
ATLAS Operational Monitoring Data Archival and Visualiza-
tion

Igor Soloviev1,∗, Giuseppe Avolio2, Andrei Kazymov3, and Matei Vasile4

1University of California, Irvine, CA 92697-4575, US
2European Laboratory for Particle Physics, CERN, Geneva 23, CH-1211, Switzerland
3Joint Institute for Nuclear Research, JINR, Dubna, Russian Federation
4Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

Abstract. The Information Service (IS) is an integral part of the Trigger
and Data Acquisition (TDAQ) system of the ATLAS experiment at the Large
Hadron Collider (LHC) at CERN. The IS allows online publication of opera-
tional monitoring data, and it is used by all sub-systems and sub-detectors of
the experiment to constantly monitor their hardware and software components
including more than 25000 applications running on more than 3000 comput-
ers. The Persistent Back-End for the ATLAS Information System (PBEAST)
service stores all raw operational monitoring data for the lifetime of the ex-
periment and provides programming and graphical interfaces to access them
including Grafana dashboards and notebooks based on the CERN SWAN plat-
form. During the ATLAS data taking sessions (for the full LHC Run 2 period)
PBEAST acquired data at an average information update rate of 200 kHz and
stored 20 TB of highly compacted and compressed data per year. This paper
reports how over six years PBEAST became an essential piece of the experi-
ment operations including details of the challenging requirements, the failures
and successes of the various attempted implementations, the new types of mon-
itoring data and the results of the time-series database technology evaluations
for the improvements towards LHC Run 3.

1 Introduction

The ATLAS experiment [1] at the Large Hadron Collider (LHC) at CERN uses more than a
hundred million electronic channels to record the data produced by the collisions. During the
data taking, they are configured, controlled and monitored by more than 25000 online appli-
cations running on more than 3000 computers. Every application produces some operational
monitoring data. The data are shared between online applications themselves for operation
needs and are important for experts wanting to know the current state of the system. On
average, about 200000 monitoring values are updated per second during data taking runs.

The ATLAS operational monitoring uses the Information Service (IS) [2] introduced more
than 20 years ago by the Trigger and Data Acquisition system (TDAQ) [3]. Internally the
service is based on CORBA [4] client-server architecture and the object-oriented approach.
Thanks to the fast, reliable, efficient and scalable implementation of the service and the rich
∗e-mail: igor.soloviev@cern.ch

c© Copyright 2020 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 01020 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501020



object data model, it is used by all ATLAS detectors and systems for their online applications.
The IS itself is not persistent, so the monitoring data were lost after the end of each data taking
session. Over several years, a few tools for archival of small subsets of their specific data
using different database technologies were developed, but there was not a suitable common
solution across the experiment. At the beginning of LHC Run 1, it was suggested by the
TDAQ Controls and Configuration group to create a common IS persistence named PBEAST
(Persistent Back-End for the ATLAS information System of TDAQ). The PBEAST has to
archive, aggregate and visualise raw ATLAS operational data in a generic way.

2 Cassandra Implementation
In 2011, the Controls and Configuration group evaluated the available database technologies
and chose the most promising Apache Cassandra database for prototyping [5] and the CERN
EOS [6] for long-term archival storage. Cassandra is a freeware distributed scalable hash
table database. Three powerful servers (dual 6-core 2.67GHz Intel Xeon CPU, 4x1 TB RAID
disks, 32 GB RAM) were used for the monitoring data archiving.

For one and a half years, several Cassandra deployment models and database schemes
were tested using monitoring data from the, at the time, ongoing LHC Run 1. Some prob-
lems related to the chosen technology emerged quite soon. For example, the lack of vertical
scaling enforced database schema redesigns and complicated data querying – the original de-
sign assigned a single row in the data column family per monitoring value. Newly acquired
time-series data were added to this row. It was discovered that the Cassandra performance
significantly degrades when the size of the row exceeds 80 MB independently of available
hardware resources. This issue resulted in the database schema design modification and the
creation of a new row after certain conditions (a time interval) as shown in Figure 1.

Figure 1. Use of time buckets in row ID to address Cassandra performance issues.

Despite the use of powerful hardware and the selection of a reduced data sample com-
bined with data smoothing, the Cassandra implementation was never fast enough to keep
up with the rate of incoming data. Furthermore, the disk space was used inefficiently, with
only 20% of the volume dedicated to actual operational data and the rest reserved for Cas-
sandra database maintenance and information replication. As a consequence, the Cassandra
database was used only as a temporary store for about one month of information. Older
data were moved to EOS as compressed JSON files. However, an effective way of querying
them was not implemented. The implementation did not support data arrays and nested data
structures nor redefinition of the data classes. Finally, there were incompatible API changes
between major versions of Cassandra. The usage of the Cassandra database for PBEAST
implementation was abandoned at the end of LHC Run 1.

3 Splunk Prototype
Splunk, a commercial solution by Splunk Inc [7], was another candidate for PBEAST im-
plementation [8]. It allows non-relational structured time-series textual information to be in-
serted into a database, with search, analysis and Web-based reporting facilities. The queries

2

EPJ Web of Conferences 245, 01020 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501020



to check aggregation and correlation functionalities using a subset of operational monitoring
data were evaluated. Splunk was considered as a possible all-in-one solution framework for
archiving and visualizing monitoring data, providing easy integration, fast web applications
development and low maintenance costs.

In reality, Splunk has even larger disk space overhead compared to the Cassandra database
since it keeps raw text data, so it may only be used as a temporary store of information.
The per-day quota licence was not flexible and was too small for real use. The visualisation
facilities for scientific data were not sufficient, and their integration with third-party front-end
libraries was difficult. It was decided not to use Splunk for PBEAST implementation.

4 Current Implementation

During the long shutdown between LHC Runs 1 and 2, and to minimize the risk of yet an-
other failure by the start of next run, it was decided to implement a simple, robust solution
to store operational monitoring data into files, archive them on EOS and implement an inter-
face for data retrieval. After a short technology evaluation, the open-source Google protocol
buffers library [9] was selected for efficient binary data serialization providing interoperabil-
ity, compaction and compression. On top of this library, a private file format was introduced
to store time-series data with random access to data metrics. The format supports all IS types,
including data arrays and nested data structures and allows schema evolution. The PBEAST
monitoring data receiver stores data into files organized by IS data schema and interval buck-
ets [10].

Figure 2. The PBEAST data organization.

The PBEAST service is running on a few dedicated nodes inside the ATLAS experiment
area, as shown in Figure 3.

Figure 3. The PBEAST service architecture.

3

EPJ Web of Conferences 245, 01020 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501020



Every PBEAST node has its own file repository accessed by the local server and several
monitoring providers. The monitoring providers get data from the IS and via their REST
interface. The user requests are processed by the PBEAST server. The server redirects the
user request to available nodes, collects their results and returns the merged result. The in-
ternal communication of the service is implemented over CORBA. The user communication
is implemented over secure HTTP. The API supports C++, Python and Java programming
languages as well as the REST functions. The use of secure HTTP allows running clients
inside and outside the ATLAS experiment area. Once per week, the data from the PBEAST
nodes are replicated on the EOS. As a backup solution, the PBEAST service running on the
TDAQ test bed outside the ATLAS experiment area provides read-only access to the EOS
repository.

For PBEAST data visualisation the Grafana [11] web toolkit is used. It is an open-
source analytics platform to query databases and visualise metrics creating and exploring
dashboards. To integrate the PBEAST service with Grafana, the PBEAST REST interface
exposing meta information and data to Grafana client was created. From the Grafana side,
a new plugin knowing details of the PBEAST data model was implemented. Gradually the
PBEAST service was extended and integrated with Grafana adding many useful features and
functions such as data averaging, aggregations, array functions, aliases, metrics and data fil-
ters, annotations, support for various data plots including scatter plots for correlations and
several plots for string data representations. The LDAP service is used for user authentica-
tion and permissions on folders and dashboards. In total there are more than 100 PBEAST
dashboards used by all ATLAS systems and detectors. A fragment of a typical PBEAST
Grafana dashboard is shown in Figure 4.

Figure 4. A fragment of a typical PBEAST Grafana dashboard.

Another suggested graphical visualisation toolkit for PBEAST data is SWAN [12], a
CERN service for Web-based analysis in the cloud. The Beauty library extends PBEAST
for SWAN. The available Python and C++ language APIs allow any level of complexity of
algorithms on top of PBEAST data. The ROOT [13] or interactive matplotlib [14] can be
used for data visualisation. One can use Beauty if Grafana and PBEAST functionalities are
not enough.

The PBEAST service is deployed on two server nodes installed in the last quarter of 2015.
Every node has dual 12-core Intel Xeon 2.50GHz CPU, 256 GB of RAM and 8x4 TB RAID
disks. It was able to sustain the data insertion rates of all ATLAS IS and network monitoring
providers. The average data insertion rates from ATLAS data taking session during a typical
data-taking run in 2018 was 180 kHz. The periodic data insertion spikes above 600 kHz were
caused by synchronous publications of monitoring data by the high level trigger applications
as shown in Figure 5 [15].

4

EPJ Web of Conferences 245, 01020 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501020



Figure 5. Rate of monitoring data updates during few minutes of a typical ATLAS data taking pe-
riod [15].

The raw monitoring data are compacted and stored by PBEAST into many files, which are
merged and compressed on a weekly basis. This results in an average 1.6 TB storage/month
during 2018 data taking period. In Figure 6 [15], one can see the amount of compacted data
stored per day in September-October 2018. If the data need to be downsampled on request,
this is performed on the server and stored into the cache. All raw monitoring data will be
stored for a lifetime of ATLAS. To achieve this, the PBEAST hardware will be upgraded
before the start of LHC Run 3.

Figure 6. Rate of monitoring data updates during few minutes of typical ATLAS data taking period [15].

PBEAST is used for ATLAS operations and post-mortem analysis by experts. During the
last year of LHC Run 2, there were 30 to 60 REST read requests per minute to PBEAST
service mainly coming from Grafana dashboards using their auto-refresh. In some short
periods, the request rate exceeded 50 requests per second.

5 Technology evaluation

The PBEAST file format is rather simple and may not be efficient for certain types of queries.
The fault tolerance is only based on redundant hardware storage. Many time-series oriented

5

EPJ Web of Conferences 245, 01020 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501020



databases appeared since 2014, so it was decided to perform technology evaluation to look
for possible candidates for the PBEAST service implementation or ideas on how to improve
the implementation in the future.

InfluxDB [16] is an open-source time series database. It is optimized for retrieval of time-
series data and easy integration with Grafana. However, the cluster solution is only available
in the commercial enterprise database edition, and there is no native support for array data
types. ClickHouse [17] is another candidate technology. It is developed by Yandex as an
open-source column-oriented database management system for fast queries and hardware
efficiency. It supports all required IS data types, including arrays, provides linear scalability,
distributed reads, and free cluster solutions. However, it is not a time series database, so some
time-oriented functions can be less efficient.

For both technologies, the data models allowing schema evolution and arrays support
(missing in InfluxDB) have been implemented. A subset of monitoring data has been im-
ported into both databases, and their insertion rates and storage efficiency have been com-
pared [18] as shown in Figure 7. ClickHouse is faster for data insertion and works better with
arrays. InfluxDB is optimal for simple numeric values. Both are less efficient than current
PBEAST implementation, that is highly optimized for the IS data model and achieving 1900
kHz insertion rate. The evaluation is ongoing including read tests and cluster deployment.

Figure 7. The comparison of InfluxDB and ClickHouse data insertion rates and storage utilisation.

6 Summary

PBEAST was successfully used during LHC Run 2 and is planned to be used in Run 3 without
major software changes. It provided a stable service during the development of many required
features and improvements during Run 2. While it started as a complementary monitoring
tool, thanks to attractive and easy-to-use Grafana and Beauty Web tools, it became essential
for ATLAS online monitoring, offline analysis of operations data, various operations reports
and publications. The common monitoring technology across the whole experiment is very
important for integration with systems and detectors (monitoring data are archived transpar-
ently, just configuring a dashboard is needed).

Its implementation on top of the Google protocol buffers was at least one order of magni-
tude more efficient in terms of CPU and disk utilisation than the best technologies available
before the start of the LHC Run 2. In 2014 a single server node accepted the same monitoring
data rate as a cluster of Cassandra nodes. Even the modern time-series database technologies
have poorer results comparing with current PBEAST implementation. The “price” of such
PBEAST service implementation was moderate from human and hardware resources points
of view, and, for example, is even less expensive than the effort on Cassandra prototypes and
implementations that took about three years of FTEs.

6

EPJ Web of Conferences 245, 01020 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501020



References

[1] The ATLAS Collaboration, JINST 3, S08003 (2008)
[2] M. Barczyk et al., eConf C0303241, THGT003 (2003), hep-ex/0305096
[3] The ATLAS TDAQ Collaboration, JINST 11, P06008 (2016)
[4] Common object request broker architecture, https://www.corba.org/

[5] A.D. Sicoe, G.L. Miotto, L. Magnoni, S. Kolos, I. Soloviev, Journal of Physics: Con-
ference Series 368, 012002 (2012)

[6] EOS - open storage documentation, http://eos-docs.web.cern.ch/

[7] SPLUNK the data-to-everything platform, http://splunk.com/

[8] A. Kazarov, G. Avolio, A. Chitan, M. Mineev, J. Phys. Conf. Ser. 1085, 032052 (2018)
[9] Google Protocol Buffers, https://developers.google.com/protocol-buffers

[10] G. Avolio, M. D’Ascanio, G. Lehmann-Miotto, I. Soloviev, Journal of Physics: Confer-
ence Series 898, 032010 (2017)

[11] Grafana the open observability platform, http://grafana.com/

[12] Interactive data analysis in the cloud, https://swan.web.cern.ch/

[13] R. Brun et al., Computer Physics Communications 180, 2499 (2009)
[14] matplotlib python plotting library, https://matplotlib.org/

[15] ATLAS Collaboration, Data Acquisition and High Level Trigger system Public Results
(2020), https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ

[16] Influx open source time series database, https://www.influxdata.com/

[17] ClickHouse open source column-oriented DBMS, https://clickhouse.yandex/

[18] M.E. Vasile, G. Avolio, I. Soloviev, Tech. Rep. ATL-DAQ-PROC-2019-008, CERN,
Geneva (2019), https://cds.cern.ch/record/2674879

7

EPJ Web of Conferences 245, 01020 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501020

https://www.corba.org/
http://eos-docs.web.cern.ch/
http://splunk.com/
https://developers.google.com/protocol-buffers
http://grafana.com/
https://swan.web.cern.ch/
https://matplotlib.org/
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsDAQ
https://www.influxdata.com/
https://clickhouse.yandex/
https://cds.cern.ch/record/2674879

	Introduction
	Cassandra Implementation
	Splunk Prototype
	Current Implementation
	Technology evaluation
	Summary

