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Abstract

This thesis will present the first observation of the decay B0
s →K−µ+νµ and the

determination of |Vub|/|Vcb|. Using 2 fb−1 of data with a centre of mass energy

of
√
s = 8 TeV provided by the Large Hadron Collider and collected using the

LHCb experiment, a measurement of the ratio of branching fractions of the decays

B0
s →K−µ+νµ and B0

s →D−s µ+νµ is performed. This is the first observation of

the decay B0
s → K

−
µ+νµ which is found to have the branching fraction,

B(B0
s → K

−
µ+νµ)

B(B0
s → D−s µ

+νµ)
= (3.70± 0.29± 0.51)× 10−3, (1)

where the first uncertainty is statistical and the second is systematic.

A second set of branching fraction measurements are made, restricted to high and

low regions of q2. The experimental ratio of branching fractions is combined with

form factor calculations allowing for measurements of |Vub|/|Vcb| to be performed.

There is a long standing discrepancy of ≈ 3.5σ between exclusive and inclusive

measurements of |Vub| and a new measurement of this parameter provides some

clarity on this discrepancy. Form factors from lattice QCD in the high q2 region

give,
|Vub|
|Vcb|

= 0.0719± 0.0056± 0.0086, (2)

and form factors from light-cone sum rules in the low q2 region give

|Vub|
|Vcb|

= 0.0625± 0.0090± 0.0039, (3)

where the first uncertainty is experimental and the second is theoretical. The

two measurements are in agreement and differ by 1σ. This high precision

measurement of |Vub|/|Vcb| provides an essential constraint for global fits to

the CKM sector, and these results confirm the long-standing tension between

inclusive and exclusive determinations of |Vub|.
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Lay Summary

The world around us is made of atoms, which in turn are made from fundamental

particles known as quarks and leptons. The quarks combine to form protons and

neutrons which form the nucleus of an atom orbited by electrons. There are six

flavours of quarks grouped into three generations of matter and two types referred

to as up and down. All physical matter around is made from the two lightest

quarks. The up type quarks (up, charm and top) may transition to down type

quarks (down, strange and bottom) and vice versa, with the relative coupling

strengths described by a 3 × 3 unitary matrix, known as the CKM matrix. The

strengths of the matrix elements may be determined by investigating decays of

particles sensitive to different elements of the matrix. The element Vub couples the

up quark to the bottom quark and is the smallest of the elements with the largest

relative uncertainty. Historically measurements of |Vub| have been performed

using exclusive decays where a a specific decay is measured, and inclusive decays

where many decays containing a b →u transition are measured simultaneously.

There is a discrepancy of approximately 3.5σ between the inclusive and exclusive

determinations of |Vub|.

The LHCb experiment forms part of the Large Hadron Collider at CERN and

was built and designed to detect the decays of b-hadrons. This thesis presents

a first observation of the semileptonic decay B0
s → K

−
µ+νµ, a tree level decay

dependent on |Vub|. The decay B0
s → D−s µ

+νµ is dependent on |Vcb| and the

ratio of branching fractions, B(B0
s → K

−
µ+νµ)/B(B0

s → D−s µ
+νµ) is measured.

Semileptonic decays containing a light hadron in the final state are beneficial

to theoretical physicists as the hadronic and leptonic components of the decay

rate can be factorised out. The ratio, |Vub|/|Vcb|, is obtained by restricting the

branching fraction measurement to specific regions in phase space and combining

the branching fraction with theoretical predictions calculated using Lattice QCD

and light-cone sum rules.

ii



Declaration

The data presented in this thesis was collected by the LHCb experiment at CERN,
and I played a major role in the analysis of the data containing B0

s → K
−
µ+νµ

and B0
s → D−s µ

+νµ decays. All of the analysis presented in the thesis is my
own work, apart from the regression model to select a q2 solution, the choice of
stripping selections and preselections, vetoes for the decay B0

s → K
−
µ+νµ, and

the development of the isolation tool to reject charged backgrounds, detailed in
Sections 5.1.3, 5.6.2, 5.6.3 and 5.6.7.

I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise, and that this work has not
been submitted for any other degree or professional qualification.

(Iwan Smith, 2019 )

iii



To the memory of my brother, Izaak.

iv



Acknowledgements

Firstly I would like to thank my supervisor Franz Muheim for his guidance,
feedback and suggestions over the course of my PhD. His expertise and experience
were highly valued during the course of this analysis. Thanks must go to
the proponents of the B0

s → K
−
µ+νµ analysis, Adlene, Bassem, Marta, Michael,

Michel, Mika, and Svende, who’s knowledge, and enthusiasm made this a very
fulfilling analysis. I am also grateful to all members of the semileptonic working
group for their input and feedback.

Theoretical predictions were an essential part of this work, and I am incredibly
grateful to Alexander Khodjamirian, Aleksey V. Rusov, and all members of
the Fermilab Lattice, MILC, RBC, UKQCD and HPQCD collaboration that
worked tirelessly to produce the theoretical form factors needed for this analysis.
Additional thanks go to Oliver Witzel and Chris Bouchard for their helpful
discussions regarding the B0

s → K
−
µ+νµ form factors.

I would like to thank CERN, the LHCb Collaboration, the University of
Edinburgh, SUPA and the STFC for providing the infrastructure, training,
resources and funding to make my doctoral research possible.

The four years I spent working towards this PhD. were an incredible experience
and would not have been the same were it not for the friends I made along the way,
both inside and outside the world of physics. I would like to extend a heartfelt
thanks to all my friends and family for their support, energy and patience.

v



Contents

Abstract i

Lay Summary ii

Declaration iii

Acknowledgements v

Contents vi

List of Figures xi

List of Tables xvi

1 Introduction 1

2 Theory 6

2.1 The Standard Model............................................................ 6

2.1.1 Quantum Electrodynamics........................................... 7

2.1.2 Quantum Chromodynamics.......................................... 9

2.1.3 The Weak Force and SU(2)L ×U(1)Y .......................... 9

2.1.4 Electroweak Symmetry Breaking ................................... 12

2.1.5 Yukawa Coupling and Leptons...................................... 14

2.1.6 Yukawa Coupling and Quarks....................................... 14

vi



2.2 The CKM Sector ................................................................ 16

2.2.1 The CKM Matrix ...................................................... 16

2.2.2 Constraining the CKM sector ....................................... 18

2.3 Semileptonic B meson Decays ................................................ 20

2.3.1 Lattice QCD ............................................................ 21

2.3.2 B0
s → K

−
µ+νµ Form Factors ...................................... 23

2.3.3 B0
s → D−

s µ
+νµ Form Factors ..................................... 25

2.3.4 Form factor Results.................................................... 28

3 The LHCb experiment 30

3.1 The Large Hadron Collider.................................................... 30

3.2 The LHCb experiment ......................................................... 31

3.3 Reconstructing Semileptonic Decays ........................................ 34

3.4 Tracking ........................................................................... 35

3.4.1 Magnet ................................................................... 35

3.4.2 VELO..................................................................... 35

3.4.3 Silicon and Straw Trackers........................................... 39

3.5 Particle Identification and Calorimetry..................................... 42

3.5.1 RICH...................................................................... 42

3.5.2 Calorimetry and the Muon system................................. 44

3.5.3 Particle Likelihood..................................................... 45

3.6 Trigger ............................................................................. 46

3.7 Simulation......................................................................... 48

4 The Strategy for |Vub| at LHCb 50

vii



5 Finding b→ u`ν` at a hadron collider 53

5.1 Kinematics ........................................................................ 53

5.1.1 Corrected Mass ......................................................... 54

5.1.2 Neutrino Reconstruction and q2 .................................... 57

5.1.3 Linear Regression to Reconstruct q2 ............................... 58

5.2 Backgrounds ...................................................................... 60

5.3 Calibration Samples............................................................. 62

5.4 Combinatoric Modelling ....................................................... 62

5.5 Simulated Samples .............................................................. 65

5.6 Selections for B0
s → K

−
µ+νµ and B0

s → D−
s µ

+νµ ................... 66

5.6.1 Data Pipeline ........................................................... 66

5.6.2 Preselection.............................................................. 68

5.6.3 Background Vetoes .................................................... 70

5.6.4 sPlot Unfolding ......................................................... 73

5.6.5 Boosted Decision Tree ................................................ 75

5.6.6 Kinematic Corrections ................................................ 77

5.6.7 Charged Track Isolation BDT....................................... 78

5.6.8 Selection BDT .......................................................... 83

5.7 Selection on Data................................................................ 88

6 Determining |Vub|/|Vcb| and B(B0
s → K−µ+νµ) at LHCb 90

6.1 Fit Method........................................................................ 91

6.1.1 Beeston Barlow Fit Method ......................................... 91

viii



6.2 B0
s → D−

s µ
+νµ Fit Results ................................................. 93

6.2.1 Normalisation Fit Model ............................................. 93

6.2.2 Background Subtraction.............................................. 94

6.2.3 Fit Results ............................................................... 96

6.3 Signal Fit .......................................................................... 98

6.3.1 Components and Templates ......................................... 99

6.3.2 B+ →J/ψK+ Yield Constraint ..................................... 101

6.3.3 Misidentified Particle Yield Constraints .......................... 104

6.3.4 Fit Model ................................................................ 106

6.3.5 Fit Results ............................................................... 109

6.4 Systematic Uncertainties....................................................... 112

6.5 Relative Efficiency Determinations and corrections ..................... 113

6.5.1 Generator Efficiency ................................................... 113

6.5.2 Particle Identification ................................................. 114

6.5.3 Tracking Correction ................................................... 119

6.5.4 B+ →J/ψK+ corrections............................................. 120

6.5.5 q2 Migration ............................................................. 121

6.5.6 Final Corrected Relative Efficiency ................................ 124

6.6 Determination of B(B0
s → K

−
µ+νµ) and |Vub|/|Vcb| ................ 125

7 Implications 129

7.1 Inclusive and exclusive determinations of |Vub|/|Vcb| .................. 129

7.2 Outlook for |Vub|/|Vcb| from B0
s → K

−
µ+νµ decays and LHCb ... 130

8 Conclusions 132

ix



A Form Factor Comparisons 134

A.1 Publications Used ............................................................... 135

A.2 z-expansion Fit Parameters ................................................... 136

A.3 Comparison Plots................................................................ 138

B Validation of Combinatoric Modelling 145

C sPlot Background subtraction Results 147

D Validation of BDT Reweighting 149

Bibliography 153

x



List of Figures

(1.1) Visualisation of CKM matrix. . . . . . . . . . . . . . . . . . . . . 2

(2.1) Unitary triangle plotted in complex plane. . . . . . . . . . . . . . 18

(2.2) UTfit and CKMfitter constraints on ρ and η. . . . . . . . . . . . . 20

(2.3) Form factor predictions for B0
s → K

−
µ+νµ. . . . . . . . . . . . . . 26

(2.4) Differential decay rate predictions for B0
s → K

−
µ+νµ. . . . . . . . 26

(2.5) Form factor and differential decay rate predictions forB0
s → D−s µ

+νµ. 27

(2.6) Decay width averages for B0
s → D−s µ

+νµ and B0
s → K

−
µ+νµ. . . . 29

(3.1) Diagram of the LHC accelerator chain. . . . . . . . . . . . . . . . 31

(3.2) Feynman diagram of bb production and NLO PDFs. . . . . . . . . 32

(3.3) Schematic of the LHCb experiment . . . . . . . . . . . . . . . . . 33

(3.4) Plot of the LHCb magnetic field profile. . . . . . . . . . . . . . . . 36

(3.5) VELO and VELO sensor schematic. . . . . . . . . . . . . . . . . . 38

(3.6) Primary vertex and impact parameter uncertainty. . . . . . . . . . 40

(3.7) Layout of the Tracker Turicensis. . . . . . . . . . . . . . . . . . . 41

(3.8) Schematic of the RICH1 subdetector. . . . . . . . . . . . . . . . . 42

(3.9) Reconstructed Cherenkov angle plotted against momentum for
RICH1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

(3.10)Kaon identification efficiencies and misidentification rates. . . . . 46

(5.1) Visualisation of B0
s → K

−
µ+νµ topology displaying both neutrino

solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xi



(5.2) Corrected mass distributions with and wothout resolution. . . . . 55

(5.3) Corrected mass distributions of events passing and failing the
corrected mass uncertainty selection. . . . . . . . . . . . . . . . . 56

(5.4) The corrected mass uncertainty for signal decays andB+ → J/ψK+

decays reconstructed as B0
s → K

−
µ+νµ. . . . . . . . . . . . . . . . 57

(5.5) Input variables used to predict the B0
s momentum with a linear

regression model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

(5.6) True q2 distributions from Monte Carlo reconstructed in various
ways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

(5.7) B0
s → K

−
µ+νµ and B+ → J/ψK+ topologies. . . . . . . . . . . . . 61

(5.8) Validation plots for the modelling of combinatoric candidates. . . 63

(5.9) The corrected mass of a K−µ+ pair is plotted for candidates
modelling combinatoric backgrounds. . . . . . . . . . . . . . . . . 65

(5.10)The topology of a combinatoric candidate looking down the z axis. 73

(5.11)Fit results of a maximum likelihood to the D−s →K−K+π−

invariant mass distribution and sPlot weights. . . . . . . . . . . . 74

(5.12)Schematic of a small decision tree. . . . . . . . . . . . . . . . . . . 75

(5.13)BDT response and weights used to correct B0
s → K

−
µ+νµ Monte

Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

(5.14)BDT response and weights used to correct B0
s → D−s µ

+νµ Monte
Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

(5.15)Topology of a B0
s → K

−
µ+νµ and B+ → J/ψK+ decay. . . . . . . 79

(5.16)Response of the isolation BDTs. . . . . . . . . . . . . . . . . . . . 82

(5.17)Invariant mass of a candidate track combined with the least
isolated track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

(5.18)Response and ROC curve of the first selection BDT. . . . . . . . . 87

(5.19)Response and ROC curve of the second selection BDT. . . . . . . 87

(5.20)Calibration of the selection BDT response variables. . . . . . . . . 88

(5.21)Corrected mass distributions in data as selections are applied. . . 89

(6.1) B0
s → D−s µ

+νµ fit templates merged into a single template. . . . . 94

(6.2) D−s →K−K+π− background subtraction fits. . . . . . . . . . . . . 95

xii



(6.3) Plotted B0
s → D−s µ

+νµ fit results. . . . . . . . . . . . . . . . . . . 96

(6.4) B0
s → D−s µ

+νµ toy fit pulls. . . . . . . . . . . . . . . . . . . . . . 98

(6.5) Merging of K∗ templates and misidentified particle templates. . . 100

(6.6) B+ →J/ψK+ invariant mass distributions and fits. . . . . . . . . 103

(6.7) B0
s → K

−
µ+νµ signal fit to the K−µ+ corrected mass. . . . . . . . 107

(6.8) B0
s → K

−
µ+νµ signal fit to the K−µ+ corrected mass performed

simultaneously in two q2 bins. . . . . . . . . . . . . . . . . . . . . 110

(6.9) B0
s → K

−
µ+νµ signal fit pull distributions. . . . . . . . . . . . . . 111

(6.10)B0
s → K

−
µ+νµ signal fit pull distributions from a simultaneous fit

in two q2 bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

(6.11)b→c→s signal fit pull distributions from a simultaneous fit in two
q2 bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

(6.12)Impact of reweighting on corrected mass distribution . . . . . . . 113

(6.13)Efficiency plots requiring final state particles are within the
detector acceptance. . . . . . . . . . . . . . . . . . . . . . . . . . 115

(6.14)2D projection of kaon PID efficiencies . . . . . . . . . . . . . . . . 117

(6.15)2D projection of muon PID efficiencies . . . . . . . . . . . . . . . 117

(6.16)PID efficiencies plotted against corrected mass. . . . . . . . . . . 118

(6.17)2D table of tracking efficiency corrections. . . . . . . . . . . . . . 119

(6.18)Corrected mass uncertainty calibration. . . . . . . . . . . . . . . . 121

(6.19)Isolation BDT calibration plots. . . . . . . . . . . . . . . . . . . . 122

(6.20)Selection BDT calibration plots. . . . . . . . . . . . . . . . . . . . 122

(6.21)Visualisation of q2 migration. . . . . . . . . . . . . . . . . . . . . 123

(6.22)Efficiency of selection plotted against q2. . . . . . . . . . . . . . . 125

(6.23)Vub/Vcb comparison with PDG averages . . . . . . . . . . . . . . . 127

(A.1)Form factors plotted against z. Image, left, taken from [31] and
right, generated using fit parameters taken from [31]. The blue
shaded section (left) should be compared to the red section (right). 138

(A.2)Form factors plotted against z. Image, left, taken from [31] and
right, generated using fit parameters taken from [31]. . . . . . . 138

xiii



(A.3)Form factors plotted against q2. Image, left, taken from [31] and
right, generated using fit parameters taken from [31]. . . . . . . 139

(A.4)Form factors plotted against q2. Image, left, taken from [31] and
right, generated using fit parameters taken from [31]. The blue
shaded section (left) should be compared to the red section (right). 139

(A.5)The differential B0
s → K

−
µ+νµ decay rate plotted against q2. Im-

age, left, taken from [31] and right, generated using fit parameters
taken from [31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

(A.6)Form factors plotted against z. Image, left, taken from [30] and
right, generated using fit parameters taken from [30]. . . . . . . 140

(A.7)Form factors plotted against q2. Image, left, taken from [30] and
right, generated using fit parameters taken from [30]. . . . . . . 141

(A.8)The differential B0
s → K

−
µ+νµ decay rate plotted against q2. Im-

age, left, taken from [30] and right, generated using fit parameters
taken from [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

(A.9)Form factors plotted against q2. Image, left, taken from [32] and
right, generated using fit parameters taken from [32]. The green
shaded region (left) should be compared to the red shaded region
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

(A.10)Form factors plotted against q2. Image, left, taken from [32] and
right, generated using fit parameters taken from [32]. The green
shaded region (left) should be compared to the blue shaded region
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

(A.11)Form factors plotted against z. Image, left, taken from [36] and
right, generated using fit parameters taken from [36]. . . . . . . 143

(A.12)Form factors plotted against q2. Image, left, taken from [36] and
right, generated using fit parameters taken from [36]. . . . . . . 143

(A.13)The differential B0
s → D−s µ

+νµ decay rate plotted against q2. Im-
age, left, taken from [36] and right, generated using fit parameters
taken from [36]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

(A.14)Form factors plotted against z. Image, left, taken from [35] and
right, generated using fit parameters taken from [35]. . . . . . . 144

(B.1)K−µ+ candidates in data are plotted with simulated combinatorics
before and after a kinematic correction . . . . . . . . . . . . . . . 146

(C.1)Fit to K−K+π+ invariant mass spectrum and sWeights obtained
from fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xiv



(C.2)Fit to K−µ+µ− invariant mass spectrum and sWeights obtained
from fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

(C.3)Fit to K−µ+µ− invariant mass spectrum and sWeights obtained
from fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

(D.1)BDT response and correction weights for B0
s → K

−
µ+νµ. . . . . . 150

(D.2)BDT response and correction weights for B0
s → D−s µ

+νµ. . . . . . 151

(D.3)The kinematic distributions of all variables corrected using the
BDT ReWeighter method. . . . . . . . . . . . . . . . . . . . . . . 152

xv



List of Tables

(2.1) Fermion charge and isospin assignments. . . . . . . . . . . . . . . 11

(2.2) Predicted decay widths and differential branching fractions for
B0
s → K

−
µ+νµ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

(2.3) Predicted decay widths and differential branching fractions for
B0
s → D−s µ

+νµ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

(3.1) Detector signatures of various particle types. . . . . . . . . . . . . 41

(3.2) Muon selection requirements. . . . . . . . . . . . . . . . . . . . . 45

(3.3) L0 trigger thresholds used during 2012 [58]. . . . . . . . . . . . . 47

(5.1) Resolution on reconstructed q2 after selecting one of the two
solutions. Resolutions are given for the correct solution, solution
obtained from regression, randomly selecting a solution and the
incorrect solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

(5.2) A summary of the simulated samples used in this Analysis. . . . . 67

(5.3) Variables and boundaries used in the multivariate trigger. . . . . . 69

(5.4) Stripping lines and prescales. . . . . . . . . . . . . . . . . . . . . . 70

(5.5) All selections applied to the B0
s → K

−
µ+νµ candidates using the

B2XuMuNuBs2K stripping line. . . . . . . . . . . . . . . . . . . . . . 71

(5.6) All selections applied to B0
s → D−s µ

+νµ candidates using the
B2DMuNuX Ds line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

(5.7) Monte Carlo distributions corrected in Monte Carlo using a BDT
reweighting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

(5.8) Input variables used during training of the first selection BDT. . . 85

(5.9) Input variables used during training of the second selection BDT. 85

xvi



(5.10)The simulated decays and number of events used during the
training of the BDTs. . . . . . . . . . . . . . . . . . . . . . . . . . 86

(6.1) B0
s → D−s µ

+νµ data sources for fit templates. . . . . . . . . . . . . 94

(6.2) B0
s → D−s µ

+νµ fit results. . . . . . . . . . . . . . . . . . . . . . . . 97

(6.3) Signal fit template data sources. . . . . . . . . . . . . . . . . . . . 100

(6.4) B+ →J/ψK+ yields used as constraints in the signal fit. . . . . . 102

(6.5) B+ →J/ψK+ yield constraints and systematic uncertainties. . . . 104

(6.6) PID enrichment selections and MisID rates. . . . . . . . . . . . . 105

(6.7) MisID yields in enriched region and data. . . . . . . . . . . . . . . 106

(6.8) Summary of fit component relationships. . . . . . . . . . . . . . . 108

(6.9) Summary of constraints for the B0
s → K

−
µ+νµ signal fit . . . . . . 109

(6.10)B0
s → K

−
µ+νµ fit yield systematics . . . . . . . . . . . . . . . . . 113

(6.11)Efficiency of requiring final state partices are within detector
acceptance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

(6.12)Decays used to calibrate particle identification efficiencies. . . . . 115

(6.13)PID selections applied to final state particles. . . . . . . . . . . . 115

(6.14)PID efficiencies with systematic uncertainties. . . . . . . . . . . . 119

(6.15)Tracking efficiency corrections applied to Monte Carlo events. . . 120

(6.16)Correction factors applied to Monte Carlo determined from simu-
lated and real decays of B+ → J/ψK+. . . . . . . . . . . . . . . . 121

(6.17)q2 bin migration correction factors. . . . . . . . . . . . . . . . . . 124

(6.18)Efficiency uncertainty from form factor uncertainty . . . . . . . . 124

(6.19)Summary of efficiencies and corrections . . . . . . . . . . . . . . . 128

(6.20)Final corrected relative efficiency . . . . . . . . . . . . . . . . . . 128

(6.21)Summary of systematic uncertainties . . . . . . . . . . . . . . . . 128

(A.1)Details of the papers providing form factor results forB0
s → K

−
µ+νµ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

(A.2)Details of the papers providing form factor results forB0
s → D−s µ

+νµ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xvii



(A.3)Extrapolated coefficients of a HPChPT z expansion for the
B0
s → K

−
µ+νµ form factors with the associated covariance matrix.

Results taken from [31]. . . . . . . . . . . . . . . . . . . . . . . . 136

(A.4)Central values, errors, and correlation matrix for the BCL z-
parametrisations of f+ and f0 for B0

s → K
−
µ+νµ. Results taken

from [30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

(A.5)Central values, errors, and correlations for the BCL z-parametrisations
of f+ and f0 for B0

s → K
−
µ+νµ. Results taken from [32]. . . . . . . 137

(A.6)Central values, errors, and covariance matrix for the z-parametrisations
of f+ and f0 for B0

s → D−s µ
+νµ. Results taken from [36]. . . . . . 137

(A.7)Central values, errors, and correlation matrix for the three term
z-parametrisations of f+ and f0 for B0

s → D−s µ
+νµ. Results taken

from [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

(C.1)Fit results obtained from a maximum likelihood fit in order to
obatin sWeights. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xviii



Chapter 1

Introduction

The standard model of particle physics is the name given in the 1970s to the theory

describing all fundamental particles and the forces governing their interactions.

It incorporates all that we know about subatomic particles and has predicted the

existence of new particles, most famously the Higgs boson which was discovered

in 2012 by the ATLAS and CMS experiments. The 17 particles in the standard

model are divided into six quarks, six leptons, four gauge bosons and one scalar

boson. The six quarks can be divided into three up-down pairs and the six leptons

can be divided into three pairs containing a charged lepton and a neutrino. Quark

and lepton pairs are known as flavours. Different quark and lepton pairs behave in

exactly the same way and the masses of the charged leptons and quarks originate

from their coupling to the Higgs field, with masses varying by five orders of

magnitude in the quark sector and three orders of magnitude in the charged

lepton sector. It remains unknown why the masses vary to such an extent and

why there are exactly three flavours of quarks and leptons.

The standard model allows quarks to change flavour via the charged weak

interaction mediated by the W± boson, a process that was first observed in 1896

via the radioactive decay of a neutron to proton via the emission of a W±.

n→ pe−νe, (1.1)

in which a neutron, uud, decays to a proton, udd, The weak force only couples

leptons of the same generation and for quarks cross-generational couplings are

allowed. The strength of the couplings between quarks are proportional to the
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elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix

V CKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (1.2)

and the couplings between charged leptons and neutrinos are universal across

the generations. The structure of the CKM matrix is nearly diagonal and is

illustrated in Figure 1.1, with |Vub| being the smallest and least well known of the

elements. It is worth noting that the CKM matrix is unitary,

3∑
i

VijV
∗
ik = δjk (1.3)

which provides an essential test of the Standard Model. The vanishing

combinations of Equation 1.3 can be represented as triangles in the complex

plane known as CKM unitary triangles.
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Figure 1.1 The magnitudes of the CKM matrix elements are illustrated (left)
with the almost diagonal structure clearly visible. The fractional
uncertainties of the CKM matrix elements are plotted on the right
and it can be seen that |Vub| is the smallest element with the largest
relative uncertainty.

The CKM matrix is parametrised by three mixing angles and a complex phase.

The complex phase is responsible for all CP violation in the standard model.

The CP operator is a product of the charge conjugation operator, Ce− → e+,

and the parity transformation operator, Pxi → −xi. CP violation is responsible

for the difference in behaviour between matter and antimatter and is required to

explain the matter-antimatter asymmetry we observe in the universe. However
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the amount of CP violation required to explain the matter-antimatter asymmetry

we see today is nine orders of magnitude larger than seen in the quark sector.

In order to test the unitarity of the CKM matrix and precisely measure the

amount of CP violation in the quark sector, the parameters of the CKM matrix

must be constrained. The CKM parameters can be constrained by performing

measurements of observables sensitive to the magnitudes of the CKM matrix

elements. Since |Vub| is the least well known of the CKM matrix elements it is

the dominant limiting factor when drawing CKM unitary triangles. An improved

uncertainty on |Vub| will improve the global precision of fits to the CKM unitary

triangles and test the unitarity of the CKM matrix. Non unitarity of the CKM

matrix would be indicative of new physics beyond the standard model.

The CKM matrix elements |Vub| and |Vcb| can be determined from inclusive

and exclusive semileptonic decays of a B hadron. When performing an

exclusive measurement all visible1 decay products of the B are reconstructed,

and an inclusive decay, B → `−νX, contains additional unreconstructed final

state particles. Inclusive determinations of |Vcb| combine measurements of the

semileptonic b → cµ−νµX decay rate with the leptonic energy, the hadronic

invariant mass spectra and theoretical calculations. Inclusive measurements of

|Vcb| were initially performed by the ARGUS and CLEO collaborations. Later

came the B factories operating at the Υ (4S) production energy and LEP using

B mesons produced from the decays of the Z boson. The B factories had the

benefit of higher statistics and produced more precise determinations than LEP

while the boosted B mesons from the Z allowed measurements to be made in a

larger phase space.

An inclusive measurement of |Vub| is complicated due to the enormous back-

grounds originating from B → Xc`
−ν decays. A kinematic approach is usually

taken and inclusive measurements are performed in the region where charm

backgrounds are kinematically forbidden although statistics can be increased by

extending the phase space into the B → Xce
−ν region. CLEO, Belle and BaBar

have quoted partial rates of B → Xc`
−ν for |~pe| ≥ 2.0 GeV and |~pe| ≥ 1.9 GeV

which is well below the charm kinematic endpoint.

Exclusive determinations of |Vcb| are based on semileptonic B → D(∗)`−ν decays

in the limit mb,c, � ΛQCD. Exclusive measurements of |Vub| are made by

combining the exclusive decay rate of B hadrons combined with form factor

1A visible particle is reconstructible by the detector. The neutrino is considered invisible.
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predictions. The decays B0 → π−µ+νµ, B0
s → K

−
µ+νµ and Λ0

b → pµ−νµ which

contain a ground state hadron in the final state are “golden modes” for lattice

QCD predictions and have the lowest theoretical uncertainties.

Form factors provided by lattice QCD are most accurate in the kinematic region

with high momentum transfer.

The averaged |Vcb| measurements are

|Vcb|Incl = (42.2± 0.8)× 10−3, |Vcb|Excl = (41.9± 2.0)× 10−3, (1.4)

and the averaged |Vub| measurements are

|Vub|Incl = (4.49± 0.28)× 10−3, |Vub|Excl = (3.70± 0.16)× 10−3. (1.5)

The difference between inclusive and exclusive measurements of |Vcb| and |Vub| of

approximately 3σ has been a long-standing puzzle in particle physics.

The LHC experiment provides an abundance of B hadrons which are detected by

the LHCb experiment making exclusive determinations of |Vub| possible with the

decays Λ0
b → pµ−νµ and B0

s → K
−
µ+νµ. This thesis presents a first observation

of the decay B0
s → K

−
µ+νµ with a measurement of the ratio of branching

fractions B(B0
s→K

−
µ+νµ)

B(B0
s→D

−
s µ+νµ)

and a ratio of the CKM matrix elements |Vub|/|Vcb|. This

measurement uses data collected from pp collision events collected by the LHCb

experiment in the year 2012. The measured ratio of branching fractions is

combined with theoretical inputs from Lattice QCD and Light-Cone Sum Rules

allowing |Vub|/|Vcb| to be determined. This ratio provides an important constraint

when performing global fits testing the unitarity of the CKM matrix.

The thesis is structured as follows. Chapter 2 presents an overview of the

theoretical framework required for this measurement, including a discussion of

the standard model of particle physics and the CKM sector. The theory of

semileptonic decays is presented alongside the theory of lattice QCD and the

latest form factor predictions for the decays B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ

are presented. The LHC and LHCb experiments are introduced in Chapter 3

and the conditions for taking data are discussed. Chapter 4 briefly discusses

the analysis strategy for the measurement of the ratio of branching fractions

and CKM matrix elements. The main analysis work is presented in Chapters 5

and 6 and discusses the methods used to reconstruct B0
s → K

−
µ+νµ candidates
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and separate a signal yield from the many backgrounds present at the LHCb

experiment. Chapter 5 details the reconstruction of several non-trivial kinematic

distributions essential for this analysis and goes on to detail the modelling of data

and the selections used to reject backgrounds. Chapter 6 goes on to detail the fits

used to extract the B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ yields in data followed by a

calculation of the selection efficiencies and systematics, and culminates with the

results of B(B0
s → K

−
µ+νµ)/B(B0

s → D−s µ
+νµ) and |Vub|/|Vcb|. The implications

of this measurement on the particle physics landscape is discussed in Chapter 7

which leads to the conclusion of this thesis in Chapter 8.
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Chapter 2

Theory

This chapter provides a summary of the standard model of particle physics, and

goes on to explain the CKM matrix and its parametrisation. The theory of lattice

QCD is presented and the current theoretical predictions for the differential decay

rates of B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ are presented.

The standard model is introduced in Section 2.1 and the CKM sector in

Section 2.2. The theory behind semileptonic decays and a summary of the form

factors used in this analysis are discussed in Section 2.3.

2.1 The Standard Model

The standard model (SM) of particle physics is a single theory describing all

the fundamental forces, with the exception of gravity, and their interactions.

The theory may be described as an SU(3)c × SU(2)L × U(1)Y gauge theory

where the special unitary group, SU(n), is a subgroup of the unary group,

U(n). The theories of quantum electrodynamics, QED, and hypercharge are

both represented by the unary group U(1)Y , the electroweak sector and quantum

chromodynamics, QCD, are represented by the special unary groups SU(2)L and

SU(3)c respectively [1–7].
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2.1.1 Quantum Electrodynamics

The theory of quantum electrodynamics (QED) describes the interactions of

charged particles via the exchange of a photon. It is the quantum equivalent

of classical electromagnetism and completely models the interactions between

light and matter. The Dirac equation,

(iγµ∂µ −m)ψ, (2.1)

where ψ is the Dirac spinor, a relativistic spin-1
2

field, is a relativistic wave

equation describing all massive spin-1
2

particles and was the first prediction of

antimatter. The QED Lagrangian, LQED may be defined by taking the Dirac

Lagrangian density,

LDirac = iψγµ∂µψ −mψψ, (2.2)

and demanding local gauge invariance under the transformation

ψ(x)→ ψ′(x) = eiα(x)ψ(x), (2.3)

where α is an arbitrary phase independent of the space time position, x. The

derivative, ∂µ, is replaced by a covariant derivative which transforms in exactly

the same way as ψ(x),

Dµψ(x)→ D′µψ
′(x) = eiα(x)Dµψ(x), (2.4)

and is defined with the introduction of a gauge field, Aµ,

Dµ ≡ ∂µ + ieAµ, (2.5)

with the introduction of a covariant derivative and addition of a kinetic energy

term, −1
4
FµνF

µν , where Fµν is the field strength tensor. The QED Lagrangian

may be obtained

LQED = −1

4
FµνF

µν + iψγµDµψ −mψψ. (2.6)

In the case of Abelian QED the classical result for the electromagnetic field

strength is found

Fµν = ∂µAν − ∂νAµ. (2.7)
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Local gauge transformations of the Dirac spinors are denoted

ψ(x)→ ψ′(x) = U(x)ψ(x), ψ(x)→ ψ′(x) = ψ(x)U−1(x), (2.8)

where, for QED, U(x) is an element of the non-Abelian Lie group U(1) and has

the form

U(x) = exp

(
i
N2−1∑
j=1

αj(x)Tj

)
, (2.9)

where the sum is over the N2 − 1 generators, T , of the group which satisfy the

Lie algebra

[Ti, Tj] = icijkTk, (2.10)

where cijk are the structure constants of the group. For Abelian groups the

generators are commutative resulting in cijk = 0 for the U(1) of QED. The

generators for the SU(2) and SU(3) groups involve the three Pauli matrices,

Ti = σi/2, and eight Gell-Mann matrices, Ti = λi/2, respectively.

The covariant derivative is defined

Dµ = (∂µ − igAµ), (2.11)

where g is the gauge coupling. Gauge invariance requires that

Dµψ(x)→ D′µψ′(x) = U(x) [Dµψ(x)] , (2.12)

and the transformation of Aµ follows

Aµ→ A′µ = U(x)AµU
−1(x) +

i

g
U(x)

[
∂µU

−1(x)
]
. (2.13)

The locally gauge invariant Lagrangian is obtained from the free Dirac Lagrangian

by replacing ∂µ with Dµ,

L = iψγµDµψ −mψψ, (2.14)

and the non Abelian definition for Fµν follows

[Dµ, Dν ] = −igFµνψ(x), (2.15)

yielding the locally gauge invariant kinetic energy term.

8



2.1.2 Quantum Chromodynamics

Quantum chromodynamics, QCD, is the theory of the strong interaction and

models the interactions of quarks via gluon exchange. QCD is a non-Abelian

gauge theory with symmetry group SU(Nc) where Nc = 3 and contains 8, N2
c −1,

gluons. The QCD Lagrangian is

LQCD = ψ(iγµ∂µ −m)ψ + gs(ψγ
µTaψ)Ga

µ −
1

4
Ga
µνG

µν
a , (2.16)

where a = 1, 2, 3, . . . , 8, the SU(3) generators are Ta = λa/2, the Gell-Mann

λ-matrices are λa, and Ga
µν is the field strength tensor.

The quark fields carry a QCD analogue of electric charge referred to as colour,

R, G, B,

ψ(x) =

ψR(x)

ψG(x)

ψB(x)

 , (2.17)

and transform as a triplet under a local SU(3) gauge transformations

ψ(x)→ U(x)ψ(x) = eiT
aαa(x)ψ(x), (2.18)

under which LQCD is invariant.

2.1.3 The Weak Force and SU(2)L ×U(1)Y

The Glashow model couples the SU(2) representation of the weak sector with the

U(1) representation of the hypercharge sector where the generators of the U(1)Y
commute with those of SU(2)L.

The weak isospin doublet containing a left handed electron and neutrino is defined

with it’s adjoint

χL =

(
νL

eL

)
≡

(
ν

e

)
L

, χL =
(
νL eL

)
(2.19)

with generators satisfying the SU(2) Lie Algebra[
1

2
αi,

1

2
αj
]

= iεijk
1

2
αk, (2.20)
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where αi are the Pauli matrices. The doublet has an isospin quantum number,

T = 1
2
, and the upper and lower components of the doublet have T 3 = +1

2
,−1

2

respectively. The isospin triplet of weak currents, J1
µ and J2

µ, couple the electron

to the neutrino and the current J3
µ couples the electron or neutrino to itself,

J iµ = χLγµ
1

2
αiχL (i = 1, 2, 3), (2.21)

The electromagnetic current

Jemµ = Q(eLγµeL + eRγµeR) (2.22)

where Q is the charge of the particle may be expressed in terms of the weak

current, J3
µ, and an additional current JYµ which includes a coupling to the right

handed electron

Jemµ = J3
µ +

1

2
JYµ , (2.23)

yielding

JYµ = −νLγµνL − eLγµeL − 2eRγµeR. (2.24)

The identity between Jemµ , J3
µ and JYµ given in Equation 2.24 yields the Gell-Mann

Nishijima relation corresponding to electric charge, Q, the third component of

isospin, T 3 and hypercharge, Y ,

Q = T 3 +
1

2
Y. (2.25)

The three generations of leptons all consist of the same weak isospin doublet with

the same quantum numbers,(
νe

e−

)
L

,

(
νµ

µ−

)
L

,

(
ντ

τ−

)
L

, (2.26)

and their charges are given in Table 2.1.

Vector fields coupling the currents detailed above must be included to ensure the

SU(2)L×U(1)Y gauge theory is invariant under local gauge transformations. An

isotriplet of gauge bosons, W i
µ, (i = 1, 2, 3), is introduced to gauge the SU(2)L

symmetry with coupling strength, g, and a vector boson Bµ is introduced to

gauge the U(1)Y symmetry with coupling strength, g′/2. The lepton-gauge boson

portion of the Lagrangian, L(l), couples vector boson fields to the weak isospin

doublet and the right hand lepton to the vector boson Bµ. The full Lagrangian
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Particle T T 3 Q Y

νe, νµ, ντ
1
2

1
2

0 -1

e−L , µ
−
L , τ

−
L

1
2
−1

2
-1 -1

e−R, µ
−
R, τ

−
R 0 0 -1 -2

uL, cL, tL
1
2

1
2

2
3

1
3

dL, sL, bL
1
2
−1

2
−1

3
1
3

uR, cR, tR 0 0 2
3

4
3

dR, sR, bR 0 0 −1
3
−2

3

Table 2.1 The fermion charge assignments for weak isospin, T , it’s third
component, T 3, electric charge, Q, and hypercharge Y .

contains the sum over the three generations of lepton,
∑

l=eµτ L(l).

The interaction part of L(l)

LI = χLγ
µ

[
−g1

2
~τ · ~Wµ +

1

2
g′Bµ

]
χL + eRγ

µg′BµeR, (2.27)

may be decomposed into a charged and neutral current corresponding to the

physical W± and Z bosons respectively,

LI = LCC + LNC . (2.28)

The charged vector fields are defined as

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ), (2.29)

and the neutral vector fields Zµ and Aµ are an orthogonal mixture of W 3
µ and Bµ

with weak mixing angle θw,(
W 3
µ

Bµ

)
=

(
cos θw sin θw

− sin θw cos θw

)(
Zµ

Aµ

)
. (2.30)

The interaction part of the lagrangian may now be written in terms of the full

fermion fields and physical gauge bosons

LI =− 1√
2

[
νγµ

1

2
(1− γ5)eW+µ + eγµ

1

2
(1− γ5)νW−µ

]
+ e(eγµeA

µ)

− g

2 cos θω

[
νγµ

1

2
(1− γ5ν)− eγµ

1

2
(1− γ5)e+ 2 sin2 θωeγµe

]
Zµ,

(2.31)
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where the coefficients of the llV (l = e, ν, V = A,W±, Z) components gives the

fermion-gauge boson vertex factors. The complete Glashow model Lagrangian

requires the kinetic energy terms for the W i
µ and Bµ fields

LW = −1

4
~Wµν · ~W µν ,

LB = −1

4
BµνB

µν ,
(2.32)

which may be expressed in terms of the physical fields defined in Equa-

tions 2.29 and 2.30. The full Lagrangian for the Glashow model Lagrangian

may be expressed,

L =
∑
l=e,µ,τ

L(l) + LW + LB, (2.33)

which contains no mass terms.

2.1.4 Electroweak Symmetry Breaking

In order to introduce mass terms for the W± and Z fields a Higgs doublet,

Φ =

(
φ+

φ0

)
, Φ† =

(
φ− φ0

)
, (2.34)

must be included. The addition of the Yukawa couplings between the Higgs

and the fermions provides the mechanism for generating fermion masses and

the observed flavour structure of the CKM sector of the standard model. The

covariant derivative for the SU(2)L × U(1)Y symmetry is defined

Dµ = ∂µ +
i

2
g~τ · ~Wµ + g′

i

2
Bµ. (2.35)

The Higgs Lagrangian,

LΦ = −(DµΦ)†DµΦ− V (Φ), (2.36)

is added to the Glashow model of the Lagrangian given in Equation 2.33 with

the scalar Higgs potential defined as,

V (Φ) = µ2(Φ†Φ)− λ(Φ†Φ)2, (2.37)
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which has a minima specified by

dV

d(Φ†Φ)
= 0 ⇒ µ2 − 2λ(Φ†Φ) = 0 ⇒ Φ†Φ

∣∣
min

=
µ2

2λ
. (2.38)

The SU(2)L × U(1)Y may be spontaneously broken by choosing an arbitrary

vacuum from the set of minima of the potential V . Without any loss of generality,

this may be chosen as

〈Φ〉 =

(
0
ν√
2

)
, (2.39)

where ν is the vacuum expectation value of the Higgs Field and was found

experimentally to be, ν = 246 GeV [8, 9]. The unitary gauge is defined when the

field Φ is expanded around this chosen vacuum,

Φ =
1√
2

(
0

H + ν

)
, (2.40)

where H is the neutral scalar Higgs field. In the unitary gauge “Goldstone” fields

with zero vacuum expectation values are eliminated.

Evaluating the Higgs Lagrangian in the unitary gauge, one finds

LΦ = (DµΦ)†DµΦ + µ2Φ†Φ− λ(Φ†Φ)2

=
1

2
∂µH∂

µH +
1

4
g2(H2 + 2νH + ν2)Wµ+W−µ

+
1

8
(g2 + g′2)(H2 + 2νH + ν2)ZµZ

µ

+ µ2H2 +
λ

4
(H4 + 4νH3),

(2.41)

where the masses of the W± and Z may be read off by identifying the coefficients

of the W+
µ W

−µ and ZµZ
µ terms. One finds,

MW =
1

2
gν

MZ =
1

2
(g2 + g′2)1/2ν =

1

2

gν

2 cos θω
,

(2.42)

yielding the famous relation between the masses of the vector bosons and the

weak mixing angle,
MW

MZ

= cos θω. (2.43)
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2.1.5 Yukawa Coupling and Leptons

Fermion masses are provided by the Yukawa coupling, which couples the fermion

fields to the Higgs field. Take the electron,

LY = −Ge

[
χLΦeR + eRΦ†χL

]
, (2.44)

where the Higgs field may be substituted in using the unitary gauge given in

Equation 2.40,

LY (e) = −Ge√
2

(ν +H)(eLeR + eReL)

= −Ge√
2

(ν +H)ee = −Geν√
2

(ee)− Ge√
2

(eeH),

(2.45)

from which one can read off the electron’s mass, me = Geν/2, and the lepton

Higgs coupling, g(Hee) = me/ν = gme/(2MW ). It should be noted that the

coupling between the leptons and the Higgs is proportional to the lepton mass.

2.1.6 Yukawa Coupling and Quarks

An SU(2)L Isospin doublet analogous to the lepton case is created containing an

up type quark and an admixture of the down type quarks

χfL =

(
Uf

D′f

)
, f = 1, 2, 3 (2.46)

where U1 = u, U2 = c, U3 = t and D1 = d, D2 = s, D1 = b and D′f is

the eigenstate of the weak interaction which is a rotated mixture of the flavour

eigenstates

D′f =
∑

f ′=1,2,3

Vff ′Df ′ . (2.47)

V is the 3 × 3 unitary Cabibbo-Kobyashi-Maskawa (CKM) matrix [10] and

describes the coupling strengths of the quarks. The charged W± interactions

couple to the physical uLj and dLk quarks as

−g√
2

=
(
uL, cL, tL

)
γµW+

µ VCKM

dLsL
bL

+ h.c., (2.48)
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where

VCKM ≡ V u
L V

d†
L =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.49)

Following a similar process to that outlined in Section 2.1.4, the electromagnetic

and hypercharge currents may be defined

Jf(em)
µ =

(
2

3

)
U fRγµUfR +

(
2

3

)
U fLγµUfL +

(
−1

3

)
DfRγµDfR +

(
−1

3

)
DfLγµDfL

JfYµ =

(
1

3

)
(U fLγµUfL +DfLγµDfL) +

(
4

3

)
U fRγµUfR +

(
−2

3

)
DfRγµDfR,

(2.50)

where the numbers in brackets denote the charges and hypercharges of the quarks.

The quark electroweak Lagrangian is defined as

L(q) =
∑

f=1,2,3

(
χfLγµ

[
i∂µ −

1

2
~τ · ~Wµ −

(
1

3

)
Bµ

]
χfL

+ U fRγ
µ

[
i∂µ −

g′

2

(
4

3

)
Bµ

]
UfR +DfRγµ

[
i∂µ −

g′

2

(
−2

3

)
Bµ

]
DfR

)
,

(2.51)

with masses originating from the quark Yukawa term

LY (q) =
∑

f=1,2,3

−
[
χfLG

D
ff ′ΦDf ′R + χfLG

U
ff ′Φ

cUf ′R + h.c.
]
, (2.52)

where GU
ff ′ and GD

ff ′ are matrices of the couplings between the quark and Yukawa

fields. The conjugate Higgs scalar field, Φc after spontaneous symmetry breaking

is given in the unitary gauge by

Φc =

(
φ

0

−φ−

)
=

(
H + ν

0

)
. (2.53)

The quarks in Equation 2.52 yield mass terms when φ acquires a vacuum

expectation value, 〈φ〉 = (0, ν/
√

2)
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2.2 The CKM Sector

2.2.1 The CKM Matrix

The CKM matrix can be parametrised by three mixing angles and a complex

phase, with the standard convention being

VCKM =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

iδ

0 1 0

−s13e
iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 .

(2.54)

where sij = sin(θij), cij = cos(θij) and δ is the phase responsible for all CP-

violation in flavour changing phenomena in the standard model. Using this

formalism Vub and Vcb are defined as,

Vub = s13e
−iδ, Vcb = s23c13. (2.55)

The exact formalism given in Formula 2.54 is a little unwieldy so an approxima-

tion is made which better captures the essential physics of the CKM matrix. The

first approximation was made by Wolfenstein after he noticed that the orders of

magnitude of the CKM matrix visualised in Figure 1.1 follow a pattern:

|VCKM | ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (2.56)

where λ ≈ 0.2. This was refined by the addition of three different real parameters,

A, ρ, η, all O(1). The Wolfenstein parameters can be defined in terms of the

standard parameters.

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, (2.57) c13 = Aλ2 = λ

∣∣∣∣VcbVus

∣∣∣∣ , (2.58)
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s13e
iδ = Aλ3(ρ+ iη) = V ∗ub =

Aλ3(ρ+ iη)
√

1− A2λ4

√
1− λ2[1− A2λ4(ρ+ iη)]

, (2.59)

where ρ+ iη = −VudV ∗ub/VcdV ∗cb and does not depend on ones choice of definition

for the CKM phase. ρ and η are non-exact expansions of ρ and η, e.g. ρ =

ρ(1− λ2/2 + ...).

Using the Wolfenstein parametrisation the CKM matrix can be expressed as

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (2.60)

Attention should be drawn to the 2× 2 matrix at the top left of the Wolfenstein

parametrisation which is a first order expansion of the 2D rotation matrix. This

is the Cabibbo mixing matrix [11, 12] and its inclusion informs us that to first

order in λ the first two generations of quarks do not know about the third. It

should be noted that complex numbers only appear in the 3− 1 matrix elements,

which has the curious feature of removing CP violation from the Kaon system.

Curious as the first direct of observation of CP violation was in the decays of

neutral kaons. Finally it should be noted that this parametrisation of the CKM

matrix is not unitary! Both of the above quirks can be resolved by extending the

parametrisation to higher powers in λ.

The unitarity of the CKM matrix,∑
k

VikV
∗
jk = δij,

∑
k

VkiV
∗
kj = δij, (2.61)

provides an essential test of the standard model. The six vanishing relations given

in Equation 2.61 can be plotted, forming triangles in the complex plane which

are called unitary triangles. The most interesting unitary triangle∑
i

VidV
∗
ib = VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (2.62)

has sides with lengths O(λ3) and is the most triangular looking. When plotting

the unitary triangle it is customary to normalise the sides,

VudV
∗
ub

VcdV ∗cb
+ 1 +

VtdV
∗
tb

VcdV ∗cb
= 0, (2.63)
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the geometrical interpretation of which is plotted in Figure 2.1.
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∣

∣

∣

Figure 2.1 The unitary triangle given in Equation 2.63 is plotted in the complex
plane.

All of the unitary triangles have the same area, J/2. The Jarlskog invariant, J , is

a basis independent way of quantifying the amount of CP violation in the quark

sector, and is given by

=[VijVklV
∗
ilV
∗
kj] = J

∑
mn

εikmεjln, (2.64)

which can be expressed using the mixing angles and Wolfenstein parameters

J = c12c23c
2
13s12s23s13 sin(δ)

≈ λ6A2η.
(2.65)

2.2.2 Constraining the CKM sector

The parameters of the CKM matrix can be overconstrained by making measure-

ments of key observables which are sensitive to combinations of the magnitudes

and the phases of the matrix elements. This serves to improve the determination

of the CKM elements and could reveal the effects of physics beyond the standard

model. The magnitudes of the matrix elements are a determining factor in the

rates of semileptonic and leptonic decays and the phases of the CKM elements

can be determined by measuring processes susceptible to the effects of oscillation

and CP violation.

The limiting factor when performing global fits to the CKM matrix originates

from the uncertainty on the magnitude of Vub. The length of the side of the

unitary triangle opposite the angle β is proportional to |Vub|/|Vcb| and an improved
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measurement of this ratio could significantly improve CKM fits. The side of the

triangle opposite γ is dependent on the magnitudes of Vtb and Vtd which have large

uncertainties. The side of the triangle opposite γ is more precisely constrained

by measuring the mass difference between the B0 and B0 mesons. The B0B0

oscillation frequency is driven by the mass difference, ∆md, which is related to the

combination of CKM elements, ∆md ∝ |VtdV ∗tb|2. And similarly for B0
sB

0
s mixing,

∆ms ∝ |VtsV ∗tb|2. Frequently, the ratio of the mass differences, ∆md/∆ms ∝
|VtdV ∗tb|2/|VtsV ∗tb|2 is used as a constraint as the theoretical uncertainties cancel

in the ratio producing a parameter with a significantly improved uncertainty.

The leading source of uncertainty when determining the magnitudes of the CKM

elements and their combinations come from the theoretical uncertainty on the

form factors which encompass the nature of QCD.

Consider the decay of a neutral B0 meson to a final state f , the decay can proceed

as B0 → f or B0 → B0 → f . If f is a CP eigenstate and the decay amplitudes

from one CKM phase dominate the decay, the time dependent CP asymmetry

can be written

Af =
Γ(B0(t)→ f)− Γ(B0(t)→ f)

Γ(B0(t)→ f) + Γ(B0(t)→ f)
= ηf sin(2β) sin(∆mdt), (2.66)

where ηf is the CP eigenvalue of f . A measurement of sin(2β) can be performed

by measuring the time dependent decay rates of B0 → f and B0 → f using the

transitions b→ ccs, b→ ccd and b→ cud with CP eigenstates to the same final

state. Measurements have been performed using the decays, B0 → J/ψK0
S/L

and B0 →J/ψπ0. There is a factor four ambiguity in β from sin(2β) which can

be removed by performing a global fit to the unitary triangle.

The angle α is the phase between V ∗ubVtd and V ∗ubVud and can only be measured

from time dependent CP asymmetries of b→ uud decays. Penguin contributions

from b → d decays are the same order in λ as the tree level decay and are a

sizeable contribution of the decay rate. α has been measured in the decays,

B → ππ, B → ρπ and B → ρρ. The angle γ, unlike α and β does not depend on

CKM elements coupling to the top quark. Consequently it can be measured from

tree level decays of the B and is unlikely to be affected by new physics beyond the

standard model. The angle γ may be determined by measuring the interference

in the decays B− → D0K− and B− → D0K− with the D0 and D0 decaying to

the same final state [13–16].

The most precise determinations of the CKM matrix elements come from global
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fits to all available measurements and by imposing the constraints of the standard

model. There are several approaches used to combine the data, the two best

known come from the UTfit [17–19] and CKMfitter [20, 21] collaborations which

use Bayesian and frequentist statistics respectively. The results from both

collaborations are compatible and the fits to the CKM parameters are plotted

in Figure 2.2.

ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1
γ

β

α

sm∆
dm∆ dm∆

Kε
cbV
ubV

)ντ→BR(B

summer16
γ

γ

Kε

Kε

α
α

dm∆

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

e
xclu

d
e
d
 a

t C
L
 >

 0
.9

5

α

βγ

ρ
­1.0 ­0.5 0.0 0.5 1.0 1.5 2.0

η

­1.5

­1.0

­0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

ICHEP 16

CKM
f i t t e r

ρ = 0.153± 0.013, η = 0.343± 0.011. ρ = 0.1598+0.0076
−0.0072, η = 0.3499+0.0063

−0.0061.

Figure 2.2 Constraints on the ρ, η plane from UTfit (left) and CKMfitter
(right). Images taken from [18, 21]

2.3 Semileptonic B meson Decays

In order to extract the electroweak parameters |Vub| and |Vcb| from the physically

observable decay rates hadronic form factors are required. This section will

present an overview of the current form factor calculations for B0
s → K

−
µ+νµ and

B0
s → D−s µ

+νµ. In a scattering interaction the form factor modifies the point-like

model of the interaction to consider the spatial extent and shape of the interacting

particles.

The amplitude of the semileptonic decay B0
s → K

−
µ+νµ can be written as a term

proportional to the product of a leptonic current Lµ and a hadronic current

Hµ [22]. When q2 � m2
W± the matrix element, M, of the decay B0

s → K
−
µ+νµ
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may be written

M = −iGF√
2
VubL

µHµ

= −i
〈
K−(p′)µ+(k′)νµ(k)|Heff |B0

s

〉
,

(2.67)

where Heff is the effective Hamiltonian, and GF is the Fermi coupling constant.

The leptonic current is

Lµ = µγµ(1− γ5)νµ, (2.68)

and the hadronic current is

Hµ =
〈
K−(p′)|uγµb|B0

s (p)
〉
−
〈
K−(p′)|uγµγ5b|B0

s (p)
〉
, (2.69)

which leads to an effective Hamiltonian of

Heff =
GF√

2
V L
ub [uγµb− uγµγ5b]µ

+γµ(1− γ5)νµ, (2.70)

where γ5 = iγ0γ1γ2γ3 which separates ψ into left and right handed currents,

ψL = 1−γ5
2
ψ and ψR = 1+γ5

2
ψ. Since B0

s → K
−
µ+νµ is a pseudoscalar meson

transition, B0
s (J

P = 0−) → K−(JP = 0−), the axial-vector component of Hµ is

zero due to constraints on the spin of the outgoing u quark. The vector component

of Hµ is parametrised by the vector and scalar form factors, f+ and f0, and may

be written as:

〈
K−(p′)|uγµb|B0

s (p)
〉

= f+(q2)

(
pµ + p′µ −

m2
B0
s
−m2

K−

q2
qµ

)
+f0(q2)

m2
B0
s
−m2

K−

q2
qµ,

(2.71)

where qµ = pµB0
s
− pµK− is the momentum transfer. The determination of the

vector and scalar form factors, f+, f0 are given in Section 2.3.2. The vector form

factor parametrises transitions mediated by a vector boson, such as the W±, and

the scalar form factor parametrises transitions mediated by a scalar boson. As

the decays B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ are mediated by the W± boson,

the scalar form factor is heavily suppressed and its contributions are negligible.

Decays coupling to the τ and new physics models with scalar states couple have

an increased dependence on the scalar form factor.
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2.3.1 Lattice QCD

Lattice QCD is a non perturbative method for solving the QCD action

SQCD =

∫
d4xLQCD, (2.72)

numerically via the discretisation of space and time [23–25]. Consider a particle

traversing the quantum mechanical path, x(t) in time, t, between x(0) and

x(tf ). Quantum mechanically the particle can be seen as traversing all possible

paths with the probability of a given path proportional to exp(−
∫
dtL). The

expectation value of an operator combination is known as a correlation function

and is calculated according to

〈O(x(t1)x(t2)〉 =

∫
Dx(t)O(x(t1)x(t2))e−

∫
dtL∫

Dx(t)e−
∫
dtL , (2.73)

where
∫
Dx(t) is used to denote an integral over all possible paths x(t). The

expectation value may be solved numerically using a one-dimensional lattice in

time with spacing a. Hybrid Monte Carlo methods [26] are used to generate

large combinations of Nconf lattice configurations. Each configuration corresponds

to a different path along the lattice where the probability of finding a given

configuration is proportional to exp(−
∫
dtL). The calculation of the correlation

function using LQCD is the discretised sum over all configurations

〈O(x(t1)x(t2)〉 =
1

Nconf

Nconf∑
n=1

O(x(t1), x(t2)). (2.74)

The corresponding statistical uncertainty of the expectation of the correlation

functions is proportional to 1/
√
Nconf .

In addition to the statistical uncertainty there are several sources of systematic

errors which must be quantified:

� Extrapolation to the continuum limit: The results of calculations must be

extrapolated to a lattice spacing of zero, a → 0, using knowledge of the

functional form of discretisation errors.

� Extrapolation to infinite volume: Lattice QCD calculations cover finite

volume of space while the true quantum mechanical treatment integrates

over an infinite volume of space time resulting in a shift away from the true
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value.

� Chiral extrapolation: The mass of the pion varies between lattice configu-

rations requiring an extrapolation to the true value.

� Operator matching: Operators defined in lattice calculations must be

matched to those from the quantum mechanical integral using renormal-

isations requiring non-perturbative techniques which come with systematic

uncertainties.

� Quark mass extrapolation: LQCD simulations use quark masses above the

true masses requiring an extrapolation to the true value.

� B0
s mass fits: During the calculation of form factors the ground state B0

s

mass is determined by fitting the 2-point correlation function, which may

be different to the experimentally measured B0
s mass.

2.3.2 B0
s → K

−
µ+νµ Form Factors

The current non perturbative methods for the calculations of form factors for

B0
s → K

−
µ+νµ include lattice QCD [24, 25] and light-cone sum rules [27]. The

two calculation methods provide predictions which are complimentary in phase

space, calculations from lattice QCD are most precise at high values of q2 and

calculations from light-cone sum rules are most precise at low values of q2. Lattice

QCD and light-cone sum rules calculations are performed using Monte Carlo

simulations and the cost of generating Monte Carlo data at low q2 is too high to

be useful for LQCD, and vice versa for LCSR. For LQCD calculations there is

typically no Monte Carlo data below q2 = 13 GeV2/c4 and for LCSR calculations

there is typically no Monte Carlo data above q2 = 13 GeV2/c4. Despite the lack

of data, requirements on unitarity and analyticity can be used to extrapolate form

factor results into the regions with no Monte Carlo data. The decay B0
s → K

−
µ+νµ

is normalised to the decay B0
s → D−s µ

+νµ for which form factor calculations from

LQCD are available. Due to tighter kinematic theoretical constraints at low q2,

the form factor calculations for B0
s → D−s µ

+νµ need not be restricted to high q2

momentum transfer and the full phase space in q2 is used.
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The differential decay rate for B0
s → K

−
µ+νµ in the B0

s rest frame is given by

dΓ(B0
s → K

−
µ+νµ)

dq2
=
G2
F |Vub|2

24π3

(q2 −m2
µ)2
√
E2
K −m2

K

q4m2
B0
s

×[(
1 +

m2
µ

2q2

)
m2
B0
s
(E2

K −m2
K)|f+(q2)|2 +

3m2
µ

8q2
(m2

B0
s
−m2

K)2|f0(q2)|2
]
, (2.75)

which in the limit, m2
µ � q2, becomes

dΓ(B0
s → K

−
µ+νµ)

dq2
=
G2
F |Vub|2

24π3
(E2

K −m2
K)3/2|f+(q2)|2, (2.76)

where GF is the Fermi coupling constant, q is the momentum transfer or the

invariant mass of the muon and neutrino, mµ,K,B0
s
, are the masses of the muon,

kaon and B0
s respectively. |f+| and |f0| are the vector and scalar form factors

which parametrise the hadronic contributions to the electroweak decay and are

calculated nonperturbatively using either lattice QCD or Light-Cone Sum Rules.

The form factors are parametrised using the BCL parametrisation detailed in

reference [28] and formalised in Equation 2.79. The BCL parametrisation has K

degrees of freedom where K = 2, 3, and is parametrised to the variable, z,

z = (q2, t0) =

√
1− q2/t+ −

√
1− t0/t+√

1− q2/t+ +
√

1− t0/t+
, (2.77)

where,

t0 = (mB0
s

+mK−) · (√mB0
s
−
√
mK−)2,

t± = (mB0
s
±mK−)2.

(2.78)

The K = 3 BCL parametrisation [29] for the vector and scalar form factors are

f+(q2) =
1

1− q2/m2
B∗

K−1∑
k=1

b
(k)
+

[
zk − (−1)k−K

k

K
zk
]
,

f0(q2) =
1

1− q2/m2
B∗

K−1∑
k=1

b
(k)
0 zk,

(2.79)

where a pole is included at the theoretically predicted mB∗ = 5.63 GeV [30]. The

K = 2 BCL parametrisation for the vector and scalar form factors are

f+,0(q2) =
f+,0(0)

1− q2/m2
B∗

{
1 + b

(1)
+,0

[
z(q2)− z(0) +

1

2

(
z(q2)2 − z(0)2

)]}
. (2.80)
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At low q2 the vector and scalar form factors may be described by a single

independent form factor

f0(q2) =
m2
B0
s
− q2

m2
B0
s

f+(q2). (2.81)

The coefficients, b
(k)
+,0, f+,0(0), for all models discussed in this section are given in

Appendix A.

Three form factor calculations for B0
s → K

−
µ+νµ are used in the determination

of |Vub|/|Vcb|. Predictions from lattice QCD provide a precise determination of

the form factors at high q2 and are provided by Bouchard et al. [31] and Flynn

et al. [30]. Calculations from light-cone sum rules are most precise at low q2 and

are provided by Khodjiamirian and Rusov (K&R) [32].

The predicted form factors are plotted in Figure 2.3 and the predicted decay rates

are plotted in Figure 2.4. The results of the form factor calculations are given at

the end of this section.

Attention should be drawn to the discrepancies at low q2, the two lattice

QCD calculations differ significantly, and the consensus within the theoretical

community is that the systematic uncertainties are underestimated. Additionally

the light cone sum rules calculations differ significantly from the lattice QCD

calculations at q2 = 13 GeV2/c4, the region at which predictions from LQCD

and LCSR are both valid. There are two possible reasons for the LQCD

discrepancy at low q2; the form factor predictions provided by Bouchard et. al.

perform a simultaneous lattice, quark mass and kinematic extrapolation while

two extrapolations are performed in the prediction provided by Flynn et.al.

Another possibility for the discrepancy is the assessment of the perturbative

matching error, matching the lattice results to their continuum counterparts.

The matching is carried out assuming zero kaon momentum whereas it varies

with kaon momentum, although this effect is likely very small [33].
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Figure 2.3 The form factor predictions f+ and f0 for B0
s → K

−
µ+νµ calculated

using QCD sum rules (left) and lattice QCD (right) from
references [30–32]
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Figure 2.4 The predicted differential decay rates for B0
s → K

−
µ+νµ calculated

using QCD sum rules (left) and lattice QCD (right) from
references [30–32].
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2.3.3 B0
s → D−s µ

+νµ Form Factors

The B0
s → D−s µ

+νµ differential decay rate is given by

dΓ(B0
s → D−s µ

+νµ)

dω
=
G2
F |Vcb|

2

48π3
m3
D+
s

(mB0
s

+mD+
s

)2(ω2 − 1)3/2|G(ω)|2, (2.82)

where G(ω) is conventionally introduced as

G(ω) =
2
√
r

1 + r
f+(ω), (2.83)

with

ω(q2) = 1 +
q2

max − q2

2mB0
s
mD+

s

and r =
mD+

s

mB0
s

. (2.84)

The form factor f+ is parametrised using a modification of the BCL parametri-

sation [34] with J=3

f+(q2) =
1

P+

J−1∑
j=0

a
(+)
j

[
zj − (−1)j−J

j

J
zj
]
, (2.85)

where P+ is called the Blaschke factor. P+(q2) and z are given by

P+(q2) =

(
1− q2

m2
+

)
and z(q2) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

, (2.86)

where m+ = mB∗c = 6.3309 GeV, t+ = (mB0
s

+ mD+
s

)2 and t0 = (mB0
s
−mD+

s
)2.

The coefficients, a
(k)
+,0, for both models discussed in this section are given in

Appendix A.

Two sets of lattice QCD form factor calculations for B0
s → D−s µ

+νµ are used in

the determination of |Vub|/|Vcb| from Bailey et al. [35] and Monahan et al. [36].

The calculated form factors and differential decay rates are plotted in Figure 2.5.
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Figure 2.5 The form factor predictions (left) and differential decay rates (right)
for B0

s → D−s µ
+νµ calculated using lattice QCD from references [35,

36].

Γ|Vub|−2[ps−1] Γ|Vub|−2[ps−1] Γ|Vub|−2[ps−1] B(B0
s → K

−
µ+νµ)

q2 > 7 GeV2/c4 q2 < 7 GeV2/c4 ×10−4

Flynn et al. 4.54± 1.35 3.37± 0.70 1.18± 0.67 0.93± 0.27
Bouchard et al. 7.75± 1.57 4.47± 0.61 3.29± 0.99 1.59± 0.32
K & R 11.07± 1.13 6.94± 1.02 4.14± 0.40 2.29± 0.23

Table 2.2 The predicted decay widths and branching fractions of B0
s → K

−
µ+νµ

are presented for the form factor predictions given in References [30–
32] for the full q2 region and the high and low bins. The exclusive
average of |Vub| and |Vcb| as determined by the PDG are used in the
calculation of branching fractions [37]

Γ|Vcb|−2[ps−1] B(B0
s → D−s µ

+νµ)

Bailey et al. 8.17± 0.24 0.0215± 0.0006
Monahan et al. 8.98± 0.73 0.0238± 0.0020

Table 2.3 The predicted decay widths and branching fractions of B0
s → D−s µ

+νµ
are presented for the form factor predictions given in References [35,
36].
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2.3.4 Form factor Results

The form factor results for B0
s → K

−
µ+νµ are

Γ|Vub|−2
∣∣∣
q2<7 GeV2

= 4.14± 0.40 ps−1, Γ|Vub|−2
∣∣∣
q2>7 GeV2

= 3.92± 0.88 ps−1,

(2.87)

where the value for high q2 is the weighted average of two LQCD results under

the assumption that the uncertainties between the two calculations are linearly

correlated. A visualisation of the averaging procedure,which by construction

includes the extrapolation uncertainty to low q2, is given in Figure 2.6.

The weighted average of the form factor results for B0
s → D−s µ

+νµ is

Γ|Vcb|−2 = 8.57± 0.69 ps−1, (2.88)

where the uncertainties between the two models are assumed to be completely

correlated. A visualisation of the averaging procedure is plotted in Figure 2.6.

The full set of results from the form factor calculations including decay widths

in different regions of phase space and predicted branching fractions using global

averages of the exclusive values of |Vub| and |Vcb| are given in Tables 2.2 and 2.3

for B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ respectively.

 -1 ps -2|ub |VΓ
2 4 6

 -1 ps = 3.92 µ

 -1 ps = 0.88 σ

 -1 ps -2|cb |VΓ
6 8 10 12

 -1 ps = 8.57 µ

 -1 ps = 0.69 σ

Figure 2.6 Plots demonstrating the averaging of the form factor predictions for
B0
s → K

−
µ+νµ (left) and B0

s → D−s µ
+νµ (right) with 1, 2 and, 3σ

error bars shaded in grey.
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Chapter 3

The LHCb experiment

The measurement presented in this thesis was performed using data collected by

the LHCb experiment during the year 2012. The Large Hadron Collider (LHC)

produced proton-proton collisions which were detected by LHCb.

This chapter provides an overview of the relevant aspects of the LHC and LHCb

machines. The Large Hadron Collider and LHCb experiment are introduced

in Sections 3.1 and 3.2 respectively. The reconstruction of semileptonic B0
s

decays using the LHCb experiment is discussed in Section 3.3. Tracking and

calorimetry are presented in Sections 3.4 and 3.5 respectively. Finally the trigger

and simulation are discussed in Sections 3.6 and 3.7 respectively.

3.1 The Large Hadron Collider

The LHC is the world’s largest and most powerful particle accelerator and collider

with a circumference of 27 km. The LHC straddles the French-Swiss border near

Geneva at the European Organization for Nuclear Research (CERN). The LHC

accelerated protons to centre of mass energies of
√
s = 7 TeV,

√
s = 8 TeV and

√
s = 13 TeV during the years of 2011, 2012 and 2015-2018 respectively.

Protons for the LHC are sourced from a bottle of hydrogen. The hydrogen atoms

are ionised, and the protons accelerated through a series of linear and circular

accelerators prior to injection into the LHC at an energy of 450 GeV. Figure 3.1

shows the accelerator chain used to accelerate and inject protons and ions for

the LHC. Protons inside the LHC are grouped into bunches with a maximum
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design capacity of 2808 bunches per beam, and each bunch containing 1.2 ×
1011 protons. Eight radiofrequency, RF, cavities per beam accelerate protons

to the desired energies. Dipole magnets bend the beam around the ring while

quadrupole, sextupole and octopole magnets focus the beam [38]. Bunches are

spaced 25/50 ns apart and are focused at the interaction points by the LHC

producing collisions at a rate of 40/20 MHz1.

CMS

ATLAS

LHCbALICE

LHC

PS

SPS

PSB

LINAC 2

LINAC 3 LEIR

Figure 3.1 The accelerator chain used to provdie protons and ions for the LHC
is shown. Protons originate at LINAC 2 and ions originate at
LINAC 3. Image taken from [39].

3.2 The LHCb experiment

The LHCb experiment is dedicated to the study and precise measurement of b

and c-physics. The experiment exploits the high production cross sections for bb

and cc pairs, σ(pp→ bbX) = 72.0± 0.3± 6.8 µb for bb within the acceptance of

the LHCb experiment at
√
s = 7 TeV [40], with 1012 bb pairs produced during

2012. The bb production cross section at LHCb is five orders of magnitude larger

than at Belle and BaBar, σ(e+e− → Υ (4S)→ bb) = 1.2, 1.1 nb respectively, [41,

42] providing an ideal environment for high statistics measurements of standard

model parameters.

The collisions at BaBar and Belle produce a very clean environment due to the

nature of the annihilation type collision and the collision centre of mass energy

1The effective collision frequency during 2012 was closer to 11 MHz due to gaps in the beam
and bunch crossings with no visible collisions.
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being tuned to the Υ (4S) mass. A hadronic environment, as present at the

LHC, produces an event with considerably more activity and in order to keep

the detector occupancy at a manageable level beam optics limit the number

of collisions per bunch crossing to approximately 1.5, equivalent to a modest

instantaneous luminosity of L ≈ 2× 1032cm−2 s−1.

p

p

b

b

0

0.2
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0.6
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0.0001 0.001 0.01 0.1 1

x

MMHT14 NLO, Q2 = 10GeV2

xf(x,Q2)

g/10 uV

dV

du
sc

Figure 3.2 A Feynman digram depicting bb production via gluon-gluon fusion
(left) and NLO PDFs at q2 = 10 GeV2/c4 (right). The fractional
momentum of the proton is dominated by the gluon. Image taken
from [43].

The dominant bb production method at LHCb is via gluon-gluon fusion where the

incoming protons radiate gluons which fuse to produce a bb pair. Gluons carry

a large fraction of the proton’s momentum, the fractions of which are plotted in

Figure 3.2. A difference in the momentum of the gluons is propagated to the

bb pair boosting the interaction with respect to the centre of mass frame of the

pp collision. Consequently the bb and cc pairs are produced in the forward and

backward regions of the detector.

The LHCb detector [44, 45] is a single-arm forward spectrometer covering the

pseudorapidity range 2 < η < 5, designed for the study of particles containing b

or c quarks, where

η = − ln

∣∣∣∣tan
θ

2

∣∣∣∣ , (3.1)

and θ is the angle between the particle’s momentum and the beam line. Despite

covering just 1.8% of the solid angle, 25% of bb pairs are produced within the

detector acceptance. The full acceptance is 10 < θ < 250[300] mrad in the

horizontal bending [vertical non-bending] plane.

A schematic of the LHCb detector is shown in Figure 3.3. A right handed
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Figure 3.3 Schematic of the LHCb experiment

coordinate system is used with the origin centred at the interaction point; the

positive z axis points ‘downstream’ towards the end of the detector, the positive x

axis points towards the centre of the LHC and the positive y axis points straight

up. The downstream direction is defined to point from the collision point towards

the muon stations.

The principal components of the detector can be divided into a few key

categories, tracking, calorimetry and particle identification. A spectrometer

dipole magnet bends charged particles in the horizontal plane allowing the charge

and momentum of the particles to be determined from the direction and radius

of the curvature. The vertex locator, VELO, envelopes the collision point and

accurately measures the location of tracks produced close to the interaction point.

Additional downstream tracking is provided by the tracker turicensis, TT, before

the magnet and three tracking stations after the magnet consisting of inner and

outer trackers, IT and OT respectively.

Charged hadronic particle identification is made possible by two ring imaging

Cherenkov detectors, RICH1 before the magnet, and RICH2 after the magnet.

the two RICH detectors contain gasses with different refractive indexes giving

optimal performance at different momentum ranges.

Calorimetry and additional particle identification are provided by the electromag-
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netic and hadronic calorimeters, ECAL and HCAL, a preshower and scintillating

pad detector, PS and SPD, and five muon stations, M1-5.

3.3 Reconstructing Semileptonic Decays

Consider the decay B0
s → K

−
µ+νµ, two protons collide at the interaction point,

close to the centre of the VELO producing a B0
s meson and many prompt tracks.

Prompt tracks are defined as originating from the point of collision. On average

the B0
s meson flies a distance of 14 mm before decaying into a charged kaon,

muon and invisible neutrino. The charged particles leave hits in the VELO as

they traverse the sub-detector, and a reconstruction algorithm reconstructs the

trajectories of the charged tracks from the hits. The point of the collision and

production of the B0
s is precisely determined by performing a vertex fit on the

tracks and is referred to as the primary vertex, PV, and the decay location of the

B0
s , known as the secondary vertex, SV, is determined by performing a vertex fit

on two oppositely charged particles with high kaon and muon likelihoods. As the

PV is calculated using a larger number of tracks than the SV, the resolution on

the PV is significantly better than the resolution on the SV.

Moving along the beam axis in a downstream direction, the particles traverse

the first ring imaging Cherenkov, RICH, detector and emit Cherenkov radiation.

The light radiated by the particles is focused onto and recorded by hybrid photon

detectors, HPDs. A likelihood hypothesis for the particle types is calculated from

the pattern of the radiation, thus allowing the kaon to be positively identified.

The particles then cross the first tracking station, the Tracker Turicensis, TT,

followed by the dipole magnet and are bent in opposite directions. The particles

then cross the inner tracker, IT, and outer tracker, OT. Hits left in the tracking

station before and the three tracking stations after the magnet allow the curvature

of the charged tracks, and hence their momenta to be measured.

If the particles are close to the beam pipe they will pass through the second RICH

detector allowing a second measurement of the angle of the emitted photons. This

will strengthen the particle identification likelihood hypothesis. Behind RICH2

the K−µ+ enter the calorimeter. Hits are left in both the SPD and PS indicating

that the particles are charged and vetoing any possibility that the particles are

photons or neutral pions. Both particles leave hits in the ECAL. The muon
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traverses the HCAL leaving a small signal while the kaon showers and is fully

absorbed, positively identifying the kaon as a hadron. Finally the muon enters

the muon station where it’s location is accurately measured and is positively

identified as muon. The large signals in the muon system are detected and passed

on to the hardware trigger, L0, which flags the event as interesting. Two software

triggers, HLT1 confirms the presence of a muon, and HLT2 performs a full event

reconstruction allowing the event to be saved permanently for offline analysis.

3.4 Tracking

3.4.1 Magnet

A dipole magnet with an integrated field strength of
∫
B dl = 4 Tm bends the

paths of charged tracks allowing their charge and momenta to be determined with

a resolution of δp/p = 4× 10−3. The bending force, ~F , for a particle with charge,

q, moving with velocity, v, in a magnetic field, B is:

~F = q
(
~v × ~B

)
. (3.2)

In order to effectively determine the momentum of charged particles, the magnetic

field must be as high as possible, however the vertex locator and Hybrid

Photodetectors (HPD) of the RICH1 detector are sensitive to magnetic fields, and

the field strength must be minimised outside the region of the magnet. Figure 3.4

plots the field strength of the magnet against the z axis of the detector with the

location of the trackers overlaid.

The magnet is composed of two saddle shaped coils in a window frame yoke

with sloping poles. Each magnet coil consists of fifteen pancakes arranged in five

triplets and are made from pure Al-99.7 with a central channel for water cooling.

The nominal current passing through the coils during operation is 5.85 kA.

3.4.2 VELO

The LHCb vertex locator, VELO, is a silicon strip detector operating in a

secondary vacuum around the primary LHC vacuum. The VELO measures the
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Figure 3.4 A plot of the magnetic field profile is shown with a digram of the
tracking systems and a characterisation of the different tracks types.
Image taken from [45].
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location of the collision and decay vertex of beauty and charm hadrons from the

hits left behind as charged particles traverse the detector. This information is

used to accurately measure the decay times of hadrons and the impact parameters

of long lived particles. Detached vertices make up a vital component of the trigger

and are used to enrich the b-hadron content of events saved to trigger. The beam

width during injection is larger than the inner radius of the VELO requiring that

the VELO be retracted during injection.

The VELO is required to meet several performance, geometric, environmental and

machine criteria. In order to accurately measure the location of the production

and decay vertices, the signal to noise ratio of the VELO should be grater than

14 [46], corresponding to ≈ 200 noise hits per event. A spacial cluster resolution

of 4 µm is required for tracks with an angle of 100 mrad from the beam line. The

final consideration is the spillover probability, the fraction of the signal remaining

after 25 ns which is required to be less than 0.3. From a geometric point of

view, the VELO must cover the angular acceptance of the downstream detectors,

1.6 < η < 4.9, and tracks emerging from primary vertices, |z| < 10.6 cm, must

traverse three VELO stations. The minimum distance between the innermost

VELO sensors and the beam is 8 mm while the outer radius is greater than

4.2 cm and modules are spaced by 3.5 cm. In order to cover the full azimuthal

angle the two detector halves overlap slightly. This range is achieved by offsetting

one half of the detector by 1.5 cm in z. The VELO is operated in an extreme

radiation environment with the dose from one year of operation equivalent to a

1 MeV neutron flux of 1.3 × 1014neq/cm
2 in the innermost region. The VELO

must be capable of operating in these conditions for the duration of data taking.

Given that the VELO must be positioned as close as possible to the beam and that

the VELO functions optimally in a vacuum, the integration of the detector with

the LHC introduces several design constraints. To protect the LHC from VELO

out gassing, and the VELO from wakefield currents and beam halo effects, the

VELO must be shielded from the LHC by a metallic foil, the RF foil. The section

of the VELO closest to the beam is exposed to beam induced bombardment and is

protected from beam induced effects such as synchrotron radiation and secondary

electrons. Variations in the closed-orbit of the LHC and the thickness of the RF

foil limit the minimum distance from the beam to 8 mm. During injection of the

LHC the beam width is considerably larger than the 8 mm inner radius requiring

that the VELO be retracted 29 mm into the shadow of the LHC beam.

The VELO is made up of a series of modules placed around the interaction
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Figure 3.5 The cross section in the x, z plane of the VELO sensors in the closed
position, with the front face of the first modules shown open and
closed (left). A sketch illustrating the r− φ geometry of the sensors
is shown (right), showing only a few of the strips. The strips of
two adjacent φ sensors are overlaid to demonstrate the stereo angle.
Images taken from [44].

point. The modules perform three functions, they hold the sensors in position,

connect the electrical readouts to the to the sensors and enable cooling while in

a vacuum. Each module holds two sensors, an R-sensor and a φ-sensor. The

R-sensor measures the radius of a charged track while the φ-sensor measures the

azimuthal angle. The silicon sensors use diode strip implants with a minimum

strip separation (pitch) of 32 µm. The layout of the strips is illustrated in

Figure 3.5. For the R-sensors the strips form semi-circles divided into 45◦ regions

(in order to reduce occupancy and capacitance), centred on the LHC beam. The

strip pitch increases from 38 µm at the point closest to the beam up to 101.6 µm

at the point furthest from the beam. The φ-sensors are divided into an inner and

outer region, the strips in the inner region are skewed by 20◦ to the radial and the

outer region begins at a radius of 17.25 mm and are skewed by 10◦. There are

approximately twice as many strips in the outer region than in the inner region.

Adjacent modules have the skew reversed. The material budget of the VELO

corresponds to 17.5% of a radiation length with the RF-foil introducing the bulk

of the material.

The performance of the VELO can be quantified by considering the resolution on

the measured vertices and the impact parameter of tracks. The impact parameter,

IP, is defined as the shortest distance between a point and a line, where in this

example the point is the PV and the line is the particle trajectory. A similar

variable exists defining the distance of closest approach between two lines, DOCA,

In this example the DOCA is the closest point between the particle trajectory and
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the beam line. The resolution on the primary vertex is measured experimentally

by randomly dividing the tracks from a vertex into two subsets and reconstructing

the PV location for each subset. The resolution is found by subtracting one

measurement from the other [47]. A minimum of five tracks are required to

reconstruct a PV, and this method is capable of measuring the resolution on

primary vertices containing up to 65 tracks. The PV uncertainty is strongly

correlated to the number of tracks originating from the PV. The PV resolution,

in z, is plotted against track multiplicity in Figure 3.6.

Tracks originating from the decays of long lived B or D mesons typically have

larger impact parameters than tracks originating from the primary vertex. The

impact parameter is used extensively in LHCb analyses to reduce pollution from

prompt backgrounds making an understanding of its resolution essential. The

resolution on the impact parameter is governed by three main factors: multiple

scattering of particles due to the detector material, typically the RF-foil, the

resolution on the hit location in the VELO and the distance between the PV and

the first measured hit. The VELO was designed to minimise these factors.

The resolution of the impact parameter is typically displayed for a component of

IP vector in the plane transverse to its flight direction, IPx and IPy, where,

IPx = x− xPV − (z − zPV )tx, (3.3)

and similarly for y, where (x, y, z) is the position of the track at the closest point

to the primary vertex, and (tx, ty, 1) is the direction vector of the track. The

component of the IP parallel to the flight direction, IPz is defind to be 0. The

resolution on IPx is plotted against 1/pT in Figure 3.6. The linear dependence

with 1/pT is a consequence of multiple scattering.

3.4.3 Silicon and Straw Trackers

Tracking information is provided by the silicon tracker turicensis, TT, located

downstream of RICH1 and upstream of the magnet and the three additional

tracking stations, T1-T3, immediately downstream of the magnet. The three

tracking stations consist of a silicon inner tracker (IT) with small acceptance

close to the beam pipe and a straw tube outer tracker (OT).

A primary goal of the TT is to reconstruct tracks which originate outside the
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Figure 3.6 The uncertainty on the primary vertex in the z direction is plotted
against the number of tracks originating from the PV (left) and the
uncertainty on the impact parameter in the x direction is plotted
against 1/pT (right) using data collected in 2012. Images taken
from [48].

VELO, such as those originating from the decays of K0
S and Λ. While the B0

s

only flies 14 mm and this decays inside the VELO, the TT still provides vital

tracking information. The TT is made of four layers of silicon strip sensors with

a pitch of 183 µm [49]. The outer two layers are aligned vertically and the two

inner sensors are rotated by ±5◦ from the vertical. Each layer of the TT consists

of 14 columns of silicon sensors, with adjacent modules staggered in z and gaps

in acceptance are avoided by overlapping sensors by a few mm.

The IT is very similar to the TT, it consists of four individual detector boxes

arranged around the beam pipe in the highest occupancy part of the detector as

shown in Figure 3.7 [50].

The Outer Tracker is a drift time detector [51] providing excellent momentum

resolution and a high reconstruction efficiency over a large acceptance. The OT

holds an array of gas-tight straw tube modules, each containing two staggered

layers of drift tubes with an internal diameter of 4.9 mm. A drift time below

50 ns is achieved by using a 70/30 mix of Argon and CO2 gasses giving a drift

resolution of 200 µm. Each station consists of four layers with the tubes in the

outer tubes arranged vertically, and the inner tubes rotated by ±5◦. The tracker

is made of narrow columns to provide the greatest resolution in the y, bending,

direction allowing the curvature of the tracks to be precisely measured.
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Figure 3.7 The layout of the third Tracker Turicensis layer (left) with different
readout sections indicated by different shadings, and the layout of an
x detection layer of the second Inner Tracker station. Images taken
from [45]

Tracking SPD PS ECAL HCAL MUON

γ Hit Shower
π0 Shower

π0 →γγ Hit Shower
n Shower
e± Hit Hit Hit Shower
µ± Hit Hit Hit Hit Hit Hit

K±,π±,p Hit Hit Hit Hit Shower

Table 3.1 The signature in the detector left by different particle types are listed.
Additional information provided by the two RICH detectors are used
to separate the flavours of charged hadron.
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3.5 Particle Identification and Calorimetry

3.5.1 RICH

Two ring-imaging Cherenkov detectors (RICH1 and RICH2) provide particle

identification for charged hadrons. The angle of emittance of Cherenkov radiation,

θc, is related to the particle’s mass, m, momentum, p, and the refractive index,

n, of the material traversed by

cos θc =

√
m2 + p2

np
. (3.4)

Curved mirrors project and focus the radiated Cherenkov light onto a matrix of

hybrid photon detectors, HPD. The Cherenkov radiation forms a tight circle on

the HPDs, and the angle of emittance is proportional to the radius of the circle.

Figure 3.8 visualises the arrangement of the two radiator materials, mirror shape

and HPD locations for RICH1.

Figure 3.8 A schematic layout of RICH1 illustrating the focussing of Cherenkov
light originating from the aerogel, yellow, and C4F10 gas, blue.
Image taken from [52].

In Figure 3.9 distributions of θc are plotted against the particle momentum

for particles traversing RICH1 with radiator C4F10. Clear bands are visible

corresponding to muons, pions, kaons and protons. The starting position of the

bands indicates the minimum momentum required in order for Cherenkov photons

to be produced. In both RICH detectors the produced Cherenkov light is focused
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onto Hybrid Photon Detectors, HPDs, using a combination of spherical and flat

mirrors. The HPDs are located outside the acceptance of the LHCb detector and

are capable of detecting Cherenkov photons in the wavelength range 200-600 nm.

The HPDs are sensitive to magnetic fields and are shielded from the magnetic

fields present in the detector by mu-metal cylinders which limit the magnetic field

exposed to the HPDs to 50mT.

RICH1 has an angular acceptance of 25 mrad < θ < 300 mrad covering the full

acceptance of the detector and is located upstream of the magnet and uses C4F10

gas as the radiator with refractive index n = 1.0014 giving effective separation

power up to 40 GeV/c. Particle identification at momenta below these thresholds

is enabled by a 50 mm layer of silica aerogel at the entrance of RICH1 with

refractive index, n = 1.03. The aerogel was removed from RICH1 during the first

long shutdown as the degradation in particle quality was worse than the additional

identification performance. RICH2 uses CF4 gas as the radiator with refractive

index n = 1.0005 and provides effective identification in the momentum range

15 GeV/c < p < 100 GeV/c. High momentum particles are typically produced

with a smaller production angle and as such the RICH2 detector only has an

acceptance covering the range 15 mrad < θ < 100 mrad.
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Figure 3.9 The reconstructed Cherenkov angle, θc, for isolated tracks is plotted
against the particle momentum, p, for radiator C4F10. Image taken
from [53].
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3.5.2 Calorimetry and the Muon system

The calorimeters perform several crucial functions, they send low level informa-

tion to the hardware trigger allowing the selection of high transverse energy,

ET, hadron, electron and photon candidates, provide particle identification and

measures the energies and positions of electrons, photons and hadrons. The

muon system provides fast information to the triggers, particle identification and

space-point information.

LHCb uses a classical calorimetry design with the electromagnetic calorimeter,

ECAL, placed in front of the hadronic calorimeter, HCAL. A double detector

is placed in front of the ECAL consisting of scintillating pad detector, SPD, a

thin sheet of lead and a second pad detector called the preshower detector, PS.

The SPD and PS determine the electromagnetic nature of particles and whether

they’re charged from the calorimeter clusters allowing the vast backgrounds from

charged and neutral pions to be rejected [54]. Neutral pions are identified as

resolved if they decayed into two photons before the calorimeter or merged if

they decay inside the calorimeter [55].

All the calorimeters follow the same principal. Wavelength shifting fibres transfer

scintillation light to a photomultiplier, PMT. The fibres from the SPD/PS cells

are read out using multianode photomultiplier tubes, MAPMT, and the fibres

from the HCAL and ECAL are read out by individual phototubes. The ECAL

has an energy resolution of σE/E = 10%/
√
E[ GeV]

⊕
1% and the HCAL has a

resolution of σE/E = (69± 5)%/
√
E[ GeV]

⊕
(9± 2)% [45].

The muon system is composed of five stations, M1-M5, of rectangular shape with

inner and outer acceptances of 20 (16) mrad and 306 (258) in the bending (non-

bending) plane respectively. A projective geometry is used for the muon stations,

the dimensions scale with distance from the collision point. Muon station M1 is

placed before the calorimeters and is used to improve the pT measurements given

to the trigger. Muon stations M2-M5 are placed downstream of the calorimeters

and are separated by iron absorbers with a thickness of 80 cm and each station

uses Multi-Wire Proportional Chambers (MWPCs) for detecting muons.

The energy required for a muon to traverse the entire detector is approximately

6 GeV and the total absorber thickness is approximately 20 interaction lengths.

The muon stations M1-M3 have a high spatial resolution and are used to define

the track direction and calculate the pT of the candidate muon. The resolution
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Momentum Muon Stations
3 GeV/c < p < 6 GeV/c M2 & M3
6 GeV/c < p < 10 GeV/c M2 & M3 & (M‖M5)

p > 10 GeV/c M2 & M3 & M4 &M5

Table 3.2 The requirements for a track to be classified as a muon are presented.
The full requirements are dependant on the momentum of the
candidate and which stations detect hits from the track.

on the measured pT of a muon is approximately 20% using information from the

muon system only. Stations M4 and M5 have a coarser spatial resolution with

their main purpose being the identification of penetrating particles.

A binary, yes/no, decision known as isMuon is made based on the track momenta

and which stations a track leaves hits, see Table 3.2. The muon identification

method provides an excellent selection efficiency with 98.13 ± 0.04% of muons

being correctly identified and less than 1% of hadrons being misidentified as

muons [56].

3.5.3 Particle Likelihood

A typical event can contain several hundred particles which traverse the two

RICH detectors producing many overlapping rings in the detector making the

reconstruction of Cherenkov rings a challenge. A likelihood hypothesis is created

for each particle (π±, K±, µ±, p) by assuming the mass of the particle and

combining information from the two RICH detectors, the calorimeters and the

muon system. The unique signals left by different particle types in the sub

detectors are summarised in Table 3.1. When selecting the desired particle type,

the logarithm of particle hypotheses are compared, i.e. when selecting kaons,

the likelihood would be compared to the pion or proton, ∆ logL(K − π/p).

The kaon identification and misidentification rates are plotted in Figure 3.10

for the selections, ∆ logL(K − π) > 0, 5. Simulated Monte Carlo samples fail to

accurately model the rates for a given PID selection, so a data driven approach is

used to calculate the rates for different ∆ logL selections using clean calibration

samples of pions and kaons from D∗ → π+(D0 → K−π+) decays and muons from

J/ψ → µ+µ− decays, where the particle identification, PID, selection is placed

on the particle of interest.
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Figure 3.10 Kaon identification efficiencies and π± →K± misidentification
rates. [53]

3.6 Trigger

During nominal running conditions in 2012 the rate of visible2 bunch crossings

was approximately 11 MHz while the maximum sustainable readout was only

approximately 5 kHz. The expected bb production rate at nominal operation is

approximately 100 kHz, with 15% of these events containing a B hadron with all

its decay products in the LHCb acceptance. The branching fractions of interesting

B meson decays is typically 10−3 [57].

A triggering system reduces the event rate by selecting events that contain

potentially interesting physics and enriches the number of events saved containing

b hadrons. A hardware trigger known as the Level-0 (L0) trigger provides fast,

O(µs), decision making and reduces the event rate to ∼ 1 MHz. Two software

based triggers known as the high level triggers, HLT1 and HLT2, further reduce

the rate to 40 kHz and 5 kHz respectively. The L0 trigger runs synchronously

with the 40 MHz bunch crossing frequency on custom made hardware while the

HLT runs asynchronously on a processor farm.

The L0 trigger takes as an input the highest ET hadron, electron and photon

clusters in the calorimeters and the two highest pT muons in the muon chambers.

2A bunch crossing is defined as visible if there are at least two reconstructible charged tracks
passing through the VELO.
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Decision pT or ET threshold SPD hits

Single Muon >1.76 GeV/c <600
Dimuon pT1 × pT2 >(1.60 GeV/c)2 <900
Hadron >3.70 GeV <600
Electron >3.00 GeV <600
Photon >2.50 GeV <600

Table 3.3 L0 trigger thresholds used during 2012 [58].

The calorimeters form clusters by summing the energy of 2x2 cells, and identify

the clusters with highest ET. Clusters are identified as γ, π0, or hadrons using

information from the calorimeters, SPD and PS, see Table 3.1. The muon

chambers allow for reconstruction of the muon pT with a resolution of 20% and

the two highest muons in each quadrant are selected. The L0 trigger thresholds

are listed in Table 3.3.

The HLT consists of a C++ application which runs on the event filter farm which

contains 2000 computing nodes and makes use of the full event data to confirm the

decisions made by the L0 trigger and provide further separation between signal

and background. As the HLT has access to the full event information and is

software defined one could implement the non-trivial offline selection algorithms,

e.g. machine learning, using the trigger. The purpose of HLT1 is to reconstruct

particles using information from the VELO and tracking stations and confirm

the decision of the L0 trigger. The HLT2 performs a full pattern recognition and

track reconstruction on the remaining events and runs a series of inclusive and

exclusive trigger algorithms where the B is partially or fully reconstructed. The

final trigger is the logical OR of all exclusive and inclusive triggers [59].

The total selection efficiency, εtot, is the combination of the trigger efficiency,

εtrig, reconstruction and selection, εsel, and efficiency for candidates to be in the

detector acceptance, εacc,

εtot = εtrig · εsel · εacc. (3.5)

The selection and acceptance efficiencies can be determined from simulation, and

the trigger efficiency can be determined according to,

εtrig =
Ntrig|sel

Nsel

, (3.6)
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where Ntrig|sel are the number of events passing the selection and trigger and Nsel

are the number of events passing the selection only with the absence of a trigger

requirement. In Monte Carlo the number of events passing the selection in the

absence of a trigger is known, however in data this cannot be known as only

events which pass the trigger can be studied.

The TISTOS method [60] is used to determine the trigger efficiency from data. A

candidate is labelled as TOS (Trigger On Signal) if the event was triggered using

tracks from the candidate B hadron. A candidate is labelled as TIS (Trigger

Independent Of Signal) if the tracks causing the event to trigger are independent

of the signal candidate. The trigger efficiency can be rewritten as

εtrig|sel =
Ntrig|sel

NTIS|sel
×
NTIS|sel

Nsel

=
Ntrig|sel

NTIS|sel
× εTIS

(3.7)

where NTIS|sel is the number of events passing the TIS trigger and the full

selection, and the efficiency of the TIS trigger, εTIS, on signal candidates which

can be approximated using the number of events which pass the TOS trigger,

NTOS, and both TIS and TOS triggers, NTIS&TOS,

εTIS ≈ εTISTOS ≡
NTIS&TOS

NTOS

. (3.8)

This assumes that the TIS and TISTOS triggers are uncorrelated. This

assumption is shown to be valid in Reference [60]

3.7 Simulation

Simulated events are used to model signal decays of b hadrons as well as various

backgrounds. The simulation is divided into three packages, each of which uses

additional third party libraries. The Gauss [61, 62] package simulates the pp

collisions, hadronisation, decay and passage of particles through the detector.

The Boole [63] package simulates the detector response and provides data in the

same format as the LHCb readout electronics and the Moore [63] package provides

a full simulation of the trigger.

The Gauss package uses Pythia 6.4 [64] and 8.1 [65] to simulate pp → bbX
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interactions. After the bb pair have been produced they are repeatedly hadronised

until the desired B hadron is created. The EvtGen [66] package simulates

the decay of the B hadron and the PHOTOS [67] package models final state

electromagnetic radiation. EvtGen was initially developed by the BaBar

collaboration, and modified by LHCb to simulate B meson production with

proton collisions. The GEANT4 [68, 69] package is used to simulate interactions

between particles and the LHCb detector.
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Chapter 4

The Strategy for |Vub| at LHCb

This chapter outlines the strategy used for the measurement of |Vub| at the LHCb

experiment presented in this thesis. This includes the motivation for the choice

to measure |Vub| with the decay B0
s → K

−
µ+νµ.

An exclusive approach is used to measure |Vub| at LHCb instead of an inclusive

approach for several reasons. The LHCb environment contains huge amounts

b → c decays which completely mask the b → u inclusive signal, in addition at

the LHCb experiment it is not possible to exploit the b→ u kinematic endpoint,

the approach used by the B factories. The B0
s → K

−
µ+νµ decay was chosen over

the decay B0
s →π−µ+νµ as it is easier to positively identify a kaon and there

are fewer backgrounds. The decay B0
s → D−s µ

+νµ was chosen as it most closely

resembles the B0
s → K

−
µ+νµ decay, but with a b → c transition. By placing a

selection on the invariant mass of the final state particles decaying from the D+
s

a data sample is produced containing very few additional backgrounds.

Over 600 billion bb pairs were produced at LHCb during 2012, with ≈ 8.2% of

b quarks fragmenting into B0
s mesons [40, 70]. The high branching fraction of

b→ u`ν processes, ≈ 10−4, creates a high statistics environment in which b→ u

transitions can be measured allowing for novel determinations of |Vub| from the

decay B0
s → K

−
µ+νµ.

To measure |Vub| solely using the decay B0
s → K

−
µ+νµ a precise measurement of

the bb cross section at the LHC is needed in addition to a precise measurement

of the integrated luminosity. While both of these measurements have been

performed they are not precise enough to perform a competitive measurement

of |Vub|. Instead a normalisation is made to B0
s → D−s µ

+νµ decays and a
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measurement of the ratio of branching fractions is performed restricting the

B0
s → K

−
µ+νµ decays to a region in q2. This measurement, when combined with

form factor predictions from lattice QCD and light-cone sum rules, allows for

a determination of |Vub|2/|Vcb|2. Lattice QCD form factor predictions are used

when restricting to a high q2, q2 > 7 GeV2/c4 and light-cone sum rules are used

when restricting to low q2, q2 < 7 GeV2/c4. An experimental measurement of the

ratio of branching fractions is performed. There are three driving factors which

determine the ratio of branching fractions, the ratio of CKM matrix elements

|Vub|/|Vcb|, the kinematics and phase space of the decays, and the calculation of

form factors for the decays. The kinematic and phase space dependencies and

form factors are combined into a single term which is referred to as the ratio of

form factors, RFF , which fully encapsulates the theoretical contributions to the

ratio of branching fractions. |Vub|2/|Vcb|2 is determined according to:

|Vub|2

|Vcb|2
=
B(B0

s → K
−
µ+νµ)|q2>7 GeV2/c4

B(B0
s → D−s µ

+νµ)
×RLQCD

FF (4.1)

and
|Vub|2

|Vcb|2
=
B(B0

s → K
−
µ+νµ)|q2<7 GeV2/c4

B(B0
s → D−s µ

+νµ)
×RLCSR

FF (4.2)

where the branching fractions, B, and form factor ratio, RFF , are written using

equations 2.75 and 2.82,

RLQCD
FF =

∫ (m
B0
s
−m

D+
s

)2

m2
µ

1
|Vcb|2

dΓ
dq2B0

s→D
−
s µ+νµ

dq2∫ (m
B0
s
−mK− )2

7 GeV2/c4
1

|Vub|2
dΓ
dq2B0

s→K
−µ+νµ

dq2

, (4.3)

and

RLCSR
FF =

∫ (m
B0
s
−m

D+
s

)2

m2
µ

1
|Vcb|2

dΓ
dq2B0

s→D
−
s µ+νµ

dq2∫ 7 GeV2/c4

m2
µ

1
|Vub|2

dΓ
dq2B0

s→K
−
µ+νµ

dq2
. (4.4)

The values of |Vub| and |Vcb| in equations 4.3 and 4.4 cancel with the terms

in equations 2.75 and 2.82, producing a quantity which may be derived from

theoretical calculations. The calculated form factors are,

RLQCD
FF = 0.46± 0.11, (4.5)

and

RLCSR
FF = 0.48± 0.06. (4.6)
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When considering the decay B0
s → D−s µ

+νµ the integration ranges are

m2
µ+ → (mB0

s
−mD+

s
)2.

The choice to measure the decay using two bins in q2 is motived by the fact that

the form factor predictions from LQCD are most precise at high q2 (models differ

by an order of magnitude at low q2) and the predictions from LCSR are most

precise at low q2.

The ratio of branching fractions is measured experimentally by taking the ratio

of the yields of signal events and combining with their relative efficiencies and

branching fractions of intermediate decays,

B(B0
s → K

−
µ+νµ)

B(B0
s → D−s µ

+νµ)

=
NB0

s→K
−µ+νµ

NB0
s→(D−s →K+K−π−)µ+νµ

·
εB0

s→(D−s →K+K−π−)µ+νµ

εB0
s→K

−µ+νµ

· B(D−s → K+K−π−)

(4.7)

where NB0
s→K

−µ+νµ
and NB0

s→(D−s →K+K−π−)µ+νµ
are the signal yields after applying

all selections, εB0
s→K

−µ+νµ
and εB0

s→(D−s →K+K−π−)µ+νµ
are the selection efficiencies

for the decays B0
s → K

−
µ+νµ and B0

s → (D−s → K+K−π−)µ+νµ respectively.

The signal yields are determined by performing fits to the corrected mass

distributions of selected K−µ+ and D−s µ
+ candidates and the efficiencies are

determined from simulation after a series of data driven corrections are applied.

All efficiencies are taken with respect to the specified q2 selection.

The D−s → K+K−π− branching fraction is taken from the PDG and is a

weighted average of three measurements from the CLEO, Belle, and BaBar

experiments [37],

B(D−s → K+K−π−) = (5.44± 0.18)× 10−2 (4.8)
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Chapter 5

Finding b→ u`ν` at a hadron

collider

It was long thought that a measurement of |Vub| at a hadron collider would be

impossible due to the invisible neutrino and the challenge of isolating the b →
u signal from the crowded hadronic environment containing many decays with

similar decay topologies. The |Vub| measurement using the decay Λ0
b → pµ−νµ

demonstrated that this was not the case [71, 72]. This chapter details the search

and process for finding signal B0
s → K

−
µ+νµ decays at the large hadron collider.

A discussion of semileptonic kinematics and their reconstruction are given in

Section 5.1. A summary of backgrounds and the techniques used to reject them

is given in Section 5.2. The use of calibration samples to model signal decays is

discussed in Section 5.3. The modelling of combinatoric candidates is discussed

in Section 5.4 and the simulated samples used to model the signal background

are given in Section 5.5 The data processing pipeline detailing the selections is

given in Section 5.6.

5.1 Kinematics

Semileptonic decays present a unique challenge at LHCb. The invisible neutrino

requires that all events are partially reconstructed making it impossible to

reconstruct the invariant mass of the parent decay particle. Fortunately the

LHCb experiment has excellent vertex resolution allowing the B0
s production and

decay vertices to be measured. With the knowledge of the B0
s flight direction
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one can use the geometry of the event to measure the transverse momentum of

the invisible neutrino and calculate a lower limit on the mass of the B0
s meson.

This is called the corrected mass, and the details of its calculation are given in

Section 5.1.1. Alternatively one can use the knowledge of the true mass of the

B0
s meson to reconstruct the full kinematics of the invisible neutrino with a two

fold ambiguity. The details of neutrino reconstruction are given in Section 5.1.2.

5.1.1 Corrected Mass

Bs X=K/Ds
ν1

μ

ν2

p⟂

p⟂

Xμ

Figure 5.1 Visualisation of conservation of momentum with respect to the B0
s

flight direction. Two neutrino solutions are compatible with the
reconstructed decay. In the B0

s rest frame the two solutions are back
to back in the z direction, but after boosting they both travel in the
positive z direction.

The corrected mass is a lower limit on the mass of the B0
s momentum. As

visualised in Figure 5.1, the event is rotated such that the B0
s meson flies in

the z direction, and from the symmetric geometry of the event the transverse

momentum of the neutrino must be equal and opposite to the transverse

momentum of the visible system,

~p⊥(K−µ+) = − ~p⊥(νµ)

p⊥ ≡ | ~p⊥(K−µ+)|
(5.1)

The corrected mass is defined as

Mcorr =
√
M2

Xµ + p2
⊥ + p⊥, (5.2)

with uncertainty

σMcorr =

 p⊥√
M2

Xµ + p2
⊥

+ 1

σp⊥ (5.3)

where MXµ is the invariant mass of the visible final state particles, and p⊥
1 is

1p⊥ is the momentum transverse to the B0
s flight directions and pT is the momentum
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the visible momentum transverse to the B0
s flight direction. If the only missing

particle is a neutrino the corrected mass distribution will peak at the B0
s mass

with a wide tail to the left and an immediate cut off above the mass of the B0
s .

The effects of resolution on the measurement of the B0
s flight direction result

in tails forming above the mass of the B0
s , the corrected mass distributions for

B0
s → K

−
µ+νµ and several backgrounds are plotted in Figure 5.2 before and after

the simulation of resolution effects.

]2 Mass [MeV/c+µ-Corrected K
3000 4000 5000 6000

ν +µ - K→ sB

ν +µ *-
 K→ sB

 Xν) +τ(+µ (*)
s D→ sB

ν +µ*01 s D→ sB

Combinatorial

]2 Mass [MeV/c+µ-Corrected K
3000 4000 5000 6000

ν +µ - K→ sB

ν +µ *-
 K→ sB

 Xν) +τ(+µ (*)
s D→ sB

ν +µ*01 s D→ sB

Combinatorial

Figure 5.2 The corrected mass distribution for simulated signal and background
events reconstructed as B0

s → K
−
µ+νµ before (left) and after (right)

the modelling of vertex resolution.

The dominant source of uncertainty on the corrected mass comes from an

uncertainty in the B flight direction which results in a large uncertainty p⊥.

The uncertainty on the B flight direction must be propagated through to the

uncertainty in p⊥. The propagation of uncertainties to σp⊥ is non trivial and

the calculation has not been included in this thesis. The full derivation may be

found in Reference [72]. The corrected mass distributions for simulated events

reconstructed as B0
s → K

−
µ+νµ are plotted in Figure 5.2 before and after the

simulation of resolution effects, the very sharp signal peak becomes significantly

broader and harder to resolve with the addition of resolution effects.

The resolution on the plotted corrected mass is significantly improved if one

rejects events with a large corrected mass uncertainty. The distributions of signal

Monte Carlo decays and same sign data candidates are plotted in Figure 5.3.

The signal events passing the selection have a significantly sharper peak while

the background sample of reconstructed K−µ+ candidates is shifted to the left

away from the signal peak. The additional resolution and separating power

transverse to the z axis.
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obtained by rejecting events with a high corrected mass uncertainty result in

reduced systematics when performing a fit to the corrected mass.

]2 Mass [MeV/cµCorrected K
3000 4000 5000 6000 7000

0

0.01

0.02

0.03

0.04

0.05
µν+µ- K→0

sB
 Data+µ+K

2 < 150 MeV/c
Corrmσ

2 > 150 MeV/c
Corrmσ

Figure 5.3 The corrected mass distributions of Monte Carlo signal decays (red)
and same sign candidates from data (blue). Events passing the σmcorr

selection are unshaded and the events failing the selection are shaded.

For this analysis candidates with a corrected mass uncertainty greater than

mcorr = 150 MeV/c2 are rejected. This selection has an efficiency of approxi-

mately 45% for both signal and partially reconstructed background decays alike

while backgrounds from combinatoric combinations are significantly reduced.

Although this selection doesn’t significantly increase signal purity the separation

between signal and background decays is improved in the corrected mass

distribution resulting in a fit with significantly reduced systematics. The efficiency

of this selection is verified using a kaon and muon combination from the decay

B+ → (J/ψ → µ+µ−)K+ and is quantified later in Section 6.5.4. The distribution

of the corrected mass uncertainty is plotted in Figure 5.4 for signal Monte Carlo

and the K−µ+ combination from B+ → J/ψK+ using Monte Carlo and data.

As the dominant source of uncertainty on the B0
s flight direction originates from

the precision on the primary and secondary vertices a B0
s meson with a longer

flight distance will have a lower corrected mass uncertainty, consequently the

application of this selection will introduce a bias on the measured flight distance

or calculated decay time. This selection is very effective at rejecting backgrounds

from combinatoric combinations of a K−µ+ pair. Combinatorics originate from

two sources, the combination of prompt tracks originating from the primary

vertex or from bb production with one b decaying semileptonicaly producing a

muon and the other decaying hadronically producing a kaon.
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When considering the decay B0
s → D−s µ

+νµ no selection is made on the corrected

mass uncertainty of the K−µ+ pair or the D−s µ
+ pair. The dominant background

to the decay B0
s → D−s µ

+νµ is B0
s → D∗−s µ+νµ and a selection on the corrected

mass uncertainty does little to further separate the two decays.

]2 [MeV/c
Corrmσ

0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
µν+µ- K→0

sMC B
+ Kψ J/→+MC B

+ Kψ J/→+Data B

Figure 5.4 The corrected mass uncertainty for signal decays and B+ → J/ψK+

decays reconstructed as B0
s → K

−
µ+νµ.

5.1.2 Neutrino Reconstruction and q2

The |Vub| measurement will be performed by measuring the signal yield of

B0
s → K

−
µ+νµ candidates in two regions of phase space, separated by q2 =

7 GeV2, where q2 is the squared four vector momentum recoiling off the B0
s , which

is equal to the four momentum squared of the µ+νµ combination. A calculation of

q2 first requires the neutrino momentum be reconstructed. The component of the

neutrino momentum transverse to the B flight direction, p⊥ is equal and opposite

the transverse momentum of the K−µ+ pair. The longitudinal component, p‖,

may be determined to a two-fold ambiguity with the quadratic equation

p⊥ = p⊥(K−µ+) (5.4)

p‖ =
−b±

√
b2 − 4ac

2a
, (5.5)
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where a, b and c are determined as

a = |2p‖mKµ|2,

b = 4p‖(2p⊥p‖ −m2
miss),

c = 4p⊥(p2
‖ +m2

B0
s
)− |m2

miss|2,

m2
miss = m2

B0
s
−m2

Kµ.

(5.6)

The kinematics of the B0
s meson and q2 of the event may now be calculated with

a two fold ambiguity [73, 74]. When performing a physics analysis it is desirable

to resolve this ambiguity without the introduction of a bias in q2. A choice must

be made on which of the two solutions of q2 will be used when performing an

analysis.

The simplest approach is to randomly select one of the two solutions which while

unbiased has a poor resolution in q2. A significantly improved method uses a

linear regression model to predict theB0
s momentum and the ambiguity is resolved

by selecting the solution most consistent with the regression value. The full details

of the regression method are given below.

Due to the detector resolution effects approximately 20% of the candidates have

an unphysical solution (i.e. b2 < 4ac) for P‖. The unphysical events fall into

corrected mass region above the B0
s invariant mass, mcorr(B

0
s ) > m(B0

s ), and are

removed when restricting events to a specific region in q2.

5.1.3 Linear Regression to Reconstruct q2

Linear regression analysis is a statistical technique for predicting the value of

a target or response variable based on relationships with predictor or regressor

variables [75–77]. For this analysis the momentum of the B0
s is inferred from

the flight distance and polar angle of the B0
s with a resolution of 60% which

is sufficient to select the correct solution of the quadratic equation 70% of the

time [78], compared to the random selection which selects the correct solution

50% of the time.

The B0
s momentum is weakly correlated to its polar angle, θflight,

P =
pT

sin θflight

, (5.7)
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Figure 5.5 Input variables used to predict the B0
s momentum with a linear

regression model.

and flight distance, |~F |, and decay time, t,

P =
M |~F |
t

, (5.8)

as shown in Figure 5.5. The two flight variables are considered in a least squares

linear regression model [79]

P = β0 + β1/ sin θflight + β2|~F |+ ε, (5.9)

where βn are parameters to be determined, and ε is a random component with a

mean of 0 and variance equal to the variance of the predicted momentum. The

predicted value of the B0
s momentum is compared to the two solutions derived

from the quadratic equation defined in Section 5.1.2 and the solution closest to

the regression value, q2
Best, is selected. The use of regression in the selection of

a solution to the quadratic equation significantly improves the resolution on the

reconstructed true q2 as plotted in Figure 5.6. The resolution on the reconstructed

q2 for different methods of selecting a solution is given in Table 5.1. Using the

output of the linear regression model to select a solution improves the resolution

on the reconstructed q2 by 38% when compared to a random selection.
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Figure 5.6 True q2 distributions from Monte Carlo (shaded green) with
the reconstructed q2 with different methods of selecting the B0

s

momentum solution (left) and the resolution on q2 is shown using
different selections (right). The best solution is the solution closest
to the regression value, and the worst solution is furthest from the
regression value.

Solution RMS
Correct 1.07 GeV2/c4

Regression 2.21 GeV2/c4

Random 3.06 GeV2/c4

Incorrect 4.23 GeV2/c4

Table 5.1 Resolution on reconstructed q2 after selecting one of the two solutions.
Resolutions are given for the correct solution, solution obtained from
regression, randomly selecting a solution and the incorrect solution.

5.2 Backgrounds

Reconstruction of the decay B0
s → K

−
µ+νµ faces large backgrounds at LHCb. A

significant number of events contain an opposite sign K−µ+ pair which may be

reconstucted as a B0
s → K

−
µ+νµ candidate. These backgrounds include partially

reconstructed B hadron decays with additional charged or neutral final state

particles, random combinatoric combinations of a K−µ+ pair and decays with a

misidentified particle. These are simulated using Monte Carlo or estimated using

background data samples.

The dominant source of backgrounds that are selected when constructing

B0
s → K

−
µ+νµ candidates are partially reconstructed B hadron decays with

additional unreconstructed charged tracks. As visualised in Figure 5.7, the most

concerning of these backgrounds is B+ → J/ψK+ with an unreconstructed muon
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which has a topology almost identical to B0
s → K

−
µ+νµ with an unreconstructed

neutrino, with the main difference being the invariant mass of the reconstructed

particle and the q2 of the two decays. The largest source of backgrounds

with additional charged tracks correspond to semileptonic b→ c`ν` transitions

of a B hadron decaying into a charm meson with the decay of the charm

containing a charged kaon. The inclusive semileptonic B branching fraction is

approximately 11% [37] compared to the B0
s → K

−
µ+νµ branching fraction of

approximately 0.015%. Backgrounds containing additional charged tracks may

be significantly reduced by searching through the other charged tracks in the event

for tracks compatible with the candidate vertex. This process is fully detailed in

Section 5.6.7.

B+

K+

µ+

µ−

B0

s

K−

µ+

νµ

Figure 5.7 The topology of B+ → J/ψK+ (left) and B0
s →K−µ+νµ (right).

When partially reconstructed with one missing lepton the decays are
almost identical.

Backgrounds containing unreconstructed neutral final state particles present a

greater challenge. The reconstruction efficiency of low transverse momentum

neutral tracks is low, approximately 20% [80], which makes the reduction of such

backgrounds a challenge. Higher mass resonances of the K− and D−s for the signal

and normalisation decays produce soft, low momentum, neutral particles. These

backgrounds may be reduced using a cone isolation procedure. A cone is drawn

around the candidate tracks in ∆R =
√

∆η + ∆φ, where η is the pseudorapidity

and φ is the radial angle, and the activity of the ECAL and HCAL within the

cone is investigated. It is expected that tracks originating from the decay of

higher mass resonances will have increased deposits in the calorimeters close to

the candidate track. The use of cone isolation is detailed fully in Section 5.6.7.

Given that the rate of pions from B decays is much larger than the rate of

kaons there is a substantial background of pions, and to a lesser extent protons,

electrons and muons, which will be falsely identified as a kaon. backgrounds

from misidentified particles are substantially reduced by requiring that the muon

and kaon candidates have high muon and kaon likelihood respectively when

reconstructing as B0
s → K

−
µ+νµ.
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The final major background under consideration is the combinatoric combinations

of kaon and muon candidates. Combinatoric backgrounds are effectively reduced

with selections using topological information and vertex quality criteria.

5.3 Calibration Samples

In order to verify the accuracy of simulated Monte Carlo samples and evaluate

systematics and corrections due to mismodelling in the simulation, calibration

samples analogous to the signal decay are used. When considering the decay

B0
s → K

−
µ+νµ the decay B+ → J/ψK+ is used as a calibration sample. The B+

decay chain may be reconstructed either by explicitly searching for a K+µ+µ−

final state compatible with a B+ → J/ψK+ decay or through the reconstruction

of a K−µ+ pair analogous to the decay B0
s → K

−
µ+νµ, with the additional

muon found through the use of the isolation BDT detailed in Section 5.6.7.

The former method of reconstruction is useful for validating the efficiencies

of selections dependant on the underlying event as the B0
s → K

−
µ+νµ and

B+ → J/ψK+ are exclusively reconstructed and the underlying event will contain

no tracks compatible with the signal decays. The latter method is useful when

validating the kinematics of the decay because a B0
s → K

−
µ+νµ decay with a non

reconstructed neutrino is very difficult to distinguish from a B+ → J/ψK+ decay

with a non reconstructed muon. The decay B+ → J/ψK+ has a high yield and

it is possible to generate a highly pure data sample with very few backgrounds

making it ideal for comparisons with pure Monte Carlo. The decay B+ → J/ψK+

is used to validate the Monte Carlo simulations by comparing the distributions

of kinematic variables and the calculation of selection efficiencies.

5.4 Combinatoric Modelling

Due to the nature of partially reconstructed B hadron decays there is no calibra-

tion sample from which a representative sample of combinatoric combinations of

kaons and muons may be obtained, although there are regions of phase space

where a pure sample of combinatorics may be obtained. By requiring that

mKµ > mB0
s
, a pure combinatoric sample may be produced however the corrected

mass cannot be extrapolated to lower values below the mass of the B0
s making

the sample irrelevant when considering the full phase space. For this analysis
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combinatorics are modelled using a procedure termed event mixing. A candidate

kaon track from one event is combined with a candidate muon from another event

and a new B0
s candidate is reconstructed from this combination. The effectiveness

of this method is validated by comparing the kinematics of the mixed events with

candidates in data in the region mKµ > mB0
s
.

A new combinatoric candidate is constructed by mixing a kaon and muon

candidate from different events forming a B0
s candidate simulating a combinatoric

combination of the kaon and muon. When reconstructing the mixed B0
s the

momenta of the kaon and muon and primary vertex location are taken from

different events. The secondary vertex location is chosen by randomly sampling

the flight distance of reconstructed B0
s candidates with mKµ > mB0

s
and placing

it at that distance downstream of the primary vertex. The corrected mass is

determined from these quantities. The uncertainty on the corrected mass is

determined by randomly displacing the secondary vertex 500 times, for each

displacement the corrected mass is calculated and the uncertainty is the standard

deviation on the 500 corrected mass values.
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Figure 5.8 The distributions of K−µ+ candidates in data (black) are plotted
alongside simulated combinatoric candidates (red). All distributions
are drawn requiring that the reconstructed K−µ+ mass is greater
than mB0

s
.

This method of modelling combinatorics does not accurately reproduce the

kinematics of the B0
s meson in the region mKµ > mB0

s
. A two dimensional

reweighting is used to correct the momentum and transverse momentum of the

B0
s candidate. The distributions of the K−µ+ invariant mass and corrected

mass do not change as a result of the reweighting indicating the shapes of the

distributions are robust. The invariant mass and corrected mass distributions

with mKµ > 5400 MeV/c2 are plotted in Figure 5.8 for mixed events and data.
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The details of the reweighting procedure and validation plots may be found in

Appendix B.

Combinatoric candidates originating from the decay of a bb pair will produce

tracks with a large opening angle, when looking down the beam line or z axis,

the b and b will be produced back to back and will have opposite momenta in

the transverse plane. The large opening angle obtained when selecting a kaon

and muon candidate from different quarks in the bb pair produces B0
s candidates

with a large invariant mass. This feature may also be used to effectively reject

combinatoric backgrounds and is discussed further in Section 5.6.3.

The corrected mass of the K−µ+ pair obtained from the event mixing procedure is

plotted in Figure 5.9 alongside data obtained from two different triggers. Therein

lies a sensitive topic with respect to the trigger. As will be discussed later in

Section 5.6.2, the trigger used for this analysis is a topological trigger which

uses a multivariate selection trained to select partially reconstructed B hadron

candidates with two visible final state particles. The topological trigger uses the

corrected mass of the candidate decay in its multivariate selection resulting in a

reduction of reconstructed candidates with mcorr > 5800 MeV/c2. Without access

to the trigger software it is impossible to fully reproduce the behaviour of the

topological trigger above mcorr = 5800 MeV/c2. An additional trigger is available

which selects candidates based solely on the muon and is unbiased in mcorr. This

trigger has significantly lower statistics. The corrected mass distribution of the

mixed events and two trigger are plotted in Figure 5.9. Above the region in

mcorr where no decays from B hadrons are present the corrected mass of the

mixed samples agrees incredibly well with the data originating from the muon

trigger. In addition the mcorr distributions for both triggers are very similar

below 5800 MeV/c2 indicating that the topological trigger does not significantly

impact the shape of the corrected mass distribution. By combining the above

two arguments it is decided that the use of mixing to model combinatoric

combinations of a K−µ+ pair selected using the topological trigger is valid up

to mcorr = 5800 MeV/c2. Therefore all corrected mass distributions used in this

analysis will end at mcorr = 5800 MeV/c2.
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Figure 5.9 The corrected mass of a K−µ+ pair is plotted for candidates
modelling combinatoric backgrounds.

5.5 Simulated Samples

A huge volume of simulated Monte Carlo decays were produced for this analysis

in order to model the signal, normalisation and background decays. These are

detailed in Table 5.2. Signal B0
s → K

−
µ+νµ Monte Carlo samples are generated

exclusively using the Isgur-Scora-Grinstein-Wise updated model [81, 82] to

model the form factors. B0
s → K

−
µ+νµ background samples include excited K+

resonances decaying with additional neutral tracks. Monte Carlo samples are

used to model the massive contributions from B hadrons decaying to charm

hadrons which ultimately decay producing a kaon. The B0
s → D−s µ

+νµ simulated

samples contain a cocktail of B0
s → D−s µ

+νµX decays with each event given a

flag corresponding to the correct decay type. The cocktail contains the exclusive

B0
s → D−s µ

+νµ decay in addition to decays including excited D+
s resonances and

tauonic decay modes. Two cocktail B0
s → D−s µ

+νµ samples were produced, one

which had been accidentally produced with an incorrect modelling of the form

factors.

Both samples are used in this analysis. For partially reconstructed decays with

more than one missing particle the corrected mass is, to first order, independent

of q2. The form factors are defined in terms of q2, resulting in a corrected

mass distribution which is independent of the form factor parametrisation. Both
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samples are used when drawing histograms of the corrected mass distribution for

the background sample. When calculating efficiencies and generating template

shapes of the signal mode, only the model with the correct form factor

parametrisation is used.

5.6 Selections forB0
s → K

−
µ+νµ andB0

s → D−s µ
+νµ

5.6.1 Data Pipeline

In order for a physics analysis to return meaningful results, the data collected

must go through multiple stages of processing. The first stage of processing is

the hardware trigger which identifies the events containing potentially interesting

physics. All events passing at least one hardware trigger are temporarily

stored before processing by the software trigger. The software trigger combines

information from multiple subsystems of the detector and reconstructs candidate

tracks and B hadrons. Events passing at least one software trigger are stored

and all others are permanently deleted. The dataset passing the trigger selection

for 2012 contains 28× 109 events, and due to size of this dataset it is inaccessible

to analysts and is processed centrally every two years. The central processing

of the triggered data is referred to as the stripping. During the stripping,

candidate signal decays are built by combining different tracks from the event. For

B0
s → K

−
µ+νµ the reconstruction will search through all combinations of opposite

sign kaon and muon pairs and reconstruct a candidate B0
s . The selections applied

during the stripping are designed to be loose allowing a highly efficient selection of

signal events with sufficient background to ensure meaningful background studies

may be performed.

The DaVinci software package [63] performs the next stage of offline processing,

iterating through the events passing the desired stripping selections and saving

the selected events to a local file. The DaVinci package takes as an input

the raw reconstructed tracks and candidates of the event and outputs an

organised, formatted NTuple containing event by event data of the candidate

tracks and underlying event. The next stage of processing applies the first round

of selections, applies multivariate classifications and calculates weights for the

kinematic correction of Monte Carlo. During the final stage of processing input

histograms for use during fitting and validations are drawn, final tight selections
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Decay Year Size

Signal B0
s → K

−
µ+νµ decays plus excited K− resonances.

B0
s → K−µ+νµ 2012/2011 8M - 3 fb−1

B0
s → K∗−µ+νµ 2012 4M - 1 fb−1

B0
s → K∗−2 µ+νµ 2012/2011 6M - 1 fb−1

B0
s → K∗−0 µ+νµ 2012/2011 6M - 1 fb−1

Signal B0
s → D−s µ

+νµ decays. Samples contain a cocktail of B0
s →D+

s decays.

B0
s → D+

s µ
+νµX 2012/2011 9M - 0.2 fb−1

B0
s → D+

s µ
+νµX 2012 20M - 0.4 fb−1 Incorrect FF

Charged backgrounds to B0
s → K

−
µ+νµ used as calibration samples.

B+ → J/ψK+ 2012 20M - 2 fb−1

B0
s → J/ψφ 2012 100M - 40 fb−1

Inclusive b →c (s) decays modelling K−µ+ backgrounds.

b→ c→ K+µX 2012/2011 6M - 0.01 fb−1

b→ c→ KµX 2012/2011 250k - 0.01 fb−1 Filtered MC
b→ K+µ+X 2012/2011 640k - 0.03 fb−1 Filtered MC
b→ c→ K+µX 2012/2011 1.5M - 0.05 fb−1 Filtered MC

Background decays reconstructible as B0
s → K

−
µ+νµ with misidentification.

Λ0
b → pµν 2012 15M

B0 → πµν 2012 4M
B+ → ρµν 2012 5M
B0 → ρ−µ+ν 2012 4M

B0
s → K

−
µ+νµ backgrounds containing additional charged tracks.

B0 → J/ψK∗ 2012 10M
B+ → J/ψK∗ 2012 24M
B0 → D∗π,D∗ → D0π 2012 140k
B0 → Dπ,D → Kµν 2012 160k
B0 → D∗µνX,D → Kπππ 2012 5M
B0 → D∗µνX,D → Kπ 2012 7M
B0 → DµνX,D → Kππ 2012 20M
B+ → D0π 2012 140k
B+ → D∗0π,D∗0 → D0π 2012 140k
B+ → D∗0π,D∗0 → D0γ 2012 140k
B+ → D0ρ 2012 140k
B+ → D0µν 2012 15M
B0
s → D0K∗0 2012 150k

B+
c → D0µν 2012 1M

B0
s → D−s µ

+νµ backgrounds containing additional charged tracks.

B+ → D∗+s D∗ 2012 5M
B+ → DD 2011 3M
B0
s → D0D+

s K 2012 5M
B0
s → D∗+s D∗+s 2012 5M

B0
s → DD 2011 1M

B0 → D+
s D
∗ 2012 5M

B0 → DD 2011 2M
B+
c → J/ψD+

s 2012 3M

Table 5.2 A summary of the simulated samples used in this Analysis. The
sample size for filtered events is counted after stripping selections
are applied. An approximate luminosity is included for the most
significant samples. 67



are applied and additional Monte Carlo corrections are calculated and applied.

5.6.2 Preselection

The selections applied to signal candidates are optimised to maximise signal

efficiency and background rejection by exploiting topological differences between

signal and background events. Signal events containing long lived particles have

final state particles originating a significant distance from the interaction point

with a high transverse momentum. Background events and candidates typically

contain prompt tracks originating from the interaction point.

For a full understanding of the selections applied several variables must be defined:

DOCA Distance of closest approach of two lines or particle tracks.

IP Impact parameter. The distance between a track and vertex at

closest point.

IPχ2 Impact parameter chi-squared. The difference in χ2 of the primary

vertex reconstructed with and without the candidate track.

DIRA The cosine of the angle formed between the direction of the

measured momentum of a decaying particle and the line formed

from the production and decay vertices.

FD The flight distance, or distance between production and decay

vertex.

FDχ2 The flight distance chi-squared. The difference in χ2 of the SV

fit reconstructed with or without the requirement of zero flight

distance.

The HLT2 trigger TopoMu2BodyBBDT is used to select candidates for both signal

and normalisation decays and requires as an input a muon having passed the

L0 and HLT1 single muon triggers with a minimum transverse momentum of

1.76 GeV [57]. The TopoMu2BodyBBDT trigger is designed to select partially

reconstructed decays of B hadrons containing a muon candidate [59, 83]. The

trigger algorithm requires a displaced secondary vertex and a candidate is built

from the muon and the additional particle. A bonsai boosted decision tree

(BBDT) is employed to efficiently select signal events using discretised kinematics

of the candidate [84]. BDTs are detailed in Section 5.6.5. A BDT is used
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Variable Selection BBDT Intervals∑
|pT|[ GeV/c] > 3 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 15, 20

pT
min[ GeV/c] > 0.5 0.6, 0.7, 0.8, 0.9, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 10

m[ GeV/c2] < 7 2.5, 4.75
mcorr[ GeV/c2] 2, 3, 4, 5, 6, 7, 8, 9, 10, 15
DOCA [mm] < 0.2 0.05, 0.1, 0.15
IPχ2 20
FDχ2/100 > 1 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 100

Table 5.3 The variables and intervals used in the BBDT for trigger
TopoMu2BodyBBDT selecting 2 body decays. Table taken from [84].

in the trigger to identify signal candidates as it has a higher signal efficiency

and improved background rejection compared to a simple cut based trigger. To

prevent the BDT from making a series of overly complicated selections the input

variables to the trigger are discretised and the BDT may only introduce selections

at the specific intervals listed in Table 5.3. The discretisation earns the BBDT

it’s bonsai name. During optimisation of the BBDT the number of intervals was

gradually reduced until a decrease in performance was observed.

Two stripping lines were developed and used for this analysis designed to

efficiently select B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ candidates, the stripping

selections are detailed in Tables 5.5 and 5.6. In addition to the two lines a suite

of lines were based on the lines to select events in background enriched regions by

removing the likelihood hypothesis selections on certain particles, or inverting the

charge on the muon. The stripping lines are summarised in Table 5.4. Selections

are made on the track properties by requiring a high track quality, low ghost

probability and high particle identification (PID) likelihood (L). Topological cuts

require that the final state tracks are well isolated from the primary vertex, the fit

quality on the reconstructed vertex is high, the secondary vertex is well separated

from the primary vertex and the cosine of the angle between the reconstructed

flight direction of the B0
s and its measured momentum, DIRA, is close to 1.

It is often required to reduce the rate of a stripping line if the output rate is

exceptionally high, the selection algorithm is computationally intensive or the

perceived value of the selected data is low. The rate of a line is reduced by

applying a prescale which runs the stripping algorithms on a random subset of

the data.
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Line Purpose Prescale

B2DMuNuX_Ds Signal B0
s → D−s µ

+νµ candidates 1.0
B2DMuNuX_Ds_FakeMu B0

s → D−s µ
+νµ with misidentified muon 0.02

B2XuMuNuBs2K Signal B0
s → K

−
µ+νµ candidates 1.0

B2XuMuNuBs2KSS K± µ± candidates to model backgrounds 0.1

B2XuMuNuBs2K_FakeMu B0
s → K

−
µ+νµ with misidentified muon 0.02

B2XuMuNuBs2K_FakeK B0
s → K

−
µ+νµ with misidentified kaon 0.02

B2XuMuNuBs2K_FakeKMu B0
s → K

−
µ+νµ with misidentified K/µ 0.02

Table 5.4 A summary of the stripping lines used to select signal and background
candidates. The D−s µ lines select same sign and opposite sign
candidates. The Fake lines are identical to the candidate lines except
the likelihood selections are removed.

5.6.3 Background Vetoes

A number of vetoes are applied to explicitly remove certain backgrounds in

an efficient manner. These backgrounds may take the form of combinatorics,

misidentified decays with no additional tracks or reconstructible decays from

decays of higher excitations, e.g. B0
s → K∗−µ+νµ.

Decays where the K− and µ+ originate from the same charm meson decay are

rejected by requiring that y./the invariant mass of the K−µ+ pair is greater than

the mass of D mesons. The decay J/ψ →µ+µ− may be selected and reconstructed

as a signal B0
s → K

−
µ+νµ decay if one muon is misidentified as a kaon. Candidates

containing a kaon which penetrates muon the system are rejected if the K−µ+

invariant mass reconstructed under the µ+µ− mass hypothesis is consistent with

the J/ψ mass. Kaons produced from the decays of excited kaons, K∗− →K−π0,

are rejected by searching for neutral pions in a cone around the kaon track. The

candidate is rejected if a pion is found and the invariant mass of the K−π0 pair

is consistent with the K∗− or K∗−(1430). This selection only rejects ≈ 20% of

the background from higher excited resonances due to the low reconstruction

efficiency of soft pions [55].

Combinatorics arising from bb production with the kaon and muon originating

from the decay of the different b quarks may be rejected by exploiting the topology

of bb production. The two b quarks fragment into B hadrons and in the rest frame

recoil off one another resulting in two B mesons with opposite momenta. If the

bb pair is boosted in the longitudinal direction, which is approximately the case

at LHCb, the recoil of fragmentation will result in the B mesons having opposite

momenta in the transverse plane. The event is rejected if the kaon and muon
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Candidate Selection
Stripping Preselection
Event Long track multiplicity < 250
muon Track quality χ2/Ndof < 4.0
muon p > 6000 MeV
muon pT > 1500 MeV
muon Track ghost probability< 0.35
muon lnLµ − lnLπ > 3.0
muon lnLµ − lnLp > 0.0
muon lnLµ − lnLK > 0.0
muon Primary vertex IPχ2 > 16
kaon Track quality χ2/Ndof < 6.0
kaon p > 10000 MeV
kaon pT > 500 MeV
kaon Track ghost probability< 0.5
kaon lnLK − lnLπ > 5.0
kaon lnLK − lnLp > 5.0
kaon lnLK − lnLµ > 5.0
kaon Primary vertex IPχ2 > 16
B0
s SV quality χ2/Ndof < 4.0

B0
s DIRA > 0.994

B0
s SV separation from PV χ2 > 120

B0
s 2500 MeV < mcorr < 7000 MeV

Vetoes
Candidates per event 1
J/ψ →µ+µ− misid veto |m(K→µ)µ −mJ/ψ | < 30 MeV and KIsMuon

D → →K−µ+ X rejection mKµ > 1900 MeV
K∗− (892)→K−π0 veto |mKπ0 −mK∗ | < 65 MeV
K∗− (1430)→K−π0 veto |mKπ0 −mK∗(1430)| < 90 MeV
Combinatoric quadrant veto Px(K)× px(µ) < 0 and Py(K)× py(µ) < 0
BDT Selections
Isolation preselection min(IsoMinBDT_K, IsoMinBDT_Mu) > -0.9

Charged background BDT Charge_BDT > 0.1

Same sign BDT SameSign_BDT > 0.05

Additional Selections
Corrected mass error σmcorr < 150 MeV/c2

q2 boundary q2 ≷ 7 GeV2/c4

Table 5.5 All selections applied to the B0
s → K

−
µ+νµ candidates using the

B2XuMuNuBs2K stripping line.
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Candidate Selection
Stripping Preselection
Event Long track multiplicity < 250
muon pT > 1000 MeV
muon p > 6000 MeV
muon Track ghost probability< 0.35
muon Track quality χ2/Ndof < 3.0
muon Primary vertex IPχ2 > 12
muon lnLµ − lnLπ > 3.0
kaon pT > 250 MeV
kaon p > 2000 MeV
kaon Track ghost probability< 0.35
kaon Track quality χ2/Ndof < 3.0
kaon Primary vertex IPχ2 > 4
kaon lnLK − lnLπ > −2.0
pion pT > 250 MeV
pion p > 2000 MeV
pion Track ghost probability< 0.35
pion Track quality χ2/Ndof < 3.0
pion Primary vertex IPχ2 > 4
pion lnLK − lnLπ < 20.0
D+
s |mCand. −mD+

s
| < 80 MeV

D+
s DOCA χ2 < 20

D+
s Vertex χ2/Ndof < 6.0

D+
s FDχ2 > 25

D+
s DIRA> 0.99

B0
s 2200 MeV < mCand < 8000 MeV

B0
s Vertex χ2/Ndof < 9.0

B0
s DIRA> 0.999

B0
s Vertex(D+

s )Z − Vertex(B0
s )Z > −0.05

Additional Selections
K− lnLK − lnLπ > 5.0
K− lnLK − lnLp > 5.0
K− lnLK − lnLµ > 5.0
K− p > 10000 MeV
µ+ lnLµ − lnLπ > 3.0
µ+ lnLµ − lnLp > 0
µ+ lnLµ − lnLK > 5.0
Vetoes
D∗− →D0π+ Veto mKKπ −mKK > 138 MeV
B0
s →D−s π+ Veto |mDs(µ→π) −mB0

s
| > 70 MeV

BDTs
Isolation min(IsoMinBDT_K, IsoMinBDT_Mu) > -0.8

Table 5.6 All selections applied to B0
s → D−s µ

+νµ candidates using the

B2DMuNuX Ds line. Selections are aligned with those for B0
s → K

−
µ+νµ

as closely as possible.
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candidates are in opposite quadrants of the xy plane as visualised in Figure 5.10.

All vetoes are summarised in Table 5.5.

x

y

bq

bq

μ-

K+

Figure 5.10 The topology of a combinatoric candidate looking down the z axis,
beam line axis, with kaon and muon originating from the decay
of different B mesons. The two B mesons are produced back to
back in the transverse plane. The kaon and muon are visualised in
opposite quadrants of the xy plane.

Vetoes are applied to the B0
s → D−s µ

+νµ candidates rejecting events compatible

with the decays B → (D∗ → (D0 → K+K−)π)µνX and B0
s → D−s π

+. For

the former decay the mass difference between the D0 and D∗ is only slightly

higher than the mass of a pion. A selection is placed on the mass difference,

mKKπ−mKK > 138 MeV, which efficiently rejects all B0 →D∗µ+νµ decays. The

latter decay is rejected by reconstructing the muon under the mass hypothesis

of a pion and rejecting D−s µ
+ candidates with an invariant mass consistent with

|mB0
s
−mD−s π+ | < 70 MeV.

5.6.4 sPlot Unfolding

The sPlot technique is a statistical tool used to unfold data distributions

consisting of several sources merged into a single sample [85]. The most frequent

use case containing two data sources classified as data and background, typically

there is a region in the data containing pure background, e.g. the sidebands

of a mass peak in an invariant mass distribution, and a region containing an

inseparable mix of signal and background, e.g. the region containing the signal

peak. The sPlot procedure unfolds the contributions of different sources of a data
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sample in the context of a likelihood fit to a data distribution, e.g the invariant

mass distribution, obtaining the yields of the signal and background components.

The sPlot procedure asignes each event a weight calculated from the likelihood

obtained from the fit. When assigning signal weights, events at the centre of

the mass peak will have a large positive weight and events in the sidebands will

have a large negative weight as plotted in Figure 5.11. In the case of an invariant

mass peak the sPlot method of subtracting backgrounds specialises to a sideband

subtraction. Two sets of weights are provided by the sPlot method allowing

the full dataset to be viewed as either signal or background. When weighting

as signal, the sum of weights will equal the yield of the signal sample. This is

also true when considering a subset of the events, such as those contained in the

bin of a histogram. By drawing histograms and weighting events by the sPlot

signal weights the unfolded signal distribution is obtained. It is essential that the

variables drawn using the sPlot weights are uncorrelated with the variable used

to obtain the sPlot weights.
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Figure 5.11 Fit results of a maximum likelihood to the D−s →K−K+π−

invariant mass distribution and sPlot weights.

The sPlot method is used in this analysis to obtain the true signal distributions

of B+ → J/ψK+ and D−s →K−K+π− candidates. The true distributions of

signal decays are necessary in order to compare signal Monte Carlo decays with

candidates in data. In all cases an extended maximum likelihood fit is performed

to the invariant mass spectrum of the final state particles. The signal decay

is modelled using a double Gaussian shape and the combinatoric background is

modelled using and exponential and all parameters are left free. The invariant

mass distribution of D−s →K−K+π− candidates with the fit results overlaid is

plotted in Figure 5.11 (left) and the sWeights calculated from the fit results are

plotted on the right. The results of all fits from which the sPlot method is used

are given in Appendix C.

74



5.6.5 Boosted Decision Tree

A binary decision tree is a decision support tool designed to efficiently separate

data into categories [86–88]. At each node in the tree a selection, cN is made

on one of the N variables, ~x = {x1, x2, x3, ..., xN}, separating the data into two

subsets. The selections are chosen such that the Gini index, p(1−p), is minimised,

where p is the signal purity. For a binary decision tree categorising data into signal

and background categories, the classifier output, h(~x), is calculated from the final

subsets, or leaves. Leaves classified as signal have an output, h(~x) = 1, and leaves

classified as background have an output, h(~x) = −1. Decision trees may be fully

trained, with leaves containing a fully pure sample of signal or background events,

or they may be partially trained with the leaves containing a mix of signal and

background events as visualised in Figure 5.12. The use of a fully trained tree

may introduce over training effects while the use of partial trees may introduce

biases. When training a decision tree it is essential that bias and variance are

minimised. A biased decision tree is typically under trained and the response

variable will have systematic shifts away from the optimal value whereas an over

trained decision tree should be unbiased but the response variable will have a

large resolution.

xj > c2xj < c2

Root
Node

xi > c1xi < c1

S

B
xk > c3xk < c3

BS

Figure 5.12 A schematic of a small decision tree applying sequential selections
to data maximising the signal to background separation. The final
nodes are classified as signal and background.

A boosted decision tree (BDT) uses many partially trained trees; the partially

trained trees are weak learners and the BDT gains its power from the combination

of many weak learners. A typical BDT would contain several hundred weak

decision trained with a maximum depth of three to five. A node is no longer
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divided when it contains a critical number of events. Each tree is is given a boost

weight, αi after training calculated from the fraction of misclassified events, ρi,

αi =
1− ρi
ρi

. (5.10)

After a tree is trained the misclassified events are weighted by αi. The re-weighted

and renormalised data is used to train the next tree. The final output of the BDT

classifier is

hBDT(~x) =
1

NTree

NTree∑
i

ln(αi)hi(~x). (5.11)

As with all classifiers, BDTs can be susceptible to over training. Over training

occurs when the decision making algorithm makes decisions due to statistical

fluctuations rather than true differences in the data. An over trained classifier

will quote a greater separating power than is truly achieved. Over training is

remedied using k-fold cross validation [89] which is a technique used to quantify

the amount of over training in the classifier and test the model’s ability to predict

new data. The training data is divided into k sub samples and the classifier is

trained k times using k − 1 sub samples. The classifier is tested with the sub

sample independent of the training samples.

Due to inaccuracies in simulation or a lack of knowledge on the underlying physics,

there may be fundamental differences between the data used in training and

classification may introduce biases into the BDT. This is of particular importance

for particle physics analyses where the signal sample used in training is usually

simulated Monte Carlo and the background is taken from data in a region with

no signal. Fundamental differences between Monte Carlo and data arise due to

the simulation algorithms mismodelling the data; the classifier may detect these

differences and falsely classify events due to these differences. Correcting Monte

Carlo by reweighting the mismodelled variables can go a long way towards solving

biases due to mismodelling.

Boosted decision trees are frequently used in this analysis to separate signal

candidates from background candidates and to provide a method of quantifying

and correcting for differences between ideally identical datasets.
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5.6.6 Kinematic Corrections

The simulation of Monte Carlo data is not perfect and the distributions of several

variables show disagreements between Monte Carlo and data. It is essential

that differences between Monte Carlo and data are corrected to ensure that the

distributions of variables used for fitting are correct, and that the determination of

efficiencies are accurate. A simple approach to reweighting is to plot the histogram

of a variable for Monte Carlo and data, and assign each Monte Carlo event a

weight corresponding to the ratio of data and Monte Carlo yields at that point.

The simple method fails for multidimensional reweighting as a multidimensional

histogram with granular bins will face problems due to low bin statistics and a

histogram with coarse bins will produce biases due to variations within the bins.

For this analysis a novel approach is taken; a boosted decision tree (BDT) is

trained to detect differences between pure data and Monte Carlo. If the simulation

is perfectly modelled, the BDT will return an output variable with no separating

power2. If, however the simulation does not perfectly model the data the BDT

will return an output variable with a significant separating power. The driving

assumption behind this method for correcting the simulation is that the output

variable of the BDT will completely encapsulate all Monte Carlo/data differences

in a single discriminating variable. By performing the simple one dimensional

correction on the BDT output it is possible to correct all the variables used in

training the BDT simultaneously [90].

In order to perform an effective comparison between simulated Monte Carlo and

data a pure, signal only data is sample is needed. The decay B+ → J/ψK+ is

partially reconstructed using the K−µ+ pair and is used to correct B0
s → K

−
µ+νµ,

also reconstructed using the K−µ+ pair. An sPlot background subtraction is

performed on the B+ →J/ψK+ invariant mass peak by combining the K−µ+ pair

with a muon found using the isolation BDT detailed in Section 5.6.7 allowing

the signal distributions to be obtained. When correcting the B0
s → D−s µ

+νµ

simulation, simulated cocktail B0
s → D−s µ

+νµX data is compared to data con-

taining a well reconstructed D+
s in association with a muon. Backgrounds

are reduced by applying a selection on the output of the isolation BDT and

an sPlot background subtraction is performed on the D+
s mass peak. For

both the signal and normalisation modes a BDT containing 200 trees with a

maximum depth of 3 and a minimum leaf size of 6% for B0
s → D−s µ

+νµ and 4%

for B0
s → K

−
µ+νµ is trained to separate simulated Monte Carlo and data. For

2Over training effects and statistical fluctuations will return some false separating power.
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B0
s → K

−
µ+νµ B0

s → D−s µ
+νµ

Track Multiplicity Track Multiplicity
η B0

s η B0
s

pT B0
s pT B0

s

pT K− pT D−s
pT µ+ pT µ+

Table 5.7 Monte Carlo distributions corrected in Monte Carlo using a BDT
reweighting.

the training and evaluation a k = 2 k−folding is used. The BDT is trained

to separate, and hence correct the variables listed in Table 5.7. Figure 5.13

plots the BDT response obtained (left) when training to separate Monte Carlo

from data and the correction weights (right) which are applied to Monte Carlo.

Kinematic distributions of B+ →J/ψK+ Monte Carlo before and after correction

are plotted alongside background subtracted data in Figure 5.14 demonstrating

the effectiveness of this method. Additional validation plots are provided in

Appendix D.
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Figure 5.13 The BDT response used to separate Monte Carlo and data (left)
and the weights used to correct the simulation (right). The J/ψK+

is reconstructed using only the K+µ− pair.

5.6.7 Charged Track Isolation BDT

Charged track isolation variables have been used by analyses at LHCb since the

very beginning to identify backgrounds containing additional charged tracks [91,

92]. The purpose of isolation algorithms is to identify events containing partially

reconstructed decays. Consider the topology of the two decays in Figure 5.15,

on the left is a signal B0
s → K

−
µ+νµ decay produced via bb production with the

second quark decaying to produce an additional muon and the figure on the right
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Figure 5.14 Kinematic distributions of B+ → J/ψK+ reconstructed using the
K+µ− pair are plotted for data and simulation before and after
correction.

SVBs

K-

μ+

Bq

PV

μ-

μ-

SVB+

K-

μ+

Bq

PV

Figure 5.15 The topology of B0
s → K

−
µ+νµ (left) and B+ → J/ψK+ (right).

The isolation BDT is trained to reject events containing tracks
compatible with the B0

s → K
−
µ+νµ candidate decay.
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containing a background B+ → J/ψK+ decay. On the left plot the negative muon

is well isolated from the candidate B0
s while on the right the negative muon is

coupled with the candidate B0
s . The isolation tools are used to reject events

similar to those on the right of the figure.

The first iteration of isolation algorithms use cone isolation, a cone in ∆R,

∆R =
√

∆φ2 + ∆η2, (5.12)

where φ is the azimuthal angle and η is the pseudorapidity is drawn around the

candidate track. ∆η and ∆R are both Lorentz invariant quantities. The isolation

algorithm investigates the tracks and energy deposits in the calorimeters within

this cone and returns a series of variables detailing the activity around the track.

For a well isolated track one would expect very little detector activity within the

cone around the candidate track. When investigating the contents of the cone one

may choose to consider activity from neutral and/or charged particles depending

on the expected backgrounds. Several variables may be defined by considering

the kinematics of the cone and the candidate track. The momentum of a cone,

pT(Cone) is defined as the vector sum of the transverse momentum, pT, of tracks

within the cone,

pT(Cone) =
∑
i

~pT (5.13)

The momentum asymmetry between the cone and the candidate track, CT, is

defined

ApT =
| ~pT(CT )− ~pT(Cone)|
| ~pT(CT ) + ~pT(Cone)|

, (5.14)

and the transverse isolation of the cone is defined as

TI =
pT(CT )

pT(CT + Cone)
. (5.15)

In addition one may attempt to reconstruct partially reconstructed decays by

combining the candidate track with the highest pT charged track within the cone.

Decays containing additional neutral particles may be reconstructed by searching

for a cluster of hits in the electromagnetic calorimeter corresponding to a neutral

particle and combining the candidate track with the reconstructed photon. Two

photon clusters may be combined allowing the π0 to be reconstructed and

combined with the candidate track, which is especially useful when searching

for the partially reconstructed decay B0
s → (K∗− → K−π0)µ+νµ.
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A more sophisticated approach to identifying partially reconstructed backgrounds

is to search through all reconstructed tracks in the event to determine if it

is compatible with the B0
s candidate vertex by investigating the topologies of

the candidate tracks and the remaining tracks within the event. A true signal

candidate should have no additional tracks compatible with the B0
s decay vertex.

Before continuing the terminology must be defined:

Candidate track: A reconstructed track originating from the decay of a B0
s .

Underlying track: All tracks in the event which are not candidate tracks

Isolated track: A track which is truly independent of the B0
s decay, e.g. a

prompt track originating from the primary vertex.

Non isolated track: A track which truly originates from the candidate decay but

is not reconstructed as such, e.g. the additional muon in

B+ → J/ψK+.

Least isolated track: The underlying track with the highest probability of

originating from the candidate decay.

A boosted decision tree developed for a different analysis [93] takes as an input

the kinematics and topologies of a candidate and underlying track and returns an

output correlated to the likelihood that the two tracks originate from the same

vertex. The BDT is trained using tracks from Monte Carlo decays of B+ →
D∗−π+µ+νµ reconstructed as B0 → D∗−µ+νµ resulting in the underlying event

containing an additional pion coupled to the reconstructed candidate. During

training of the BDT the background sample is composed of the combinations

of the B0 candidate tracks and the additional pion, and the signal sample is

composed of the combinations of candidate tracks with another non isolated track.

As there are approximately 100 additional tracks in each event the signal sample

which combines the candidate decay with another track is approximately 100

times larger than the background sample. The BDT is trained to separate signal

and background samples using the following variables:

� χ2of the minimum impact parameter of the track with respect to any PV

� Distance between Vertex(candidate track, track) and the SV

� Distance between Vertex(candidate track, track) and the PV

� Distance of closest approach between the track and PV
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� Difference in φ between track and reconstructed D0

� The angle between the sum of momenta pCandidate track + ptrack and the line

from PV to SV
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Figure 5.16 The per event minimum output of the isolation BDT (left) and
the corresponding receiver operating characteristic, ROC, curves.
A selection of IsoMinBDT > −0.9 is applied. The solid horizontal
line on the ROC curve indicates the signal efficiency.

When processing an event, every combination of candidate and underlying track

is processed with the BDT producing ≈ 300 variables per event. Two combined

variables are created for each candidate track. IsoMinBDT, plotted in Figure 5.16

(left), is the BDT output for the underlying track most likely to originate from

the same vertex as the candidate, and IsoSumBDT is the average of the BDT

outputs for all underlying tracks when compared to the candidate track. In

addition, the kinematics of the least isolated track are saved. The invariant mass

spectrum of the combination of the candidate and least isolated underling track

in data is plotted in Figure 5.17 for K−µ+ (left) and K+µ+ data (right). Mass

peaks corresponding to the φ, D0, J/ψ , ψ(2S) and f0(500) are clearly visible and

represent partially reconstructed backgrounds. These peaks may be explicitly

rejected by making a selection on the invariant mass or a selection on the BDT

may be used to reject almost all partially reconstructed decays. The isolation

BDT also provides exceptional rejection power for combinatoric decays.

A loose selection, min(kaon_m_IsoMinBDT,muon_p_IsoMinBDT) > -0.9, is ap-

plied to the isolation BDT.

For this analysis variables from both the cone isolation and BDT isolation tools
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Figure 5.17 The invariant mass distribution of a candidate track combined with
the least isolated track under various mass hypotheses. Data is
reconstructed as opposite sign (OS) K−µ+ (left) and same sign
(SS) K−µ− (right).

are used in rejecting and reconstructing partially reconstructed backgrounds. The

cone isolation is used for both charged and neutral backgrounds and the BDT

isolation is used for charged backgrounds.

5.6.8 Selection BDT

Two BDTs are trained to separate signal from background for this analysis.

The first BDT is trained to separate signal events from partially recon-

structed backgrounds modelled using Monte Carlo and the second is trained

to remove backgrounds found in the same sign data sample. Both BDTs

use Monte Carlo B0
s → K

−
µ+νµ decays as the signal sample during training.

The background sample used when training the first BDT is a cocktail mix

of background Monte Carlo decays reconstructed as B0
s → K

−
µ+νµ and the

second BDT uses same sign (SS) data reconstructed as B0
s → K+µ+νµ. The

strategy is to apply a loose selection to the output of the isolation BDT,

min(kaon_m_IsoMinBDT,muon_p_IsoMinBDT) > -0.9, train the first BDT to

reduce backgrounds from partially reconstructed decays containing additional

charged tracks, apply a selection on the output of this BDT and train the

second BDT to provide additional discriminating power and reduce additional

backgrounds seen in data such as combinatorics and trickle down decays of higher

excited particle states. The BDTS are applied sequentially, i.e.the first BDT is
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trained and a selection applied to all data samples, then the second BDT is

trained and a selection applied to all samples. For the isolation BDT the choice

of location for the selection is fairly arbitrary as the BDT response variable is

used as an input for a later BDT, and the applied selection only removes a small

region with very high background purity. The signal efficiency for the isolation

BDT is 95%.

The first BDT, refereed to as the charged BDT is trained to separate signal Monte

Carlo from a cocktail of Monte Carlo backgrounds, the events used in the training

are detailed in Table 5.10 alongside their separating power 〈S2〉. Separating power

between signal, ŷS, and background, ŷB, distributions is defined as,

〈
S2
〉

=
1

2

∫
(ŷS(y)− ŷB(y))2

ŷS(y) + ŷB(y)
dy. (5.16)

The separation is zero for identical distributions and is one if the distributions

do not overlap [94]. The charged BDT uses the variables listed in Table 5.8

to separate signal from background. All Monte Carlo samples used in the

training have their kinematics corrected using the reweighting procedure detailed

in Section 5.6.6. During the training 850 trees with a maximum depth of 3

levels and a minimum node size of 2.5% are trained using the AdaBoost boosting

method [95] and the variables listed in Table 5.8. The effects of over training are

removed through the use of 2 factor k-folding with the data divided by magnet

polarity for training and testing.

The second BDT is referred to as the same sign (SS) BDT since it is trained with

K+µ+ data candidates as the background sample. The variables used in training

the SS BDT are listed in Table 5.9. The SS BDT follows the same training

procedure as the charged BDT, and a selection is placed on the output of the

charged BDT before training minimising correlations between the two BDTs.

Optimising the point at which a selection is made on the two BDTs is non trivial.

The BDTs are incredibly effective at removing backgrounds and producing a

data sample with an impressive signal peak, however due to the limited size of

the available Monte Carlo samples modelling the backgrounds, such a selection

would result in Monte Carlo samples containing almost no events making a fit to

the data impossible. Thus a compromise must be reached whereby backgrounds

are reduced to such an extent that the signal peak is well identifiable but the

background Monte Carlo samples have a large enough yield such that a Fit to the

data will return meaningful results. Consequently no quantitative optimisation is
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Variable Separation

Minimum isolation BDT response 1.90× 10−1

Invariant Mass, K− +TLeast Iso. 1.00× 10−1

Isolation BDT summed over all underlying tracks 9.39× 10−2

B0
s Transverse Isolation 3.54× 10−2

Transverse isolation between K− and cone 3.00× 10−2

Kaon transverse momentum 2.84× 10−2

Transverse isolation between K− and charged cone 2.58× 10−2

pT(B0
s )− 1.5× pT(µ+) 2.17× 10−2

pT(B0
s ) 1.94× 10−2

∆η between K− and cone 1.89× 10−2

Momentum asymmetry between µ+ and cone 1.85× 10−2

K− Isolation BDT response - µ+ Isolation BDT response 1.63× 10−2

B0
s Decay vertex fit χ2 1.11× 10−2

Invariant Mass, µ+ +TLeast Iso. 7.67× 10−3

B0
s helicity angle 2.03× 10−3

Table 5.8 The input variables used as inputs for the BDT trained to reject
charged backgrounds are listed with their separating power. Several
variables use information obtained from a cone draw around candidate
tracks with ∆R = 0.5. The least isolated track is referred to as
TLeast Iso..

Variable Separation

pT(K−) 2.76× 10−02

DIRAB0
s

1.98× 10−02

Momentum asymmetry between K− and neutral cone 1.36× 10−02

Transverse isolation between K− and neutral cone 1.30× 10−02

Invariant mass K− and additional π0 1.02× 10−02

pT(B0
s )− 1.5× pT(µ+) 9.31× 10−03

B0
s Flight distance significance 7.56× 10−03

B0
s transverse momentum 6.20× 10−03

B0
s helicity angle 5.96× 10−03

B0
s Decay vertex fit χ2 3.68× 10−04

Table 5.9 The input variables used as inputs for the BDT trained to reject
backgrounds found within the same sign sample. Several variables
use information obtained from a cone draw around candidate tracks
with ∆R = 0.5.
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Sample Entries/1000

B0
s → K

−
µ+νµ 165

Background Samples
b→ (c→ KµX)X 47
b→ K±µ±X 190
b→ KµX 550
B0 → J/ψK∗0 226
B0 → (D∗ → KπππX)µν 50
B0 → (D∗ → KπX)µν 1210
B0 → (D∗ → Kπ)µν 34
B0 → (D → Kππ)µν 75
B+ → J/ψK+ 445
B+ → J/ψK∗+ 135
B+ → D0µ+νµX 230
B0
s → J/ψφ 2500

B0
s → D−s µ

+νµX 96

Table 5.10 The simulated decays and number of events used during the training
of the BDTs.

performed on the BDT as there is no trivial choice of parameter t optimize. The

BDT selections used in this analysis were found using a more qualitative method.

The two BDTs were iteratively tightened, by incrementally tightening the BDT

that would give the greatest increase of the signal to noise ratio, SNR,

SNR =
S√
S +B

, (5.17)

where S is the signal yield, and B is the yield of same-sign data, a sample

consisting purely of background events. At several points during the tightening

process, histograms of the B0
s corrected mass were drawn for the Monte Carlo

and data samples. A final selection was chosen by analysing the histograms by

eye to find a compromise between clarity of signal peak and background Monte

Carlo statistics.

The response of both BDTs with the selection are plotted in Figures 5.18 and 5.19

with the corresponding Receiver operating characteristic (ROC) curves plotting

the signal efficiency against the background efficiency. The ROC curve plots

the signal efficiency against background efficiency providing a visual method of

quantifying the performance of a selection method. ROC curves with larger areas

under the curve have improved background rejection, and the integral of the ROC

curve is often used as a performance metric. A selection of BDT Charged > 0.10

is placed on the charged BDT and BDT SS > 0.05 on the same sign BDT.
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Figure 5.18 The response for the charged BDT (left) is plotted with the
corresponding ROC curves (right). The data used for training is
superimposed with the data used for testing. Events to the left of
the dashed vertical line are rejected and the solid horizontal line on
the ROC curve indicates the signal efficiency.
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Figure 5.19 The response for the same sign BDT (left) is plotted with the
corresponding ROC curves (right). The data used for training is
superimposed with the data used for testing. Events to the left of
the dashed vertical line are rejected and the solid horizontal line on
the ROC curve indicates the signal efficiency.
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The BDTs are validated by comparing the BDT response in sPlot unfolded

data with the BDT response in Monte Carlo for B+ → J/ψK+ decays using

a fully reconstructed K+µ−µ+ triad or the K+µ− pair. The validation using

B+ →J/ψK− is plotted in Figure 5.20 and a slight discrepancy is seen in the

BDT response between Monte Carlo simulation and data. A correction factor

and systematic uncertainty are applied to the calculated BDT efficiency using

the B+ → J/ψK+ decay, the details of which are in Section 6.5.4.
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Figure 5.20 The response of both selection BDTs is plotted for B+ → J/ψK+

candidates reconstructed as B+ → J/ψK+ (red) and B0
s → K

−
µ+νµ

(blue) for Monte Carlo (line) and background subtracted data
(points).

5.7 Selection on Data

The distributions of B0
s → K−µ+νµ candidates are plotted in Figure 5.21

as successive seelctions are applied. Events reconstructed using a same sign

kaon and muon (SS) combination completely overshadow the opposite sign (OS)

combinations. This is due in part to the massive source of same sign kaon and

muon pairs from the decay B+ → (D0 → K+π−)µ+νµ and friends. As successive

selections from vetoes, BDTs and the corrected mass uncertainty are applied a

significant structure appears in the K−µ+ distribution at the mass of the B0
s .

This structure is the decay B0
s → K

−
µ+νµ.
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Figure 5.21 Corrected mass distributions for kaon and muon candidates
using same sign (SS) and opposite sign (OS) combinations with
successive selections applied. (1) The stripping preselection. (2)
Vetoes. (3) BDTs. (4) Corrected mass error Cuts. After the full
selection is applied a clear structure containing signal events is
visible at the B0

s mass.
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Chapter 6

Determining |Vub|/|Vcb| and

B(B0
s → K−µ+νµ) at LHCb

This chapter presents the analysis performed to measure the ratio of branching

fractions of B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ, and the ratio of CKM matrix

elements |Vub|/|Vcb|. A template fit is performed on the D−s µ
+ invariant mass to

determine the B0
s → D−s µ

+νµ yield, and two fits are performed on the corrected

K−µ+ mass to determine the B0
s → K

−
µ+νµ yield in order to measure the ratio of

branching fractions, B(B0
s → K

−
µ+νµ)/B(B0

s → D−s µ
+νµ), and the ratio of CKM

matrix elements, |Vub|/|Vcb|. The yields from the fits are combined with efficiencies

determined from Monte Carlo and data driven methods and the systematic

uncertainties on the final values are determined.

The Beeston Barlow method for fitting with finite statistics is discussed in

Section 6.1, and the fits to determine the B0
s → D−s µ

+νµ and B0
s → K

−
µ+νµ yields

are discussed in Sections 6.2 and 6.3 respectively. Systematic uncertainties are

discussed in Section 6.4 and efficiency calculations are discussed in Section 6.5.

The final determinations of B(B0
s → K

−
µ+νµ)/B(B0

s → D−s µ
+νµ) and |Vub|/|Vcb|

are discussed in Section 6.6.
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6.1 Fit Method

6.1.1 Beeston Barlow Fit Method

The Beeston-Barlow method for fitting using finite Monte Carlo samples [96, 97]

is a binned template fit method used to extract the yields of different components

from a data sample. Instead of using an analytical form for the shapes of the

contributions a discrete histogram is used, dividing the distribution into n bins.

The total number of events in data, ND, and total number of events in the jth

Monte Carlo template are found by summing over the n bins of the template

histogram,

ND =
n∑
i=1

di, NMCj =
n∑
i=1

aji, (6.1)

where di and aji are the number of data and Monte Carlo events in bin i

respectively. Given m fit components with fractional proportions, fj, The

predicted number of events in the ith bin of the data template, ni(f1, f2, ..., fm),

is

ni = ND

m∑
j=1

fjaji/NMCj , (6.2)

where ND is the total data yield, and aji the number of Monte Carlo events from

source j in bin i. The fractional proportions must sum to unity,

m∑
j=1

fj = 1. (6.3)

The proportions of each component, pj = NDfj/NMCj , can be used, allowing

Equation 6.2 to be rewritten,

ni =
m∑
j=1

pjaji, (6.4)

where the sum of proportions need not equal unity. The proportions scale the

Monte Carlo template to its size in data.

The fractional proportions of each component, fj, sum to unity and can be

estimated by minimising

χ2 =
∑
i

(di − ni)2

di
, (6.5)
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which assumes di follows a Gaussian distribution. Truly di follows a Poisson

distribution, and with large numbers of events this is not a bad approximation,

however there are often many bins with a low number of events making this

approximation invalid. One approach would be to use a binned maximum

likelihood fit where the probability of observing a particular di multiplied over

all n bins is

L =
n∏
i=1

e−ni
ndii
di!
, (6.6)

and the estimates of the fractions, fj can be found my maximising the likelihood,

or for convenience, the logarithm of the likelihood,

ln(L) =
n∑
i=1

diln(ni)− ni. (6.7)

The methods detailed above only consider the statistical uncertainties in the

data sample and neglects any variation in the bin contents of the Monte Carlo

templates. As a rule of thumb the Monte Carlo samples should contain ≈ 10

times the number of events in the data, however due to the computational cost

of generating simulated Monte Carlo events, the space required to store the data,

and impracticalities handling massive datasets this rule is rarely observed. An

approach is therefore needed which considers the statistical fluctuations in the

Monte Carlo datasets.

The uncertainty parameter of the χ2 formalism shown in Equation 6.5 can be

modified to include the Monte Carlo uncertainty,

χ2 =
∑
i

(di − ni)2

di +N2
D

∑
j aji/N

2
MCj

, (6.8)

however this still uses the Gaussian approximation which is invalid when bins

contain a low number of events.

In order to fully consider the statistical uncertainty from both the data and Monte

Carlo, Equation 6.4 can be rewritten replacing aji with Poisson distributions, Aji,

ni =
m∑
j=1

pjAji. (6.9)
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The total likelihood is now the combined probability of the observed di and aji,

ln(L) =
n∑
i=1

diln(ni)− ni +
n∑
i=1

m∑
j=1

ajiln(Aji)− Aji. (6.10)

During the construction of the likelihood the Poisson distributions of all template

histograms are combined into a single Poisson distribution, thus there is only one

Poisson distribution for each bin. For this step to work correctly the initial values

of the proportions must be close to the values determined by the fit.

6.2 B0
s → D−s µ

+νµ Fit Results

6.2.1 Normalisation Fit Model

A maximum likelihood, Beeston-Barlow binned template fit is performed on the

corrected D−s µ
+ mass distribution to extract the B0

s → D−s µ
+νµ signal yield. A

bias free background subtraction is performed using the K−K+π− invariant mass

distribution to remove theK−K+π− combinatoric contribution, the plots of which

are shown in Figure 6.2. The yield in each bin of the corrected D−s µ
+ input

histogram is the result of a fit to the K−K+µ− invariant mass to determine the

D+
s yield. The fit to the corrected D−s µ

+ mass distribution is used to separate the

signal B0
s → D−s µ

+νµ signal component from the background contributions. The

backgrounds predominantly originate from semileptonic B0
s decays containing

higher excited D−s resonances. Backgrounds consisting of partially reconstructed

B → D+
s DX candidates and tauonic decays are considered, as are candidates

containing misidentified muons. Combinatoric combinations of real muons with

real D+
s mesons are neglected; when investigating the K−K+π− invariant mass

distribution using the same sign, D−s µ
−, sample no D−s peak is seen. The same

sign sample may be assumed to be purely combinatoric as very few decays contain

a same sign D−s and muon. The fit components and the sources of templates used

in the fit are summarised in Table 6.1.

The templates used in the fit contain 40 bins in corrected mass ranging from

3000 MeV to 6500 MeV with an equal bin width. Sections 6.5.2 onwards

discuss the corrections applied to Monte Carlo simulation to correct the selection

efficiencies. It is important to note that when producing histograms for the fit
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Component Source
B0
s → D−s µ

+νµ Monte Carlo
B0
s → D∗−s µ+νµ, with D∗−s → D−s γ Monte Carlo

B0
s → D∗−s µ+νµ, with Higher D+

s Excitations Monte Carlo
B0
s → D−s τ

+νµX, with τ+ → µ+νµντ Monte Carlo

B0
q → D−s D

(∗)
q X, with Dq → µ+νµX Monte Carlo

Misidentified Muons Fake Muon Data

Table 6.1 Fit components for the normalisation fit and sources of data used
when drawing templates.

the entries in each bin are weighted by kinematic, PID and tracking corrections

detailed in Sections 5.6.6, 6.5.2 and 6.5.3. Backgrounds originating from similar

decays with low yields are combined into a common template; all B →D+
s D

backgrounds are combined into a single template and the higher excitations of

the D+
s above the D∗+s are combined into single template. The combinations

are plotted in Figure 6.1. When creating the Monte Carlo templates for the

fit all events are weighted by the product of the weights obtained from the BDT

kinematic reweighting, PID correction and tracking correction. When performing

the fit to obtain the B0
s → D−s µ

+νµ yield all component yields are left free.
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Figure 6.1 The B → DDµ+νµX templates are merged into a single template,
and the decays of further excitations of the D+

s are combined into a
single template.

6.2.2 Background Subtraction

A signal extraction is performed to remove the K+K−π+ combinatoric con-

tribution from the data. Each data point in the D−s µ
+ corected mass input

histogram for candidates in data, plotted in Figure 6.3, is the result of a fit to

the K+K−π− invariant mass distribution plotted in Figure 6.2 to determine the
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Figure 6.2 Fits performed as part of a combinatoric background subtraction on
the K+K−π+ invariant mass with pulls underneath. 95



D−s yield. Correlations between the K+K−π+ invariant mass and the D−s µ
+

corrected mass mean that the sPlot method for subtracting backgrounds cannot

be used. Instead a divide and fit method is used whereby the data is divided into

n smaller subsets, each corresponding to a specific bin in the D−s µ
+ corrected

mass spectrum. A binned maximum likelihood fit is performed to the K+K−π−

invariant mass distribution for each dataset. A double-Gaussian models the D−s

shape and an exponential models the combinatoric background shape. The D+
s µ

+

yield in the corrected mass histogram for each bin is set as the signal yield from

the fit. The fits from the divide and fit method are plotted in Figure 6.2. No

background subtraction is required for the Monte Carlo samples.
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Figure 6.3 A fit to the D−s µ
+ corrected mass for candidates in data passing the

selections. The grey shaded boxes display the uncertainty in the fit
model’s predicted yield due to the finite Monte Carlo statistics.

6.2.3 Fit Results

The results of the maximum likelihood fit to the D+
s µ

+ corrected mass are

plotted in Figure 6.3, fitting to all events passing the signal selection. The pulls,

defined for the ith bin as the difference between data and model predictions, nidata,

and nimodel respectively and their uncertainties, σidata and σimodel respectively, are

defined as,
nidata − nimodel√

(σidata)2 + (σimodel)
2
. (6.11)
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Sample Yield / 103

B0
s → D+

s µ
+νµ 197.9 ± 11.9

B0
s → D∗−s µ+νµ 366.0 ± 17.5

B0
s → D∗−s0,1,2µ

+νµ 21.1 ± 14.5
B0
s → D+

s τ
+νµ 21.3 ± 4.1

B → D+
s DX 37.0 ± 13.7

B0
s → D+

s Fake(µ+)X 0.6 ± 1.3

Table 6.2 Fit results for all components of the fit used to obtain the
B0
s → D−s µ

+νµ yield.

The B0
s → D−s µ

+νµ yield is found to be (197.9 ± 11.9) × 103. The signal and

background yields obtained from the fit are provided in Table 6.2. The results

of the D−s µ
+ fit are validated by performing 1000 fits to pseudo-data. The data

template in each pseudo-data fit is replaced with a toy template generated by

randomly selecting points from the fit templates. Consequently the yields of each

fit component are known precisely. The fit templates used in the fits to pseudo-

data are statistically compatible copies, i.e. the contents of each bin is replaced

by a random number sampled from a Gaussian distribution centred on the bin

contents with width equal to the bin uncertainty. The B0
s → D−s µ

+νµ yield in the

pseudo-data is fixed at 197.9× 103 while the yields of all backgrounds are chosen

by randomly sampling a Gaussian distribution centred on the yield determined

from the fit and a width set to the component’s uncertainty. The mean and width

of the Gaussians are provided in Table 6.2. The distribution of the B0
s → D−s µ

+νµ

yield for all 1000 fits to the pseudo-data is plotted in Figure 6.4 alongside the

pull distribution. The pull is defined as (NFit − NIn)/σFit. where NFit and σFit

are the yield and uncertainty obtained from the fit to pseudo-data and NIn is

the true number of B0
s → D−s µ

+νµ events in the pseudo-data. The pulls should

be centred at 0 and follow a Gaussian distribution with a width of 1 As seen in

Figure 6.4 the pull distribution of the toy fits is well fit by a Gaussian with a

which is slightly offset and has a width slightly less than 1 implying that the fit

uncertainties are overestimated. A conservative approach is taken and the narrow

width is ignored. The offset is treated as a systematic error and detailed later in

Section 6.4.
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Figure 6.4 A distribution of pulls from fits to 1000 pseudo datasets. The input
B0
s → D−s µ

+νµ yield is fixed for each toy fit and the variation in
results is due to statistical uncertainties in the fit.

6.3 Signal Fit

A two stage fit is is used to determine the signal and background yields in the

K−µ+ data. The results of the first fit are used to calculate the B0
s → K

−
µ+νµ

branching fraction and the second fit uses the results of the first as a constraint

with the results used to measure |Vub|/|Vcb| in two bins of q2. An initial fit is

performed with no selection on the q2 of the B0
s candidate and uses a corrected

mass range of 2500 MeV/c2 < mcorr < 5700 MeV/c2. Sections 6.5.2 onwards

discuss the corrections applied to Monte Carlo simulation to correct the selection

efficiencies. It is important to note that when producing input histograms for the

fit the entries in each bin are weighted by kinematic, PID and tracking corrections

detailed in Sections 5.6.6, 6.5.2 and 6.5.3.

The purpose of the first fit is to accurately determine the B0
s yield in order to

measure the ratio of branching fractions. The second fit requires the q2 solution

to be valid, reducing the fit range to 2500 MeV/c2 < mcorr < mB0
s
, and a

simultaneous fit is performed in two bins of q2, with the bin boundary placed

at q2 = 7GeV2/c4. The combined yields of the fits to the high and low q2 samples

are constrained to the values obtained from the first fit,

Nq2<7 +Nq2>7 = N × εq2>0, (6.12)

where Nq2≷x is the yield given a q2 selection, N is the yield with no selection and

εq2>0 is the efficiency of requiring a q2 selection. Nq2≷x is determined from the

second fit, N is determined from the first fit, and εq2>0 is determined from Monte

Carlo.
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The purpose of the second fit is to take our pre-existing knowledge of the yields

obtained from the first fit and precisely determine the fractions of the yields in the

high and low q2 bins, thus allowing for a measurement of |Vub| to be performed.

The dominant backgrounds in the fits to extract the B0
s → K

−
µ+νµ yields

include decays from the excited K∗ resonances, many b →c decays, combinatoric

combinations of a kaon and muon, and candidates containing misidentified

kaons. The most concerning background is the partially reconstructed decay

B+ → J/ψK+, which has a fit distribution almost identical to signal. The

yields of many backgrounds may be constrained using data driven methods;

the yields of misidentified kaons are constrained by measuring the efficiency of

selecting/vetoing misidentified particles using a calibration sample. While the

selections used in this analysis reject almost all reconstructible B+ →J/ψK+

candidates, there is still a significant contribution of decays where the additional

muon falls outside the acceptance of the detector. Using a combination of a J/ψ

mass constraint and the geometry of the decay, the B+ peak is reconstructed and

a fit is performed allowing the true yield of B+→J/ψK+ events to be determined.

6.3.1 Components and Templates

The signal fit extracts the B0
s → K

−
µ+νµ yield, separating it from a variety of

backgrounds. The components and data sources used to generate fit templates

are summarised in Table 6.3. The templates used in the fits are one dimensional

histograms of the corrected K−µ+ mass, a binning scheme is chosen with variable

bin widths, the bin boundaries chosen such that the number of candidates in each

bin is approximately equal. When fitting to the sample with no selection on q2

the template contains 30 bins and covers a range 2500 < mcorr[ MeV/c2] < 5750.

When fitting to the high and low q2 regions the templates contain 25 and 20 bins

respectively, in both cases the fit range is 2500 < mcorr[ MeV/c2] < mB0
s
. The

candidates for the template input histograms originate from a variety of sources

including simulated Monte Carlo decays and background enriched data. The fit

templates are summarised in Table 6.3 along with the source of data used in the

creation of the templates. Events originating from Simulated Monte Carlo decays

are weighted to correct for differences in kinematics and mismodelling between

the simulation and data.

Three excited resonances of the kaon are considered as backgrounds to the

B0
s → K

−
µ+νµ decay, the K∗−(892), K∗−2 (1430) and K∗−0 (1430). The background
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templates corresponding to the excited resonances of the kaon are combined into a

single template with equal contributions. The merging of templates is motivated

by a lack of knowledge on the relative branching fractions of the different decays

and in part by the similarity of the template shapes. As the template shapes

of K∗− decays are almost identical it is impossible to distinguish between the

different excited resonances, therefore the B0
s →K∗−µ+νµ decay is taken to mean

the combination of all excited K∗− decays. The corrected K−µ+ mass for each

template and the combination is plotted in Figure 6.5 (left).

To aid in plotting, the templates containing candidates with a misidentified

particle are combined into a single template. As the yields of misidentified

particles are determined externally to the signal fit in Section 6.3.3 and

constrained, the merging of templates has no impact on the overall quality of the

fit. The corrected K−µ+ distributions for the misidentified particles are plotted

in Figure 6.5 (right) with the combined template.

Component Source

Signal B0
s → K

−
µ+νµ Monte Carlo

B0
s →K∗−µ+νµ Monte Carlo

B+ →J/ψK+ Monte Carlo
B+ →J/ψ φ Monte Carlo
Combinatorics Mixing of K− and µ+ from different events
Misidentified particles Signal candidates in data failing PID selections
b →c →s Monte Carlo

Table 6.3 Sources of data used to generate the corrected mass histograms for
each B0

s → K
−
µ+νµ fit component.
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Figure 6.5 The three B0
s →K∗−µ+νµ templates (left) are combined into a

single template with all contributions given an equal weight. The
three sources of misidentified kaons are combined into a single
template (right) with the yields for each template determined using
the PIDCalib package.
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6.3.2 B+ →J/ψK+ Yield Constraint

The B+ → J/ψK+ background is very effectively removed through the use of

charged isolation and BDTs. These selections, however, are only effective when

the additional muon is reconstructible, which is often not the case. The most

likely case occurring when the muon is produced outside the acceptance of the

detector. B+ → J/ψK+ decays with a non reconstructible muon present a major

concern, as the efficiency of selecting events is similar to that of signal decays and

shape of the reconstructed corrected mass is almost identical to the signal shape.

Using an approach similar to that detailed in Section 5.1.2 it is possible to

reconstruct a B+ mass peak. The momentum of the invisible muon perpendicular

to the B+ flight direction, p⊥, must be equal and opposite the momentum of the

visible particles. The momentum of the invisible muon parallel to the B+ flight

direction, or longitudinal momentum, p‖, may be found from a knowledge of the

J/ψ mass. When calculating the J/ψ mass from the K+µ+µ− four vectors, the

only unknown component is the longitudinal momentum of the invisible muon.

Solving the four vector equation yields p‖ with a two fold ambiguity,

p⊥(µ−) = −p⊥(K−µ+),

p‖(µ
−) =

±
√
A2 +BC2 −B − AC

C2 − 1
,

(6.13)

where,

A =
m2
J/ψ −m2

µ + p⊥
2(K−) + E2(µ+) + p‖

2(µ+)− p⊥2(µ+K−)

2E(µ+)
,

B = m2
µ + p⊥

2(µ+K−),

C =
p‖(µ

+)

E(µ+)
.

(6.14)

This method of reconstructing the B+ peak will be referred to as the neutrino

method1. Due to an imperfect vertex resolution approximately 15% of events

have unphysical solutions for p‖, i.e. when A2 +BC2 −B < 0.

The B+ → J/ψK+ yield is obtained by performing a binned maximum likelihood

fit to a histogram containing both solutions of the B+ invariant mass. The signal

peak is modelled using a double Gaussian and the background shape is modelled

1Using a mass constraint in combination with momentum asymmetries has traditionally
been used to reconstruct neutrinos.
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(1) Full Sel. (2) No BDT Iso. (3) No BDT sPlot εReco. [%]
No q2 Sel. M.C. 2257 ± 51 127800 ± 400 105800 ± 400 82.8 ± 0.4

Data 2220 ± 100 78700 ± 500 58400 ± 300 74.2 ± 0.6
q2 < 7 GeV2/c4 M.C. 217 ± 15 8700 ± 100 7470 ± 130 85.9 ± 1.8

Data 270 ± 33 5100 ± 100 4290 ± 70 84.1 ± 2.1
q2 > 7 GeV2/c4 M.C. 2116 ± 50 112800 ± 400 96900 ± 400 85.9 ± 0.6

Data 2104 ± 100 69800 ± 400 54500 ± 300 78.1 ± 0.6

Table 6.4 The B+ → J/ψK+ yields obtained from a maximum likelihood fit to
the B+ invariant mass. Fits are performed to the B+ invariant mass,
1, after a full selection using the neutrino method, 2, before BDT
selections using the least isolated track and 3, before BDT selections
using the neutrino method with a sPlot background subtraction
performed from the results of fit 2. The efficiency is the ratio of
events from fit 3 and fit 2.

with the sum of a Gaussian and a Crystal Ball function. The Crystal Ball function

consists of a Gaussian in the central region with a power-law end tail [98]. The

function is given by:

f(x;α, n, x, σ) = N ·


exp(−(x− x)2

2σ2
), for

x− x
σ

> −α

A · (B − (x− x)

σ
)−n, for

x− x
σ
≤ −α

(6.15)

where,

A =

(
n

|α|

)n
· exp

(
−|α|

2

2

)
, B =

n

|α|
− |α|

C =
n

|α|
· 1

n− 1
· exp

(
−|α|

2

2

)
, N =

1

σ(C +D)
,

D =

√
π

2

(
1 + erf

(
|α|√

2

))
.

(6.16)

The fit is performed in a two stage process. An initial fit is performed to the Monte

Carlo distribution to determine the signal shape and a second fit is performed

on the data distribution to determine the signal and background yields. The

signal shape is fixed when fitting the data using the results from the Monte Carlo

fit. Uncertainties in the signal and background shape make up the dominant

systematic uncertainty when determining the B+ → J/ψK+ yield. To determine

the true B+ → J/ψK+ yield independent of the additional muon the fit results

must be divided by the efficiency of reconstructing the additional muon. Before

applying BDT selections a B+ peak may be reconstructed by calculating the
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Figure 6.6 The K−µ+µ− invariant mass reconstructed from a K−µ+ pair using
a knowledge of the B flight direction. Fit results are plotted for
Monte Carlo and data in both q2 bins. The Monte Carlo background
is from the incorrect muon solution.
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invariant mass of the B0
s → K

−
µ+νµ candidate combined with the least isolated

track providing a relatively pure sample of B+ candidates. The efficiency of

reconstructing the additional muon using the neutrino method is determined

by measuring the B+ yield reconstructed using Equation 6.13 given that the

candidate truly originates from a B+. A fit is performed to the B+ invariant mass

obtained from the least isolated track from which a sPlot background subtraction

is performed. By plotting the B+ invariant mass distribution calculated using the

neutrino method with the sPlot background subtraction applied, the ratio of B+

yields gives the efficiency of reconstruction. The results of fits to the B+ invariant

mass are given in Table 6.4. The B+ invariant mass calculated using the neutrino

method is plotted in Figure 6.6 for the high and low q2 bins. Maximum likelihood

fits to the B+ invariant mass distributions are used to obtain the B+ →J/ψK+

yield in data after applying a full selection, and the yields are divided by the

efficiencies quoted in Table 6.4. A discrepancy between Monte Carlo and data of

≈ 8% in the measured reconstruction efficiency is applied as a systematic. When

performing a fit to determine the B0
s → K

−
µ+νµ yields the B+ → J/ψK+ yield is

constrained using a Gaussian constraint centred on the yield with a width set tot

he statistical error given in Table 6.5.

B+ Yield Statistical Systematic
No q2 2680 22 215
q2 < 7Gev2/c4 314 39 22
q2 > 7Gev2/c4 2450 20 195

Table 6.5 The yields, constraints and systematic uncertainties for the B+ →
J/ψK+ yield used in fits to determine the B0

s → K
−
µ+νµ yield.

The constraint applied to the B0
s → K

−
µ+νµ fit originates from the

statistical uncertainty of the fits and the systematic originates from
Monte Carlo discrepancies.

6.3.3 Misidentified Particle Yield Constraints

Despite tight selections on the likelihood criteria of the candidate kaon, some

protons, pions and muons will pass the selections and be falsely reconstructed as

kaons. The yields and fit distributions of particles misidentified as kaons must be

determined. The rate of misidentification as a muon is considerably lower than

that of the kaon, thus contributions from fake muons are not considered in the

fit. A fake kaon is any particle falsely reconstructed as a kaon. A misidentified

particle refers to a particle which has been misidentified, e.g. a misidentified pion
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Likelihood Selection MisID Rate [%] Efficiency [%]
K± LK/π > 5 and LK/p > 5 and LK/µ > 5 N/A 50.8
π± LK/π < 0 and Lp/π < 0 and Lµ/π < 0 0.975 71.38
p LK/π < 5 and Lp/π > 0 and Lµ/π < 0 1.446 29.8
µ± LK/π < 0 and Lp/π < 0 and Lµ/π > 0 0.325 77.5

Table 6.6 The likelihood selection used to enrich the Fake Kaon sample with
the desired particle type is given. The MisID rate is defined as the
percentage of particles passing the kaon likelihood selection and the
efficiency is defined as the percentage of particles passing the likelihood
selection.

is truly a pion which has been identified as e.g. a kaon.

This section details the procedure used to determine the yields of each misiden-

tified particle type. A dedicated stripping line is written with selections identical

to the B0
s → K

−
µ+νµ line, except the likelihood criteria on the kaon is removed.

A prescale2 of 0.02 is applied. It is implied that all yields with prescales have

been correctly scaled. This is referred to as the fake kaon sample. A full selection

is applied to the fake kaon sample. The kaon candidates in data are a blend of

misidentified particles and true kaons. One may produce background samples

containing misidentified particles with a high purity by simultaneous requiring

that the candidate kaon has a low kaon likelihood, LK± , and a high likelihood

for the desired particle under investigation. When searching for misidentified

Λ0
b → pµ−νµ decays, a sample of high purity protons misidentified as kaons may

be created by requiring the candidate kaon has a low kaon likelihood and a high

proton likelihood.

The selections used to produce enriched samples of the different particle types

are listed in Table 6.6 with the rates of misidentification and efficiency of the

enrichment selection. The misidentification rates and efficiency of selection are

calculated using the PIDCalib package [99].

The yields of events passing the enrichment selections are listed in Table 6.7

alongside the scaling used to convert the enriched yield into the yield in data.

The uncertainties quoted for the data yields originate from the limited yields in

the fake muon sample. When performing a fit to the K−µ+ corrected mass a

Gaussian constrained is applied to the yields of the fake samples with a mean at

the derived data yield and a width equal to the uncertainty. The template shapes

for the misidentified kaons are plotted in Figure 6.5. During plotting of fit results

2A random scaling used to reduce the rate. Discussed in Section 5.6.2
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Enriched Yield Scaling Data Yield Data Yield Data Yield
q2 < 7 q2 > 7

π± 55650 0.0137 762± 23 496± 18 243± 13
p 18800 0.0485 911± 47 320± 28 512± 35
µ± 28900 0.0042 121± 5.0 86± 4 33± 3

Table 6.7 The yields of particles within the enriched regions selected using the
selection in Table 6.6. The Data Yield is the yield of misidentified
particles passing the full selection. The scaling converts the enriched
yield to the data yield, and is the ratio of columns two and three in
Table 6.6. The dominant uncertainty on the data yields originates
from the limited statistics in the enriched sample.

the templates for misidentified particles are merged into a single template.

6.3.4 Fit Model

The same Beeston Barlow fit method detailed in Section 6.1 and used to determine

the B0
s → D−s µ

+νµ yield is used to extract the B0
s → K

−
µ+νµ yield. However a

two stage fit is performed in order to first extract the B0
s → K

−
µ+νµ yield in data,

and then determine the relative fractions in the high and low q2 bins.

The corrected mass distribution for combinatoric K−µ+ combinations in the

region below mB0
s

is incredibly similar to the B0
s → K

−
µ+νµ corrected mass shape.

Both have disappearing tails at low corrected mass, however the B0
s → K

−
µ+νµ

peaks at mcorr = mB0
s

while the combinatoric sample continues to rise. See

Figures 5.9 and 6.12. Removing events with no q2 solution has the unfortunate

effect of removing all events with mcorr > mB0
s
, thus producing almost identical

fit distributions. To solve this the two stage fit is used and the results of the

first fit are used to constrain yields in the second fit. The first fit is performed

over the full corrected mass range with no selection on the q2 allowing the signal

and combinatoric distributions to be clearly distinguished in the high corrected

mass region, see Figure 6.7. The second fit is a simultaneous fit in high and low

bins of q2, with all unphysical solutions removed, and uses the results of the first

fit to constrain the different yields, see Figure 6.8. To summarise, the first fit

determines the absolute yields and the second fit determines their fractions in the

high and low bins of q2. Performing a simultaneous fit in both bins of q2 without

initially Constraining the total yields results in significantly larger uncertainties

due to similarity in fit shapes of the signal and combinatoric shapes.
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The uncertainties from the first fit are propagated through to the second fit as

Gaussian constraints on the combined yield in the high and low q2 bins. Take

for example B0
s → K

−
µ+νµ, in the second fit a Gaussian constraint is applied to

the combined yield in both bins with a value equal to the yield from the first fit

multiplied by the efficiency of requiring a valid q2 solution and a width equal to

the uncertainty from the first fit. All parameters in the fit are listed in Table 6.8.

As detailed in previous sections the B+→J/ψK+ yield and yields of misidentified

particles are obtained externally to the fit and the yields of the components are

given a Gaussian constraint. Additional constraints are used to constrain some

yields relative to others, most notably the B0
s →J/ψ φ yield is constrained to

the B+ →J/ψK+ yield using the knowledge of relative fragmentation fractions,

branching fractions and efficiencies. All constraints used in the fit are listed in

Table 6.9.
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Figure 6.7 A fit to the corrected K−µ+ mass distribution for data candidates
passing the selections. The uncertainty in the predicted data yield
for each bin is shaded in grey. The pulls for each bin, i, are shown
underneath the fit.
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Fit #1 Fit #2

No q2 sel. q2 < 7 GeV2/c4 q2 > 7 GeV2/c4

B0
s → K

−
µ+νµ YK−µ+ YK−µ+ × εq2>0

fq2<7 1− fq2<7

B0
s →K∗−µ+νµ YK∗−µ+ YK∗−µ+ × εq2>0

fq2<7 1− fq2<7

B+ →J/ψK+ YJ/ψK+ YJ/ψK+ |q2<7 YJ/ψK+ |q2>7

B0
s →J/ψ φ R× YJ/ψK+ R× YJ/ψK+ |q2<7 R× YJ/ψK+ |q2>7

b →c →s Yinc. Yinc. × εq2>0

fq2<7 1− fq2<7

Combinatorics YCombi. YCombi. × εq2<7 YCombi. × εq2>7

π → K MisID Yπ→K Yπ→K |q2<7 Yπ→K |q2>7

p→ K MisID Yp→K Yp→K |q2<7 Yp→K |q2>7

µ→ K MisID Yµ→K Yµ→K |q2<7 Yµ→K |q2>7

Table 6.8 Components of the two fits used to determine the B0
s → K

−
µ+νµ

yields, Y, in data are presented. Yields shaded in yellow are
determined from the fit and left completely free, yields shaded in green
are determined externally to the fit and their values are Gaussian
constrained, and yields shaded in blue for Fit #2 are Gaussian
constrained to the results obtained from the fit #1. The B0

s →J/ψ
φ yield is determined by scaling the B+ →J/ψK+ yield by the
relative yields, R = fs/fd × εJ/ψφ/εJ/ψK+ × B(J/ψK+)/B(J/ψφ).
All efficiencies, ε, are determined from corrected Monte Carlo
simulations. Considering the B0

s → K
−
µ+νµ component, fit #1

determines the yield and fit #2 determines the distribution of the
yield in the high and low q2 bins.
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Physics constraints
fs/fd 0.252± 0.012 [100, 101]
B(B+ → J/ψK+) (1.01± 0.03)× 10−3 [37]
B(B0

s → J/ψφ) (1.08± 0.08)× 10−3 [37]
B(φ→ K−K+) 0.492± 0.005 [37]

Yield constraints
No q2 sel. q2 < 7 GeV2/c4 q2 > 7 GeV2/c4

B+ → J/ψK+ 2357± 127 279± 43 1607± 154
B0
s → J/ψφ 62± 3 6± 3 47± 5

π → K MisId 762± 23 496± 18 243± 13
p→ K MisId 911± 47 320± 28 512± 35
µ→ K MisId 121± 5 86± 4 33± 3

Simultaneous Fit yield constraints

B0
s → K

−
µ+νµ 8550± 760

B0
s → K∗−µ+νµ 1760± 350

b→ c→ s 35580± 740
Combinatorics 790± 160 622± 120

Table 6.9 A summary of the constraints and fit values entering the signal fit.
During the second fit some values are constrained in both the high and
low q2 bins, e.g. the combinatoric yield, while for other components
the combined sum of entries in both the high and low q2 bins is
constrained, e.g. the B0

s → K
−
µ+νµ yield.

6.3.5 Fit Results

Results from the first signal fit to determine the B0
s → K

−
µ+νµ yield using

the corrected K−µ+ mass are plotted in Figure 6.7. The observed number of

B0
s → K

−
µ+νµ events is 10050± 880. A significant peaking structure is observed

in the corrected K−µ+ mass distribution, at the mass of the B0
s meson. This

corresponds to the decayB0
s → K

−
µ+νµ and this peaking structure is the discovery

of B0
s → K

−
µ+νµ decays. The family of decays B0

s → K∗−µ+νµ is also observed

for the first time although the individual contributions from the K∗−(892),

K∗−2 (1430) and K∗−0 (1430) are not individually measured. The results of the

second fit are plotted in Figure 6.8, for the low (left) and high (right) q2 bins,

the signal purity is considerably higher in the low q2 bin and the B0
s → K

−
µ+νµ

contribution is clearly required in order to account for the large number of events

in the high corrected mass region. The signal yield in the low q2 bin is 5160±470,

and in the high q2 bin is 3280± 430.

A Monte Carlo method is used to validate the signal fit results, 1000 or 500

pseudo-datasets are generated by randomly sampling the Monte Carlo input input
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Figure 6.8 A simultaneous fit in two bins of q2 performed on the corrected
K−µ+ mass distribution for data candidates passing the selections.

histograms. The B0
s → K

−
µ+νµ yield in the pseudo-dataset is constant and set

to the value obtained in the fits, the yields of all other components are randomly

varied by selecting a point on a Gaussian distribution with a mean centred on

the fit result with a width set to the fit uncertainty. The distribution of toy pulls

should follow the normal distribution, be centred at zero and have a width of one.

An offset distribution is indicative of biases present in the fit and a width differing

from one indicates that the uncertainty on the fitted yield is being incorrectly

estimated.

The pull distributions of the first fit are plotted in Figure 6.9, a slight offset

of 0.14σ is observed and the width is slightly less than one indicating that the

uncertainty on the signal yield is being overestimated. The pulls for second fit

are plotted in Figure 6.10 for both the B0
s → K

−
µ+νµ and inclusive b → c → s

contributions, an offset of 0.50σ and 0.62σ is observed in the low and high q2

bins respectively indicating significant biasing. The widths are 0.85 and 1.01

indicating that the fit uncertainty is being overestimated in the low q2 bin. The

inclusive b→ c→ s sample shows an offset of −0.37σ and −0.40σ in the high and

low bins respectively indicating that the fit is unable to fully distinguish the two

samples. Systematic uncertainties are assigned from the biases observed here.
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Figure 6.9 Distributions of pulls obtained from 1000 fits to pseudo-datasets.
The pull is defined as the difference between the true number of
B0
s → K

−
µ+νµ candidates and the yield obtained from the fit divided

by the fit uncertainty.
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Figure 6.10 Distributions of pulls obtained from 500 fits to pseudo-datasets for
the low (left) and high (right) q2 bins.
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Figure 6.11 Distributions of pulls for the b →c →s template obtained from 500
fits to pseudo-datasets for the low (left) and high (right) q2 bins.
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6.4 Systematic Uncertainties

The uncertainty on the B0
s → K

−
µ+νµ yield obtained from the signal fit contains

several systematic uncertainties. The fit does not account for systematics

originating from the variation of the corrected mass shape associated with varying

form factor models, the uncertainty of the B+ → J/ψK+ yield due to a limited

knowledge of the reconstruction efficiency. Additionally the uncertainty on the

signal and background yields does not consider the fact that the signal fit may

be biased. For the fit used to obtain the B0
s → D−s µ

+νµ yield the only systematic

effect considered is the bias present in the fit.

The systematic uncertainty originating from the variation in the corrected mass

template shape is investigated by generating the template shape with different

corrections and weights applied. The B0
s → K

−
µ+νµ template shape is plotted in

Figure 6.12 reconstructed using all form factor hypotheses, with and without

the addition of weights correcting Monte Carlo Simulation. A systematic

uncertainty originating from the uncertainty in the corrected mass template

shape is determined by repeating the signal using different possible template

shapes. The systematic uncertainty assigned to variations in the template shape

are summarised in Table 6.10. As discussed in Section 2.3.2 the uncertainty on

the form factor shape is lowest at high q2 resulting in a greater variation in the

corrected mass template in the low q2 bin; this is reflected in the calculated

systematic uncertainty.

A systematic uncertainty on theB+ → J/ψK+yield due to an uncertainty on the

parametrisation of the background shape is detailed in Section 6.3.2 and the

systematic uncertainty on the B0
s → K

−
µ+νµ yield is given in Table 6.10.

The systematic uncertainty on the B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ yield

associated with a biased fit is quantified in Sections 6.3.5 and 6.2.3 by performing

1000 or 500 fits to pseudo-data. The systematic uncertainty is assigned by taking

the mean of the pull distributions on the B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ yields

of 1000 or 500 fits to pseudodata, and are listed in Table 6.10.
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Figure 6.12 The Corrected K−µ+ mass distribution for simulated
B0
s → K

−
µ+νµ decays is plotted with different corrections applied.

The shaded grey region consists of the uncorrected Monte Carlo
with full selections applied. The lines display Monte Carlo with
form factor corrections applied and the points represent Monte
Carlo with form factor and kinematic corrections applied.

σsyst.[%] No q2 Sel. q2 < 7 GeV2/c4 q2 > 7 GeV2/c4

Template variation 1.36 3.64 0.87
B+ →J/ψK+ reconstruction 2.07 0.61 3.79

Fit Bias, B0
s → K

−
µ+νµ 1.22 4.55 8.09

Fit Bias, B0
s → D−s µ

+νµ 0.59

Table 6.10 Systematic uncertainties on the B0
s → K

−
µ+νµ yield due uncertain-

ties on the template shape, B+ →J/ψK+ reconstruction and biases
within the fit. The systematic uncertainty on the B0

s → D−s µ
+νµ

yield due to biases in the fit is included.

6.5 Relative Efficiency Determinations and cor-

rections

6.5.1 Generator Efficiency

A pre-selection is applied to Monte Carlo events before the simulation of particle

interactions with the detector. These selections are called generator cuts as they

are applied immediately after the generation of the decay. A selection is made

on the polar angle, θflight,

0.01 < θflight < 0.4, (6.17)
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εGen. [%] σstat. [%] σFF. [%] σcomb. [%]
B0
s → D−s µ

+νµ 17.87 0.08

B0
s → K

−
µ+νµ 20.51 0.08 0.23 0.24

B0
s → K

−
µ+νµ q2<7 GeV2/c4 19.67 0.12 0.03 0.12

B0
s → K

−
µ+νµ q2>7 GeV2/c4 20.96 0.11 0.16 0.19

Table 6.11 Generator efficiencies for B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ in

different q2 regions. The uncertainties originate from Monte
Carlo statistics, form factor parametrisation and are summed in
quadrature. For B0

s → D−s µ
+νµ there is negligible variation in Form

Factors between parametrisations and the form factor uncertainty is
ignored.

on some or all of the final state particles. When simulating B0
s → K

−
µ+νµ events,

generator cuts are applied to all charged final state particles, and when simulating

B0
s → D−s µ

+νµX events the cuts are applied to the muon and daughters of the

D+
s . For all other backgrounds the generator cuts are applied on all charged

final state tracks. As this analysis measures |Vub| with respect to a given q2

selection the generator efficiency must be determined for that region rather than

the whole sample. To measure the generator efficiencies for B0
s → K

−
µ+νµ and

B0
s → D−s µ

+νµ small Monte Carlo samples of 250,000 events are generated before

generator cuts and detector simulation. The Generator efficiencies are plotted

against q2 in Figure 6.13 with the simulated q2 distributions overlaid before and

after the selection. The generator efficiencies are quoted in Table 6.11. The

efficiencies for B0
s → K

−
µ+νµ vary with q2 and a systematic error is assigned to

the calculated efficiency taking into account the variations in efficiency due to

variations in form factor parametrisations. The variation in efficiency is probed

by reweighting the Monte Carlo to be consistent with the three form factor

parametrisation from Lattice QCD and sum rules, and the systematic is taken as

half the difference between the highest and lowest values of calculated efficiency.

6.5.2 Particle Identification

Particles are identified by combining information from the calorimeters, muon

system and the ring-imaging Cherenkov (RICH) detectors providing excellent

charged particle separation and rejection. The simulation does not accurately

model the efficiency of selecting events using particle identification likelihoods and

a data driven method is needed to correctly calculate the particle identification,

PID, efficiencies. The PIDCalib package [99] calculates the efficiency of applying a
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Figure 6.13 The Generator efficiencies plotted against the true q2 for
B0
s → K

−
µ+νµ (left) and B0

s → D−s µ
+νµ (right). The q2

distributions for the signal Monte Carlo samples are plotted in grey
before and after the selections are applied.

PID selection on an arbitrary dataset using a tag and probe method to determine

the true efficiencies of a selection. The calibration decays used to calculate the

PID efficiencies are listed in Table 6.12. The PID selections applied to data

and simulation are listed in Table 6.13. To minimise systematic effects, tight

PID selections are only applied to the opposite sign kaon and muon while for

B0
s → D−s µ

+νµ, very soft selections are applied to the opposite sign π−K+ pair.

Consequently the efficiency of PID selections will be similar for both the signal

and normalisation decays and systematic effects are reduced when calculating

corrections to the ratio of efficiencies.

Decay Tag Probe
D∗+ → (D0 → K−π+)π+ soft π+ K−

D∗+ → (D0 → K−π+)π+ soft π+ π+

Detached J/ψ → µ+µ− µ± µ∓

Λ→ pπ− π− p

Table 6.12 The decays used to calibrate PID efficiencies. The low momentum
(soft) tag π+ originates from the D∗+ decay allowing the flavour of
the D0 to be unambiguously identified.

µ+ Lµ/π > 3 and Lµ/p > 0 and Lµ/K > 0
K− LK/π > 5 and LK/p > 5 and LK/µ > 5
K+ LK/π > −2
π− LK/π < 20

Table 6.13 The PID likelihood selections applied to all particles. Selections
are aligned between B0

s → K
−
µ+νµ and B0

s → D−s µ
+νµ minimising

systematics when taking the ratio of efficiencies.

The PID efficiencies are calculated using a fit and count method, A fit is
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performed to the invariant mass distribution of the parent particle and sWeights

are calculated. The efficiency is taken as the ratio of the sum of the sWeights

before and after the PID selection. The PID efficiency varies with the kinematics

of the track under consideration and the conditions of the underlying event,

consequently differences in kinematics between the calibration sample and the

signal sample could result in systematic differences in PID efficiency. To minimise

systematic errors a lookup table binned in momentum, pseudorapidity and track

multiplicity in the underlying events is generated with each entry containing the

PID efficiency for that region of data. When choosing a binning scheme for the

lookup table one must choose a binning scheme with a trade off between variance

and bias. With a low number of bins the statistics in each bin will be high

ensuring a precise measurement of the efficiency however the intra-bin variation

in efficiency will be higher resulting in a biased measurement. With a large

number of bins the intra-bin variations in efficiency will be minimised however

the statistics in each bin will be lower resulting in an efficiency measurement with

greater variance. Additional systematic effects are introduced via the sWeight

procedure used to determine the yields of the calibration sample before and

after PID selections in each bin. Variations in the shape of the signal peak or

background distributions introduced by the application of a selection may result

in the value obtained by summing the weights to differ from the yield under the

signal peak resulting in unphysical values of the efficiency. When applying a loose

PID selection it is not unusual to see quoted efficiencies greater than one, purely

as a consequence of biases due to the sWeight ing procedure. A more rigorous

approach would be to perform many fits of the invariant mass distribution before

and after the selection and take a ratio of the yields obtained from the two fits,

although this approach requires significant human input to ensure the quality of

all the fits and is not feasible.

To minimise systematic effects from the intra bin variations in efficiency and the

sWeight background subtraction a MC/Data driven correction is used instead

of the pure data driven correction. The data driven correction returns a true

efficiency value for a given PID cut, the MC/Data driven correction returns the

ratio of PID efficiencies obtained from data and Monte Carlo. This ratio is used

to correct the PID efficiency in the simulation.

To determine the PID efficiencies in Monte Carlo, samples are generated

corresponding to the decays D∗+ → D0π+ and J/ψ → µ+µ− with a detached

secondary vertex. Differences in the kinematics between the simulated samples
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Figure 6.14 A two dimensional projection of the PID efficiency lookup table
for kaons determined from data (left) and Monte Carlo (right)
D∗+ → D0π+ decays.
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Figure 6.15 A two dimensional projection of the PID efficiency lookup table
for muons determined from data (left) and Monte Carlo (right)
J/ψ → µ+µ− decays.
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and data are corrected using the GBReweighter package [90]. The target sample

for the reweighting is the sWeighted data and the source sample is the Monte

Carlo. As the target data set is weighted, the reweighting procedure has the effect

of simultaneously correcting the kinematics and applying a weight mimicking the

effects of the sWeights to the simulated sample. The only remaining discrepancy

between the simulation and data are the mismodelled PID distributions. The

efficiency of a PID selection in data is determined by taking the ratio of the

sum of sWeights before and after a selection, and the efficiency in Monte Carlo is

determined by taking the ratio of the sum of correcting weights before and after a

selection. When comparing kinematically equal Monte Carlo and Data the intra

bin variations in PID efficiency will be equal. Consequently when taking the ratio

of efficiencies systematic effects from intra bin variations in efficiency cancel. This

method relies on the assumption that the intra bin correction factor is constant.

The calculated PID efficiencies binned in pseudorapidity and momentum for the

muon and kaon are plotted in Figures 6.15 and 6.14 respectively for both data

(left) and Monte Carlo (right).
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Figure 6.16 The efficiencies of PID selections are plotted against the B0
s

corrected mass for B0
s → K

−
µ+νµ (left) and B0

s → D−s µ
+νµ (right).

The signal corrected mass distribution is shaded in light grey.

When determining efficiencies form Monte Carlo each track from each event is

weighted by the correction factor obtained from the lookup table. The corrected

Monte Carlo yield is taken as the sum of the correction weights. Systematic

uncertainties are quantified by performing 1000 pseudo-experiments, each time

varying the contents of the lookup tables within the obtained errors. The PID

corrections for each q2 bin used in the fits is given in Table 6.14, and the PID

efficiencies for Monte Carlo and data are plotted against the corrected mass in

Figure 6.16.
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B0
s → K

−
µ+νµ B0

s → D−s µ
+νµ Ratio

No Sel. 0.855± 0.004 0.823± 0.014 1.039± 0.015
q2
K−µ+ < 7 GeV2/c4 0.850± 0.006 1.033± 0.015

q2
K−µ+ > 7 GeV2/c4 0.863± 0.002 1.048± 0.016

Table 6.14 PID correction factors averaged over all tracks and all events
applied to Monte Carlo. Corrected efficiencies are obtained by
multiplying the Monte Carlo efficiency by the correction factor. Due
to correlations between the uncertainties in the B0

s → D−s µ
+νµ and

B0
s → K

−
µ+νµ channels the uncertainty on the ratio is smaller than

that obtained from a naive propagation of uncertainties.

6.5.3 Tracking Correction

It is of vital importance that the efficiency of reconstructing tracks is well

understood when performing a cross section or branching fraction measurement.

The track reconstruction efficiency is is over 95% and is determined from

Monte Carlo. A data driven correction is applied to the simulation using clean

J/ψ → µ+µ− decays. The tracking reconstruction efficiency is measured using a

tag and probe method, the tag muon is fully reconstructed as well identified muon

and the probe track is partially reconstructed without information from at least

one subdetector which is being probed. The tracking efficiency is determined by

counting the amount of fully reconstructed tracks correspond to the partially

reconstructed probe track. Performing the tag and probe analysis on both

simulation and data yields a discrepancy of approximately 2% [102].

)c (MeV/p
410 510

η

2

2.5

3

3.5

4

4.5

1.042
(0.004)

1.073
(0.031)

1.011
(0.001)

1.003
(0.004)

1.007
(0.001)

0.991
(0.002)

1.008
(0.002)

0.987
(0.001)

1.024
(0.016)

0.995
(0.003)

Figure 6.17 The look-up table used to correct the tracking efficiency of charged
tracks, binned in momentum and psedorapidity.

A lookup table of the ratio of tracking efficiencies of data and Monte carlo
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K−µ+ q2 Sel. B0
s → K

−
µ+νµ B0

s → D−s µ
+νµ Ratio

No Sel. 1.007 ± 0.001 1.018 ± 0.005 0.990 ± 0.004
q2
K−µ+ < 7 GeV2/c4 1.006 ± 0.001 1.018 ± 0.005 0.989 ± 0.004

q2
K−µ+ > 7 GeV2/c4 1.010 ± 0.002 1.018 ± 0.005 0.992 ± 0.004

Table 6.15 Tracking efficiency corrections applied to Monte Carlo events.

is provided by the LHCb collaboration. The two dimensional table binned

in momentum and pseudorapidity is visualised in Figure 6.17. The tracking

efficiency corrections are applied as a weight on each track as determined from

the lookup table and efficiencies are corrected by taking the product of the weights

for each track. As B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ contain two and four charged

particles in their final states the uncertainties partially cancel when taking the

ratio of the efficiencies.

The uncertainties on the overall correction factor are determined by performing

1000 pseudo-experiments, each time the efficiencies in the lookup table are varied

within their uncertainties. The tracking corrections to the efficiency calculations

are summarised in Table 6.15 for each of the q2 bins used in the fits.

6.5.4 B+ →J/ψK+ corrections

The decays B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ are partially reconstructed due

to the missing neutrino and have broad distributions making it difficult or

impossible to isolate a pure signal sample in data. In order to validate the

efficiencies of a selection and ensure that biases between data and simulation are

corrected, the decay B+ → J/ψK+ is used as a proxy for the signal decay. When

reconstructed using only one muon the B+ decay is kinematically very similar

to the B0
s → K

−
µ+νµ decay, allowing the efficiencies of selections on kinematic

variables to be validated. When fully reconstructed the efficiencies of selecting

B+ decays is similar to the signal B0
s decay as there are no additional tracks

which can be associated with the secondary vertex.

Efficiency corrections are calculated for the corrected mass uncertainty cut and

the BDT response variables. The efficiency of a selection is calculated for

B+ → J/ψK+ by performing a fit to the invariant mass distribution of the

µ−µ+K+ triad before and after a selection. The correction factor is the ratio

of the efficiency in data and Monte Carlo and the efficiency for B0
s → K

−
µ+νµ

obtained from Monte Carlo is scaled by the correction factor. An uncertainty

120



K−µ+ K−µ+ D−s µ
+

q2 > 7GeV2/c4

σmCorr. 1.02± 0.02 1.03± 0.02
Isolation BDT 0.99± 0.03 1.00± 0.01 0.989± 0.014
Charged Track BDT 0.96± 0.03 0.96± 0.03
Same Sign BDT 1.00± 0.04 0.95± 0.04

Table 6.16 Correction factors applied to Monte Carlo determined from
simulated and real decays of B+ → J/ψK+.

obtained from the correction factor is applied as a systematic correction. The

corrections are listed in Table 6.16 and plots displaying sPlot background

subtracted B+ → J/ψK+ data alongside Monte Carlo are given in Figures 6.18 -

6.20. The q2 of B+ → J/ψK+ peaks at m2
J/ψ resulting in very few events being

reconstructed in the low q2 bin. The corrections applied in the low q2 are set

equal to those in the high q2 bin.
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Figure 6.18 The corrected mass uncertainty for B+ → J/ψK+ (red) and
B0
s → K

−
µ+νµ (black). A sPlot background subtraction is

performed on the data. The correction factor is taken as the ratio of
B+ → J/ψK+ data and Monte Carlo decays passing the selection.
Rejected events are highlighted in the shaded region. Events rejected
by the selection are in the shaded region.

6.5.5 q2 Migration

Having selected a neutrino solution using the linear regression method detailed

in Section 5.1.2 a selection is made. The resolution on the reconstructed q2 will

result in some migration of events across the selection boundary with some events

rejected that should have been selected and vice versa. The distribution of the
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Figure 6.19 The response of the isolation BDT for B0
s → K

−
µ+νµ (left)

and B0
s → D−s µ

+νµ (right) is plotted against the B+ → J/ψK+

calibration samples.
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Figure 6.20 The response of the BDTs rejecting charged (left) and same
sign (right) backgrounds for B0

s → K
−
µ+νµ are plotted against the

B+ → J/ψK+ calibration samples.

122



]4/c2 [MeV2True q
0 5 10 15 20 25

610×

]4
/c2

 [
M

eV
2

R
ec

on
st

ru
ct

ed
 q

0

5

10

15

20

25
610×

Truly In
Reconstructed In

Migrating Out

Migrating In

Figure 6.21 The reconstructed q2 solution selected using the regression model is
plotted against the true q2 for simulated B0

s → K
−
µ+νµ events. The

regions of inward and outward migration are shaded when requiring
q2 > 7 GeV2/c4.

true q2 from Monte Carlo is plotted against the reconstructed q2 in Figure 6.21,

the region containing events migrating either in or out of the high q2 region are

illustrated. Inward migration is defined by the events with a true q2 outside the

region of interest but are reconstructed inside due to the resolution. Outward

migration is defined by the events which are truly in the region of interest but are

reconstructed out. A correction factor is calculated from simulated Monte Carlo

events by taking the ratio of events truly in the high q2 with events reconstructed

in the q2 region. The Monte Carlo is reweighted to be consistent with form factor

predictions from Lattice QCD and light cone sum rules, and the percentages of

events migrating in and out are listed in Table 6.17. As the correction factor is

dependant on the form factor modelling, a systematic uncertainty is assigned to

the correction factor, taken as the standard deviation of the correction factors for

all form factor predictions. The correction factor is taken as the mean value for

all form factor models. The migration corrections and systematic uncertainties

are found to be:

Corr. Mig.q2<7GeV2/c4 = 1.002± 0.008

Corr. Mig.q2>7GeV2/c4 = 0.996± 0.009
(6.18)
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Model Migration in [%] Migration out [%] Correction
ISGW2 4.15 4.00 0.996
K&R 3.89 4.03 0.994
Bouchard 3.97 3.73 0.994
Flynn 3.49 4.34 1.02

Table 6.17 Correction factors to the efficiency for migration in and out of
the high q2 region due to resolution on the reconstructed q2 using
the choice closest to the regression value. Results obtained from
simulated B0

s → K
−
µ+νµ events after a full selection is applied.

The events have been reweighted to be consistent with predictions
from Lattice QCD and LCSR. The Migration in is defined as the
percentage of events with true q2 below 7 GeV2/c4 and reconstructed
q2 above 7 GeV2/c4.

No q2 sel. 10.2 %
q2 < 7 GeV2/c4 19.9 %
q2 > 7 GeV2/c4 3.41 %

Table 6.18 The relative uncertainty on the B0
s → K

−
µ+νµ selection efficiency

originating from a lack of knowledge on the q2 distribution.

6.5.6 Final Corrected Relative Efficiency

The efficiencies and corrections used to determine the full selection efficiency of

B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ are listed in Table 6.19. The uncertainties

on the corrections are taken as systematic uncertainties when calculating the

final ratio of branching fractions. The corrected efficiency is plotted against the

true q2 in Figure 6.22 for B0
s → K

−
µ+νµ (left) and B0

s → D−s µ
+νµ (right). The

unfortunately large bias on the efficiency of the signal mode combined with a

lack of knowledge on the shape of true q2 distribution results in the assignment

of a systematic uncertainty on the final corrected efficiency. The systematic

uncertainty on the final corrected efficiency originating from an uncertainty on

the knowledge of the q2 distribution is determined by calculating the corrected

B0
s → K

−
µ+νµ efficiency under each of the four form factor models and taking the

standard deviation. As seen in Figure 2.4 the dominant factor contributing to the

true q2 distribution at low q2 is the form factor parametrisation, while at high q2

the dominant contribution comes from phase space. The systematic uncertainties

originating from a lack of knowledge on the true q2 distribution will therefore be

greater at low q2, and the systematic uncertainties are listed in Table 6.18. The

full summary of systematic uncertainties is given in Table 6.21.

The final corrected ratio of efficiencies for B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ are
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listed in Table 6.20.

6.6 Determination of B(B0
s → K

−
µ+νµ) and |Vub|/|Vcb|

The ratio of branching fractions of B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ is deter-

mined by taking the ratio of signal yields at production, obtained by dividing the

fit yields, N, by the selection efficiency, ε, and charm branching fraction,

B(B0
s → K

−
µ+νµ)

B(B0
s → D−s µ

+νµ)

=
NB0

s→K
−µ+νµ

NB0
s→(D−s →K+K−π−)µ+νµ

·
εB0

s→(D−s →K+K−π−)µ+νµ

εB0
s→K

−µ+νµ

· B(D−s → K+K−π−).

(6.19)

The ratio of branching fractions is found to be,

B(B0
s → K

−
µ+νµ)

B(B0
s → D−s µ

+νµ)
= (3.59± 0.34± 0.51)× 10−3, (6.20)

where the first uncertainty is statistical and the second is systematic. The

uncertainty is systematics limited with the dominant uncertainty originating from

a selection biased in q2.

By performing a branching fraction measurement with a restricted q2 of the

µ+νµ pair and combining the result with relative form factors, RFF , from lattice
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Figure 6.22 The corrected Efficiencies for successive selections on
B0
s → K

−
µ+νµ (left) and B0

s → D−s µ
+νµ (right) candidates

are plotted against the true q2.
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QCD [30, 31, 35, 36] and light-cone sum rules [32] the ratio of CKM elements

|Vub|/|Vcb| is determined as in equations 4.1 and 4.2. The relative form factors

are calculated as,

RFF =

∫ q2max
q2min

1
|Vcb|2

dΓ
dq2B0

s→D
−
s µ+νµ

dq2∫ q2max
q2min

1
|Vub|2

dΓ
dq2B0

s→K
−µ+νµ

dq2
. (6.21)

Using B0
s → K

−
µ+νµ form factors obtained from light-cone sum rules the ratio of

CKM elements is found to be

|Vub|
|Vcb|

=

(
B(B0

s → K
−
µ+νµ)|q2<7 GeV2/c4

B(B0
s → D−s µ

+νµ)
·RLCSR

FF

)1/2

= 0.0625± 0.0092(exp.)± 0.0039(th.), (6.22)

where the first uncertainty is experimental and the second uncertainty is

theoretical.

Using form factors obtained from lattice QCD the ratio of CKM elements is found

to be

|Vub|
|Vcb|

=

(
B(B0

s → K
−
µ+νµ)|q2>7 GeV2/c4

B(B0
s → D−s µ

+νµ
·RLQCD

FF

)1/2

= 0.0688± 0.0061(exp.)± 0.0086(th.), (6.23)

where the first uncertainty is experimental and the second uncertainty is

theoretical. For the decay B0
s → D−s µ

+νµ the main sources of uncertainty

originate from the statistical uncertainty in the fit and the systematic uncertainty

on the calculation of the PID correction factors. For the decay B0
s → K

−
µ+νµ the

dominant uncertainty in the low q2 bin originates from the biased efficiency in

q2 and the dominant uncertainty in the high bin originates from the systematic

uncertainty in the form factor calculations. The statistical uncertainty in the

fit used to extract the B0
s → K

−
µ+νµ yields is limited by the small size of the

background Monte Carlo samples.

These results represent the first experimental measurement of the branching

fraction B0
s → K

−
µ+νµ and ratio of |Vub|/|Vcb| using this decay. The determined

values of |Vub|/|Vcb| are plotted in Figure 6.23 using lattice QCD (solid black line)

and light-cone sum rules (dashed black line) alongside the inclusive and exclusive
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averages of |Vub| and |Vcb|, the previous determination of |Vub|/|Vcb| performed by

LHCb using the decay Λ0
b → pµ−νµ is plotted in pink.
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Figure 6.23 The values for |Vub|/|Vcb| obtained using LQCD (solid line) and
LCSR (dashed line) are plotted alongside the inclusive and exclusive
|Vub| and |Vcb| PDG averages. The previous LHCb measurement
obtained using the decay Λ0

b →pµ−νµ is plotted in pink.
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Source Efficiency [%] B0
s → K

−
µ+νµ

B0
s → D−s µ

+νµ q2 < 7GeV2/c4 q2 > 7GeV2/c4

Generator 17.87± 0.08 20.5± 0.2 19.7± 0.1 21.0± 0.2
Selection 0.62 0.422 0.504 0.217
Source Correction
Tracking 1.018± 0.004 1.007± 0.001 1.006± 0.001 1.010± 0.002
PID. 0.823± 0.085 0.855± 0.017 0.850± 0.025 0.863± 0.006
σmcorr.

1.02± 0.02 0.91± 0.14 1.026± 0.002
Isolation 0.989± 0.014 0.993± 0.033 0.995± 0.013 0.995± 0.013
Charged BDT 0.966± 0.034 0.959± 0.029 0.959± 0.029
Same sign BDT 0.995± 0.034 0.948± 0.948± 0.041
q2 migration 1.002± 0.008 0.996± 0.009

Corrected Efficiency [%]
0.109± 0.011 0.084± 0.011 0.082± 0.021 0.0456± 0.0032

Table 6.19 Summary of efficiencies and corrections entering into the combined
efficiency for the B0

s → K
−
µ+νµ and B0

s → D−s µ
+νµ modes.

εrel

No q2 sel. 0.671± 0.056
q2 < 7GeV2/c4 0.682± 0.115
q2 > 7GeV2/c4 0.356± 0.027

Table 6.20 Final corrected efficiency ratio, ε
B0
s→K

−µ+νµ
/εB0

s→D
−
s µ+νµ

, for the

signal and normalisation channels within each region of q2.

Uncertainty [%] B0
s → D−s µ

+νµ B0
s → K

−
µ+νµ

No q2 sel. q2 < 7 q2 > 7
B(D−s → K−K+π−) 3.3
Form factor uncertainty 3.1 9.7 22.45
Tracking 0.41 0.15 0.15 0.16
Particle Identification 10.2 2.0 3.0 0.74
mcorr error 2.0 2.0 2.0
Isolation 1.4 3.3 1.3 1.3
Charged BDT 3.5 3.0 3.0
Same Sign BDT 4.9 4.3 4.3
q2 migration 0.85 0.90
ε generator 0.08 0.24 0.12 0.19
ε error from FF. 10.2 19.9 3.4
B+ →J/ψK+ reco. 2.1 0.61 3.8
Fit Bias 0.59 1.2 4.6 8.1
mcorr template 1.4 3.6 0.87

Table 6.21 Systematic uncertainties on the evaluated yields at production
for B0

s → D−s µ
+νµ and B0

s → K
−
µ+νµ. When taking the ratio

of branching fractions some of the systematic uncertainties will
partially cancel, and when calculating the ratio of |Vub|/|Vcb| the
uncertainties will be approximately halved.
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Chapter 7

Implications

7.1 Inclusive and exclusive determinations of

|Vub|/|Vcb|

The global average values of |Vub|/|Vcb| determined by the PDG [37] from exclusive

and inclusive decays are

|Vub|/|Vcb| = 0.107± 0.007 (inclusive),

|Vub|/|Vcb| = 0.088± 0.006 (exclusive).
(7.1)

The values of |Vub|/|Vcb| obtained in this thesis using semileptonic decays of the

B0
s meson in combination with form factor predictions from lattice QCD and light

cone sum rules are

|Vub|/|Vcb| = 0.072± 0.010 (LQCD),

|Vub|/|Vcb| = 0.062± 0.010 (LCSR).
(7.2)

The results obtained in this thesis are consistent with the exclusive averages

for |Vub|/|Vcb| and are slightly lower, the values differ by 1.4σ and 2.2σ when

comparing the results obtained from LQCD and LCSR respectively.

The results obtained in this thesis are significantly lower than the average of

inclusive |Vub|/|Vcb| measurements, the values differ by 3.0σ and 3.9σ when

comparing the LQCD and LCSR results respectively. These results confirm the

tension between inclusive and exclusive measurements of |Vub|.
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7.2 Outlook for |Vub|/|Vcb| from B0
s → K

−
µ+νµ

decays and LHCb

From an experimental point of view, the uncertainty on |Vub|/|Vcb| is dominated

by the uncertainties originating from the fit extracting the B0
s → K

−
µ+νµ yield.

In turn the errors in the fit are dominated by the limited Monte Carlo statistics

in the samples modelling inclusive b → c backgrounds, with additional large

uncertainties arising from biases in the fit and constraints on background yields.

From a theoretical point of view the uncertainty on |Vub|/|Vcb| is dominated

by finite volume and chiral extrapolation systematic uncertainties in the lattice

calculation. Additionally the form factor predictions for B0
s → K

−
µ+νµ disagree

dramatically at low q2 with the consensus from the theoretical community being

that the systematic uncertainties from the lattice are underestimated at low q2.

The analysis was performed using a dataset with a total integrated luminosity

of 2 fb−1 collected during the year 2012 with a centre of mass energy,
√
s =

8 TeV. This represents a small fraction of the total data collected by the LHCb

experiment and as the systematic uncertainties are dominated by Monte Carlo

statistics and theoretical uncertainties this small amount of data was of ample

size.

A measurement of the branching fraction of B0
s → K

−
µ+νµ in bins of q2 should

be considered, as there are large uncertainties from a theoretical perspective on

the q2 distribution of this decay, and an experimental determination of the form

factors would provide the theoretical community with valuable constraints. A

binned measurement would need to employ the full LHCb dataset and due to

a limited resolution on the reconstructed q2 would require a careful unfolding of

the q2 distribution, or a folding of theoretical predictions. A binned measurement

would require vast amounts of simulated Monte Carlo events to correctly model

various backgrounds. The amount of additional simulated data required is an

order of magnitude greater than currently possessed and presents a significant

challenge in the computation required for production and disk space for storage.

Recent developments in simulation know as ReDecay [103], where the simulation

reuses the underlying event and regenerates the candidate of interest rather than

simulating a full new event, and RICHless reconstruction, where the simulations

is run without modelling the Cherenkov radiation and RICH detectors provide a

means of generating large amounts of simulated data with significant reductions
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in compute time.
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Chapter 8

Conclusions

A measurement of the ratio of CKM matrix elements |Vub|/|Vcb| provides a direct

constraint on global fits to the unitary triangles and provides an important

constraint when performing global fits to the unitarity of the CKM matrix. A

long standing discrepancy between inclusive and exclusive measurements of |Vub|
has puzzled both experimentalists and theorists alike, and it is unknown if this

difference is due to an unknown problem with the experimental measurements,

an unaccounted for systematic in the theoretical calculations of the form factors,

or most excitingly the result of unexplained physics beyond the standard model.

A number of proposals have been presented to explain this discrepancy including

the leptoquark [104], a hypothetical particle with a simultaneous coupling to

leptons and quarks, and the addition of a heavy right handed W± boson [105].

An experimental measurement of the differential branching fraction of the decay

B0
s → K

−
µ+νµ provides a vital constraint for the theoretical community. Current

predictions of the B0
s → K

−
µ+νµ decay rate differ by an order of magnitude at low

q2 and an experimental measurement provides a vital constraint for theoretical

models.

Two measurements of |Vub|/|Vcb| were performed using data collected from

the LHCb experiment, measurements of the ratios of the branching fractions

B(B0
s → K

−
µ+νµ)/B(B0

s → D−s µ
+νµ) restricted to high and low regions of q2

were combined with form factor calculations obtained from lattice QCD and

light cone sum rules. This measurement included a first observation of the

decay B0
s → K

−
µ+νµ. The measurement was performed using the decay products

resulting from the pp collisions with a centre of mass energy of
√
s = 8 TeV.
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The data sample collected by the LHCb experiment during the year 2012 and

used for this measurement has an integrated luminosity of 2 fb−1 and represents

a small fraction of the total dataset collected by LHCb. The measurements

of |Vub|/|Vcb| obtained in this thesis, |Vub|/|Vcb| = 0.072 ± 0.010 (LQCD) and

|Vub|/|Vcb| = 0.062 ± 0.010 (LCSR) are consistent with exclusive averages

calculated by the PDG and are significantly lower than the inclusive averages

increasing the tension between inclusive and exclusive measurements of |Vub|

The measurement of |Vub|/|Vcb| presented in this thesis represents a proof of

concept analysis demonstrating the feasibility of a measurement of the differential

branching fraction of the decay B0
s → K

−
µ+νµ. Despite using less than a quarter

of the full dataset available for analysis the dominant limiting factor came from

the modelling backgrounds using simulated Monte Carlo. Recent developments

in the simulation of Monte Carlo events will significantly reduce these limiting

factors and allow for more refined measurements of this decay. The differential

branching fraction measured in this thesis using two bins in q2 demonstrates the

feasibility of performing an analysis with multiple bins. These results will be

highly valuable to the theoretical community and will allow for the modelling

of B0
s → K

−
µ+νµ form factors to be constrained, this will provide additional

constraints to the theories of lattice QCD and light cone sum rules.
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Appendix A

Form Factor Comparisons

This chapter summarises the results of B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ form

factor calculations and compares plots presented in the published papers with

those generated by the analysis software using results taken from the papers.

This is to ensure that results taken from theory have been reproduced accurately

and that there are no errors from copying tables of numbers.

This chapter contains

� Names and references of publication used

� Fitted parameters of the z-expansions

� Selected reproductions of plots verifying analysis software
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A.1 Publications Used

B0
s → K

−
µ+νµ

Title Authors arXiv

Bs → Klν form factors from lattice QCD

C.M. Bouchard,
G.Peter Lepage,
Christopher Monahan,
Heechang Na,
Junko Shigemitsu

arXiv:1406.2279v2 [31]

B → πlν and Bs → Klν form factors
and |Vub| from 2 + 1-flavor lattice QCD
with domain-wall light quarks
and relativistic heavy quarks

J.M. Flynn
T. Izubuchi
T. Kawanai
C. Lehner
A. Soni
R.S. Van de Water
O. Witzel

arXiv:1501.05373v3 [30]

Bs → Klνl and B(s) → π(K)l+l− decays
at large recoil and CKM matrix elements

Alexander Khodjamirian
Aleksey V. Rusov

arXiv:1703.04765v2 [32]

Table A.1 Details of the papers providing form factor results for B0
s → K

−
µ+νµ

B0
s → D−s µ

+νµ

Title Authors arXiv

Bs → Dslν form factors and the
fragmentation fraction ratio fs/fd.

Christopher J. Monahan
Heechang Na
Chris M. Bouchard
G. Peter Lepage
Junko Shigemitsu

arXiv:1703.09728v1 [36]

Bs → Ds/B → D semileptonic
form-factor ratios and their
application to BR(B0

s → µ+µ−)

Jon A. Bailey A. Bazavov
C. Bernard C.M. Bouchard
C. DeTar Daping Du
A.X. El-Khadra J. Foley
E.D. Freeland E. Gamiz
Steven Gottlieb U.M. Heller
Jongjeong Kim A.S. Kronfeld
J. Laiho L. Levkova
P.B. Mackenzie Y. Meurice
E. Neil M.B. Oktay
Si-Wei Qiu J.N. Simone
R. Sugar D. Toussaint
R.S. Van de Water Ran Zhou

arXiv:1202.6346v2 [35]

Table A.2 Details of the papers providing form factor results for B0
s → D−s µ

+νµ
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A.2 z-expansion Fit Parameters

B0
s → K

−
µ+νµ

Bouchard et.al.

b
(0)
1 b

(0)
2 b

(0)
3 b

(+)
1 b

(+)
2 b

(+)
3

Value 0.31500 0.9450 2.3910 0.368000 -0.7500 2.7200
Error 0.12900 1.3050 4.6710 0.021400 0.1930 1.4580

b
(0)
1 0.01676 0.1462 0.4453 0.001165 0.0214 0.1434

b
(0)
2 0.14620 1.7020 5.8520 0.009481 0.2255 1.5390

b
(0)
3 0.44530 5.8520 21.810 0.029630 0.7472 5.3250

b
(+)
1 0.00117 0.0095 0.0296 0.000458 0.0012 -0.0013

b
(+)
2 0.02140 0.2255 0.7472 0.001157 0.0372 0.1858

b
(+)
3 0.14340 1.5390 5.3250 -0.001309 0.1858 2.1240

Table A.3 Extrapolated coefficients of a HPChPT z expansion for the
B0
s → K

−
µ+νµ form factors with the associated covariance matrix.

Results taken from [31].

Flynn et.al.

b0
(+) b1

(+) b2
(+) b0

(0) b1
(0) b2

(0)

Value 0.338 -1.161 -0.458 0.210 -0.169 -1.235
Error 0.024 0.192 1.009 0.024 0.202 0.880

b0
(+) 1.000 0.255 0.146 0.873 0.603 0.423

b1
(+) 0.255 1.000 0.823 0.311 0.954 0.770

b2
(+) 0.146 0.823 1.000 0.346 1.060 0.901

b0
(0) 0.873 0.311 0.346 1.000 0.556 0.479

b1
(0) 0.603 0.954 1.060 0.556 1.000 0.965

b2
(0) 0.423 0.770 0.901 0.479 0.965 1.000

Table A.4 Central values, errors, and correlation matrix for the BCL z-
parametrisations of f+ and f0 for B0

s → K
−
µ+νµ. Results taken

from [30].
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Khodjamirian and Rusov

fBP (0) b1(BP ) Correlation

f+ 0.336(23) -2.53(1.17) 0.79
f0 0.320(19) -1.08(1.53) 0.74

Table A.5 Central values, errors, and correlations for the BCL z-
parametrisations of f+ and f0 for B0

s → K
−
µ+νµ. Results taken

from [32].

B0
s → D−s µ

+νµ

Monahan et.al.

a
(0)
0 a

(0)
1 a

(0)
2 a

(+)
0 a

(+)
1 a

(+)
2

Value 0.663 -0.10 1.3 0.868 -3.35 0.6
Error 0.031 0.30 2.8 0.032 0.41 4.7

a
(0)
0 0.0009534 -0.00303547 -0.00542391 0.000594503 0.00158251 0.0160091

a
(0)
1 0.00303547 0.0903097 -0.101760 0.000446248 0.0236283 0.0456659

a
(0)
2 0.00542391 -0.101760 8.02283 0.00848079 0.104246 0.760797

a
(+)
0 0.000594503 0.000446248 0.00848079 0.00100761 -0.00423358 -0.0264511

a
(+)
1 0.00158251 0.0236283 0.104246 -0.00423358 0.165251 -0.617234

a
(+)
2 0.0160091 0.0456659 0.760797 -0.0264511 -0.617234 22.49292

Table A.6 Central values, errors, and covariance matrix for the z-
parametrisations of f+ and f0 for B0

s → D−s µ
+νµ. Results taken

from [36].

Bailey et.al.

a
(+)
0 a

(+)
1 a

(+)
2 a

(0)
0 a

(0)
1 a

(0)
2

Value 0.01191 -0.111 0.47 0.01081 -0.0662 0.18
Error 0.00006 0.002 0.05 0.00004 0.0002 0.06

a
(+)
0 1.0 -0.055 -0.002 0.593 0.254 0.014

a
(+)
1 -0.055 1.0 -0.318 -0.067 0.867 -0.180

a
(+)
2 -0.002 -0.318 1.0 -0.038 -0.307 0.974

a
(−)
0 0.593 -0.067 -0.038 1.000 -0.050 -0.054

a
(−)
1 0.254 0.867 -0.307 -0.050 1.000 -0.233

a
(−)
2 0.014 -0.180 0.974 -0.054 -0.233 1.000

Table A.7 Central values, errors, and correlation matrix for the three term z-
parametrisations of f+ and f0 for B0

s → D−s µ
+νµ. Results taken

from [35].
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A.3 Comparison Plots

B0
s → K

−
µ+νµ

Bouchard et.al.
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Figure A.1 Form factors plotted against z. Image, left, taken from [31] and
right, generated using fit parameters taken from [31]. The blue
shaded section (left) should be compared to the red section (right).
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Figure A.2 Form factors plotted against z. Image, left, taken from [31] and
right, generated using fit parameters taken from [31].
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Figure A.3 Form factors plotted against q2. Image, left, taken from [31] and
right, generated using fit parameters taken from [31].
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Figure A.4 Form factors plotted against q2. Image, left, taken from [31] and
right, generated using fit parameters taken from [31]. The blue
shaded section (left) should be compared to the red section (right).
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Figure A.6 Form factors plotted against z. Image, left, taken from [30] and
right, generated using fit parameters taken from [30].
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Khodjamirian and Rusov
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Figure A.9 Form factors plotted against q2. Image, left, taken from [32] and
right, generated using fit parameters taken from [32]. The green
shaded region (left) should be compared to the red shaded region
(right).
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Figure A.10 Form factors plotted against q2. Image, left, taken from [32] and
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+νµ

Monahan et.al.
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Figure A.11 Form factors plotted against z. Image, left, taken from [36] and
right, generated using fit parameters taken from [36].
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Figure A.12 Form factors plotted against q2. Image, left, taken from [36] and
right, generated using fit parameters taken from [36].
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Appendix B

Validation of Combinatoric

Modelling

This appendix contains additional plots validation the modelling of combinatoric

samples. Figure B.1 contains kinemtic distributions of true combinatoric events

from data (solid black line), modelled events (blue points) and modelled events

after a kinematic reweighting (red points). All plots are restricted to the

kinematic region mK−µ+ > 5400 MeV/c2.
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Figure B.1 K−µ+ candidates in data are plotted with simulated combinatorics
before and after a kinematic correction
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Appendix C

sPlot Background subtraction

Results

This appendix contains the fit results used as inputs to the sPlot background

subtraction tabulated in Table C.1 and plotted in Figures C.1- C.3. One sPlot

background subtraction is performed on the D−s → K−K+π− invariant mass peak

and two background subtractions are performed on the B+ → J/ψK+ invariant

mass obtained by reconstructing the three body final state and by reconstructing

a K−µ+ final state with the additional muon found via isolation.

D+
s →K−K+π+ B+ →K+µ+µ− B+ →K+µ− Iso(µ+)

YieldSig. (683.0± 3.5)× 103 (125.6± 0.4)× 103 (22.8± 0.4)× 103

YieldBG. (902.3± 3.5)× 103 (9.3± 0.3× 103 (10.3± 0.4)× 103

µ [ MeV/c2] 1969.7± 1.0 5283.84± 0.06 5288.8± 0.2
σ1 [ MeV/c2] 5.92± 0.09 15.7± 0.3 16.9± 0.5
σ2 [ MeV/c2] 12.5± 0.5 25.3± 0.7 33.9± 0.46
f1 0.198± 0.0098 0.68± 0.34 0.14± 0.09
f2 1.30± 0.013 0.46± 0.26 0.053± 0.034
τ [MeV−1c2] (1.82± 0.05)× 10−3 (−8.09± 0.23)× 10−3 (−2.3± 0.2)× 10−3

Table C.1 Fit results obtained from a maximum likelihood fit in order to obatin
sWeights.
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Figure C.1 Fit to K−K+π+ invariant mass spectrum and sWeights obtained
from fit.
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Figure C.2 Fit to K−µ+µ− invariant mass spectrum and sWeights obtained
from fit.
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Figure C.3 Fit to K−µ+µ− invariant mass spectrum and sWeights obtained
from fit.

148



Appendix D

Validation of BDT Reweighting

This appendix contains plots validating the use of a BDT to simultaneously

correct multiple Monte Carlo distributions. A k = 2 k-factor cross validation

method is used with data separated by magnet polarity, i.e. the MagUp

data is used to correct MagDown data. The BDT response variables and

correction weights for both polarities is plotted in Figure D.1 for the correcting

of B0
s → K

−
µ+νµ Monte Carlo using B+ →J/ψK+ decays. The BDT response

and correction weights for B0
s → D−s µ

+νµ are plotted in Figure D.2. A selection

of kinematic distributions for Data, corrected and uncorrected Monte Carlo are

plotted in Figure D.3 for both B0
s → K

−
µ+νµ and B0

s → D−s µ
+νµ demonstrating

the effectiveness of this method.
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Figure D.1 The BDT Response and weights when using B+ → J/ψK+

reconstructed as B0
s →K−µ+. Trained using MagUp and used to

correct MagDown (top) and vice versa (bottom)
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