and two endcap regions. The rates

vary for the leading electron from r1 ≃ 0.92 − 0.96 and for the sub-leading electron from

r2 ≃ 0.90 − 0.96.
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Figure D.1: The real electron rates estimated from the Drell-Yan Monte Carlo. Left: Leading
electron. Right: Sub-leading electron. These are binned in pT and split into three η regions,
excluding the crack region. From [217], Figure 2.
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D.3 Fake Electron Rates

The fake electron rates fi and fake factors Fi must be calculated from a sample of true fake

electrons. This requires finding a fake-enriched sample in the data, either from the E/gamma

stream or the Jet stream. The estimations use three different methods and/or samples: the

first two use an “inverse” Tag & Probe method with the E/gamma stream and Jet stream

separately, and the third is a single object method from the Jet stream. Systematic variations

for each method are also studied for uncertainty estimations.

Tag & Probe - E/gamma Stream

This method for estimating the fake electron rates uses an inverse tag and probe on the

E/gamma data stream where the tag electron candidate has a high probability of being

a jet faking. Events are required to pass the EF g35 loose g25 loose diphoton trigger and

all other event level requirements. The tag candidate must pass the standard data quality

and η cuts, but the other requirements are loosened to pT >25 GeV and loose++ without

track matching. To maximize the jet-like nature of the tag candidate it must fail the track

matching and isEM medium++ requirements. If an event has a tag candidate, all other

electron candidates are considered probes. If an event has multiple tag candidates, the

probes are only used once. The fake rates fi and fake factors Fi are determined from the

number of probes satisfying the loose and tight selections NF
L and NF

T . The alternate loose

selection of medium++ and fail track match NF
fail track,i is also calculated.

To further reduce the number of real electrons in the probe samples, cuts are applied on

the tag and probe pairs. For the background due to W+jets, the missing transverse energy

for the event is required MET < 25 GeV. For the background due to Z0 dielectron events, the

tag and probe pair invariant mass must not be near the Z0 peak, |mtag and probe−91| > 20 GeV.
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No lower cut is applied to the invariant mass. Both tag and probe candidates are required

to have the same sign. The final probe selection is corrected for real electron contamination

using the MC for the Drell-Yan, Top, Diboson, and W+jets, using a dilution factor estimated

from their contribution.

Tag & Probe - Jet Stream

This method is similar to the previous selection, but applied to objects from the Jet data

stream instead of the E/gamma data stream. In principle these objects should be more

jet-like and have less contamination from real electrons. Events must satisfy the single jet

triggers EF jX a4tchad, where X ={25, 35, 45, 55, 80, 110, 145, 180, 220, 280, 360}. Events

passing multiple triggers are kept with the lowest trigger threshold. Due to the more jet-like

nature of the candidates, the tag requirement is loosened to fail loose++ to accumulate

more statistics. The probe and pair requirements are the same as before to count NF
L , NF

T ,

and NF
fail track,i. For each trigger a fake rate is calculated, and the final fake rate used is the

weighted average over all the different triggers.

Single Object - Jet Stream

A final method is used by selecting single objects from the Jet data stream. Events are

selected satisfying the single jet trigger EF jX a4tchad, where X ={25, 35, 45, 55, 80, 110,

145, 180, 220, 280, 360}. Events passing multiple triggers are kept with the lowest trigger

threshold. All objects in the jet container AntiKt4TopoEMJets are matched to objects in the

electron container with an η-φ requirement ∆R < 0.1. The jets must also pass the medium

jet-cleaning criteria. Electrons matched with these jets are then used for the NF
L , NF

T , and

NF
fail track,i selection. Because of the single jet triggers, the fake rates and fake factors are

calculated with prescale factors, and the trigger and isolation scale factors are also applied.
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Again, to reduce real electron contamination from W± and Z0 decays, the event missing

transverse energy must have MET < 25 GeV and events with two loose++ electrons must

be away from the Z0 peak |mpair − 91| > 20 GeV.

Systematics

A variety of changes are made to the different methods to estimate the systematic uncertainty

on the fake rates and fake factors. The event level cuts on the missing ET and the invariant

mass window value are changed over three different values. For the tag and probe method,

the requirement on the tag pT is also varied. The tag is also allowed to fail the medium++

track matching or isolation cuts. The variations lead to a systematic uncertainty on the fi

of about 20% for the tag and probe selection, and about 15% for the single object selection.

Comparison

The fake rates and fake factors are calculated from NF
L , NF

T , and NF
fail track,i for both the

leading and sub-leading electron. The fake rates are largest at high |η|, and are stable with

respect to the object pT . They are about 10% for the leading electron and slightly higher

for the sub-leading electron due to the looser isolation requirement. Figure D.2 shows the

estimated fake rates for the leading and sub-leading electrons with respect to pT in different

η regions of the detector.
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Figure D.2: Comparison of the fake rates fi calculated with the three different methods
described. Left: leading electron. Right: sub-leading electron. These are binned with
respect to pT , and the rows correspond to different η regions of the ECAL (barrel and three
endcap ranges). The error bars are statistical only. From [217], Figure 9.
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D.4 Total Fake Background

With the real rates estimated from MC and the fake rates estimated from data using the

various methods described above, the selection of the measurable quantities NTT , NTL, NLT ,

and NLL is needed to calculate the total fakes background in Equation (D.2) or (D.5).

The loose selection can be either the standard loose selection or the fail medium++ track

matching. The total fakes background is then estimated from the data sets. There are still

contributions from real dielectron events to the selections, and this can be estimated from

MC samples and subtracted from the data-driven value. The real single electron dilution is

estimated to be much smaller and neglected.

Three different methods and two different loose selections were used to estimate the fake

rates, with the ri = 1 approximation, using Equation D.5. In addition, the standard loose

selection background estimation is calculated with the real electron rates ri 6= 1 applied,

using Equation D.2. The estimated backgrounds for the 9 different calculations are shown

in Figure D.3. The discrepancies at the Z0 peak are due to real dielectron dilution in

the fakes samples, and the corrections to compensate for this are quite large. The ratio

comparison between methods is also shown in the mass range above the Z0 peak, using the

single object method with real electron rates as the nominal value. This method uses the

fewest approximations and has the largest statistics available.

The total systematic uncertainty for the estimate fakes background comes from several

sources. The variation over this range between the different methods is about 18% from

the nominal value. Systematic variation of the fake factors and selections results in a 5%

variation in the nominal background over this mass range. The composition of the data

samples used to generate the background estimates will vary with respect to b-jets compared

to light-flavor jets and the photon conversion rate. These will, in turn, fail different parts
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Figure D.3: Top: Total fake electron background estimate over all the methods. The circles
apply the real electron rates (ri 6= 1), while the other two use the approximation ri = 1.
The peak at 91 GeV is due to real electron dilution in the samples, and is lower in the
loose fail medium++ track matching sample due to the better rejection of real electrons.
Bottom: Ratio of the various background estimates to the nominal value. The nominal
selection is the single object selection with the real electron rates used. The ratio shown is
from 116-1500 GeV. From [217], Figures 14,15.
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of the selection at different rates, leading to different fake rates. Good agreement is shown

across data samples, and this totals to a 2-3% systematic. In total, a conservative flat 20%

systematic uncertainty is assigned to the fakes background in the range above 110 GeV.

A “knee” is seen in the top histogram in Figure D.3 around 400 GeV. The events from

fakes are from predominately back-to-back objects in φ, except at very low mass. The high-

mass events are typically from fakes with very large opening angles in η, but with low pT

in the 40-80 GeV range. The invariant mass from these types of events will grow with

∆η, assuming a flat pT distribution and back-to-back in φ, until one of the objects passes

|η| > 2.47 and is no longer part of the selection. For a pT of 60 GeV and ∆φ of π, this

corresponds to an invariant mass of about 400 GeV, and an expected change in slope of the

invariant mass distribution due to fakes leaving the selection.

Due to difficulties estimating the fake backgrounds under the Z0 peak, and limited statis-

tics at invariant masses above 1500 GeV, fits are performed to extrapolate to the low and

high invariant mass ranges. Similar to the Top background fits described in the Top portion

of Section 4.2.2, the dijet function is used to extrapolate the invariant mass distribution.

For the fit to high invariant mass, to ensure the slope change is correctly modeled, the lower

edge of the fit is varied between 425-600 GeV in steps of 25 GeV and the upper edge of the

fit is varied between 700-1200 GeV in steps of 50 GeV. The mean between the different fits,

calculated bin-by-bin, is the central value, and the RMS is the error. This is used above

500 GeV. Underneath the Z0 peak, the real electron background dilution made a proper

fakes estimate impossible. Instead, the dijet function is fit between 120-400 GeV, and used

to estimate the contribution to the invariant mass between 80-110 GeV. This fit cannot take

into account the kinematic information of the fakes. Instead the fit to the Top background

between 180-600 GeV is compared to the MC Top prediction in the 80-110 GeV range for

the various kinematic distributions, giving a “fudge factor” to apply to the fakes background
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and estimate the final W+jets and dijet backgrounds in both the invariant mass and kine-

matic distributions. An arbitrary 50% systematic uncertainty is assigned to this low-mass

extrapolation, however this is less than one part in 1000 of the total background and this

region is not used in the search.
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Muon Resolution

Muons in the ATLAS detector are reconstructed using the Inner Detector and the Muon

Spectrometer. This analysis only considers muons that have been fully reconstructed in

both sub-detectors, the combined muons, and uses the second reconstruction chain, called

Muid. The identification, reconstruction, and efficiency of this chain was discussed in Section

3.4.3. This appendix describes how the resolution and systematic uncertainty of the muon

transverse momentum is measured. Within the ATLAS collaboration, this work is done by

the Muon Combined Performance group (MCP). Further details can be found in the 2010

ATLAS Muon Resolution [265] and 2012 ATLAS Muon Resolution [266] notes.

E.1 Momentum Resolution

Unlike the calorimeters where test beam data is available to understand and calibrate the

detector response with a fixed source, the MS requires an in-situ calibration of the muon

momentum resolution and scale. This is done using dimuon decays of known particles, the Z0

boson and the J/ψ & Υ mesons, as standard candles to determine the resolution parameters.
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The measurements are dominated by the Z0 → µµ inputs, with the decays from J/ψ and Υ

used for lower-pT calibration, validation, and systematic uncertainty work. The data used

is the full 2012 ATLAS data set, approximately 20.4 fb−1 of integrated luminosity at 8 TeV

pp collisions. The MC used is predominately the Powheg Z0 → µµ sample, described in

the Drell-Yan part of Section 4.2.2. The J/ψ and Υ samples are generated with Pythia

and fully simulated with GEANT4 for the ATLAS detector, then processed through the

standard trigger and reconstruction used for data. Initially the MC simulations in GEANT4

assumed a perfectly aligned detector, however the simulations for 2012 now include realistic

misalignment of the MS sub-detector to more accurately account for the muon resolution

measurement. The design resolution of the combined ATLAS muon system is expected to

be better than 3% in the pT range below 100 GeV, and approximately 10% at a pT of 1 TeV.

The measured resolution is meeting the design expectations in the low-to-moderate pT range,

and the estimated resolution of a 1 TeV pT muon is approximately 13% in the barrel region

(|η| < 1.05), 17% in the endcap region (1.05 < |η| < 2.0), and 15% in the far-forward CSC

region (2.0 < |η| < 2.7).

The fractional muon momentum resolution is parameterized as a function of pT :

σpT
pT

=
c

pT
⊕ a⊕ b · pT . (E.1)

The three terms each approximately correspond to a different physics process that contributes

to the resolution. The first term c, decreasing with pT , is the energy loss term due to

traversing material in the detector. This is very small except at low-pT , because a muon

is a minimum ionizing particle after a few GeV in momentum, and is neglected for the

remainder of this work. The second term a, constant with pT , is the multiple scattering

term due to traveling through the detector material. This is expected to be small for the
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ID and somewhat larger for the MS. The third term b, increasing linearly with pT , is the

intrinsic resolution due to the resolution of the detector components and any misalignment

within or between the sub-detectors.

The selection of the Z0 → µµ used to calculate the resolution parameters is similar to

the dimuon selection used in this analysis. The event must pass the trigger, primary vertex,

and data quality requirements. The two muons must be CB, have pT > 25 GeV, be isolated,

originate from the primary vertex, and have opposite charge. Lastly, the pair invariant mass

must be at the Z0 peak, |mpair −mZ0| < 15 GeV. There are over 5 million dimuon events in

the 2012 data set, with a purity of approximately 99.9% using MC background estimates.

E.2 Momentum Corrections

The corrections are applied to MC to more accurately model the resolution of the actual

detector. These are referred to as “smearing parameters” ∆a and ∆b. In addition to the

resolution smearing, the overall muon momentum scale can be measured to directly multiply

the momentum measured in the MC, called s. All of the correction parameters depend on

which regions of the detector the muon travels through. The corrections are split between

the two sub-detectors ID and MS. The corrected transverse momentum pcorT in terms of the

measured MC momentum pMC
T is:

pcor,detT = pMC,det
T · sdet(η)

(

1 + ∆adet(η)G(0, 1) + ∆bdet(η)G(0, 1) pMC,det
T

)

. (E.2)

Where det = ID,MS, and G(0, 1) is a Gaussian random variable with mean 0 and width

1. After correcting the momentum measured in the two sub-detectors separately, the CB

momentum correction is the average of the two corrections weighted by their inverse square
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resolutions:

pcor,CBT = pMC,CB
T

[

1 +

∆(MS)
σ2(MS)

+ ∆(ID)
σ2(ID)

1
σ2(MS)

+ 1
σ2(ID)

]

. (E.3)

The σ2(det) are the estimated resolutions of the sub-detectors at the pMC
T . The ∆(det) are

the shift in the pMC
T calculated for each sub-detector. The pcor,CBT are the muon transverse

momentum values used in the analysis for the MC simulated muons.

The correction parameters are derived using a MC template fit to the data. The MC for

Z0 → µµ is binned in the invariant mass around the Z0 peak, after applying the corrections

in Equations (E.2) and (E.3). This is done for a series of correction parameter values ∆a, b

and s. Then a binned likelihood fit is done to find the best-fitting MC template in the

CB muon mass spectrum to the same binned data invariant mass spectrum. Essentially, the

smearing parameters are the difference in quadrature between the data resolution parameters

and the MC resolution parameters.

The detector has been divided into 16 different η regions, and each region has different

correction parameters. The template fitting procedure is iterated by first finding Z0 → µµ

decays where both muons passed through the same η region, then subsequent fits can have

one muon pass through the next η region and one in the previous region(s) or both pass

through the new η region. This is done by working outwards in |η| regions, then repeated

twice for fit stability.

The best-fit smearing parameters ∆aMS(η) and ∆bID(η) and the detector scale parame-

ters sMS(η) and sID(η) are shown in Figure E.1. The dominant systematic uncertainty of the

smearing parameters is from varying the window about the Z0 central mass in the template

fits. The dominant systematics of the scale corrections of 0.1% (0.2% for |η| > 2.0) account

for possible momentum dependence on the corrections themselves. This was estimated by
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comparing the scale corrections measured to those obtained from J/ψ and Υ decays. An-

other systematic uncertainty for all the correction parameters comes from the modeling and

corrections applied in the reconstruction due to the energy loss of muons passing through

the detector material. The two other smearing parameters ∆aID(η) and ∆bMS(η) are set

to zero, but are allowed to vary in the likelihood fit by their systematic uncertainties. The

small amount of material in the ID constrains the multiple scattering (a term) to be small,

and the uncertainty on this, corresponding to the ∆aID(η) parameter, is negligible to the

overall corrections. After including the realistic misalignment in the GEANT4 simulations

of the MS, the intrinsic resolution in MC, corresponding to the ∆bMS(η) parameter, is within

systematic errors of the data. The resulting corrections are shown in Figure E.2 comparing

the MC Z0 dimuon invariant mass peak with the data before and after the corrections are

applied.
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Figure E.1: Top Row: smearing parameters for the ID (left) and MS (right) with the Muid

chain. Bottom Row: scale corrections for the ID (left) and MS (right) with the Muid chain.
From [266], Figures 7,8,13.
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Figure E.2: The dimuon invariant mass at the Z0 peak with Muid CB muons. Left: No
corrections applied to the MC. Right: Smearing and scale corrections applied to the MC.
From [266], Figure 14.
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E.3 Two Station Muon Resolution

The loose selection in the muon channel differs from the standard selection used to measure

the resolution of the muon momentum. The use of only two of the three precision MDT

chamber layers leads to a different momentum resolution, especially at high pT . The two

layers used in the loose selection are the inner and outer layers, and only barrel muons are

considered. The standard reconstruction algorithm uses the track segments created at each

MS precision layer to reconstruct the full path through the MS, and fits the transverse mo-

mentum from the sagitta of the track. In the two station case, instead of reconstructing

the full track, the reconstruction algorithm uses the two track segments to define an angle

between the lines, ∆θseg. The line segments are essentially two tangent lines to the circle

the muon follows in a magnetic field, with this angle and the distance between layers mea-

suring the circle radius. This measures the momentum. The magnetic field is well-mapped

throughout the toroid, and the total bending power is determined by the integral of the

magnetic field through the muon’s path:

Bint =
1

L

∫

~B · d~ℓ,

∆θseg = C · Bint

p
. (E.4)

Where L is the linear distance between the inner and outer layer and C is a constant in the

appropriate units. The relationship in Equation (E.4) is shown in Figure E.3.

To measure the resolution of the two station muons, a large sample of standard muons

are collected. The standard muons are reconstructed normally, then reconstructed ignoring

the hits in middle layer and treating them as two station muons. The momentum resolution

is measured by calculating the width of a single Gaussian fit to the variable p∆θseg/qBint.
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Figure E.3: ∆θseg/Bint plotted with respect to q/p for two station muons in the Large sectors.
The straight line slope is the constant C. From Appendix B, Figure 70 in [217].

The fit is restricted over the range ±1.75σ of the distribution, and iterated until the fit

width is stable. To account for the momentum dependence of the resolution, this is repeated

over various p ranges. Because of the variation in magnetic field strength, material, and

Large/Small chamber performance, each of the 192 MDT “towers” (set of three layers a

muon passes through from the vertex) are checked individually for any unexpected behavior.

Four such towers are removed from the loose selection due to poor performance, noted in

Section 4.4.1.

The muon resolution described in Equation (E.1) is used to extract the overall two station

muon resolution. The σ from the Gaussian fits to p∆θseg/qBint and the average momentum

〈p〉 from the standard three station momentum are used for the function values to fit the a

and b parameters. At high-pT , this is dominated by the b parameter, and this is the most

important term for this analysis. The errors on the resolution fit are calculated by varying
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Figure E.4: Resolution distributions in p∆θseg/qBint for the Large sectors. These are fit with
a single Gaussian. Left: Low momentum p=39-41 GeV. Right: High momentum p=130-150
GeV. From [217], Appendix B, Figure 71.

σ over its error range and 〈p〉 over the RMS of its distribution, then added in quadrature.

The resulting b resolution parameters are listed in Table E.1 and the fits are shown in Figure

E.5. The extracted resolution parameters are somewhat worse in MC than in data, with an

estimated 50% resolution at 1 TeV in MC, compared to an estimated 45% in data. However,

this discrepancy is covered by the systematic uncertainties of the resolution.

Sectors Simulation [TeV−1] Data [TeV−1]
Small 0.537 ± 0.022 0.459 ± 0.018
Large 0.479 ± 0.017 0.424 ± 0.019

Table E.1: The b resolution parameters measured in data and simulation. From Appendix
B, Table 36 in [217].
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Figure E.5: The two station muon resolution σ as a function of momentum p. This is fit
with expected resolution function in Equation (E.1). The extracted b parameter is called p2
here. The curves separate the Large and Small sectors due to their different performance.
Left: Resolution in MC. Right: Resolution in data. From [217], Appendix B, Figure 73.

E.4 Muon Resolution Systematic Uncertainty

The muon resolution corrections are implemented for the MC using a tool provided by the

MCP. The package and release tag used for this analysis is

MuonMomentumCorrections-00-08-07. In addition to providing the smearing and

scale parameters, the tool allows for a systematic variation of the muon momentum. The

expected SM backgrounds are all “over-smeared” by increasing the smearing parameters by

1-σ, and this over-smeared background is compared to the nominal background bin-by-bin.

This provides a simple estimate of the mass-dependence of the muon resolution systematics

on the expected background. The variations with respect to nominal are shown in Figure

E.6. This is fit with a second-order polynomial, and the fit is used to calculate the systematic

uncertainty as a function of the reconstructed invariant mass for the search and limit setting.

Because of the linear dependence of the resolution on the pT , the systematics are larger

at higher mµµ, and this can potentially change the muon Z ′ signal templates. For three
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Figure E.6: The systematic uncertainty on the total background due to the muon resolution
as a function of invariant mass. Left: Tight muon channel. Right: Loose muon channel.
From [217], Appendix C, Figure 74.

benchmark SSM Z ′ signals at masses of 1, 2, and 3 TeV, the signal was studied after the

nominal and over-smearing. This was done by looking at the signal yield within ±1 RMS of

the signal peak. In both cases the number of signal events was integrated over this range, and

the difference between the total yields of the nominal and over-smeared Z ′ is the systematic

uncertainty. This is listed in Table E.2, and is determined to be a negligible systematic

uncertainty.

Z ′ mass Variation Z ′ RMS Nominal Over-smeared Relative
[GeV] [GeV] signal yield signal yield difference [%]
1000 MSUP 169 1423 ± 15 1411 ± 15 0.9
2000 MSUP 636 25.07 ± 0.19 24.91 ± 0.19 0.6
3000 MSUP 1160 0.717 ± 0.004 0.708 ± 0.004 1.4
1000 IDUP 169 1423 ± 15 1422 ± 15 0.12
2000 IDUP 636 25.07 ± 0.19 25.06 ± 0.19 0.024
3000 IDUP 1160 0.717 ± 0.004 0.717 ± 0.004 0.13

Table E.2: Z ′ signal yields from different muon resolution systematic variations. The signals
were normalized to an integrated luminosity of 21 fb−1. From [217], Appendix C, Table 37.
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