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Abstract

Electron cloud (e-cloud) effects are among the main performance limitations for the operation of the
Large Hadron Collider (LHC) with 25 ns bunch spacing. A large number of electrons impacting on
the beam screens of the superconducting magnets induces significant heat load, reaching values close
to the full cooling capacity available from the cryogenic system. A number of Machine Development
(MD) sessions in 2018 was dedicated to characterizing the heat load as a function of beam and
machine parameters, investigating in particular its distribution along the ring and its dependence
on the filling pattern, bunch population and bunch length.

The main results of these measurements have been compared against simulations performed
with the PyECLOUD code in order to validate the underlying model.
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1 Introduction

During Run 2, beams with 25 ns bunch spacing were routinely used for proton physics oper-
ation at the LHC. With this bunch spacing, electron cloud (e-cloud) effects are significantly
more severe than with the 50 ns spacing, which had been used for luminosity production in
Run 1. Beam-induced surface conditioning (also called “scrubbing”), allowed mitigating the
e-cloud formation enough for an effective exploitation of 25 ns beams in physics operation.
Nevertheless, even after years of conditioning of the beam screens, e-cloud effects remain very
visible, affecting beam stability and beam quality preservation, and generating a significant
heat load on the beam screens of the superconducting magnets [1, 2].

These heat loads are much larger than expected from impedance and synchrotron radi-
ation and vary significantly from arc to arc, as shown in Fig. 1. For some sectors the heat
load is close to the cooling capacity available from the cryogenics. This poses concerns for
the foreseen High-Luminosity LHC project, which relies on a two-fold increase of the beam
intensity [3].

The differences in heat load among the arcs are not expected as the eight arcs are by
design identical. Moreover, they were not always present. A test period with 25 ns beams
took place at the end of Run 1, in 2012. The heat loads measured during that period can be
directly compared against Run 2 data, as the measurement system was largely unchanged
and the beam conditions were very similar [4]. A comparison between similar fills performed
before and after LS1 is shown in Fig. 2. It is evident that the differences among arcs appeared
only after LS1, during which all arcs were warmed up to room temperature and exposed to
air. It is possible to notice that still in 2017, after multiple years of conditioning of the beam

Figure 1: Intensities of the two LHC beams (top) and evolution of the heat loads in the eight LHC
arcs (bottom) during two consecutive fills with different bunch spacing. The expected load from
impedance and synchrotron radiation is indicated by the dashed curve.
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Figure 2: Beam intensities (top) and heat loads in the eight LHC arcs (bottom) during two fills
with the same filling pattern in 2012 (left, fill 3438) and in 2017 (right, fill 5814).

screens, the heat load in the high-load arcs is four times larger than before LS1. So far, no
difference in the activities conducted during LS1 in the eight arcs could be identified, which
could explain this different behaviour in terms of heat load. A dedicated interdepartmental
task force has been formed to investigate this issue [5].

In 2018, as part of this program, several machine development (MD) sessions, listed in
Table 1, were dedicated to tests aiming at characterizing the heat loads on the LHC beam
screens, using different beam and machine configurations. This document summarizes these
studies and compares the main results against models and numerical simulations.

MD # Start Fill # Title
3297 05:00, 13-06-2018 6788 Heat load measurements with orbit bumps in the arcs
3296 11:00, 13-06-2018 6786, 6787 Impact of spool-piece correctors on heat loads

3300
18:00, 13-06-2018
05:00, 24-07-2018
04:00, 13-09-2018

6786, 6789, 6790
6968
7160

Heat load measurements with different bunch intensity

3295 21:00, 23-07-2018 6966, 6967 Heat load measurements with a single circulating beam
3298 00:00, 13-09-2018 7157 Heat load measurements with different bunch lengths
4203 13:00, 25-10-2018 7353, 7354, 7355, 7356 Heat load measurements with high bunch intensity (trains of 12b)
2484 16:00, 26-10-2018 7365, 7366 Electron cloud studies with high intensity 8b+4e beams

Table 1: Summary of MD sessions dedicated to heat load studies in 2018
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2 Experimental characterization of the arc heat loads

The following subsections describe the methods and the results of different measurements
performed to characterize the beam-induced heat loads on the arc beam screens.

2.1 Distribution along the ring and measurements with one cir-
culating beam

During standard physics fills with 25 ns bunch spacing, differences in heat load are observed
not only among the different arcs, but also among different cells within the same arc as
illustrated by the green bars in Figs. 6 - 9. In normal operation it is not possible to identify
the heat load produced by each of the circulating beams, due to the fact that, in regular arc
cells, the individual cooling channels are not equipped with temperature probes.

During the MD3295 session, a dedicated test was performed in order to measure the heat
loads generated by the two beams individually. As illustrated in Fig. 3, this was done in two
consecutive fills, the first with 2556 bunches in Ring 1 and 12 bunches in Ring 2 and the
second with 12 bunches in Ring 1 and 2556 bunches in Ring 2. A short train of 12 bunches
had to be injected in the otherwise empty ring since some beam needs to be present in both
rings in order to correctly perform the energy ramp in the standard machine configuration.
The same filling scheme used for the LHC luminosity production in 2018 was employed also
during this MD. The scheme is made of injections of 3×48 bunches. The two fills were also

Figure 3: Beam intensities and heat loads measured during the test fills with a single circulating
beam (fills 6966 and 6967).

5



Figure 4: Beam intensities and heat loads measured during a typical physics fill (fill 6961).

used to study beam lifetime evolution with one circulating beam [6].
The average heat loads measured in the arcs during the test are shown in Fig. 3 and can

be compared with the ones measured with two circulating beams during typical physics fill,
shown in Fig. 4. Large differences among arcs are observed also with one circulating beam.

Figure 5 shows a further comparison of the heat loads measured with Beam 1 alone (in
blue), with Beam 2 alone (in red) and with two circulating beams (in green). It is possible
to observe that the measurements performed with one beam add up almost exactly to those
performed with two beams. This provides a validation of the linearity of the measurement
given by the cryogenic system. The plot also shows that within some arcs, differences are
visible between the heat loads generated by Beam 1 and Beam 2 separately.

A similar comparison has been performed also at a cell-by-cell level and is shown in
Figs. 6 - 9. On several cells (e.g. 33R1-7, 21L2-3, 31L3-3, 23L3-3) a very large difference is
observed between the heat loads generated by Beam 1 and Beam 2. A significant discrepancy
between the sum of heat loads measured with one beam and the heat loads measured with
two beams together is observed only in a very small number of cells, most likely due to issues
with the cryogenic measurement.

In Fig. 10 the heat loads produced by the two beams are plotted against each other. No
evident correlation is observed between the heat load measured with Beam 1 alone and with
Beam 2 alone.
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Figure 5: Average heat loads measured in the LHC arcs with only Beam 1 (in blue), only Beam 2
(in red) and with both beams together (in green). Bottom: table with different relevant quantities
at the time of the three measurements.
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Arc 12

Arc 23

Figure 6: Cell-by-cell heat loads with only Beam 1 (blue), only Beam 2 (red) and with the two
beams together (green) for the arcs 12 and 23. Histograms of the load distribution and a table
with different relevant quantities at the time of the measurements are also shown.
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Arc 34

Arc 45

Figure 7: Cell-by-cell heat loads with only Beam 1 (blue), only Beam 2 (red) and with the two
beams together (green) for the arcs 34 and 45. Histograms of the load distribution and a table
with different relevant quantities at the time of the measurements are also shown.
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Arc 56

Arc 67

Figure 8: Cell-by-cell heat loads with only Beam 1 (blue), only Beam 2 (red) and with the two
beams together (green) for the arcs 56 and 67. Histograms of the load distribution and a table
with different relevant quantities at the time of the measurements are also shown.
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Arc 78

Arc 81

Figure 9: Cell-by-cell heat loads with only Beam 1 (blue), only Beam 2 (red) and with the two
beams together (green) for the arcs 78 and 81. Histograms of the load distribution and a table
with different relevant quantities at the time of the measurements are also shown.
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Figure 10: Heat loads measured in all the LHC half-cells with only Beam 1 and only Beam 2.
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2.1.1 Instrumented half-cells

Four half-cells in the LHC arcs have been instrumented with additional thermal probes on the
cooling tubes, at each interconnection between consecutive magnets. These allow measuring
the heat load on the individual magnets.

The heat load measured on the dipole magnets in these instrumented cells during a
typical luminosity fill in 2018 is reported in Figs. 11 - 14. It is evident that large differences
in heat load are present even among magnets of the same type within a given half-cell.

In particular, in the half-cell 31L2 located in the arc 12, the “D4” dipole, installed during
the Extended Year-End Technical Stop in 2017, shows a very low heat load, compatible with
the expectation from impedance and synchrotron radiation models. The “D2” and “D3”
magnets, instead, show much larger heat loads due to a strong contribution from e-cloud
effects.

The other instrumented half-cells are located in the Arc 45. Most of the magnets in these
cells show low heat loads, with the exception of the “D3” dipole in the half-cell 33L5 and
the “D2” dipole in the half-cell 13L5.

Figure 15 shows the heat load measured in the quadrupole magnets of the instrumented
cell during the same fill. Most of them have rather low heat loads with the notable exception
of the quadrupole in the half-cell 31L2, which shows very high heat load at injection energy.
The heat load in this magnet decreases significantly during the energy ramp. This behavior
is driven by the change of the magnetic fields and is found to be compatible with e-cloud
build-up simulations [7].

In most of the instrumented dipoles it is possible to measure independently the heat
loads from the two beams. Figures 16 - 18 show the heat load measured on the two apertures
for the dipoles having the largest heat loads. We notice that for the 31L2-D3 magnet the
heat load is generated in a similar way by both beams while for the 31L2-D2 and for the
33L5-D3 the heat load is mainly induced by Beam 1.
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Figure 11: Heat loads on the beam screens of the instrumented dipoles in the half-cell 31L2.

Figure 12: Heat loads on the beam screens of the instrumented dipoles in the half-cell 33L5.
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Figure 13: Heat loads on the beam screens of the instrumented dipoles in the half-cell 13L5.

Figure 14: Heat loads on the beam screens of the instrumented dipoles in the half-cell 13R4.
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Figure 15: Heat loads on the beams screens of the instrumented quadrupoles in the half-cells 31L2,
33L5, 13L5 and 13R4.

Figure 16: Heat loads on the two apertures for the instrumented dipole D3 in the half-cell
31L2.
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Figure 17: Heat loads on the two apertures for the instrumented dipole D2 in the half-cell 31L2.

Figure 18: Heat loads on the two apertures for the instrumented dipole D3 in the half-cell 33L5.
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2.2 Dependence on the number of circulating bunches

In order to assess the dependence of the heat loads on the number of circulating bunches,
data were collected from fills performed at 450 GeV with different number of bunches. The
measured heat loads are showed in Fig. 19. All measurements were taken with filling schemes
using injections of 4×48 bunches, and keeping the bunch intensity and all other machine and
beam parameters equal to the 2018 operational values.

Figure 19 shows that the dependence of the heat loads on the number of circulating
bunches is practically linear for all arcs.

Figure 19: Average heat load per half-cell measured in fills with different number of bunches
(fill 6786 (2556b), fill 6788 (876b), fill 7161 (432b)).

2.3 Dependence on the bunch intensity

In view of the planned HL-LHC project [3], which foresees a twofold increase of the beam
intensity, it is of particular interest to study the dependence of the heat loads on the bunch
population.

This was done in different MD sessions labelled as MD3300 in Tab. 1. The test con-
sisted in five fills performed at 450 GeV with different bunch populations in the range 0.3 -
1.2×1011 p/bunch, using trains of 3×48 bunches. The filling pattern and all other machine
and beam parameters were kept equal to the 2018 operational values. For the lower values
of the bunch intensity, the settings of the transverse feedback needed to be adjusted.

The heat loads measured in the eight arcs during this test are shown in Fig. 20 (top).
The expected contribution from impedance and synchrotron radiation is subtracted from the
measured values. The measurements show that the heating from e-cloud becomes significant
only above a certain threshold bunch intensity close to 0.4×1011 p/bunch. This behaviour is
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expected for the e-cloud formation in the LHC main magnets [8] and was already observed
experimentally at the SPS, with direct e-cloud measurements through strip detectors (in
particular for MBA type chambers having the same height as the LHC beam screens) [9].

Figure 21 shows the heat loads recorded during the same experiment on the beam screens
of selected instrumented arc magnets. The expected contribution from impedance and syn-
chrotron radiation is subtracted from the measured values. In the dipole magnets (top plot)
in which a significant heat load can be detected, a threshold effect around 0.4×1011 p/bunch
can be observed, similar to the arc average heat loads. For the quadrupole magnets (bottom
plot) the threshold is higher.

Direct heat load measurements above 1.2×1011 p/bunch were not possible in Run 2 using
long bunch trains due to intensity limitations in the injectors (mainly RF power limitations
in the SPS [10, 11]). Towards the end of 2018, trains of 12 bunches with high bunch intensity,
up to 1.9×1011 p/bunch, became available from the SPS and were used for tests in the LHC
during the last MD block with protons, in the MD4203 session.

The test consisted of four consecutive fills with different bunch intensity, using a filling
scheme with 1020 bunches per beam, made of injections of 4×12 bunches. The evolution of
the beam intensity and of the arc heat loads during the test is illustrated in Fig. 22. During
the test, the settings of the transverse feedback needed to be adjusted in order to cope with
the higher bunch intensity. The cryogenics feed-forward regulations were disabled during
these measurements.

More than four hours in the beginning of the MD session were required to prepare the
injection of bunch trains with high bunch intensity. In particular, it was necessary to carefully
optimize the RF settings in the SPS to mitigate longitudinal instabilities and achieve an
acceptable beam quality. However, even with the best configuration that could be found
in the SPS, the beams were dumped several times at injection, due to losses caused by
uncaptured beam and “satellite bunches” deflected by the injection kickers on the injection
absorber (TDI). This was mitigated by systematically pulsing the injection kickers without
incoming beam before each injection, in order to “clean” the portion of the ring in which
the next bunch train was injected. The following fills with lower bunch intensities were not
affected by these issues.

The heat loads measured in the eight arcs during the test are shown in Fig. 20 (bottom).
The expected contribution from impedance and synchrotron radiation is subtracted from
the measured values. The measurements show that above 1.5×1011 p/bunch the heat load
produced by e-cloud tends to saturate and, for some arcs, even slightly decreases. This
behaviour is expected from e-cloud buildup simulations and is discussed in detail in Sec. 3.

This test also provided interesting information from the point of view of beam stability.
During the entire MD the chromaticity settings were Q′x,y=15 for both beams. The beam
with the highest bunch intensity was stable even without any current in the Landau octu-
poles. Instead, with bunch intensities lower than 0.75×1011 p/bunch, vertical instabilities
were observed on the trailing bunches of the trains, even with octupole currents as large as
50 A [12]. This counter-intuitive behaviour of instabilities driven by e-cloud as a function of
the bunch population was already observed at the LHC and is discussed in [13].
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Trains of 48 bunches

Trains of 12 bunches

Figure 20: Heat loads measured at 450 GeV with different bunch populations with trains of
48 bunches (top) and with trains of 12 bunches (bottom). In the plots the contributions from
impedance and synchrotron radiation are subtracted.
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Instrumented dipoles

Instrumented quadrupoles

Figure 21: Heat loads measured at 450 GeV in the instrumented dipoles (top) and in the instru-
mented quadrupoles (bottom) with different bunch populations with trains of 48 bunches. In the
plots the contributions from impedance and synchrotron radiation are subtracted.
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Figure 22: Evolution of the beam intensities and of the arc heat loads during the MD4203 session.

2.4 Dependence on the bunch length

In order to better characterize the source of the beam-induced heat loads, the dependence on
the bunch length was investigated in a dedicated test at injection energy during the MD3298
session.

Before performing the measurements, it was necessary to assess the bunch length range
that could be reached with acceptable losses and abort-gap population. This was done in a
preliminary fill with a reduced number of bunch trains. The minimum achieved bunch length
was about 0.85 ns (four rms-sigmas). This was obtained by injecting the beam with 6 MV RF
voltage, then switching to the full-detuning mode of the RF system and increasing the RF
voltage to 15 MV. The maximum achieved bunch-length was about 1.6 ns and was obtained
by reducing the RF voltage back to 6 MV and applying controlled longitudinal blow-up. All
bunch length values quoted here are measured by the LHC Beam Quality Monitor, which
measures the Full-Width at Half-Maximum and, from that, infers the r.m.s. bunch length
assuming a Gaussian longitudinal profile.

A measurement fill was performed with 1020 bunches per beam using a filling scheme
similar to the luminosity production one, with injections of 3×48 bunches and 25 ns bunch
spacing. After the beam injection, the bunch length was reduced to about 0.85 ns and heat
load data was collected for 15 minutes. After that, the bunch length was increased to 1.6 ns
followed by 15 minutes of data collection.

It is particularly interesting to observe the effect of the bunch length on the individual
magnets in the instrumented cells, as illustrated in Fig. 23. The dipole magnets in which
a heat load is detectable, show a reduction of the heat load when the bunch length is
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Figure 23: Heat load behaviour in the instrumented magnets during the MD 3298.

increased. The quadrupole magnets, instead, show the opposite behaviour with the heat
load increasing when the bunch length is increased. Such different behaviour for dipole and
quadrupole magnets is expected for e-cloud effects [14]. It is instead incompatible with other
heating mechanisms, and in particular with impedance heating, for which the magnetic field
configuration should have no impact on its behaviour as a function of the bunch length.

Figure 24 shows the evolution of the average heat load in the eight arcs during the
experiment. In all arcs a reduction of the heat load is observed when increasing the bunch
length. This indicates that the total heat load is dominated by the contribution of the
dipoles.

23



Figure 24: Heat load behaviour in the LHC arcs during the MD 3298.

2.5 Test with high-intensity 8b+4e beams

The 8b+4e scheme is a bunch pattern made of short trains of eight bunches separated
by gaps of four empty slots. Based on numerical simulations, such a pattern is expected to
significantly mitigate the e-cloud formation for bunch intensities up to the HL-LHC target [8].

For the nominal bunch intensity, the e-cloud reduction has been proved experimentally
in the LHC in 2015 [15] and this scheme was used for luminosity production in the second
part of the 2017 run, to mitigate issues related to an accidental air release into the beam
pipe in the arc cell 16L2 [16]. In 2018, 8b+4e beams with higher bunch intensity became
available from the injectors and were tested in the LHC during the MD2484 session.

Two fills were performed with 8b+4e beams with bunch intensity close to 1.55×1011

p/bunch, as illustrated in Fig. 25, the first with 852 bunches and the second with 1812 bunches.
When injecting the first fill, the beam was dumped a few times on losses right at injection
(for Beam 1), probably due to showers from the TCDI transfer-line collimator. This was
mitigated by increasing the transverse scraping in the SPS and optimizing the trajectory in
the transfer line. The settings of the transverse feedback had to be optimized to operate
with higher bunch intensity. The cryogenics feed-forward regulations were disabled during
the test.

It was originally planned to perform both fills using a special optics with a large telescopic
factor and β∗ = 65 cm, which had been developed and tested in previous MD sessions [17].
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Figure 25: Evolution of the beam intensity and the heat loads during the MD2484 session.

This was employed only for the first fill, since it was noticed that the losses on the tertiary
collimators would have been incompatible with the set dump threshold, when scaled to the
full number of bunches. For this reason, it was decided to perform the second fill using the
operational configuration with smaller telescopic factor and β∗ = 30 cm.

The heat loads measured in the eight arcs during the tests never exceeded by more than
30 W/half-cell the value expected from impedance and synchrotron radiation, as shown in
Fig. 25.

In Fig. 26, the heat loads measured at high energy with 8b+4e beams having 1.5×1011

p/bunch (in green) are compared against those measured with standard 25 ns beams with
nominal intensity, (1.1×1011 p/bunch in blue) and 8b+4e beams with nominal intensity
(1.1×1011 p/bunch, in red). The large suppression of the heat loads due to e-cloud is evident.
The heat load increase observed with 8b+4e beams when increasing the bunch intensity
from 1.1×1011 p/bunch to 1.5×1011 p/bunch is found to be very modest. Similar features
are observed at a cell-by-cell level as shown in Figs. 27 - 30. This result contributes to
the validation of the 8b+4e scheme as a backup scenario for the HL-LHC project, in case
limitations from e-cloud would prevent utilizing the design bunch pattern.
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Figure 26: Average heat loads measured in the LHC arcs with the standard 25 ns beam (blue), the
8b+4e beam with 1.1 × 1011 p/bunch (red) and the 8b+4e beam with 1.5 × 1011 p/bunch (green).
The contributions from impedance and synchrotron radiation are subtracted from the plotted heat
loads.
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Arc 12

Arc 23

Figure 27: Cell-by-cell heat loads measured in the arc 12 and in the arc 23 with the standard
25 ns beam (blue), the 8b+4e beam with 1.1 × 1011 p/bunch (red) and the 8b+4e beam with
1.5 × 1011 p/bunch (green). The contributions from impedance and synchrotron radiation are
subtracted from the plotted heat loads.
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Arc 34

Arc 45

Figure 28: Cell-by-cell heat loads measured in the arc 34 and in the arc 45 with the standard
25 ns beam (blue), the 8b+4e beam with 1.1 × 1011 p/bunch (red) and the 8b+4e beam with
1.5 × 1011 p/bunch (green). The contributions from impedance and synchrotron radiation are
subtracted from the plotted heat loads.
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Arc 56

Arc 67

Figure 29: Cell-by-cell heat loads measured in the arc 56 and in the arc 67 with the standard
25 ns beam (blue), the 8b+4e beam with 1.1 × 1011 p/bunch (red) and the 8b+4e beam with
1.5 × 1011 p/bunch (green). The contributions from impedance and synchrotron radiation are
subtracted from the plotted heat loads.
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Arc 78

Arc 81

Figure 30: Cell-by-cell heat loads measured in the arc 78 and in the arc 81 with the standard
25 ns beam (blue), the 8b+4e beam with 1.1 × 1011 p/bunch (red) and the 8b+4e beam with
1.5 × 1011 p/bunch (green). The contributions from impedance and synchrotron radiation are
subtracted from the plotted heat loads.
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2.6 Additional tests

This section describes two additional tests that were performed to assess the effects of the
spool-piece correctors and closed-orbit distortions on the observed heat loads.

2.6.1 Effect of the field in the spool-piece correctors

In the MD3296 session a test was performed at injection energy to verify whether a significant
fraction of the electrons is concentrated in the spool-piece correctors installed in each dipole.

Using pilot beams, the machine was configured to operate with the spool-piece correctors
switched off in the arc 12 (one of the arcs showing higher heat load). In particular the B3
(sextupole) and B5 (decapole) corrections were redistributed on the other arcs (B4 correc-
tions were already off as they are not used in operation). The test was made after several
hours of operation at 450 GeV, so that no trim would be required from the FiDel model [18]
to correct for the B3 and B5 decay (FiDel was paused during the entire experiment). These
changes had no impact on the chromaticity, which confirms extremely good optics control.
Due to feed-down effects a small change on the tunes was observed, which was corrected
using the operational knobs, together with an increase of the linear coupling, which was
corrected by optics specialists based on AC-dipole measurements.

In this machine configuration, with no field in the spool-piece correctors of the arc 12,
the two LHC rings were filled with 2556 bunches and the heat load data was recorded for
about 30 minutes. After that, with the beams still circulating in the two rings, the settings
were reverted to the nominal ones and the heat loads were recorded for 30 more minutes.

In the following fill the same procedure was repeated switching off the spool-piece cor-
rectors in the arc 45 (one of the arcs showing lower heat load).

Figure 31: Current in the spool-piece sextupoles (RCS) and heat loads during the test.
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Figure 31 shows the current in the spool-piece sextupoles and the heat loads for these
two arcs during the experiment. It is evident that there is no visible effect of the field in the
spool-piece correctors on the measured arc heat loads.

2.6.2 Effect of orbit bumps

The MD3297 session aimed at testing the sensitivity of the heat loads on changes of the
closed orbit of the two beams.

For both beams, LSA knobs were created that introduced two orbit bumps in each of
the LHC arcs. In each arc, one beam was displaced exclusively in the horizontal plane and
the other beam was displaced exclusively in the vertical plane (to avoid exposing “skew”
aperture bottlenecks). Table 2 shows the locations of the applied bumps, which include three
of the specially instrumented cells discussed in Sec. 2.1.1. All the bumps use 4-correctors
to distort the orbit in the shape shown in Figure 32. The peak distortion for all bumps
was about 4 mm. Before applying the orbit distortion on high-intensity beams, the different
machine configurations were validated by performing betatron and off-momentum loss maps
and asynchronous dump tests.

For the heat load measurements, the two rings were filled with 876 bunches using the
nominal closed orbit, then the orbit bumps were applied in all the selected cells and heat
load data was collected in the following 15 minutes. After that, the sign of the bumps was
reversed and heat load data was collected for 15 more minutes.

Figure 32: Example of an orbit bump using four corrector magnets.

H bump V bump

beam 1
Q23L3, Q29R2, Q13R4, Q33L5
Q29L7, Q23R6, Q27L1, Q23R8

Q31L2, Q25R1, Q31L4, Q25R3
Q21L6, Q17R5, Q25R7, Q21L8

beam 2
Q31L2, Q25R1, Q31L4, Q25R3
Q21L6, Q17R5, Q25R7, Q21L8

Q23L3, Q29R2, Q13R4, Q33L5
Q29L7, Q23R6, Q27L1, Q23R8

Table 2: Quadrupoles at the center of applied orbit bumps.
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Figures 33 - 35 show the heat load evolution during the test for the different magnets of
three instrumented cells in which the bumps were applied. The total heat loads in other
cells in which the bumps were applied are shown in Figs. 36 - 37.

In all cases, no significant effect of the applied bumps is visible on the heat loads. This
test allowed excluding orbit differences, magnet misalignments and local losses as the source
of cell-by-cell and arc-by-arc differences in heat load. Moreover, the test has proven that
the pumping holes on the beam screen are unlikely to be playing a major role, as the beams
were significantly displaced compared to hole size and position.

Figure 33: Beam intensities, current in the corrector magnets used to apply the bumps, and heat
loads measured in the corresponding instrumented magnets.
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Figure 34: Beam intensities, current in the corrector magnets used to apply the bumps, and heat
loads measured in the corresponding instrumented magnets.
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Figure 35: Beam intensities, current in the corrector magnets used to apply the bumps, and heat
loads measured in the corresponding instrumented magnets.
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Figure 36: Beam intensities, current in the corrector magnets used to apply the bumps, and heat
loads measured in the corresponding half-cells.
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Figure 37: Beam intensities, current in the corrector magnets used to apply the bumps, and heat
loads measured in the corresponding half-cells.
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3 Comparisons against models and simulations

The experimental observations from the tests illustrated so far, together with those made
during regular physics fills, provide important information on the source of the heat loads
and in particular of the observed differences among arcs.

Based on these features and on the analysis of the heat load measurement technique, it is
possible to exclude that the observed differences result from measurement artifacts [19, 20].
It is also possible to show that the power deposited in the form of the heat load ultimately
comes from the beam. To do so, the power lost by the beam is inferred from RF stable
phase measurements and it is found to be consistent with heat load measurements from the
cryogenics [4].

Figure 38 illustrates different mechanisms that can transfer energy from the beam to the
beam screen and their compatibility with the available experimental evidence [19, 20]:

• Beam losses: the hypothesis that the differences in heat loads are generated by
protons lost on the beam screen, can be easily discarded since the total power associated
with beam losses (calculated from beam intensity measurements) only amounts to less
than 10% of the measured heat loads.

• Synchrotron radiation: the possibility that the observed heat loads are deposited
by photons radiated by the beam can also be excluded. In fact, the power from syn-
chrotron radiation is proportional to the beam intensity and independent of the bunch
spacing, which is inconsistent with the experimental observations (see for example

Figure 38: Compatibility of the available experimental observations with different mechanisms
transferring power from the beam to the beam screen.
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Figure 39: Left: simulated heat load per half-cell as a function of the SEY parameter for two
circulating beams at 450 GeV (different contributions are shown in different colors). Right: Cor-
responding measured heat loads.

Fig. 1). Finally a strong dependence on the beam energy would be expected, while
only a small increase is observed during the energy ramp.

• Beam coupling impedance: the hypothesis that the energy is transferred through
electromagnetic coupling between the beam and the surrounding structures is incom-
patible with the observations as well. In particular, the measured dependence of the
heat load on the bunch intensity is not quadratic (see Fig. 20) and impedance heat-
ing cannot justify the large differences observed between 25 ns and 50 ns beams [21].
Moreover, as discussed in Sec. 2.4, impedance heating cannot explain the different
dependence of the heat load on the bunch length, which is observed for dipole and
quadrupole magnets.

• Electron cloud effects: the hypothesis that the energy deposition comes from e-cloud
(electrons impacting on the beam pipe) is not in conflict with any of the mentioned
observations. It is further investigated by numerical simulations and discussed in the
following section.

3.1 Comparison of heat load data against e-cloud simulations

In order to compare the measured heat loads against e-cloud simulations, we assume that
the differences observed among arcs and among half-cells are caused by varying surface
properties resulting in a different Secondary Electron Yield (SEY) parameter (defined as
δmax in [22]).

Following this assumption, the e-cloud build-up process has been simulated using the
PyECLOUD code [23] as a function of the SEY parameter for all the elements of the LHC
arc half-cell. The simulation model is described in detail in [24]. The total simulated heat
load as a function of the SEY is shown in Fig. 39 (left) for the two circulating 25 ns beams at
450 GeV, made of trains of 48 bunches. Figure 39 (right) shows the corresponding measured
heat loads in the eight arcs. By comparing the two graphs, the SEY parameter corresponding
to the average heat load in each arc can be determined, as illustrated in Fig. 39 for the arcs
having the largest and the lowest heat loads. Table 3 shows the heat load values inferred in
this way from the average heat load of each arc.
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Arc S12 S23 S34 S45 S56 S67 S78 S81
SEY 1.32 1.30 1.18 1.26 1.26 1.22 1.28 1.34

Table 3: SEY parameters estimated from the average heat load for the different arcs of the LHC.

The same procedure can be applied to the heat load measured at each half-cell, obtaining
the corresponding SEY distribution within each arc. Figures 40 - 43 show in blue the cell-
by-cell SEY distribution inferred from heat load data measured in 2012 and in red the SEY
distribution inferred from data measured in 2018. A significant increase of the SEY is visible
in many cells between Run 1 and Run 2, especially in the high-load arcs.

The SEY model defined in this way can be cross-checked against different independent
measurements that have been presented in Sec. 2. For this purpose, using the obtained SEY
parameters, we simulate the expected heat load as a function of the bunch population for
different beam configurations (changing the bunch pattern and the beam energy). Figure 44
shows the simulation results for the operational bunch pattern (trains of 48 bunches) and
for the 8b+4e scheme at 6.5 TeV. The dashed curves are calculated assuming uniform SEY
along the arcs from Tab. 3. The continuous curves, instead, are calculated assuming for each
half-cell the SEY shown in Figs. 40 - 43. The measured data for both beam configurations are
shown by the markers in Fig. 44. The high-intensity point for the 8b+4e scheme is obtained
from the test described in Sec. 2.5, the other points were measured during physics fills in
2017 and 2018. The agreement between measurements and simulations is found to be very
good, especially for the arcs showing the highest heat load.

Systematic comparisons have been performed also at injection energy, as shown in Fig. 45,
using measurements taken with the operational bunch pattern and with trains of 12 bunches
which allowed probing higher bunch intensities (as described in Sec. 2.3). Also in this case
the agreement between simulation and measurements is very good.

It is worth remarking explicitly that the simulation prediction of a small increase of the
heat load above 1.0×1011 p/bunch is confirmed experimentally both by the test conducted
with trains of 12 bunches at 450 GeV and by the test conducted with the 8b+4e beams at
high energy.

In general, it is possible to conclude that, not only is e-cloud heating the only identified
mechanism that cannot be excluded based on the available observations, but it also allows
achieving a good quantitative agreement between measurements and models, when assuming
that the root cause of the differences in heat load is a difference in SEY.

During the LHC Long Shutdown 2 in 2019, beam screens have been extracted from
low-load and high-load dipole magnets and undergone surface analysis. It was found that,
exclusively on the beam screens from the high-load magnets, cupric oxide (CuO) was present,
as opposed to the native cuprous oxide (Cu2O) which is typically found on these surfaces.
Moreover the beam screens from the high-load magnets showed an extremely low concen-
tration of carbon. These modifications have been associated with modifications of the SEY
and of the conditioning behaviour. The mechanisms leading to these surface alterations are
presently being investigated [25, 26].
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Arc 12

Arc 23

Figure 40: SEY parameter estimated for the cells in the arcs 12 and 23 based on heat loads
measured in 2012 (fill 3438) and in 2018 (fill 6786).
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Arc 34

Arc 45

Figure 41: SEY parameter estimated for the cells in the arcs 34 and 45 based on heat loads
measured in 2012 (fill 3438) and in 2018 (fill 6786).
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Arc 56

Arc 67

Figure 42: SEY parameter estimated for the cells in the arcs 56 and 67 based on heat loads
measured in 2012 (fill 3438) and in 2018 (fill 6786).
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Arc 78

Arc 81

Figure 43: SEY parameter estimated for the cells in the arcs 78 and 81 based on heat loads
measured in 2012 (fill 3438) and in 2018 (fill 6786).
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Arc 12 Arc 23

Arc 34 Arc 45

Arc 56 Arc 67

Arc 78 Arc 81

Figure 44: Comparison of the simulated and measured heat loads for different beam config-
urations at 6.5 TeV. The SEY values used here are inferred from the data points marked by
red circles in Fig. 45.
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Arc 12 Arc 23

Arc 34 Arc 45

Arc 56 Arc 67

Arc 78 Arc 81

Figure 45: Comparison of the simulated and measured heat loads for different beam config-
urations at 450 GeV. The red circles mark the data points used to infer the SEY parameters.
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4 Conclusions

The heat loads deposited by electron cloud on the LHC arc beam screens and in particular
the differences observed among the eight LHC arcs have been investigated with different
experimental tests during MD sessions in 2018. The main findings of these studies can be
summarized as follows:

• By performing fills with a single circulating beam it was possible to show that both
beams contribute in a similar manner to the total heat load in each arc. Nevertheless,
in several cells significant differences between the two beams can be observed. From
the special instrumented cells it is possible to observe that in some magnets differences
are present even between the two apertures of the same magnet.

• Using injections of 3×48 bunches, it was found that the dependence of the heat loads
on the number of circulating bunches is practically linear for all arcs.

• When changing the bunch intensity, it was found that the heat load from e-cloud
becomes measurable only above a certain bunch intensity of about 0.4×1011 p/bunch.

• Using short bunch trains of 12 bunches it was possible to probe the dependence of
the heat loads on the bunch intensity up to 1.9×1011 p/bunch. It was observed that
above 1.5×1011 p/bunch the heat load produced by e-cloud tends to saturate and even
slightly decreases. Also using 8b+4e beams it was observed that increasing the bunch
intensity from 1.1×1011 p/bunch to 1.5×1011 p/bunch the observed heat load increase
is quite modest.

• The dependence of the heat loads on the bunch intensity was also investigated with
dedicated measurements. The dipole magnets showed a reduction of the heat load
when the bunch length is increased. The quadrupole magnets, instead, show the op-
posite behaviour with the heat load increasing when the bunch length is increased.
Such different behaviour for dipole and quadrupole magnets is expected for e-cloud
effects, while it is incompatible with other heating mechanisms, and in particular with
impedance heating.

• Additional tests showed that there is no effect on the heat loads when applying orbit
bumps as large as four millimetres nor when changing the settings of the spool-piece
correctors.

The SEY parameter could be inferred for all the arc half-cells by comparing the heat load
measured at 450 GeV with the operational 25 ns beam configuration against e-cloud buildup
simulations. The model built in this way was used to simulate the e-cloud buildup for
different beam configurations as a function of the bunch intensity. The heat load calculated
in this way could be compared against the measurements collected during the experimental
tests, finding very good agreement.
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