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Abstract

Accurate measurements of the focusing properties of an accelerator are essential for proper

operation of a synchrotron, both for the machine protection and for the performance of the

experiment. Measurement of linear optics functions based on turn-by-turn measurements has

been developed continuously in pursuit of more accurate results [1, 2, 3, 4].

Optics functions that describe the focusing properties of the machine can be obtained from dif-

ferent observables: phase and amplitude of the transverse betatron oscillations and the change

of the tune by modulating the current of quadrupoles (K-modulation) [5]. Reconstruction of lin-

ear optics using the phase, in combination with K-modulation, have been the main approaches

for obtaining the � function in accelerators all over the world [3, 6, 7]. Measurements of optics

functions based on the amplitude [8], denoted as � from amplitude, have not been used as

widely as the other methods since it requires accurate beam-position-monitor (BPM) calibra-

tion. BPMs are key elements in accelerator operation, providing essential information about

di↵erent beam parameters that are directly related to the accelerator performance. BPMs are

calibrated before its installation in the accelerator to obtain an accurate conversion from an

induced voltage to the centre of charge position. This calibration procedure can only be per-

formed when the accelerator is in a period of non-activity and does not completely reproduce

the exact conditions that occur during the machine operation.

The studies presented in this thesis have served as improvement of the � from amplitude

approach, �A, and they can be summarized in two groups: developing of the uncertainty

associated to the �-function and mitigation of the BPM calibration factors e↵ects.

First, a study of the error-bar associated with the measured �A-function is introduced using

an analytical formalism that has been contrasted with simulations and experimental results

[9, 10].

Second, a study of the BPM calibration factors based on optics measurements has been devel-

oped as part of this research. Discrepancies observed during the optics measurements at the

Large Hadron Collider (LHC) and the Proton Synchrotron Booster (PSB) between di↵erent

�-reconstruction approaches, show that the impact of the BPM calibration factors on the op-

tics functions was higher than expected from the design values and tolerances. Measurement of

the optics functions allows obtaining extra information on BPM calibration together with its
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associated uncertainty and resolution. This thesis summarizes the development of two di↵erent

techniques to compute the BPMs calibration factors based on optics measurements accurately.

These approaches have been developed using as a test bench the LHC and the PSB, and it is

foreseen to extrapolate them to future accelerators. In case of LHC, the optics developed for

computing the calibration factors only allows to accurately calibrate a limited range of BPMs

located in the vicinity of the experiments denoted as IRs [11, 12].

The implementation of this approach in LHC and PSB is introduced in this thesis. Together

with a summary of the hardware and software upgrades needed for its implementation. In

case of LHC, calibration factors have been implemented in di↵erent machine configurations, in

which the �-function can be measured accurately using the three di↵erent approaches previously

introduced: ��, �A and K-modulation. In LHC IRs BPMs a systematic deviation of the BPM

calibration was observed when reconstructing the �-function using the �A-method with respect

to the results obtained using the �� approach. By compensating the e↵ect of the calibration

factors in the measured �A-function, the average accuracy of the �-function has improved in

a 6% in Beam 1 and 4% in Beam 2 with respect to the direct measured �A-function [12]. On

the other hand, in case of PSB, the validation of the calibration optics has been performed

using the nominal optics used during the routine operations. Calibrating the BPMs using an

optics-based approach has allowed decreasing the �-function error bar, previously computed

using the �� approach, by a factor of three [13].

Abstract

Poder medir de forma precisa las propiedades de enfoque de un acelarador es extremadamente

importante para una adecuada operación del sincrotrón, tanto desde el punto de vista de

proteccioń de los componentes del acelerador como desde el punto de vista del rendimiento de

los experimentos [1, 2, 3, 4].

Las funciones ópticas, que describen las propiedades de enfoque del acelerador, se pueden

obtener mediante distintos observables: fase y amplitud de las oscilaciones betatrónicas que

realiza el haz en el plano transversal, o mediante la medida del tono mediante la modulación de

la corriente en los cuadrupolos (K-modulation) [5]. En concreto, la reconstrucción de la parte

linear de la óptica del acelerador se ha basado durante los últimos años en las medidas de fase y

K-modulation. [3, 6, 7]. Las medidas de la óptica basadas en la amplitud [8] no han sido usadas
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de forma tan extensiva como los otros dos métodos anteriores ya que están afectadas por los

factores de calibración de los monitores de posición del haz (BPMs). Los BPMs son una pieza

fundamental para la correcta operación del acelerador, que deben ser calibrados antes de ser

instalados en el acelerador para, de esta forma, poder obtener una conversión precisa de volaje

inducido a posición del centro de carga del haz. El procedimiento de calibración sólo se puede

realizar cuando el acelerador está en periodo de no actividad y, por lo tanto no reproducen

completamente las condiciones que ocurren durante la operación del mismo.

Los estudios presentados en esta tesis han servido como mejora del método de medida de �

basado en la amplitud de las oscilaciones betatrónicas, �A, se pueden resumir en dos grupos:

desarrollo de las barras de error asociadas a la función � y mitigación del efecto de los factores

de calibración en los BPMs.

En primer lugar, el estudio de la barra de error de la función � se ha realizado mediante desar-

rollo teórico que se ha contrastado tanto con simulaciones como con resultados expermientales

[9, 10].

En segundo lugar, un nuevo método de calibración de BPMs basado en medidas ópticas se

ha desarrollado con el objetivo de completar las actuales técnicas de calibración. Al realizar

medidas ópticas tanto en el Large Hadron Collider (LHC) como en el Proton Synchroton Booster

(PSB), se observó que el impacto de los factores de calibración en las medidas era mayor que el

determinado por las especificaciones. La medida de la óptica del acelerador, concretamente la

función �, permite obtener los factores de calibración de los BPMs junto con su indeterminación

y su resolución. Esta tesis resume el desarrollo de dos técinas que permiten medr los factores

de calibración de forma precisa. Estos métodos se han desarrollado en el LHC y en el PSB y

está previsto que se extrapolen a otros aceleradores. En el caso del LHC, se ha desarrollado

una óptica espećıfica que permite calcuar los factores de calibración de los BPMs situados cerca

de los experimentos (IRs) [11, 12]. La implementación de estos nuevos métodos de calibración

se detalla en la tesis junto con un resumen de los cambios realizados tanto a nivel de hardware

como a nivel de software. En el caso del LHC los factores de calibración se han implementado

en distintas configuraciones donde la función � se puede medir de forma precisa con cualquiera

de los tres métodos previamente descritos: ��, �A y K-modulation. Esta diferencia sistemática

se redujo de media en un 6% en el Beam 1 del acelerador y un 4% en el Beam 2 al compensar

el efecto de los factores de calibración [12, 11]. Por otro lado, en el caso del PSB, la validación
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de la medida de los factores de calibración se ha realizado utilizando la óptica que se utiliza

durante la operación normal del acelarador. Se ha observado que al calibrar los BPMs utilizando

medidas ópticas es posible reducir la barra de error de la función �, calculada anteriormente

utilizando medidas de fase, en un factor tres [13].
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Chapter 1

Introduction

Accelerator science focuses on the study of machines that are used for accelerating, storing
and transporting charged particles using electromagnetic fields. These machines are referred to
as particle accelerators, or simply accelerators. More in detail, one of the goals of accelerator
physics is to describe the dynamics of the particles in an accelerator.

Accelerators have been evolving since the 1930s [18] and high-energy physics research has always
been the driving force behind their development, allowing to reach higher beam energies and
intensities. On the other hand, particle accelerators have been evolving through time as a
consequence of the improvements developed in the fields of particle physics, electromagnetism,
radiofrequency and magnet technology within the last century [19, 20].

Classification of accelerators can be performed according to their geometry- linear and circular
or according to the kind of particles that are being accelerated- leptons or hadrons. Circular
accelerators can be, at the same time, subdivided in two groups: synchrotons or cyclotrons.
This thesis is focused on the study of synchroton accelerators where the distribution of the
magnetic field defines a closed-loop. In a synchrotron the magnetic field which bends the
particle beam into its closed path increases with time during the accelerating process, being
synchronized to the increasing kinetic energy of the particles. Accelerators are not only used
in high energy physics (HEP) but in many other di↵erent fields such as industry, medical
applications and material science research [21]. In case of the HEP, colliders are more extended
than fixed target synchroton allowing to reach higher energy. The beam energy, together with
the type of particles being accelerated will define the machine physics goal. Beam energy has
been increased since the beginning of accelerator science (Fig. 1.1), allowing the discovery of
new elementary particles [22, 23, 24] and to have a complete version of the standard model.
In particular, the LHC is a key accelerator based instrument of study for a wide range of high
energy (HEP) phenomena.

Further and more detailed information of accelerators can be found in [25, 26, 27, 28].

1.1 Transverse beam dynamics

Beam dynamics has been widely covered in many textbooks [25, 26, 27]. This chapter aims
to briefly describe the key terms that are needed to contextualize the work introduced in this

1
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Figure 1.1: Evolution of beam energy as function of time.

Figure 1.2: Frenet-Serret coordinate system.

thesis.

Beam dynamics describes the motion of a charged particle a↵ected by an electric and a magnetic
field. Specific, linear beam dynamics is focused on the e↵ect of dipolar and quadrupolar fields
in the trajectory of the particle. It is necessary to define a coordinate system to describe
the trajectory of a particle. The most commonly used coordinate system is the Frenet-Serret
system, a non-inertial coordinate system that travels with the particle. Particle motion is
described with respect to a reference orbit (x,y,s) as is shown in Fig. (1.2).

In case of a circular accelerator, such as LHC or PSB, charged particles have to be guided to
describe the desired trajectory. Dipolar fields, illustrated in Figs. 1.3, act as a guidance for the
particles. The local radius ⇢(s) can be obtained by combining the forces acting on the beam,
the centripetal force and the Lorentz force:

m�
v2

⇢
= e[~v ⇥ ~B(s)] (1.1)
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where m is the particle mass, v is the particles speed, ⇢ is the curvature radius as shown in
Fig. 1.2, e is the elementary charge, � is the relativistic Lorentz factor defined as � = 1p

1�v2/c2
,

~B is the magnetic flux. Therefore the local bending radius can be expressed in terms of the
magnetic flux density and the particle momentum:

1

⇢(s)
=

eB

p
(1.2)

In real operation, dipolar errors will perturb the designed closed orbit.

Restoring forces, similar to the spring, are needed to adjust the transverse size of the beam.
Quadrupolar field, illustrated in Figs. 1.4 provides the needed restoring force, linearly propor-
tional to this distance from the quadrupole axis. The magnetic field produced by a quadrupole
is given by:

Bx = �gy

By = �gx (1.3)

where g relates the field gradient to its focusing e↵ect. And therefore, the resulting force acting
on the particle is given by:

Fx = evBy = �evgx

Fy = �evBx = evgy (1.4)

The focusing strength of a quadrupole, is defined normalized to the beam rigidity, k:

k =
e

p
g =

ec

�E
g, k[m�2] =

0.2998g [T/m]

�E[GeV]

where � is the ratio between the particle speed and the speed of light v
c
and E is the beam

energy.

The e↵ect of the quadrupole on the beam is comparable to the impact of an optical lens. The
quadrupole focuses the beam when the direction of the force is toward the centre and defocuses
the beam when the force acts in the opposite direction. The restoring e↵ect is only present
in one plane while in the other plane a defocusing force acts on the beam. A combination of
focusing and defocusing forces have to be applied to keep the beam focused on both planes.
Though a quadrupole is focusing only on one plane and defocusing in the other plane, it has
been demonstrated in [29], that a sequence of alternating quadrupoles can have a net focusing
e↵ect on both planes.

A second-order di↵erential equation describes the motion of particle travelling in a lattice
created by quadrupoles and dipoles under the e↵ect of the forces generated by the magnetic
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Figure 1.3: Dipolar magentic field lines. Figure 1.4: Quadrupolar magnetic field
lines.

fields like the harmonic oscillator. This di↵erential equation of motion, for an arbitrary plane
z, x or y, is given by:

z00 +Kz(s) = 0 (1.5)

where the derivative is with respect to the longitudinal coordinate s, i.e. x00(s) = d2x/ds2 and
where kz(s) is an arbitrary function that acts as a restoring force:

Kx(s) =
1

⇢(s)2
+ kx(s) (1.6)

Ky(s) = ky(s) (1.7)

A solution of the equations of motion can be written in a generic form as:

z(s) = C(s)zo + S(s)z0o (1.8)

z0(s) = C 0(s)zo + S 0(s)z0o (1.9)

C(s), S(s) and their derivatives with respect to s, C’(s) and S’(s), describe the transformation
of the coordinates at the position so, (zo, z0o) to the position s (z, z0).

In accelerator physics, the coordinate transformation is often written by using transform ma-
trixes M, which describes the change of particle coordinates.

Transformation matrix M is a right approach for accelerators, assuming that each magnet has
constant magnetic field along the longitudinal direction, i.e., ⇢(s) and k(s) are constants within
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Figure 1.5: Summary of transformation matrixes associated to di↵erent elements.

the magnet length.

Figure 1.5 summarizes the transformation matrix of several magnetic elements, including; a
dipole, a focusing quadrupole, a defocusing quadrupole and a drift.

In an accelerator, these elements are combined, and the transformation matrix is obtained by
matrix multiplication, simplifying the particle tracking calculation. The transformation matrix
for the series of elements becomes the product of the individual matrices.

A particular interesting lattice configuration is the FODO lattice used for focusing beams both
in horizontal and vertical planes.

MFODO = Mfocusing ·Mdrift ·Mdefocusing ·Mdrift (1.10)

Another common combination of magnetic elements is the FBDB (focusing quadrupole-bending
magnet-drift-bending magnet-focusing magnet), a FODO structure where the drift space is
replaced, by a bending magnet.

In circular accelerators, other assumption that can be done is the periodicity in ⇢(s) and k(s),
i.e. Kz(s) = Kz(s + P ) and ⇢(s) = ⇢(s + P ). The equation of motion of a particle in a
accelerator under the influence of periodic forces is called Hill’s Equation and the solutions to
this equation for horizontal and vertical plane are given by:

x =
p
✏x�x cos(�x � �x,o) (1.11)

y =
p
✏y�y cos(�y � �y,o) (1.12)

Where ✏ is the emittance of the beam, �x,y is the � function, which describes the variation of
the oscillation envelope around the ring and �x,y is the betatron phase advance. The betatron
function depends on the particular arrangement of quadrupole and dipole magnets and is illus-
trated in Fig. 1.6. Figure 1.6 also shows the trajectories envelope in a LHC region, given byp
�✏, as well as the closed orbit, particle trajectory and ideal orbit.

Analogously to the beta-function, the gamma-function, �(s), describes the envelope of oscilla-
tions in x0 and y0. The � and the ↵ functions are defined as:
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Figure 1.6: Tracking simulation in LHC Arc12 of a particle undergoing betatron oscillations.

↵x,y = �1

2

d�
x,y

(s)

ds
(1.13)

�x,y =
↵2

x,y

+1

�
x,y

(1.14)

Twiss parameters, ↵(s), �(s) and �(s) at any position s can be obtained by knowing the
transformation matrix and an initial set of values at the location so, E.g. in a drift, twiss
parameters transform as:

2

4
�(s)
↵(s)
�(s)

3

5 =

2

4
1 �2l l2

0 1 �l
0 0 1

3

5 ·

2

4
�(so)
↵(so)
�(so)

3

5 (1.15)

If this drift space of length L⇤ -as the one shown in Fig. 1.7- is long enough, a convergent beam
transform into a divergent beam while the angular envelop x

0
max =

p
✏� stays constant. The

point ! where the beam reaches its minimum size (�⇤) is determined by ↵(!), ↵(!) = 0.

�(L) = �o � 2L↵o + L2�o (1.16)

It can also be described in terms of its minimum value �⇤ and its position ! as:

�(s) =
(s� !)2

�⇤ + �⇤ (1.17)
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Figure 1.7: Schematic representation of a particle in a drift region placed between two
quadrupoles: a focusing (left) and defocusing (right).

Real machines are not operated with single particles but with distributions composed by the
order of 1011 particles per bunch. The distribution of that particle in phase-space defines an
ellipse with area ⇡✏, being ✏ the beam emittance as seen in Fig 1.8. The equation of the phase
space ellipse can be parameterized in terms of ↵, �,� functions and the beam emittance, for an
arbitrary plane z, can be written as:

�zz
2 + 2↵zzz

0 + �zz
0 = ✏. (1.18)

On the other hand, a generic relation between the betatron phase advance and the � function
is given by:

�(s) =

Z s

0

dS

�s
+ �o. (1.19)

It is possible to compute the number of betatron oscillations that the beam performs in one
revolution by extending the integrals to the hole circumference. This quantity is known as tune
as it is given by:

Qx,y =
1

2⇡

I
ds

�(s)
. (1.20)

1.2 Perturbations

Real dipolar and quadrupolar fields present deviations from the ideal field distribution that
directly a↵ect the beam dynamics. The existence of perturbations in the machine causes not
only the tunes but also betatron functions to vary. The deviations of the � function for the
ideal � value is called �-beating and have a frequency of twice the betatron frequency.
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Figure 1.8: Phase space ellipse in the transverse z, z’ plane. Where z represents either x or y.

Purely transverse magnetic fields can be described by:

By + iBx = Bo

1X

n=1

(bn + ian)(x+ iy)n�1 (1.21)

where a
n

refers to the skew multipole components and b
n

refers to normal multipole components

an =
1

B
0

(n� 1)!

@(n�1)Bx

@xn�1

bn =
1

B
0

(n� 1)!

@(n�1)By

@xn�1

(1.22)

where n corresponds to the order of the magnetic field, being n = 1 a dipole, n = 2 a quadrupole,
n = 3 a sextupole, etc. If Eq. (1.21) is evaluated using Eq. (1.3), corresponding to the quadrupo-
lar field, the only non-zero component is b

2

. The a
2

component would become non-zero for 45�

rotated quadrupoles as in this case the horizontal field depends additionally on the horizontal
particle position. Due to imperfections of real magnets, higher-order multipoles occur in every
accelerator and perturb the beam dynamics.

1.2.1 Dispersion

The curvature radius defined by the dipoles depends on the beam rigidity, as shown in Eq. (1.2).
For a constant magnetic flux B particles with smaller momentum will present a larger curvature
radius than the one with the ideal momentum, po. This deviation with respect to the ideal
trajectory is defined by the Dispersion function, D(s), and its contribution to the particle orbit
is given by:
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xdispersion = Dx(s)�,

ydispersion = Dy(s)�, (1.23)

where � = p�p
o

p
o

.

Moreover, under the presence of dispersive e↵ects, the total orbit is given by:

x = xbetatronic + xclosedorbit + xdispersion, (1.24)

y = ybetatronic + yclosedorbit + ydispersion, (1.25)

1.2.2 Dipolar field perturbations

Dipole field errors also contribute to a change in the orbit, and their e↵ect adds linearly to the
dispersion function. The contribution of the dispersion perturbation to the orbit can be studied
as a separate trajectory contribution due to the linearity of the equation of motion. The e↵ect
in the orbit at a position s of a given number of dipolar perturbations distributed across the
accelerator is given by:

z(s) =

p
�(s)

2 sin ⇡Q

X

k

p
�k✓k cos (⇡Q� |�s � �k|) (1.26)

where �k and �k are the values of the �-function and phase-advance at the imperfection location
respectively, and ✓k is the dipolar kick angle. The summation is over individual dipole error.

Primary sources of the dipole field errors are construction errors of the magnets, errors of
magnets, power supplies, a tilt of the dipole magnets, and the feed-down e↵ects of higher-order
magnets.

1.2.3 Quadrupolar field perturbations

In a synchrotron, quadrupole field errors introduce deviations on the �-function due to fluctu-
ations in the strength value, �k. The e↵ect of a thin gradient error can be described by the
transformation Mp:

Mp(so) =


1 0

��k 1

�
(1.27)

where �k [m�1] is the integrated gradient error at a given position so This error will introduce
�-beat given by the expression:

��(s) =
�(s)�(so)

2 sin(2⇡Q)
�k(so) cos(2|�s � �s

o

|� 2⇡Q) (1.28)
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where �(so) and �(so) are the � function and the phase advance function at the position of the
quadrupolar error and �� is the �-beating.

It is important to note that the term (sin 2⇡Q) makes the �-beating diverge at the integer and
half-integer resonances.

The sources of the quadrupole field errors are construction errors of the magnets, errors of
magnets, power supplies, and the feed-down e↵ects of higher-order magnets.

Higher order multipoles

Higher order magnets also a↵ect the linear motion of the particle. When the closed-orbit passes
of-centre through one of these magnetic elements, this can be reinterpreted as a combination
of centred magnets of equal or lower order. For example, an o↵set in a sextupole generates a
dipolar and a quadrupolar field.

1.2.4 Coupling

So far, the motion of the particles has been described separately for horizontal and vertical
planes (x, x0) and (y, y0). In a more realistic operational scenario, the motion in the horizontal
and vertical plane are coupled. Skew-quadrupolar errors and solenoids the primary sources of
the coupled motion.

In the presence of coupling in the machine, the motion can no longer be described by two
independent 2x2 matrices. In this scenario, the transverse linear dynamics may be described
by a 4x4 transfer matrix, M :

M =


P p
q Q

�
(1.29)

where P, p, Q, q are 2x2 matrices. If the motion is decoupled, then p and q vanish.

To first order, linear coupling drives two resonances (Qx + Qy = N) and (Qx - Qy = N).
The magnitude of the transverse coupling is characterized by the coe�cients C� and C+ cor-
responding to the di↵erence and sum resonances respectively.

1.2.5 Tune resonances

Equations (1.26) and (1.28) indicate that certain tune values need to be avoided. Beam will
become unstable for the zeros of the denominator ((sin⇡Q) and (sin 2⇡Q) respectively). Those
conditions are fulfilled for Qx,y = n and 2Qx,y = n with n 2 N.

In a more general case, further resonances can be excited if m
1

Qx +m
2

Qy = n is fulfilled with
(m

1

,m
2

, n) 2 N.
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Figure 1.9: Chromatic aberrations induced by quadrupolar fields.

1.2.6 Chromatic e↵ects

Chromaticity is defined as the change on the tune with the relative deviation from the ideal
momentum. Figure 1.9 shows the variation of the focal length with the beam energy deviation
with respect to the designed value.
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where Q
0
is the first order variation of the tune with the relative momentum deviation, and

is normally referred to as chromaticity. Q
00
, Q

000
, and further higher order terms in the Taylor

expansion are referred to as non-linear chromaticity.

The lowest order chromatic perturbation is caused by a combination of dipolar errors and the
fluctuation of the focal length of the quadrupoles with energy. As in the case of geometric
optics, the e↵ective focal length is inversely proportional to the particle energy.

Chromaticity is corrected by adding a sextupolar magnetic element that compensates the e↵ect
of the quadrupole. These elements apply di↵erent focusing corrections depending on the energy
of the particle, as shown in Fig. 1.10.

1.2.7 Luminosity

For particle physicists, one of the most important parameters is the interaction rate, i.e., the
number of collisions that occur every time counter-rotating beams collide. The extremely low
probability of finding a new high energy physics (HEP) phenomena after a beam collision, leads
to a higher collision rate to increase the available statistics. The interaction rate is related
to two parameters, the beam sizes (�x, �y) and the luminosity L. Luminosity describes the
probability that a collision between two particles, travelling in opposite directions, occur every
time beams collide in the IRs [28]. A simplified equation for luminosity neglecting crossing
angle and hourglass e↵ects [26] is given by Eq. 1.31:
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Figure 1.10: Correction of chromatic aberrations using sextupoles.

L =
1

4⇡

N
1

N
2

fNb

�x�y
(1.31)

where N
1

and N
2

are the number of particles per bunch and Nb are the number of bunches of
the machine, f the revolution frequency and �x, �y and are the transverse beam dimensions.
The luminosity is also the performance figure of merit used in colliders.

1.3 Optics measurements and corrections

Accurate measurements of optics functions- �, ↵, D- are essential for proper operation of a
synchrotron both for machine protection and for the performance. � functions can be obtained
from di↵erent observables: phase and amplitude of the transverse betatron oscillations and
change of the tune by modulating the current of quadrupoles (K-modulation). Reconstruc-
tion of � function using the phase, in combination with K-modulation, have been the main
approaches for obtaining the � function in the LHC. Nonetheless, challenges have appeared in
the � calculation using these two approaches when aiming for smaller �⇤ in the LHC and the
HL-LHC. The third � measurement technique, based on the amplitude [8], has not been used
as widely in the LHC as the other methods since it requires accurate BPM gain calibration.

1.3.1 Optics measurements

Linear optics measurements and corrections are key elements in the operation of present and
future colliders such as LHC [8, 30, 31, 32], its upgrades HL-LHC [33], HE-LHC [34] or the
FCC [35, 36] and electron ligth sources [3, 6]. In the case of colliders, an increase in luminosity
requirements moves the LHC into more challenging operational regimes with lower �⇤. In LHC
strong localized magnetic errors have to be corrected in order to achieve the design value of
the � function at the interaction point (IP) to provide the designed luminosity within the
5% tolerance limits to the main experiments: ATLAS [37], ALICE [38], CMS [39] and LHCb
[40]. These corrections are based on the analysis of turn-by-turn measurements from the beam
position monitors (BPMs) [41, 42, 43, 44] and K-modulation [5, 7, 45, 46].
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Excitation Observable Analysis Parameters Limitations

Betatron Centroid FT � � values
oscillations position SVD cleaning �, ��, �A BPM calibration

Quadrupole Tune Fit Average � at
gradient Fit the quadrupole Tune accuracy

Orbit Orbit Fit parameters to Model
measurements the designed model dependency

Table 1.1: Summary of the optics measurements techniques.

Di↵erent techniques can be used in order to measure optics functions in particle accelerators,
depending on the magnets power supply configuration, their size and their instrumentation [47].
Table 1.1 summarizes some of the most common techniques used for Optics measurements.

Turn-by-turn measurements

Turn-by-turn (TbT) optics measurements are based on measuring betatron motion using the
transverse beam centre of charge position for many consecutive turns at every beam position
monitors BPMs. In order to perform betatron measurements, the beam is excited in the
horizontal and vertical plane, displacing the beam centre of charge in phase space inducing
betatron oscillations that can be recorded by the BPMs. Either external excitation can be
performed one time per cycle, or it can be applied periodically within the same cycle. The
latter has the advantage of adiabatically increasing and decreasing the excitation amplitude,
which prevents to increase the beam emittance [48].

TbT data is then processed using single-value-decomposition techniques (SVD) in order to
decrease the signal noise and then, is transformed into the frequency domain using advanced
algorithms [49]. To clean TbT data, the data is converted into a matrix M with spatial informa-
tion m row corresponding to the number of BPMs and n columns corresponding to the number
of turns. This matrix is decomposed into U and V, describing the spatial and temporal modes
respectively, and a matrix ⌃. ⌃ is an m ⇥ n diagonal matrix of real positive elements, which
are the singular values of M. Modes with small singular values, result of uncorrelated noise
between the BPMs, are removed from the matrix. Turn-by-turn data is again reconstructed by
multiplying the matrix U, ⌃- after being filtered- and V.

Information contained in the frequency spectra, both phase and amplitude, is used for optics
functions reconstruction around the ring. On the one hand, relative phase advances between a
reference BPM and at least two other BPMs allow reconstructing the values of the � functions
at the BPMs. This method, known as � from phase (��), was first used in LEP [1] and has
been further developed in LHC, ALBA and ESRF [2, 3, 4, 6]. On the other hand, the amplitude
of the transverse motion at a given position is proportional to

p
�. �-function reconstruction

approach, based on amplitude measurements, is known as � from amplitude (�A). Nonetheless,
this �-function reconstruction technique is biased by the calibration error of each BPM. The �
from amplitude approach has been used in the past [1, 6, 50, 51], it is currently implemented
as part of the OMC software [43], but it has not been as widely used as �� or �K-modulation.

The main advantage of the TbT measurements is the speed, since the beam excitation combined
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Figure 1.11: Schematic of �� and �A reconstruction.

with data recording, takes only a few seconds for all the BPMs.

Equation 1.12 relates the amplitude of the transverse motion to the beam action 2Jx,y and
�x,y, and by combining the phase advance �x,y in di↵erent accelerator locations, it is possible
to reconstruct both the �-function, ↵-function and �-function.

Both phase and amplitude of the betatron oscillation can be derived by this harmonic analysis
at every BPM position [6, 52]. Figure 1.11 shows a schematic of the reconstruction of optics
functions based on the amplitude and phase of TbT data. On the one hand, relative phase
advances between a probe BPM i at the location where the �-function is being calculated and
two other BPMs, j and k. Using this approach, � function is obtained using:

�i =
✏ijk cot�i,j + ✏ikj cot�i,k

✏ijk
M11(i,j)
M12(i,j)

+ ✏ikj
M11(i,k)
M12(i,k)

(1.32)

where �i,j and �i,j is the phase advance between BPMs, ✏ijk is the Levi-Civita symbol and
Mmn(i, k) are the elements of model transfer matrix between the locations i and j. In [2] it has
been proved that the measurement of the phase, �i,j and �j,k, is not a↵ected by an o↵set of the
beam or a wrong excitation amplitude due to BPM calibration errors. The accuracy of the ��

calculation depends on the value of the phase advance between a pair of BPMs. �� approach
reaches its limitation for values of � in the vicinity of n⇡ as the cotangent becomes infinite at
those points. �� also presents limitations in the performance when �i,j = �i,k [2].

One example of this limitation can be found in colliders where the �-function at the interaction
points reach minimal values, i.e., �⇤ < 40 cm. In those scenarios, the amplitude of the transverse
oscillations recorded in the BPMs closest to the IP increases as the �⇤ decreases, but phase
advance between neighbour BPMs drops to small values. �� approach is very sensitive to errors
for values of the BPMs phase advance close to n⇡.

On the other hand, the amplitude of the transverse motion at a given position is proportional
to
p
�, and this can be used for � measurements. The amplitude, Ai, can also be expressed in

terms of the �-function, �i, and a common observable for all BPMs, the driven action, 2J,

A
i

=
p

2J�
i

. (1.33)

So, therefore, the �A can be obtained using:
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�A
i =

A2

i

2J
(1.34)

Where the action is being computed as the average over all the BPMs of the ratio of the
amplitude at a given BPM and the � function at that position:

2J =

⌧
A2

�

�
(1.35)

Nonetheless, the reconstruction of the � function using the amplitude is biased by the calibration
error of each BPM. In [53] it has been proven that the BPM calibration is independent of the
amplitude oscillations; therefore �A approach does not presents further limitations in very-low
�⇤ scenarios. This method can additionally be used also in the scenarios where the phase
advance is constant around the accelerator �i,j.

Knowledge of BPM calibration factors would allow to accurately measure � function in di↵erent
machine operational scenarios where the performance of other approaches is limited. A more
detailed study of the e↵ects of the BPM calibration factors in the � function calculation is
derived in Chapter 4.

A first attempt of measuring calibration factors was performed in [54]. Later in 2015 [55], a
special LHC optics was studied in order to calculate the calibration of a set of LHC BPMs.
This technique is summarized in Chapter 4 and has been further developed in 2016, 2017 and
2018. Another calibration technique has been developed as part of this thesis for measuring
the calibration factors of the PSB BPMs. The methodology used to obtain the PSB calibration
factors is summarized in Chapter 6.

K-modulation

K-modulation allows to obtain the value of the average � (�K-modulation) at the quadrupoles
placed closest to the interaction points (IPs). The suitability of this method for future acceler-
ators has been studied in HL-LHC, FCC and SuperKEKB [7, 45, 46] where it has been found
that foreseen tune stability might not be su�cient for the good performance of this approach.

K-modulation approach is based on the analysis of the tune change induced by a current
modulation in individually powered quadrupoles that are generally the ones located left and
right to the IP. The relation between these two observables allows obtaining the � function at the
quadrupolar location [56]. The accuracy of this method depends on the power supplies control
and natural tune stability . Accuracy of the �⇤ measurement for LHC and High Luminosity LHC
using K-modulation has been previously studied in [45]. The study concludes that accuracy on
the tune measurement of about 10�5 is crucial in order to control the �⇤ within the tolerance
constraints given by the luminosity. Analysis of the tune stability [57] performed during the
second run of the LHC shows that the tune jitter ranges between 2 ·10�5 and 10�4 depending
on the optics being analyzed. K-modulation is planned to be widely used both in future runs
of LHC and in next-generation colliders [7].
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1.3.2 Optics corrections

Optics corrections are a key element for the optimal operational in accelerators. Optics correc-
tions can be divided into two groups according to the range of quadrupoles involved. Global
corrections cover the most significant part of the accelerator while local corrections are focused
on very strong and localized errors.

Global corrections

Global corrections are computed using a response matrix method. This response matrix,
�!
R -

matrix, relates the di↵erence of the measured �x,y, �x,y, normalized horizontal dispersion [58],
and tunes with respect to the MADX-model, to the strength of all quadrupoles circuits:

(�
�!
�x,�

�!
�y,

��!
��x
�x

,

��!
��y
�y

,

��!
�Dxp
�x

,�Qx,�Qy) =
�!
R�k (1.36)

The required strength �k is computed from the measured optics errors:
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where wi stands for the weights applied to correct the individual optical functions.

Skew quadrupolar corrections are used to correct coupling presented in the machine. In the case
of correction using skew quadrupoles, the R-matrix relates the di↵erence and sum resonance,
and the vertical dispersion to the strength of all skew quadrupoles circuits. The required
strength is computed from the measurement error with respect to the MADX-model:
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where wi stands for the weights applied to correct the coupling and vertical dispersion.

Local corrections

The segment-by-segment (SbS) technique was developed at the LHC for the computation of
optics corrections for local, strong error sources. This method consists of modelling the optics
in a part of the accelerator in between two BPM locations. Phase advance, � and ↵ functions
measured at the BPM locations are used as boundary conditions for solving Hill equation 1.5
using MADx [41, 42, 59]. The optics modelling tool in MADX aims to reproduce the behaviour
of the measured functions in the segment by changing the strength of the quadrupoles located
inside the segment.

Segment-by-segment technique has also been used for computing the optics functions in di↵erent
machine locations, such as the interaction points, the wire scanners and collimators.
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The LHC complex

The Large Hadron Collider (LHC) complex is a chain of accelerators that allows accelerating
particles in di↵erent steps from the source to the Large Hadron Collider (LHC), Fig. 2.1.
Acceleration in di↵erent steps allows having very intense beams optimizing the collective e↵ects
that are dominant at the range of low energies [60]. LINAC4 (2018) [32] injects H� ions with
a energy of 160 MeV. Proton Synchroton Booster (PSB, 1972) [61] accelerate protons to an
energy of 2 GeV and inject the beam in the proton synchrotron (PS, 1959) where the beam is
accelerated to 26 GeV. The last step in the accelerator chain is the super proton synchrotron
(PS, 1976), that accelerate the beam to 450 GeV just before the injection in the LHC [30, 31, 32].

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a 26.66 km twin ring synchrotron collider operated by
the CERN laboratory. Two counter rotating hadron beams are circulated in the accelerator,
and collide at four interaction points (IPs), to provide data for High Energy Physics (HEP)
experimental apparatus: ATLAS [37], LHCf [62], Alice [38], CMS [39], TOTEM [63], LHCb [40],
and MoEDAL [64]. The LHC can be divided into eight octants and consists of eight bending
sections, the arcs, which are separated by eight straight sections. The straight sections also
referred to as insertion regions (IRs), serve a specific purpose such as housing an experimental
detector, beam acceleration, beam collimation and beam extraction. LHC consists of two
beams, called Beam 1 and Beam 2 circulating in opposite directions in separate beam pipes in
the arcs and is a common one in the IRs where they collide. Figure 2.2 shows the LHC lattice
with the names and missions of the di↵erent arcs and IRs. The LHC machine is described in
the LHC design report while the rest of the injectors are described in the LHC Injectors design
report. LHC lattice, including the ARCS and the Insertion regions, are fully described in [30].

2.1.1 Operational cycle of LHC

The operational cycle of LHC has been slightly modified during the second run of the LHC. Be-
fore the beam is injected, the LHC magnets are pre-cycled in order to ensure the reproducibility
of the magnetic fields. Once the set-up process is finished, the beam is injected from SPS at an

17
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Figure 2.1: Schematic of LHC accelerator chain.

energy of 450 GeV. The number of bunches injected depends on the physics studies, fluctuating
from 1 from machine studies to 2048 for runs dedicated to high energy physics. Once all the
bunches are injected in the LHC, the dipoles start ramp-up until they reach the maximum
magnetic field. The next step after reaching maximum energy (Flattop) is to decrease the � at
the interaction points, �⇤. At the beginning of the second run of the LHC (2015), the squeeze
process started at the end of the ramp. Since 2017, this process starts at the beginning of the
ramp [65].

Figure 2.3 shows an schematic of the LHC cycle.



2.2. Protron Synchrotron Booster 19

Figure 2.2: Layout of the LHC illustrating the eight octants. In each octant, the purpose
of its IR is shown. The crossing of beam 1 (blue) and beam 2 (red) is indicated in the four
experimental insertions.

Figure 2.3: Schematic of the LHC cycle, including the energy and �⇤ as a function of time.

2.2 Protron Synchrotron Booster

PSB is a low energy accelerator made of 4 rings stacked on top of each other, allowing to reduce
the space charge related e↵ects [66]. PSB serves not only as PS injector but also delivers beams
to the ISOLDE [67] experiment directly.

PSB was built in 1972 and currently is performing far beyond its original design specifications.
Many improvements have been made throughout the years, allowing the machine to reach higher
and higher intensities, and it now operates at about four times the design intensity. HL-LHC
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[33] will require the intensity to be increased by a further factor of two while maintaining small
beam size and keeping levels of beam loss low. In the frame of the LIU project, its injection
energy will increase from 50 MeV to 160 MeV, which together with the new H� injection will
allow providing a higher intensity to PSB. PSB is expected to double the brightness with Linac4
and 160 MeV injection [61, 55, 68]. All proton beams for the PS are currently ejected at 1.4
GeV, that will be upgraded to 2 GeV in the third run of LHC [69].

The PSB has a circumference of 157 meters and is composed of sixteen nearly identical periods.
The lattice structure is made up of separate bending magnets and focusing magnets, each
period of the lattice contains two bending magnets and a triplet of focusing magnets in an
F-D-F configuration. An overview of the PSB lattice is summarized in Figs. 2.4 and 2.5.

Figure 2.4: Schematic of PSB lattice. Figure 2.5: Drawing of a proto-
type for the focusing magnets in
the CERN PSB. Image from [14].

PSB operates in a supercycle mode composed of several cycles that are repeated periodically.
In each cycle, the beam is injected, ramped up and extracted. Each PSB cycle depends on
whether the beam is delivered to PS, to ISOLDE or it is being used in order to perform beam
dynamics studies. In case the beam is injected to ISOLDE or to PS the extraction is 1.4 GeV
(2 GeV after the LIU upgrade), a more detailed overview of LHC beams in PSB can be found
in [70]. For the optics measurements performed during this thesis, a specific cycle was created
with a maximum energy of 160 MeV, Fig. 2.6. The main goal of this cycle is to have a plateau
of constant energy su�ciently long to perform optics measurements.
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Figure 2.6: Schematic of the 160 MeV cycle used for the beam dynamics studies at PSB. Image
from [15].

2.3 Instrumentation

Special instrumentation is required during optics measurements and corrections. This section
summarises the instrumentation required for the performance of optics measurements both in
LHC and PSB.

The section is divided into beam instrumentation (passive elements) that allows us to measure
di↵erent beam properties and measurement instruments (active elements) that allow us to
excite the beam.

2.4 Beam instrumentation

2.4.1 Beam Position Monitors

Beam position monitors (BPMs), or pick-ups, are one of the critical instrumentation elements in
the operation of an accelerator. Electromagnetic pick-ups serve as a non-destructive diagnostic
device for measuring the centre of charge of the beam. For each plane, two electrodes are placed
face to face forming a monitor [71, 72, 73].

The operating principle of signal extraction can be either based on capacitive coupling (electric
field) or based inductive coupling (magnetic field). This introduction is focused on capacitive
coupling pick-ups since it is the one used in the LHC accelerator complex. In a capacitive-
coupling based BPM, the position is obtained by measuring the di↵erence voltage induced in
the walls of the pick-up of opposite plates (horizontal and vertical). Voltage is then normalised
by adding the voltage induced in both electrodes, in order to have a reading independent of
the beam intensity. This method for obtaining the beam position, known as ”di↵erence over
sum”, reduces the non-linear e↵ects that appear for large beam-o↵set.

The transformation from voltage to a position in the linear approximation is given by:
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x = S
horizontal
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⌃U
horizontal
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vertical
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vertical

+ E (2.2)

where S is a scaling factor derived from the BPM geometry and the properties of its analogue
signal conditioning electronics, E is an error correction accounting for mechanical misalignment
and electrical o↵sets, �U is the voltage di↵erence induced in opposite electrodes and ⌃U the
voltage sum.

Di↵erent BPM geometries are used for di↵erent beam conditions. The two most widely used
BPMs at LHC and its injectors are:

1. Button BPMs. This kind of pick-ups, illustrated in Fig. 2.7 are the most common
BPMs at LHC. They are placed in the arcs where only one beam circulates in the pipe
and measure the beam position with a resolution that depends on beam intensity. In the
case of LHC, the maximum resolution is 50 µm while in case of PSB maximum resolution
is 30 µm.

2. Stripline BPMs. . This kind of pick-ups (illustrated in Fig. 2.8) are needed in case the
travelling direction of the beam also has to be measured.

Beam position monitors operate in two di↵erent modes depending on the measurement inte-
gration time. If the BPM read-out is synchronised with the revolution frequency of the beam,
then the BPMS works in turn-by-turn or trajectory mode [74]. Otherwise, if the position is
averaged over a certain amount of time, then the BPM operates in trajectory mode. Operating
in trajectory mode is exceptionally challenging for analogue electronics. The limitation factor,
in terms of speed, are the analogue to digital converter that gets the beam position from the
BPMs [75].

Figure 2.7: LHC Button BPM. Figure 2.8: LHC Stripline BPM.

2.4.2 Base Band Tune (BBQ)

Continuous, passive monitoring of tune and linear coupling in the LHC is provided by the Base
Band Tune (BBQ) system [76, 77]. BBQ is also used in PSB for continuous monitoring of
the tune. The traditional BBQ is based on the independent filtering of the signal recorded
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by the opposite BPMs plates. By filtering the data, using analogue RC circuits, it is possible
to keep the signal frequencies associated with the betatron motion. An improved version of
this principle uses diodes in the filtering process [78, 79]. The signal recorded by each of the
electrodes is directly converted into a saw waveform by a combination of a diode and an RC
circuit, as shown in Fig. (2.9). The resulting signal conserves the betatron modulations. A
DC filter removes the DC component of the signal, related to the beam amplitude. The two
output, coming from the opposite electrodes, signals are there used as an input of a di↵erential
amplifier in charge of removing the signal component associated with the average beam position.
Finally, the output signal is filtered to attenuate the revolution frequency and its harmonics.
The component of the signal related to the beam amplitude is filtered with the help of a
DC-filter.

Figure 2.9: Working principle of BBQ measurements

The dedicated BPMs implemented used for the continuous tune monitoring are located in IR4
in case the LHC and section 3L1 (next to the BR.QNO3L1) in the case of PSB. A sample of
the signal recorded by the BBQ is shown in Fig. (2.10) for LHC and in Fig. (2.11) for PSB.

Figure 2.10: LHC BBQ Measure-
ments.

Figure 2.11: PSB BBQ measure-
ments

Figure 2.12: Spectra recorded by the BBQ for LHC and PSB.
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2.4.3 Beam Loss Monitors

Beam loss monitors (BLM) are one of the critical systems for machine protection due to the
high energy stored in the beams travelling around the accelerator. The energy stored in the
nominal LHC beams is 362 MJ/beam. At 7 TeV, a deposited energy density of 1 mJ/cm3

could quench a magnet or could cause magnet damage. BLMs are also crucial elements while
performing optics measurements and are used continuously during the accelerator operation
[80, 81].

BLM consists of ionisation chambers, located outside the beam chamber, as shown in Fig. 2.14.
BLMs measure the energy deposition of secondary showers of particles generated by particles
losses inside the vacuum chamber. This measurement allows estimating the amount of beam
that has been lost while performing the excitation.

The losses are integrated with 12-time intervals ranging from 40 µs to 84 s and compared to
threshold values defined in 32 energy ranges (Fig. (2.13)). Radiation tolerances changes within
the accelerator, from one component to other depending on the specifications.

If the BLM detects a certain level of radiation (a trigger), the beam is dumped to prevent
damages in the machine. The beam dumps are the only places to dispose of the beam safely.

Figure 2.13: LHC BLM. Figure 2.14: Radiation recorded
by Beam Losses Monitors.

2.4.4 Beam current monitors

Beam intensity is continuously monitored during the performance of the optics measurements,
and it has great importance, especially while using the AC-dipole as an external excitation
source. Specific configurations of the AC-dipole- driven voltage set too high or if the driven
frequency is too close to the beam tune - could lead to beam losses.

Beam current monitors are one possible instrument for measuring the beam intensity (BCT)
[82]. The principle is based on a transformer where the beam acts as the primary winding (1
turn) and the BCT as a secondary (n turns).
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2.4.5 Emittance measurements

Measuring the emittance of the beam is a key element both for LHC and for PSB [17, 83]. In
the case of the LHC, emittance is required for measuring and control the luminosity delivered
to the experiments. In case of PSB, the primary motivations for measuring the emittance
are: to identify sources of blow-up along the cycle, study the current limitations of the beam
instrumentation and validate di↵erent measurements and data analysis methods.

2.4.6 Roman pots

The Roman Pot is an experimental technique introduced at the Intersecting Storage Ring
(ISR) for the detection of forward protons from elastic or di↵ractive scattering [84]. It has
been successfully employed in other machines like the SPS, TEVATRON, RHIC and DESY.
Roman pots are placed both in the horizontal plane and in the vertical plane. The vertical
pots are needed for the total cross-section measurement and the elastics scattering, while the
horizontal one is a complement to study the di↵ractive physics. The detectors in the horizontal
pot overlap with the two vertical detectors, helping in the alignment with tracks.

2.5 Measurements Instruments

2.5.1 Experimental kickers

The experimental kickers apply a transverse momentum kick that displaces the beam to larger
amplitudes in phase space. This kick induces larger transverse oscillations that can be recorded
by the BPMs.

Di↵erent elements can be used as external kickers. One possible option is normal conducting
dipoles formed from a single turn solid copper that can provide swift response kicks. This kind
of excitation is used both in LHC and PSB. In the case of LHC, kickers are located in IR4
while in PSB they are placed in 12L1.

In the case of the PSB, a new excitation system has been used, the transverse feedback [85, 86].
In regular operation, the main goal of the transverse feedback is to correct possible beam
instabilities. Nonetheless, it can also be used to kick the beam periodically. The system
consists of a BPM that it is in charge of measuring the position of the beam, a feedback loop
that compares the position measured to a reference value and a deflector consisted in four 50
⌦ stripline electrodes opposed in each plane. The pick-up signal and the feedback loop have
to be disconnected from the deflector. In replacement, a function generator is added to the
system to control the deflector. The same configuration can be implemented using the dipolar
kicker, such as in the case of LHC. This operation mode of the kickers will generate forced or
driven oscillations. If the function generator is modulated in time, ramping the voltage from
0 to its maximum and lately, it is ramped down, the emittance increase will be smaller than
in the single kick case. This mode of operation of the dipolar kicker is known as AC-dipole
[87, 88, 48]. The external frequency generator works with a frequency di↵erent to the tune in
order to avoid driving the beam to possible resonances. The driven tune is defined as the ratio
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of the external generator frequency and the beam revolution frequency. The driven frequency
it is set to the closest possible to the natural tune avoiding raising resonances. The beam can
be driven to a steady coherent oscillation by slowly ramping up the amplitude of an AC dipole
oscillating field at a frequency in the vicinity of the beam betatron frequency [48, 89, 90, 91, 92]
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LHC Optics measurements and
corrections

Optics measurements and corrections in LHC are performed with mainly two di↵erent goals.
In the first place, as part of the commissioning of a new optics configuration. In the second
place, optics measurements are also performed, aiming to have a better understanding of the
beam dynamics in the LHC, allowing to improve the operation of the machine.

3.1 Optics measurement procedure in LHC

Optics measurements in LHC are based on two main techniques: turn-by-turn measurements
and K-modulation. A schematic of the measurements procedure is summarised in Fig. 3.1.

Turn-by-turn measurements are performed in first place in order to evaluate the optics in
the machine in the entire accelerator. K-modulation completes the knowledge of the lattice
by measuring the � at the interaction point. Turn-by-turn measurement (approximately five
acquisitions) are performed in order to consider all the possible fluctuations of the machine over
time. On the other hand, K-modulation is performed over many times in order to acquire several
periods of the current modulation. Most common excitation source used when performing optics
measurements is the AC-dipole. It is operated in the following way: voltage applied to the
excitation source is ramped-up from 0 to the maximum voltage in a period equivalent to 2000
turns of the beam in the accelerator. AC-Voltage is then kept constant during approximately
6600 turns and then it is slowly ramped down to 0. In this way, the adiabaticity of the process
is assured. Optics measurements are performed during the AC-dipole plateau where the voltage
is constant. The e↵ect of the AC-dipole in the transverse beam dynamics has been studied in
detail in [93]; it depends on the voltage, the di↵erence between the beam tune and the excitation
frequency. In the case of LHC 6600 turns are acquired and analysed, constrained by the length
of the AC-dipole plateau.

The analysis process of optics measurements starts with noise removal using Single Value De-
composition (SVD) technique (reduce the noise in the measured BPM TbT)[49]. Only the
12 strongest singular modes were kept, since simulations show only marginal improvements for
smaller cuts. Then, cleaned TbT measurements are analysed using advanced Fourier algorithms

27
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[6, 52]. Fourier analysis provides information about the phase and the amplitude measured at
each BPM in the frequency spectrum of TbT data [41, 42, 43, 94]. Amplitude and phase values
of the main spectrum line measured at each BPM location allows computing � and coupling
using the methodology described in Ch.1.

Turn-by-turn BPM data is also used for dispersion measurements, performed by shifting the
frequency of the Radio Frequency (RF) systems in a range of ± 100 Hz for the LHC. Closed
orbit shift is then measured using the zero frequency spectral line of the Fourier analysis, and
then it is normalized by the momentum variation, �p/p in order to obtain the dispersion
function

Dispersion function is measured by performing o↵-momentum measurements that consist of
changing the frequency of the radio-frequency with respect to the nominal value. The same
procedure is followed when analysing o↵-momentum measurements.

K-modulation measurements are performed, in parallel to the turn-by-turn analysis, in the
required interaction points (usually IP 1 and IP 5 but occasionally also in IP 2 and 8) [7, 45,
56, 46].

Once the analysis of K-modulation is completed, � (�� and �K-mod), coupling and disper-
sion measurements are then compared to the values computed using MADX, obtaining the
�-beating, �-beating, Dx-beating and coupling. If the discrepancy between the measurement
and the model is larger than the tolerances, the optics corrections (coupling, local and global
corrections) are implemented in the machine. This process is repeated until reaching the �-
beating, dispersion-beating and coupling tolerances.

Measurement procedure has been slightly modified during the last years to improve the accuracy
and to speed up the acquisitions. Both in LHC and its injectors analysis of optics measurements
is performed using python software that has been continuously developed since the first run of
LHC [43, 95].

Figure 3.1: Schematic of optics measurements and corrections performed in LHC

3.2 Optics corrections in LHC

In LHC, strong localised magnetic errors have to be corrected in order to achieve the design
value of the � function at the interaction point (IP) to provide, the designed luminosity within
the 5% tolerance limits to the main experiments: ATLAS [37], ALICE [38], CMS [39] and LHCb
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[40]. Strong and very localised source of errors, such as the triplet quadrupoles (MQXA and
MQXB), are corrected using the local corrections technique while distributed errors around the
ring are corrected using global corrections. Coupling corrections are also performed in parallel
with the normal quadrupolar corrections based on measured coupling in the entire accelerator
[96, 97].

On the other hand, global corrections are based on the analysis of the response matrix. They
are used in order to correct, separately, the errors in both beams.

Optics corrections are implemented in the machine by modifying quadrupolar strengths associ-
ated with di↵erent power supplies. The set of all the quadrupolar strengths values is known as
a knob. The value of the change in the quadrupolar strength is computed using measurements
and MADX. Optics corrections are implemented by trimming the knobs in the machine in iter-
ative steps using the LHC Software Architecture LSA, a LHC software that allows controlling
the di↵erent hardware parameters.

3.3 LHC 2015 commissioning

During 2013 and 2014 beam was not circulating at the LHC and improvements in several
parts of the hardware were performed during that time. The most relevant upgrade from an
optics point of view was the increase in the length of the AC-dipole excitation that directly
a↵ects the precision of the Fourier transformation. The optics measurements and correction
(OMC) team profit these two years gap to develop the existing software designed both for optics
measurements and for optics corrections [2, 43, 42].

Optics measurements and corrections at injection energy were part of the 2015 LHC com-
missioning and during part of the machine development studies. These measurements were
performed over several shifts during commissioning: 08/04/15, 09/04/15, 10/04/15, 23/04/15
and during machine studies the 28/08/15.

Commissioning at injection consisted of evaluating the latest hardware upgrades that had a
potential e↵ect on the LHC lattice properties and to correct the possible optics errors presented
in the machine.

This process has first been performed at injection energy in order to minimise the risk of
possible damage induced by the beam. The optics measurements and corrections process have
been performed using the tools developed during the shutdown that also needed to be validated.

3.3.1 Optics measurements at injection

First optics measurements

Some hardware and software issues were found while trying to measuring the LHC lattice prop-
erties for the first time after the end of the long period of inactivity. During the first attempts
to measure the optics more than 50% of the BPMs were malfunctioning. Figure 3.2 shows an
example of bad turn-by-turn (TbT) data in both horizontal and vertical planes. Moreover, the
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Figure 3.2: Bad TbT data acquired horizontal at the beginning of the commissioning.

Figure 3.3: Bad TbT data acquired.

beam intensity was not high enough, and the AC-dipole amplitude had to be increased during
the measurements causing some beam losses (especially in Beam 1) and limiting the resolution
of optics measurements.

The problems with BPM acquisition combined with the poor �-beating and coupling resolution,
did not allow us to calculate either �-beating or coupling corrections.

Second beta-beating measurements

During the second day of measurements, some issues were observed when exciting the beam with
the AC-dipole. The vertical TbT data amplitude suddenly increased at turn= 4500, as can be
observed in Figure 3.3. When analysing the data using the FFT (Fast Fourier transformation),
unexpected shifts in the vertical natural tunes were observed.

Later, it was found that the presence of those jumps was related to a bad electrical connection
that probably was leading to an irregular ramp during the AC-dipole cycle that can be observed
in Fig. 3.4 [98, 89].
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Figure 3.4: AC-dipole waveform showing deviations from ideal shape.

Additionally, some TbT data recorded by several BPMs were presenting amplitude spikes
recording values larger than 20 mm when the average amplitude oscillation is below 2 mm.
The BPMs that were recording bad TbT data were rejected for the analysis. Two main pat-
terns were found when analysing the data: on the one hand, the number of BPMs with spikes
increased linearly with the number of turns and, on the other hand, it seemed to be random
which BPMs were a↵ected for a particular measurement. Finally, after some studies, this prob-
lem was identified as an incompatibility between the two possible modes of operation of the
BPM: TbT mode and the average orbit acquisition. The issue was solved by disabling the orbit
mode during the performance of the optics measurements.

3.3.2 Global optics corrections

The goals of this measurement session were to analyse the �-beating measurements using the
AC-dipole as an external excitation source and to implement optics corrections. Driven turn-
by-turn measurements were analysed in order to obtain the �-functions both from �-advance
and from amplitude. Later, measured ��-function together with dispersion was used in order
to compute global corrections parameters. Corrections were implemented following an iterative
process in order to reduce the large �-beating around the accelerator. Global corrections
implemented in the machine in 2012 were used as a guideline for computing the corrections in
2015.

A comparison of the change in the quadrupolar strength applied to a di↵erent set of quadrupoles
is shown in Figures 3.5 and 3.6 both for 2012 and 2015. In these plots, quadrupoles are
divided into three categories: the insertion region quadrupoles (MQMs), the tunning quadrupole
corrector in arc short straight section (MQTs) and the insertion wide aperture quadrupole
(MQYs).
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Figure 3.5: Corrections applied to the MQTs in 2012 and 2015 (Beam 1 left and Beam 2 right).

Figure 3.6: Corrections applied to the MQMs and MQYs in 2012 and 2015 (Beam 1 left and
Beam 2 right).

The e↵ectiveness of the corrections is then evaluated by repeating on-momentum optics mea-
surements. Figures 3.7 and 3.8 show a comparison between measurements before and after
corrections.

�-function measured in 2012 was used as a reference value for the process of iterative corrections.
Figures 3.9 and 3.10 show a comparison between data from 2015 and data from 2012 before
the corrections were applied. Finally, comparisons between data from 2015 and 2012 with
corrections applied are shown in Figures 3.11 and 3.12. The phase method used during this
commissioning was an improved version of the three BPM phase-advance method [1] (used
during the 2012 commissioning). The new method N-BPM is a more sophisticated algorithm
that takes into account both the statistical and systematic errors involved in this measurement
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Figure 3.7: �-beating before and after corrections were applied (2015 Beam 1).

Figure 3.8: �-beating before and after corrections were applied (2015 Beam 2).
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Figure 3.9: �-beating from 2012 and 2015 before corrections were applied (Beam 1).

[2]. The implementation of the new approach makes it possible to combine more beam position
monitor measurements for deriving the optical parameters and, demonstrates to improve the
accuracy and precision significantly. It can be observed how the implementation of the new ��

approach improves the precision of the �-function in overall and especially in the IRS.

Although �A was not used for computing the global corrections, a comparison of the �-function
obtained both �� and �A was performed in order to observe the discrepancies between these two
approaches and the impact of the BPM calibration factors in the measurements. Figures 3.13
and 3.14 show the �-function measured using �A and ��. Two conclusions can be drawn
from these figures: a systematic lower discrepancy between the two approaches is observed at
particular locations of the accelerator coinciding with the location of the interaction points,
and a larger spread of the �-beating is observed when using the �A. Both observations have
been studied in-depth as part of the studies presented in this thesis and are introduced in Ch. 4
and in Appendix A.

3.3.3 �-beating measurements during machine development studies

During the second block of the machine development studies [99] some optics measurements
were made with the primary goal to review the optics measurements at injection. �-beating
measurements performed for both beams are shown in Figures 3.15 and 3.16 observing that the
quality of the optics had not been degraded with time.
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Figure 3.10: �-beating from 2012 and 2015 before corrections were applied (Beam 2).
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Figure 3.11: �-beating from 2012 and 2015 after corrections were applied (Beam 1).

Figure 3.12: �-beating from 2012 and 2015 after corrections were applied (Beam 2).
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Figure 3.13: �-beating after corrections were applied using �� and �A (2015 Beam 1).

Figure 3.14: �-beating after corrections were applied using �� and �A (2015 Beam 2).
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Figure 3.15: �-beating from 2015 MD (Beam 1).

Figure 3.16: �-beating from 2015 MD (Beam 2).
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Figure 3.17: Normalised dispersion for Beam 2 (commissioning 23/04/2015).

Figure 3.18: Normalised dispersion for Beam 1 and Beam 2 (MD 28/08/2015).

3.3.4 Dispersion

Figures 3.17 and 3.18 show the normalised dispersion measured during the commissioning
and the MD, respectively. Normalised dispersion aims to replace dispersion function when
measuring the dispersive e↵ects of the optics. It is an observable introduced in [58] that is not
a↵ected by the calibration factors, and that is explained in detail in Ch. 4. As it can be seen
in Fig.3.17 the normalised dispersion of Beam 1 was not measured during the commissioning.
The dispersion measured during the MD shows large uncertainties values for Beam 1.

A considerable decrease in the error bars amplitude can be observed in Figure 3.18 in Beam 2.
Nevertheless, the measured dispersion of Beam 1 was still showing significant uncertainties.

The large values of the error bars were caused by a movement on the IR8 triplets, which
resulted in drifts of the beam orbit. The large error bars are a direct e↵ect of the orbit drifts.
The quadrupole movements were found to be caused by a problem with a regulation valve of
the cryogenic system. After this issue has been fixed, reliable dispersion measurements and
corrections were possible again in 2016.



40 Chapter 3. LHC Optics measurements and corrections

3.4 Conclusions

The injection commissioning has allowed detecting several problems in hardware devices: BPMs
and AC-dipole and also in the analysis software. This process led to a more stable framework
(software and hardware). The software upgrades in the �-beating calculations together with
a sizeable AC-dipole excitation have led to more precise results. A significant decrease in the
values of the �-beating error bars have been observed implemented the new methodology of
��. Results of optics measurements at injection energy have been shown in this report. �-
beating has been successfully corrected using global corrections. Comparison of �-functions
using two approaches, �� and �A has triggered a detailed analysis of the BPM calibration
factors that are introduced in Ch. 4. Finally, issues in dispersion measurements were spotted
during the LHC commissioning and they were investigated during 2015, allowing to obtain
accurate measurements of dispersion from 2016.
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Optics-measurements-based BPM
calibrations and �A error-bar
calculation

Knowledge of BPM calibration factors would allow to accurately measure � function with �
from amplitude (�A) where the performance of other approaches is limited. In low �⇤ runs,
the resolution required in the IR phase advance measurement is below the resolution that can
be provided by the BPMs placed in the IR. In those scenarios, the amplitude of the transverse
oscillations recorded in the BPMs closest to the IP increases as the �⇤ decreases, but phase
advance between neighbour BPMs drops to small values. �� approach is very sensitive to errors
for values of the BPMs phase advance close to n⇡. In order to obtain the required � accuracy,
the BPM resolution should be ten times smaller than the best resolution achievable by the
LHC BPMs [100]. Therefore, with the current resolution and reconstruction techniques, the �⇤

obtained using phase advance method in the interaction regions (IRs) during the squeeze will
provide unaccurate values that cannot be used as reference values for local corrections [101].

Turn-by-turn BPM data is also used for dispersion measurements, performed by shifting the
frequency of the Radio Frequency (RF) systems in a range of ± 100 Hz for the LHC. Closed
orbit shift is then measured using the zero frequency spectral line of the Fourier analysis, and
then it is normalized by the momentum variation, �p/p in order to obtain the dispersion
function. Dispersion calculation is as well biased by the BPM calibration factors. In [58], nor-
malized dispersion NDx = D

xp
�x

is introduced as a calibration independent observable. Since it is
calculated as a ratio between two calibration-dependent quantities the e↵ect of the calibration
factor is canceled and therefore, the resultant quantity is calibration-independent.

This chapter introduces two optics-based-BPM-calibration methods using � function and dis-
persion measurements: using the ratio between two � functions (

p
��/�A) and the ratio be-

tween horizontal normalized dispersion function times the
q
��
x and the dispersion function✓

Dx/NDx

q
��
x

◆
. Calibration factors are calculated in an optics configuration where the lat-

tice systematic errors a↵ect as less as possible the �� and dispersion measurements. An optics
that is suitable for this method is the Ballistic or Alignment optics, characterized by having
the triplets switched o↵ [102]. This optics configuration was first designed for alignment of the
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Figure 4.1: Top: Average horizontal amplitude �-beating with respect to ��, Bottom: Average
vertical amplitude �-beating with respect to ��. The optics analyzed include injection optics
for four consecutive years. The BPMs have been divided in groups depending on their geometry
according to Tab. 4.1.

magnets placed in the triplet area, the Q1, Q2 and Q3 quadrupoles. An extended version of
this optics, designed in 2017 specifically for BPM calibration studies, has Q4 quadrupoles also
switched o↵ and the dispersion in the IRs 1 and 5 was not matched to zero [103].

The calibration analysis has been focused on the IRs because during the annual LHC commis-
sioning [104, 105] a systematic di↵erence between the results obtained using �� and �A was
observed in this region. An illustration of this systematic deviation is quantified in Fig. 4.1,
horizontal in the top and vertical in the bottom as a function of the BPM type. Di↵erent
types of BPMs are installed in LHC with di↵erent aims. They have been grouped according
to the geometry of the pick-ups in the following categories: standard, enlarged aperture and
stripline as shown in Tab. 4.1 [106]. Standard or cold BPMs are button BPMs, and they are
the most widely used type of pick-ups installed in the LHC arcs. Enlarged aperture BPMs are
also button BPMs with a larger aperture and are placed close to the recombination dipoles.
Stripline or directional BPMs, able to measure the beam direction, are placed in the common
areas where both beams circulate in one vacuum pipe. The average �-beating,

⌦
(�A � ��)/��

↵

between the two techniques, illustrates that a systematic lower value is obtained in the �A with
respect to the �� in the case of stripline and enlarged aperture BPMs.

Name Stripline Enlarged Aperture Standard
Geometry Strip-line Button Button
LHC prefix BPMS BPMSX BPMW BPM
Aperture 61 mm 81 mm 61 mm 49 mm

Table 4.1: Summary of BPM characteristics and location shown schematically on the top.

Figure 4.2 shows the histogram of the ratio
p
�A/�� measured for several optics: Injection,

Flattop, Ballistic [11] a and High-�⇤ [107] for stripline BPMs.
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Figure 4.2: Histogram of the ratio
p
�A/�� in the stripline BPMs measured in 2017 using

di↵erent optics configurations: Injection [16], Flattop, High-�⇤ and Ballistic.

This chapter is structured as follows. Section 4.1 presents a detailed analysis of �A method
together with the study of MADX simulations that estimate the systematic error-bar of the �A

approach. A description of the Ballistic optics together with the calibration factors obtained
using both � function and dispersion are presented in section 4.2. Section 4.3 compares the �⇤

calculated for di↵erent optics configurations with and without applying the calibration factors
and compares these results to the results obtained with the �� and the �K-modulation approaches.

4.1 Optics measurements in LHC: Methods and limita-
tions.

4.1.1 �-from amplitude analysis

LHC turn-by-turn optics measurements are based on the analysis of AC-dipole driven oscil-
lations which can be observed in the BPMs [93]. This data is post-processed using Fourier
transformation methods in order to obtain the amplitude and phase of each spectral line [108].
These values are later analyzed for the reconstruction of the di↵erent optics parameters. Linear
optics studies are especially focused on the analysis of amplitude and phase corresponding to
the main line of the spectrum, associated to the driven tune. For the ith BPM, ideal amplitude
and phase are related to the beam position, �A,D

i through:

xi, yi(N)D = AD

x,y,i sin(µ
D

x,y,i

+ 2⇡QD

x,y

N), (4.1)

where AD

x,y,i, µ
D

x,y,i and QD
x,y are the amplitude, the phase and the tune of the driven motion

respectively. The amplitude, AD

x,y,i, can also be expressed in terms of the driven � function,
�D

x,y,i, and a common observable for all BPMs, the driven action, 2JD

x,y,

AD

x,y,i =
q
2JD

x,y�
D

x,y,i. (4.2)
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In order to simplify the equations, the subindex x and y are omitted in the following. Since
measurement of the oscillation amplitude is biased by the individual BPM calibration factors,
Ci, measured amplitude, AD,meas

i , deviates from Eq. (4.2) as:

AD,meas

i = CA

i

q
2JD�D

i . (4.3)

The amplitude of the driven transverse excitations, AD,meas

i , is a direct measurement obtained
from the Fourier analysis of the transverse oscillations and is the basis for the �A analysis.

In order to obtain the value of the action induced by the AC-dipole, it is necessary to normalize
the square of the amplitude of the transversal excitations, (AD,meas

i )2, by the �D

i function. This
value can be obtained in two ways, using either the measured ��,D

i or the model �model,D

i given
by MADX [109]. The average of the product of the action times the square of the individual
calibration factors can be expressed regrouping the terms in Eq. (4.2) as:

1

N

NX

i=1

�
CA

i

�
2

2JD =
1

N

NX

i=1

⇣
AD,meas

i

⌘
2

�D

i

, (4.4)

where N is the number of BPMs.

From Fig. 4.1 it can be seen that the discrepancies between the two approaches - �� and �A- is
di↵erent for the BPMs placed in the arcs than for the BPMs placed in the IRs, especially the
stripline BPMs. In order to minimize the e↵ects of the calibration factors, the summation is
restricted to a subest of N0 BPMs corresponding to the LHC standard BPMs. Equation (4.4)
can be rewritten as:

1

N0

N

0X

i=1

�
CA

i

�
2

2JD =
1

N0

N

0X

i=1

⇣
AD,meas

i

⌘
2

�D

i

. (4.5)

In order to simplify the notation, the average of the product of the action times the individual
calibration factors square will be denoted as calibration weighted action given by:

2JD

C = (CA

i )
22JD =

1

N0

N

0X

i=1

⇣
AD,meas.

i

⌘
2

�D
i

. (4.6)

Once the calibration weighted action is calculated, the driven �-function at a given BPM, �A,D

i ,
can be computed by normalizing the amplitude by the driven action

�A,D

i =
(AD,meas

i )2

(CA

i )
22JD

=
(AD,meas

i )2

2JD

C

. (4.7)

Equation (4.7) can be expressed in terms of the ideal unknown �A,D

i function as:
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�A,D

i =
(CA

i )
2�D

i

(CA)2
(4.8)

which shows that the �A,D

i calculation is a↵ected by a factor (CA

i )
2/(CA)2, i.e, the standard

BPMs calibration factors also have an impact in the �A,D

i function calculation.

In order to obtain the lattice � function, �A

i , the e↵ect induced by the AC-dipole in the
measured amplitude has to be compensated. This compensation is based on the phase advance,
�i)AC-dipole

, between the AC-dipole and the ith BPM as:

�A

i =
(CA

i A
D

i )
2

2JD

C

1 + �2 + 2� cos(�i)AC-dipole

)

1� �2
(4.9)

where � is given by the tune separation, � = sin[⇡(Q
d

�Q)]

sin[⇡(Q
d

+Q))]

and �i)AC-dipole

is the phase advance

between the BPM i and the AC-dipole [93]. The following section studies the �A

i uncertainties,
��A

i

.

Action uncertainty analysis �
2JD

C

for �A calculation

The action calculation, 2JD,�
C , using a previously computed � function, �D,�

i , based on the
measured phase advance between two BPMs, ��i,j, at the position i, is given by:

2JD,�
C =

1

N0

N

0X

i=1

�
CA

i A
D

i

�
2

�D,�
i

. (4.10)

In the past, action calculation 2JD

C was computed using a model value provided by MAD-X
-�D,model

i - instead of �D,�
i . A study of the error introduced when using �D,model

i as reference value
is introduced in Appendix A.1. This study includes both analytical studies and simulations
and concludes that the average �-beating, defined as the relative di↵erence between the �D,�

i

and �D,model

i , increases quadratically with the lattice magnetic errors. Because of that, �D,�
i has

been chosen as the reference value for the action calculation in the LHC. On the other hand,
in accelerators where the �D,�

i cannot be accurately measured, such as in the PSB, �D,model

i

replaces �D,�
i in the action calculation.

Calibration factors are a source of error present in the action calculation, and they are a chal-
lenging limitation for the �A method. This section focuses on the calibration factors associated
with the button BPMs since the action calculation is averaged only over this kind of BPMs.
Figure 4.3 shows that the calibration factors, estimated using the ratio

p
�A/��, follow a

Gaussian distribution for two optics- Flattop and Ballistic- with a spread �(CA).

The e↵ect of the individual calibrations in the action calculation can be further studied splitting
the calibration factors CA

i in two terms: an average term CA and an individual spread term
fCA

i as CA

i = CA + fCA

i .

Equation (4.10) can be simplified by denoting 2JD,�
i =

(AD

i

)
2

�D,�

i

.
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Figure 4.3: Histogram of the ratio
p
�A/�� in the ARC BPMs measured in di↵erent optics

configurations.

2JD,�
C ⇡ 1

N0

N

0X

i=1

⇣
CA + fCA

i

⌘
2

2JD
i ⇡

⇡ 2J
D,�

C +f2J
D,�

C (4.11)

Additionally, Eq. (4.11) has been regrouped in two terms: a term 2J
D,�

C representing the average

value of the action over all the button BPMs and a second term f2J
D,�

C that express the spread
introduced in the action calculation calibration factors:

2JD,�
C =

CA

2

N0

N

0X

i=1

2JD,�
i +

1

N0

N

0X

i=1

2JD
i
fCA

i

2

⇡ CA

2

N0

N

0X

i=1

2JD,�
i +

�2(CA)

N0

N

0X

i=1

2JD,�
i

⇡
⇣
CA

2

+ �2(CA)
⌘ 1

N0

N

0X

i=1

2JD,�
i (4.12)

f2J
D,�

C =
2CA

N0

N

0X

i=1

2JD,�
i
fCA

i (4.13)

2J
D,�

C is a↵ected by the average calibration factor, CA

2

and the square of this spread. An
estimation of the upper limit of the standard BPM calibration factors spread can be obtained

computing the standard deviation of the ratio
q

�A

��

. Figure 4.3 illustrates the distribution of

the measured ratio
q

�A

��

for all the standard BPMs. The relative spread of the action,
�(2JD,�

C

)

2JD,�

C

,
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can be estimated by Eq. 4.13.

�(2JD,�
C

)

2JD,�
⇡ 2�(CA). (4.14)

The relative error-bar, �(2JD,�
C

)/2JD,�
C

, of the action computed averaging over the N0 button
BPMs is given by the error of the average:

�(2JD,�
C

)

2JD,�
C

=
�(2JD,�

C

)p
N0 � 1

⇡ 2�(CA)p
N0 � 1

⇡ 0.2%. (4.15)

�A uncertainties analysis

Reconstruction of � function using the amplitude of the transverse oscillations is a↵ected by
uncertainties on di↵erent parameters: natural tunes (Q

x,y

), driven tunes (QD

x,y

), phase advance
between the AC-dipole and the ith BPM, �i)AC

, amplitude fluctuations between BPMs due to
the calibration factor spread and the action calculation 2JD,�

C

.

The natural tune uncertainty is given by a combination of the BBQ [110] system accuracy and
by its stability as a function of time. This stability has been analyzed for several di↵erent optics
in [57] concluding that in average the natural shift observed during the measurements fluctuates
in a range between 2 ⇥10�5 and 10�4. Tune stability directly a↵ects the compensation of the
driven motion, since the di↵erence between the driven tune and the natural tune is assumed to
be constant within a set of measurements. The analytic calculation of the tune error propagation
in the � function can be found in Appendix A.2. In the case of Ballistic, the fractional part
of the tunes are Q

x

= 0.28 and Q
x,D

= 0.268 and Q
y

= 0.31 and Q
y,D

= 0.325, the relative
�-uncertainty is given by:

��A

x

����
�
Q

⇡ �A,D

x,i

⇥ 9.4�
Q

x

, (4.16)

��A

y

����
�
Q

⇡ �A,D

y,i

⇥ 9.1�
Q

y

. (4.17)

Equations (4.16) and (4.17) allow to estimate a systematic e↵ect of the tune uncertainty in the
�A-error (��A). It can be seen that the tune error �Q

x,y

gets amplified approximately 9 times
in the �A-calculation.

On the other hand, the phase advance and the amplitude uncertainty are estimated during
the turn-by-turn measurement analysis, by using single-value-decomposition (SVD) technique.
It has been found that for amplitude excitation of approximately a maximum 2 mm peak to
peak and for 6600 turns, the error introduced by the �-advance between the AC-dipole and
the BPM location, �i)AC

in Eq. (4.9), and the amplitude error in the �-function calculation is
approximately 0.05% and therefore, these two error-sources have been neglected.

The error introduced by the action calculation 2JD,�
C

will propagate to the �A:
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��
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�x,i

����
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=
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2JD,�
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+ 9.4�
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, (4.18)

��
y,i

�y,i

����
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C

=
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2JD,�

C

2JD,�
C

+ 9.1�
Q

y

. (4.19)

The number of turns available for the Fourier analysis is limited by the length of the exter-
nal excitation. Since the AC-dipole cannot produce longer excitations, the amount of data is
increased by exciting the beam a number of times, Nacq., and by combining the di↵erent ac-
quisitions in order to obtain a single �-value per BPM. In case of the �A method, the final �A

i

value at a given BPM is calculated as an average over the number of measurements acquired,
Nacq.:

⌦
�A

i

↵
=

1

N
acq.

N

acq.X

j=1

�A

i,j. (4.20)

In this case, the error introduced by the machine fluctuation is given by the standard deviation
of the acquisitions �A

i . This standard deviation also cover the random component associated
to the tune fluctuations.

��A

i

|
acq

=
1

N
acq

vuut
N

acqX

j=1

(�A

i,j � h�A

i i)2. (4.21)

The total �A-error, ��A

i

, will be therefore given by the combination of two sources of errors:

��A

i

|
tot

=
q

(��A

i

|
2JD,�

C

)2 + (��A

i

|
Q

)2 + (��A

i

|
acq

)2. (4.22)

4.1.2 Dispersion measurements

Another optics function that can be used for optics-based-BPM-calibration is the dispersion.
The dispersion is measured by taking the average orbit of the turn-by-turn data at each BPM
position. Changing the radial steering, results in a change of the closed orbit due to dispersion,
�COx,i:

�COx,i =
�p

p
Dx,i. (4.23)

Dispersion is then calculated at every BPM by a polynomial fit of the measured closed orbit
over various momentum values of �p/p. On the other hand, the momentum deviation �p

p
is

computed by using the dispersion predicted by the MADX model and the closed orbit a↵ected
by the calibration factor CA

i as
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�p

p

meas

=
Dmodel

x,i CA
x,i�COx,i

(Dmodel

x,i )2
= CA

�p

p
. (4.24)

The �p/p calculation is based on the assumption that the average of the product of the disper-
sion predicted by the MADX model, times the dispersion-beating �D is 0, independently, of
the rms �-beating present in the machine. MADX simulations, including di↵erent quadrupo-
lar errors, have been performed using Ballistic configuration, obtaining an average value that
fluctuates around zero, as shown in Fig. 4.4.

Figure 4.4: Average dispersion-beating times model dispersion as a function of the rms �-
beating.

Closed orbit measurement is also a↵ected by the individual BPM calibration factors biasing
the dispersion calculation:

Dmeas

x,i =
CA

x,i�COx,i

�p/pmeas

⇡ CA

i �COx,i

CA�p/p
. (4.25)

In [58] normalized dispersion is introduced as a calibration independent observable, defined as
the ratio NDx = D

xp
�
x

. The normalized dispersion value can be computed using the weighted

arithmetic mean of the ratio COmeas.

x,i /Ameas.

x,i over the number of acquisitions, using the relative
momentum deviation �p/p as individual weights. The behaviour of the ratio between the ideal
average normalized dispersion over the BPMs and measured average normalized dispersion
over BPMS, RND = NDmodel

x /NDx, versus the rms beta-beating for many machines with
random errors is also studied in [58] concluding that there is no dependency between these two
quantities. The maximum deviation of the average NDx from the design value is below the 1%
level. Therefore, it allows to accurately restore unknown global factors in the measurements of
NDx. The horizontal normalized dispersion at a BPM i

NDx,i =
1⌦

CA
x,iAx,i

↵
⌦
RND|�p/p|CA

x,i�COx,i

↵

h|�p/p|i , (4.26)
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where the average is performed over the number of acquisitions N
acq

, note that the average
normalized dispersion in the vertical plane, NDy, is 0 and therefore this measurement is only
done in the horizontal plane.

4.1.3 Optics based calibration factors

Optics based calibration factors are computed as the ratio between two di↵erent optics mea-
surements, ��

i and �A

i and dispersion Dx and NDx,

CA

�,i =

s
�A

i

��
i

=
CA

iq
(CA

i,ARCS

)2
. (4.27)

CA
D,x,i =

Dmeas

x,i

NDmeas

x,i

q
��
i

=
CA

x,i

CA
x

. (4.28)

The main limitation of the dispersion method comes from the fact that only the calibration
factors in the horizontal plane can be computed since normalized dispersion is only computed
in the horizontal plane.

4.2 Ballistic optics

Ballistic optics, the optics used for measuring the BPM calibration factors, is described in this
section. In this special optics configuration, the triplet is switched o↵. This set of magnets
located in IR1 and IR5 are common to both beams. Switching o↵ the focusing system presents
some challenges for the machine operation that have to be taken into account. The main
limitation comes from the large drift generated in the segment between the quadrupoles, leading
to large values of the � function in the interaction regions (IR1 and IR5).

Figure 4.5 shows the quadrupolar strength of 2016 (top) and 2017 (bottom) Ballistic optics.
Magnets placed to the left of the dotted lines in Fig. 4.5 corresponds to the magnets that
are switched o↵ (triplet and Q4). By switching o↵ the quadrupole Q4, the drift region is
extended and so, the region of calibration. These extra BPMs that have been calibrated using
the latest Ballistic configuration will be useful for the future measurements in HL-LHC since
they will be close to the crab cavities [111], which also require tight optics control. In the
latest configuration, designed explicitly for optics-based-calibration calculations, the value of
the dispersion is not zero in the IR1 and IR5, and therefore can be used as an alternative
method for computing the BPM optics-based calibration factors.

Figures 4.6 and 4.7 show the design � function in horizontal and in vertical plane as well as
the dispersion in the horizontal plane used in 2016 (top) and 2017 (bottom) in IR1 and IR5.

A specific preparation is required before the start of the optics measurements. In order to
minimize the remanent magnetic field in the triplet, a process called degaussing is usually used.
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Figure 4.5: Power supplies strength in the IR1 in 2016 (top) and in 2017 (bottom). The IR5 is
equivalent.

Figure 4.6: Comparison of the horizontal model �, vertical model � function and dispersion for
the IR1: top 2016 and bottom 2017 (Beam 1).

This consists of excitation to a very high positive value, followed by progressively decreasing
magnitude of the field, while alternating its sign. This procedure was applied to the triplet mag-
nets at the beginning of the measurements to reduce the remaining field, with two limitations.
As the primary power converters are single-polarity, the current cycle was only performed on
the positive sign and a compromised was found reducing the number of cycles to three, due to
the long-time needed for ramping up and down the magnets [11].

Ballistic optics measurements have been performed in three consecutive years: 2015, 2016,
2017. The optics configuration was not the same for all the years. In 2015, due to technical
issues, measurements were only performed at injection energy (450 GeV) [11]. Thanks to the
promising results obtained in 2015, optics measurements were repeated in 2016 using the same
Ballistic configuration, this time at flattop energy.

The main reason for measuring the BPM calibration factors in consecutive years was to evaluate
the improvements performed in the BPMs during the yearly shutdown and to have the most
recent value of the calibration factors commissioning. During the extended end of the year stop
in 2016, several improvements were performed in the BPM electronics regarding minor software
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Figure 4.7: Comparison of the horizontal model �, vertical model � function and dispersion for
the IR1: top 2016 and bottom 2017 (Beam 2).

and several hardware problems, such as comparator thresholds [112].

Studies presented in this chapter are focused on the calibration factors measured at high-energy
in 2016 and 2017 and their application to several di↵erent optics measurements during 2017
and 2018.

4.2.1 Ballistic optics corrections

During the last set of measurements performed in 2017, the rms �-beating in the arcs was
kept bellow 5% for both planes and beams. On the other hand, it is essential to correct �-
beating in the IR in order to have the most accurate values of �� and therefore, accurate values
of the calibration factors. Local corrections are based on the analysis of the phase advance
propagation in the IR [41]. If a significant deviation is observed in the phase with respect to
the model, i.e. phase-beating, the strength of the IR quadrupoles (in this case Q5, Q6 and Q7)
are modified in order to compensate this phase advance deviation. Figures 4.8 and 4.9 show the
phase advance measured in the IR1 before (blue) and after the corrections (orange) for Beam
1 and Beam 2 respectively.

During normal optics measurement procedure, � function is measured several times for both
beams. To compute local or global corrections and secondly to validate the e↵ectiveness of the
corrections. After the first measurements, local corrections were implemented in the machine by
changing the strength of the quadrupoles Q5 and Q6 in the interaction region 1 with the main
aim to decrease local errors of the IR1. Table 4.2 summarizes the local corrections performed
in IR1. The e↵ectiveness of the local corrections have been summarized in Tabs. 4.3 and 4.4
RMS �-beating in the interaction region was decreased in IR1 in both beams while �-beating
in the arcs remained similar.
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Figure 4.8: Comparison of the phase (��) in IR1 measured in 2017 for Beam 1: Horizontal
plane (horizontal) and vertical plane (bottom).

Figure 4.9: Comparison of the phase (��) in the IR1 measured in 2017 for Beam 2: Horizontal
plane (horizontal) and vertical plane (bottom).

4.2.2 Ballistic optics measurements

Figure 4.10 shows the � function measured using the �� and �A approaches. The schematic of
the lattice of the IR is placed in the top of both plots while measurements performed in 2016
and 2017 are shown in the top and bottom figures respectively. A comparison of the horizontal
and vertical � function obtained using �� and �A approaches for IR1 and IR5 is shown in
Figs. 4.10 and 4.11 respectively. These comparisons are focused on the IR area in between the
two Q4 (left and right) in order to see the di↵erence between the two � approaches.

The quadrupolar components due to magnetic imperfections of the MBXW dipoles could also
a↵ect the �-function in the interaction region. These errors have been simulated using the
measured values from WISE [113] obtaining a negligible deviation of a 0.005%.
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Circuit � k k nominal Correction
(10�5 m�2) (10�3 m�2) (%)

kq5.l1b1 -2.3 -2.97 0.77
kq5.l1b2 3.4 3.8 0.90
kq5.r1b1 3.1 3.1 1.0
kq5.r1b2 -2.5 -3.6 0.70
kq6.l1b1 2.0 5.8 0.34
kq6.r1b1 -3.4 -5.7 0.60
kq6.r1b2 3.5 5.9 0.60

Table 4.2: Local corrections implemented in IR1.

Beam 1 Beam 2

Horizontal Vertical Horizontal Vertical

rms ��
�
(%) 4.1 4.3 5.1 3.9

Table 4.3: Rms �-beating before local corrections.

As can be seen in Figs. 4.10 and 4.11 the values given by the �A approach are systematically
lower than the values given by ��. The discrepancy between the two methods is attributed to
a miss-calibration of the BPMs. Beam 1 has been used as an illustrative sample since �� and
�A measured in Beam 2 follow the same behaviour

Figure 4.12 shows the measurement of the dispersion function in IR1 in 2017 using calibrated-
dependent approach (Dx) and the calibrated-independent method (NDx

p
��). Red dots show

the dispersion measurement biased by the calibration factors Eq. (4.25), while blue dots show
the calculation of the dispersion function based of the normalized dispersion, Eq. (4.26). Dis-
persion functions have only been used for computing the calibration factors in Beam 1 since
the dispersion function in Beam 2 reaches minimal values inside the IR1 and IR5. For values
of dispersion in the vicinity of 0, their associated error-bar fluctuates between 10% and 40%.

Dispersion function in a drift shows a linear dependence with the longitudinal position. A first-
order polynomial equation can be fit to measured horizontal dispersion in the BPMs placed
within the drift region that is not a↵ected by dipolar fields. The results of a linear fit are
illustrated in Figs. 4.12 and 4.13 corresponding to the IR1 and IR5, respectively.

The error bars of the dispersion measurements are dominated by the statistical errors showing
that the current accuracy in the dispersion calculation is poorer than the one obtained in the
� reconstruction.

Beam 1 Beam 2

Horizontal Vertical Horizontal Vertical

rms ��
�
(%) 4.3 3.5 4.8 3.5

Table 4.4: Rms �-beating after local corrections.
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Figure 4.10: Parabolic fit of �� measured in 2016 (top) and 2017 (bottom) in horizontal plane
in IR1 Beam 1.

Figure 4.11: Parabolic fit of �� measured in 2016 (top) and 2017 (bottom) in horizontal plane
in IR5 Beam 1

4.2.3 Calibration factors 2016 vs 2017

A comparison between the calibration factors calculated in 2016 and 2017 is introduced in this
section. This comparison has been separated by IR and plane and it is shown in Figs. 4.14
and 4.15. This comparison is merely illustrative since the improvements performed in the
BPMs involving both software and hardware do not allow to have a direct comparison of both
measurements. Additionally, a histogram of the calibration factors and their uncertainties for
both beams is shown in Figs. 4.16 and 4.17. From Fig. 4.17 it can be observed that the average
calibration factor uncertainty is approximately 0.5%.
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Figure 4.12: Dispersion calculated in 2017 using calibration dependent vs calibration indepen-
dent approach (IR1, Beam 1).

Figure 4.13: Dispersion calculated in 2017 using calibration dependent vs calibration indepen-
dent approach (IR5, Beam 1).

4.2.4 Calibration factors 2017: � and dispersion.

Figure 4.18 compares the horizontal calibrations factors obtained using the two methods previ-
ously described. Each point represents the calibration factor measured at a given BPM using
the � method and the dispersion approaches. A linear fit of the calibration factors CA

�
x

as
a function CA

D
x

, with equation y = (0.998 ± 0.002)x, shows that the values are compatible.
Calibration factors CA

D,i

accuracy, fluctuates between 2% and 10% for both planes in Beam 1
while for Beam 2 it reaches values up to 80 % for BPMs placed in areas where the dispersion is
close to 0 and therefore they have not been studied in detail. The accuracy of the calibration
factors based CA

� fluctuates between 0.3% and 1%.
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Figure 4.14: Comparison of calibration factors measured at 6.5 TeV in 2016 and 2017 (IP 1,
Beam 1).

Figure 4.15: Comparison of calibration factors measured at 6.5 TeV in 2016 and 2017 (IP 5,
Beam 1) for horizontal (top) and vertical (bottom) planes.

4.3 Applications of the calibration factors to other op-
tics.

Calibrated BPMs could allow obtaining accurate �⇤ measurements and, in general, the �-
function in the interaction regions in the scenarios where the other methods present limitations.
Inverse calibration factors are directly applied to the main spectrum line of the turn-by-turn
measurements in the frequency domain.

This section summarizes a comparison of the values obtained using the � from amplitude
method before and after re-calibrating the BPMs. Di↵erent optics configurations that have
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Figure 4.16: Histogram of the calibration factor for Beam 1 and Beam 2 in 2016 and 2017 for
horizontal and vertical planes.

Figure 4.17: Histogram of the calibration factor uncertainty for Beam 1 and Beam 2 in 2016
and 2017 for horizontal (top) and vertical (bottom) planes.

Figure 4.18: Calibration factors using � from amplitude vs calibration factors obtained using
dispersion (Beam 1)

been used in order to validate the re-calibration process are listed below, grouped according to
the reference value, �� or �K-modulation:
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• Optics with large �⇤ (�⇤ > 1 m) where �� can be used as a reference value. These optics
are: Flattop, Injection and High-�⇤ run. Figures 4.19 and 4.20 show a comparison of the
�-beating of the �� and �A measured at the stripline BPMs placed in the IRs 1 and 5
before and after compensated the calibration factors. A summary of the properties of
these distributions is presented in Tab. 4.5 average

�
(�A � ��)/��

�
and its associated

spread. From both Figs. 4.19 and 4.20 and Tab. 4.5 it can be observed that the average
of the calibration e↵ects has been compensating when applying the calibration factors.
Additionally, the spread of the distribution has been slightly reduced after calibrating the
BPMs using the calibration factors computed with the Ballistic optics. The theoretical
spread of the �A/�� ratio has been analytically deduced in Appendix A.4. A larger spread
is expected in the non-calibrated ratio since the contribution of the calibration factors in
the stripline BPMs is larger than the relative error-bar of the calibration factors computed
in Ballistic optics. Additionally, the contribution of the �� error to the spread a↵ects both
the ratio �A/�� and �A,calibrated/��.

• Low �⇤ runs where �K-modulation can be used as a reference value. Several runs of low
�⇤ have been performed in the last two years: �⇤= 30 cm and �⇤= 40cm in 2017 and
�⇤= 25 cm and �⇤= 30 cm in 2018 [114], [115]. Figures 4.21 and 4.22 show a compari-
son of the �-beating of the �K-modulation and �A measured at the stripline BPMs placed
in the IRs 1 and 5 before and after compensated the calibration factors. A summary
of the properties of these distributions is presented in Tab. 4.6, including the average�
(�A � �K-modulation)/�K-modulation

�
and its associated spread. In this case the analysis of

the spread of the �-beating distribution over the BPMs has not been analytically stud-
ied due to the low number of samples. A shift in the average �-beating has also been
observed after compensating the calibration factors. Calibration factors has been success-
fully implemented in Beam 1 where the average �-beating between the two approaches is
-0.9 %. Nonetheless, a remaining -4.7% is observed in Beam 2 and will required further
investigation.

Figure 4.19: Histogram of �-beating before and after calibration using �� as reference values
in horizontal and vertical plane measured in several optics: Injection and Flattop during 2017
and 2018 (Beam 1, horizontal and vertical plane, IR1 and IR5).
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Figure 4.20: Histogram of �-beating before and after calibration before using �� as reference
values in horizontal and vertical plane measured in several optics: Injection and Flattop during
2017 and 2018 (Beam 2, horizontal and vertical plane, IR1 and IR5).

Table 4.5: Summary of the main parameters associated to the distributions
�
�A � ��

�
/�� and�

�A,cal � ��
�
/��.

Not calibrated Calibrated
Beam 1 Beam 2 Beam 1 Beam 2

(�A,cal � ��) /�� (%) -6.9 -7.1 -0.2 -1.8
�
�
�A,cal � ��

�
/�� (%) 4.0 3.1 2.9 2.9

Figure 4.21: Histogram of �-beating before and after calibration before using �K-modulation as
reference values (Beam 1).

4.4 Conclusions

BPM calibration factors have been computed for the first time using measured optics functions.
This method, denoted as optics-measurement-based BPM calibration, is based on the analysis
of two di↵erent optics functions: �-function and dispersion. A dedicated optics configuration,
known as Ballistic optics, has been developed for these studies. In this optics, a drift space
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Figure 4.22: Histogram of �-beating before and after calibration before using �K-modulation as
reference values (Beam 2).

Table 4.6: Summary of the main parameters associated to the distributions�
�A � �K-mod

�
/�K-mod and

�
�A,cal � �K-mod

�
/�K-mod.

Not calibrated Calibrated
Beam 1 Beam 2 Beam 1 Beam 2

(�A,cal � �K-mod) /�K-mod (%) -6.8 -7.8 -0.9 -4.7
�
�
�A,cal � �K-mod

�
/�K-mod (%) 1.9 1.4 3.5 2.2

is generated in the vicinity of the IP, allowing to measure the �-function from phase with a
precision of about 0.5%. This achieved precision on �-function has allowed computing the
BPM calibration factors by comparing �A to �� with an average uncertainty in the sub-per
cent level. The promising results obtained in 2016, in terms of BPM accuracy and uncer-
tainty achieved, motivated the further development of the Ballistic configuration. In 2017, the
drift space was extended by switching o↵ the Q4 quadrupoles and, at the same time, by not
matching the dipsersion function to zero in the IR1 and IR5. These two developments allowed
to increase the range of BPMs being calibrated and to incorporate dispersion function in the
optics-measurement-based calibration approach.

Several optics configurations have been analyzed in order to estimate the impact of BPM re-
calibration on the �A approach. The main characteristic of the selected optics is the accuracy
of the �-function in some stripline BPMs placed in IR1 and IR5; measured either using ��

or �K-modulation approach. It has been observed that the �-beating with respect to the � from
phase, (�A � ��)/��, is reduced on average a 6% when BPMs are re-calibrated using the
optics-measurement-based approach. If �K-modulation is used as a reference value, the measured
�-beating (�A � �K-modulation)/�K-modulation decreases on 6% for Beam 1, and a 3% for Beam 2.

Additionally, calibration factors have also been computed using the ratio
p
�A/�� for di↵erent

optics and then averaging over them, aiming to justify the development of an optics configura-
tion dedicated exclusively to the calibration factors calculation. The associated error-bar has
been computed as the standard deviation of the calibration factors over the optics measured.
It can be observed in Figs. 4.23 and 4.24 that the error-bar obtained using a dedicated optics
for the computation of the calibration factors is on average three times smaller than averaging
the calibration factors over a set of optics.
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Figure 4.23: Average calibration factor measured for di↵erent optics vs calibration factors
measured using Ballistic optics (Horizontal and vertical planes, Beam 1).

.

Figure 4.24: Average calibration factor measured for di↵erent optics vs calibration factors
measured using Ballistic optics (Horizontal and vertical planes, Beam 2).

.

This proves that the �� precision is the main limitation in the calibration factor calculation.
Nonetheless, currently, the possible dependency of the calibration factors overtime is not in-
cluded in the Ballistic error-bar. This will be addressed on LHC run 3 and on view of the
Hl-LHC. The large error-bars associated with the dispersion measurements -in contrast to
the sub-per cent error-bars associated to the �-function- propagate directly to the calibration
factor calculations a↵ecting the accuracy of the measurements. Yet the agreement between
the calibration factors obtained using �-function has been used as a validation for the optics-
measurement-based calibration approach. A more in-depth study of the dispersion error-bar
should be further performed before re-calibrating the BPMs using this technique.



Chapter 5

High-�⇤ runs in LHC as test-bench of
the calibration factors calculation

5.1 LHC special optics studies as test bed of �A ap-
proach.

To be able to validate the e↵ectiveness of compensating the optics measurements based BPM
recalibration, it is necessary to have an accurate and precise �� function.

Nonetheless, not all optics can be used to evaluate the mitigation of the calibration factors
and optics configuration where �-function can be accurately measured in the IRs using �� are
required. A comparison of the di↵erent relative �� error-bars at di↵erent [4] �⇤-values is shown
in Fig. 5.1 both for the button BPMs placed in the arcs and for the stripline BPMs placed in
the IRs. Button BPMs show an �� average error-bar of 0.9% with small di↵erences between
the di↵erent optics analyzed. On the other hand, the �� errorbar measured at the stripline
BPM location fluctuates between 2% and 10%.

Alternatively, �K-modulation could be used, but this approach will only provide information about
the BPMs placed near the IPs.

During the second run of the LHC, dedicated time was allocated for machine development
studies. These studies covered a broad range of di↵erent topics, including the commissioning
of new optics developed with di↵erent aims.

In 2016, two optics with unusual �⇤ values, designed for specific physics purposes were com-
missioned: Van der Meer optics used for wire scanners calibration and High-�⇤ [116] used for
forward high energy physics studies. In 2017, forward physics studies were further developed
and a new optics configuration was designed and commissioned at a lower energy, 450 GeV
and with a smaller �⇤ value. It was found that in those optics, �-function could be measured
with less than 3% error-bar in the IRs, while in optics dedicated to high energy physics studies,
characterized for their low �⇤ values, the �� measured relative error-bar at the IP can reach
values up to 18%. This chapter summarizes the optics measurements performed in 2016 and
2017 as part of the commissioning of the high-�⇤ optics. Van-der-Meer optics has also been

63
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Figure 5.1: Relative �� error bar measured for di↵erent optics in Beam 1: 2016 (top), 2017
(bottom).

used for validation of the calibration factors, results obtained during the commissioning of this
optics are described in detail in [117].

5.2 High-�⇤ optics at 6.5 TeV

5.2.1 Introduction

The �⇤ determines the physics reach of the experiment; runs with high �⇤ (from 90 meters
to 2.5 km) are characterized by low beam divergence at the IP allowing for precise scattering
angle measurements [63, 118]. The main goal of high-�⇤ is to determine the absolute luminosity
in ATLAS and CMS, but also other physics studies are foreseen, such as measuring the total
proton-proton cross-section, measuring elastic scattering parameters and di↵ractive studies.



5.2. High-�⇤ optics at 6.5 TeV 65

Roman pot (RP) are near-beam telescopes in charge of the tracks reconstruction of scattered
protons, and they are key elements in the high-�⇤ physics run. Figure 5.2 illustrates the di↵erent
elements placed on the right side of IR1. As can be seen, an RP station is composed of two
units per beam separated by a distance of about 5 meters. Considering Beam1 direction as a
reference, RPs are placed right of IPs (IP1 and IP5) for Beam1 and left of IPs for Beam2.

Figure 5.2: Schematic layout of an interaction region.

Proton kinematics at IPs can be reconstructed from position and angles measured by the RP
detectors.
Before being detected, the protons’ trajectories between the IP and the RP are influenced by
the magnetic field of the accelerator lattice. The trajectory of protons produced with transverse
positions (x⇤, y⇤) and angles (⇥⇤

x, ⇥
⇤
y) at the interaction point is described approximately by:

~d(s) = T (s) · ~d⇤ where ~d = (x,⇥x, y,⇥y,�p/p)T , ~d⇤ is the initial coordinates at the IP and T
is the transport matrix, which describes the proton transport,
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This matrix is defined by the optical functions. The horizontal and vertical magnifications are

given by vx,y =
q
�x,y/�⇤

x,y cos�µx,y and the e↵ective lengths Lx,y =
q
�x,y/�⇤

x,y sin�µx,y

Transfer matrix also depends on horizontal and vertical dispersion (Dx and Dy). In order to
precisely reconstruct the scattering kinematics, an accurate model of proton transport is indis-
pensable. The LHC is subject to additional imperfections, which alter the transport matrix.
These imperfections lead to changes in di↵erent parameters: phase advance between the ele-
ments µ, � function, dispersion and tune errors, and consequently in the transport matrix T.
Therefore, the kinematics of elastically scattered protons in the IR can be reconstructed by
measuring the phase advance between the IP and the RP, the �

x,y

at the RP and the �
x,y

at the
IP (�⇤). If the phase advance µx,IP!RP

is equal to ⇡ in the horizontal plane particles will pass
through the RP without being detected. This limitation can also be observed in the e↵ective
lengths calculations since the sinusoidal term vanishes, giving Lx,y = 0. A small change in
the phase advance, a consequence of quadrupolar strength modifications, can be crucial for the
kinetic measurements as can be seen in Fig. 5.3.
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Figure 5.3: Particle trajectory between IP and RP with di↵erent phase advance.

High �⇤ optics have been developed since many years [119], to measure proton-proton scattering
angles down to the microradian level. During the high �⇤ run in 2016 a maximum value of �⇤

equal to 2500 meters was reached. From an operational point of view, the de-squeezing process
can be subdivided into two regions: high-�⇤ (60, 90 and 500 m) physics and very high �⇤ ( >
1000 m) [120]. De-squeeze has to be done by making several steps during the process. High-�⇤

runs were already done in previous years: in 2015, the maximum �⇤ reached was 90 m while
in 2012, a �⇤ of 1000 m was used [121, 119]. The quality of the optics was assessed during
the first session of measurements where the conditions imposed by the ALFA and TOTEM
experiments were verified. After analyzing the first of measurements, some modifications were
done in the quadrupolar configurations. The purpose of this change in the phase is to avoid
a phase advance µx,IP!RP

of 180°, illustrated in Fig.5.3. This modification makes Eq. (5.2.1)
di↵erent from zero, leading to a better reconstruction of the position and angle and the IP.
The goal of the measurements performed during the second session was, therefore, to evaluate
the phase advance modification between the interaction point and the roman pots. Section
5.2.4 presents the procedure followed when performing the AC-dipole measurements, as well
as an issue with the AC-Dipole power supply when measuring at �⇤ = 60 m. Section 5.2.5
presents the optics measurements performed at di↵erent �⇤ values: 60, 90 and 500 m. Section
5.2.6 presents the optics measurements performed during the de-squeezing process, as well
as the corrections made at �⇤ = 1.7 km. In Section 5.2.7 the results of the implementation
of global corrections at maximum �⇤ are shown. This section also covers the observations
from o↵-momentum measurements. Section 5.2.9 analyzes the measured �-function across the
accelerator obtained using ��,�A and �A after BPM re-calibration. Finally, conclusions drawn
from those two set of measurements are presented in Section 5.2.12.

5.2.2 Summary of optics measurements and corrections

The de-squeeze process started at �⇤ = 11 m and ended at �⇤= 2500 m, taking some additional
measurements at di↵erent �⇤: 60 m, 90 m, 500 m and 1700 m to control the �-beating evolution
during the de-squeeze. During the first steps, �-beating evolution was well controlled without
applying corrections. At �⇤ = 1700 m coupling and normal quadrupole corrections were cal-
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(a) AC-Dipole powering function vs time

(b) Analysis of TbT excitation using AC-

dipole with di↵erent number of turns

Figure 5.4: AC-dipole failure detected during measurements performed at �⇤ = 60 m.

culated and implemented in the interaction regions (IRs) 1 and 5. Finally, global corrections
were calculated and applied at �⇤ = 2500 m.

5.2.3 Optics measurements and corrections during the de-squeezing

5.2.4 AC-dipole Security switching o↵ system

For optics measurements, the beam is usually excited using an external periodic excitation
source, the AC-dipole. Turn-by-turn measurements give the evolution of the beam centroid
position recorded at the (BPM). Turn-by-turn position data of excited motion allows prompt
measurements of optical parameters. The beam can be driven to a steady coherent oscillation
by slowly ramping up the amplitude of an AC dipole oscillating field at a frequency in the
vicinity of the beam betatron frequency [48, 89, 90, 91, 92]. All measurements, in both sessions,
were performed using the AC dipole system to excite oscillations of the beams [122]. The
amplitude of the driven oscillations depends on the AC-dipole voltage, frequency and strength.
The amplitude of kicks applied during beam dynamics measurements are typically increased
gradually to a su�cient magnitude while monitoring the beam losses. The magnitude of the AC
dipole kicks is normalized by the maximum voltage. Relative value of the kick strength depends
on the beam energy and has to be adjusted while increasing the energy. When measuring at
top energy, the starting voltage is around a 25% of the maximum voltage, and it is increased
until the peak to peak value of the oscillations reaches a value of approximately 2 mm in the
arc. This amplitude is reached usually at a 70% of the maximum voltage for a tune separation
of -0.012 in the horizontal plane and +0.015 units in the vertical plane. During the first optics
measurements at �⇤ = 60 m, an abrupt drop in kick amplitude during AC-dipole flattop was
shown when kicking above 50%, Fig. 5.4a. That problem caused a substantial blowup of the
horizontal Beam 1 emittance, as the motion became free and it was not adiabatically ramped
down [98]. In order to avoid this power drop in the middle of the measurements, the AC-dipole
maximum voltage was reduced. Trying to compensate the drop in the amplitude oscillations
horizontal AC-dipole tune in Beam 1 was moved closer to the natural tunes, �Q

x

= �0.009.
Figure 5.4b illustrates the impact of the AC dipole on the turn-by-turn data.
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5.2.5 Optics measurements at 60 m, 90 m and 500 m

Three optics measurements were performed in the first part of the de-squeeze in order to
evaluate the evolution of the optics errors, and therefore avoid a possible increase of the �-
beating. Table 5.1 summarizes the ��

�
rms, in horizontal and vertical planes, at the di↵erent

steps of the de-squeeze process. Figures 5.5a and 5.5b show the �-beating as a function of the
position for Beam 1 and Beam 2 respectively.

Beam 1 Beam 2

Horizontal Vertical Horizontal Vertical

�⇤ [m] 60 90 500 60 90 500 60 90 500 60 90 500
��
�

rms (%) 3.4 2.7 3.7 6.0 5.6 2.4 2.8 1.2 1.8 5.5 5.1 5.0

Table 5.1: ��
�

rms values at di↵erent steps of the de-squeeze process for Beam 1 and Beam 2,
before corrections.

(a) Beam 1.

(b) Beam 2.

Figure 5.5: �-beating during the de-squeeze process at 60 m, 90 m and 500 m �⇤ before
corrections.

5.2.6 Optics measurements and corrections at 1.7 km

While de-squeezing to �⇤ = 1.7 km, a large coupling increase was observed from the continuous
measurement of coupling by the Base-Band Tune system (BBQ), Fig. 5.6. Turn by turn
data was measured and analyzed in order to compute the coupling corrections. The coupling
corrections use skew quadrupoles located in IR1 and are summarized in Tab. 5.2.
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Figure 5.6: Increase of coupling after de-squeeze to 1.7 km as measured by BBQ.

Corrector Strength [m�2]

kqsx3.r1 -4.7 ·10�3

kqsx3.l1 -4.7 ·10�3

Table 5.2: Local corrections implemented at �⇤ 1.7 km.

A comparison of coupling before and after corrections can be seen in Figs. 5.7a and 5.7b in
order to validate the e↵ectiveness of the coupling corrections.

(a) Beam 1. (b) Beam 2.

Figure 5.7: Coupling resonance terms before and after corrections at �⇤=1.7 km.

The required correction strength is computed from the measured �-beating and dispersion.
The first local corrections in the de-squeeze process were done at �⇤ = 1.7 km. A first guess
of the corrections was taken from the local corrections implemented during the nominal optics
commissioning in 2016 [105], shown in Tab. 5.3. Nevertheless, it was found that the triplet
errors were not the same in the high-�⇤ and nominal optics. A summary of local corrections
computed and applied into the machine are shown in Tab. 5.4. This table also summarizes the
relative changes in � ~k

1

(%) with respect to the nominal value.
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MAD-X variable Design magnet k
1

[ 10�3 m�2] �k
1

[10�5 m�2] Correction (%)

ktqx2.l1 -8.73 +0.65 -0.07
ktqx2.r1 8.73 -1.0 -0.11
ktqx2.l5 -8.73 0.27 -0.31
ktqx2.r5 8.73 1.48 0.17
ktqx1.l5 8.73 -2 0.23
ktqx1.r5 -8.73 2 0.23

Table 5.3: Local corrections applied at nominal optics.

MAD-X variable Design magnet ~k
1

[ 10�3 m�2] �~k
1

[10�5 m�2] Correction (%)

ktqx2.r1 -4.82 -1.4 0.29
ktqx2.l1 4.82 +1.4 0.29
ktqx2.r5 -4.82 -0.63 0.13
ktqx2.l5 4.82 +1.24 0.26

Table 5.4: Local corrections applied at �⇤ 1.7 km.

The e↵ectiveness of the corrections has been evaluated by comparing the �-beating around the
ring before and after the corrections, Figs. 5.8a and 5.8b. An overall reduction in �-beating
can be seen for both beams in both planes. This decrease is especially remarkable in between
IR5 and IR1 in Beam 1 horizontal and in between IR1 and IR5 for beam 2 in both planes. On
the other hand, a summary of rms �-beating is showed in Tab. 5.5

(a) Beam 1.

(b) Beam 2.

Figure 5.8: �-beating before and after corrections at �⇤=1.7 km.
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Beam 1 Beam 2

Before local corr. After local corr. Before local corr. After local corr.

Hor. Ver. Hor. Ver. Hor. Ver. Hor. Ver.

rms ��
�
(%) 13.7 11.9 4.6 3.4 8.2 13.2 3.5 3.8

Table 5.5: �-beating rms before and after local corrections at �⇤=1.7 km.

5.2.7 Optics measurements and corrections at 2.5 km

Measurements conducted for �⇤-beating, coupling, dispersion and �⇤ at the end of the de-
squeeze process are discussed in this section.

As mentioned in the introduction, high �⇤ measurements were made twice in 2016 with two
di↵erent aims. The objective of the first measurement was to commission the optics while
the goal of the second measurement was to validate the settings modifications done in IP1.
The quadrupolar strength configuration was modified with the aim of moving away the phase
advance from 180� and therefore avoid having sinµ

x,IP!RP

= 0. The strengths of the power
supplies placed in IR1 controlling both common and separate quadrupoles have been redefined
to achieve this objective.

5.2.8 Measurements and global corrections

Global corrections were calculated during the first session of high-�⇤ optics measurements.
Global corrections have been divided in two plots: MQT in Fig. 5.9 and MQM and MQL
in Fig. 5.10. Both plots show the magnitude and the sign of the absolute change of the
quadrupolar strength for both beams. Plots have been subdivided into the correspondent arcs
labeled from IR5 to IR8 to have a better estimation of the correction strength in each arc of
the LHC.

Figure 5.9: Global corrections applied in the MQT magnets (Beam 1 left and beam 2 right).
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Beam 1 Beam 2

Before global corr. After global corr. Before global corr. After global corr.

June June August June June August

��
�
(%)

max 10 ± 2 15 ± 7 12.9 ± 0.7 10 ± 1 9 ± 0.6 12.9 ± 0.7

rms 4.3 1.9 2.8 3.6 2.3 1.22

Table 5.6: rms and maximum values for the horizontal �-beating for both beams before and
after global corrections.

Beam 1 Beam 2

Before global corr. After global corr. Before global corr. After global corr.

June June August June June August

��
�
(%)

max 10 ± 1 6.8 ± 0.4 6.8 ± 0.6 7.4 ± 0.3 3.4 ± 0.1 6.8 ± 0.6

rms 3.4 2.7 2.4 2.8 1.2 1.8

Table 5.7: rms and maximum values for the vertical �-beating for both beams before and after
global corrections.

Figure 5.10: Global corrections applied in the MQM and MQY magnets (Beam 1 left and beam
2 right).

E↵ectiveness and revalidation of optics corrections

A comparison between �-beating before and after global corrections is shown in Figs. 5.11a and
5.11b. The e↵ectiveness of the global corrections is assessed in Tabs. 5.6 and 5.7 by comparing
the rms �-beating and maximum value before and after corrections. A general decrease in the
�-beating RMS can be observed for both planes and both beams. The local change in the IR1
optics has not significantly increased the overall �-beating. Additionally, a comparison between
the measurements corresponding to the di↵erent optics configurations is shown in Figs. 5.12a
and 5.12b.
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(a) �-Beating Beam 1.

(b) �-beating Beam 2.

Figure 5.11: �-beating before and after global corrections at �⇤ = 2.5 km.

(a) �-beating Beam 1. (b) �-beating Beam 2.

Figure 5.12: �-beating before and after changing the phase advance between the interaction
point (IP) and the roman pots at �⇤ = 2.5 km.

5.2.9 E↵ectiveness and re-validation of calibration factors calcula-
tion

Figures 5.13a and 5.13b show the �-function measured after corrections using ��, �A and
�A,calibrated. A decrease of the �-beating measured in IR1 and IR5 can be seen in both figures
when applying the calibration factors.

Table 5.26 summarizes the �-beating of the �A with respect to the �� for both beams before
and after re-calibrating the BPMs in IR1 and IR5. An average 4% improvement has been
observed in the �A measurements after re-calibrating the BPMs. Nonetheless, a remaining 3%
average �-beating together with several BPM hardware and software upgrade, motivated the
recalculation of the BPM optics-based calibration factors.
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(a) �-beating Beam 1. (b) �-beating Beam 2.

Figure 5.13: �-beating measured using three di↵erent techniques (��,�A,�A,calibrated).

Beam 1 Beam 2
Before re-ca After re-cal Before re-cal After re-cal

(�A

x

���

x

)

��

x

(%) -8.5 -2.5 -7.4 -3.1
(�A

y

���

y

)

��

y

(%) -8.8 -4.2 -6.7 -3.3

Table 5.8: rms and maximum values for the horizontal �-beating for both beams before and
after BPM re-calibration.

5.2.10 O↵-momemtum measurements

Dispersion

O↵-momentum measurements were performed at �⇤ = 2.5 km before and after global correc-
tions. A comparison of the normalized dispersion beating before and after global corrections is
shown in Figs. 5.14a and 5.14b. The peak and rms normalized dispersion beating are shown in
Tabs. 5.9 and 5.10, where a small reduction of the dispersion beating after the optics corrections
is visible.

Beam 1

Before global corr. After global corr.

June June August

�D
xp

�
x

[10�3m1/2]
max 19.5 ± 0.8 14 ± 3 20 ± 3

rms 7.3 4.6 6.1

Table 5.9: rms and maximum values of normalized horizontal dispersion beating before and
after global corrections (Beam 1).
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Beam 2

Before global corr. After global corr.

June June August

�D
xp

�
x

[ 10�3m1/2]
max 23.7 ± 0.7 15 ± 2 15 ± 2

rms 7.3 4.5 4.4

Table 5.10: rms and maximum values of normalized horizontal dispersion beating before and
after global corrections (Beam2).

(a) Beam 1. (b) Beam 2.

Figure 5.14: Normalised dispersion measured in June before and after corrections at �⇤ = 2.5
km.

(a) Beam 1. (b) Beam 2.

Figure 5.15: Normalised dispersion measured in June vs August �⇤ = 2.5 km.
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5.2.11 Phase advance calculations between di↵erent elements of the
lattice.

For computing the phase advance between elements in the machine, it is necessary to combine
measurements and simulations. This is because phase advance can only be measured between
two BPMs, but it can be extrapolated to the closest elements by model propagation through
the lattice. Figures 5.16 and 5.17 show a schematic of how this technique works. At first, a
segment is defined by two BPMs, one placed on the left of the element and the other located on
the right (Fig. 5.16). Secondly, �i, ↵i and �i measured at the beginning and at the end of the
segment are used as boundary conditions for the MAD-X simulations (Fig. 5.17). The error
bar is calculated by error propagation, considering the initial uncertainties, ��i, �↵i and ��i
as explained in [2]. The di↵erence between the phase advance measured in August with respect
to the values obtained in June is in all the cases smaller than 0.5 °. Table 5.12 summarizes the
di↵erences between values measured in June and August, phase advance predicted by model
and relative di↵erence in phase and in sin(µIP!RP ).

Figure 5.16: Phase advance measured between two arbitrary BPMs.

Figure 5.17: Model propagation.

August June
Roman pot µIP!RP (°) µIP!RPmodel

(°) µIP!RP (°) µIP!RPmodel

(°)
XRPH.A6R1.B1 176.4 ± 0.2 176.4 176.9 ± 0.3 176.9
XRPH.B6R1.B1 177.3 ± 0.2 177.3 177.7 ± 0.2 177.6
XRPV.A7R1.B1 180.6 ± 0.4 180.6 180.1 ± 0.4 180.1
XRPV.B7R1.B1 182.6 ± 0.4 182.5 181.6 ± 0.4 181.5

Table 5.11: Horizontal phase advance between IP1 and di↵erent roman pots.
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Roman pot �µIP!RP (° measurement) �µIP!RP (° model) � sin(µIP!RP ) (%)
XRPH.A6R1.B1 -0.5 ± 0.3 -0.5 18.5
XRPH.B6R1.B1 -0.3 ± 0.3 -0.2 19
XRPH.B6R1.B1 0.5 ± 0.6 0.6 622
XRPV.B7R1.B1 1 ± 0.6 1 62

Table 5.12: Relative phase advance di↵erence between June and August.

5.2.12 Summary of high-�⇤ at flattop energy

Results of optics measurements for �⇤ = 2.5 km after local and global corrections have been
shown. Three sets of measurements were performed at di↵erent �⇤ in order to control the
�-beating during the de-squeezing process. The rms �-beating was well controlled below- 6%
and no optics corrections were needed during the first part of the de-squeeze (up to 500 m).
An intermediate step was done (�⇤ = 1.7 km) in order to apply coupling and local corrections.
Coupling was successfully corrected, especially in Beam 2 (Fig. 5.7a). A decrease in rms
�-beating after applying local corrections, is shown in Tab. 5.5. Global corrections were
successfully implemented at �⇤ 2.5 km reducing rms �-beating to approximately 3% in the
horizontal plane and 2% in the vertical plane. Section 5.2.9 shows a decrease in the �-beating of
�A with respect to the �� when the calibration factors are applied. Additionally, o↵-momentum
measurements show a slightly improved normalized dispersion beating after corrections. Some
slight modifications were performed in IP1 after having analyzed the results of the first session
in order to match the requirements set by the experiment ALFA. A deviation with respect the
180° phase advance has been seen in Tab. 5.11. This deviation has allowed ALFA experiment
to perform more accurate measurements.

5.3 High-�⇤ optics at injection

In the TOTEM Technical Proposal [63] it is mentioned the interest of running at 900 GeV per
beam (Tevatron energy), because the optics with high-�⇤ = 1100 m would make possible the
measurement of Coulomb interference (momentum transfer |t

min

| = 0.0005 GeV2 feasible at
that energy).

High-�⇤ at injection has been requested by TOTEM after the promising results obtained during
2016 in the very high-�⇤ (> 1000 m) run at flattop energy, 6.5 TeV, introduced earlier in this
chapter [107] . Measurements at high-�⇤ at injection energy, 450 GeV, aim to complete the
study of the di↵erential proton-proton scattering cross-section. The value of the � function
at the interaction point defines the goal of the experiments. In order to asses the technical
feasibility a preliminary run at

p
s = 900 GeV with a �⇤ in the range of 50-100 meters has been

studied. The optics commissioned was a flat optics with di↵erent �⇤ values in the interaction
points 1 and 5. The �⇤ values in the IP1 (ATLAS/ALFA) are �⇤

x = 52.9 m and �⇤
y = 98.1 m

whereas in IP5 (CMS/TOTEM) �⇤ values are �⇤
x = 75.9 m and �⇤

y = 96.5 m.
Two di↵erent approaches have been used for measuring the �⇤ at the interaction point: � from
phase [2, 4] and K-modulation [56]. High-�⇤ at injection has been commissioned for the first
time on 26 October 2017 and validated lately on 8 November 2017. Section 5.3.1 summarizes
the measurements and corrections - local, global and coupling- performed during both sets of
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Beam 1 Beam 2

Horizontal Vertical Horizontal Vertical

rms ��
�
(%) 15.7 10.8 30.6 19.5

Table 5.13: RMS �-beating before corrections at high-�⇤.

Before coupling corr. After coupling corr.
Beam 1 Beam 2 Beam 1 Beam 2

|c�|(10�3)
Before local corrections 2.9 1.9 0.9 0.6
After local corrections 5.8 1.7 1 1.5

Table 5.14: |c�| measurements before and after local corrections at high � at injection.

measurements. Section 5.3.3 summarizes the values of the �⇤ measured using k-mod, � from
phase.

5.3.1 Optics measurements and corrections

The first optics measurements were performed the 26/10/2017 to assess the quality of the optics
and to perform corrections if necessary.

Table 5.13 summarizes the values of the rms �-beating without having applied any corrections
in the machine.

The first measurements reveal an rms �-beating of about 30% in the horizontal plane in Beam 2.
Due to these large values observed, local and global corrections were implemented in the ma-
chine. Some minor corrections were applied in order to reduce coupling.

5.3.2 Coupling corrections

Quick initial measurements were performed in order to check the coupling in the machine.
The real and imaginary parts of C� were automatically calculated in the multiturn application
during the measurements [96, 123]. The knobs are implemented in the machine changing the
value of the skew quadrupole currents. Coupling was lately corrected again after implementing
local optics corrections in the machine. The modules of the |C�| correction applied during the
first commissioning of high-�⇤ at injection are summarized in Tab. 5.14. Coupling was suc-
cessfully corrected after the first coupling corrections implemented at the beginning of the MD.
Additional coupling corrections were performed after local corrections just before k-modulation
measurements. Since no turn-by-turn measurements were performed after applying coupling
corrections in the machine, the value of the |C�| was not calculated.
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MAD-X variable Design magnet k �k Correction
[ 10�3 m�2] [10�5 m�2] (%)

kq5.l1b1 -5.9 -7.5 1.3
kq4.l1b1 3.5 7.5 2.1
kq7.l1b2 3.4 -1.2 -0.4
kq5.l1b2 6.2 2 0.3
kq5.r5b2 -6.0 -3 0.5
kq5.l5b2 6.3 3 0.5
kq6.r5b2 6.0 1.5 0.3
kq6.l5b1 6.0 3.2 0.5
kq5.l5b1 -5.9 -1.5 0.3
kq4.l5b1 3.0 -10 -3.3

Table 5.15: Local corrections applied at high �⇤ at injection in 2017 as applied in LHC Software
Architecture LSA.

Magnet Circuit Design magnet k �k Correction
[10�3 m�2] [10�5 m�2] (%)

MQXB.B2L5 - kqx.l5 - ktqx2.l5 6.1 3 0.5
MQXB.A2L5 - kqx.l5 - ktqx2.l5 6.1 3 0.5
MQXB.B2L1 - kqx.l1 - ktqx2.l1 6.2 3.5 0.6
MQXB.A2L1 - kqx.l1 - ktqx2.l1 6.2 3.5 0.6
MQXB.A2R1 - kqx.r1 - ktqx2.r1 -6.3 -5 0.8
MQXB.B2R1 - kqx.r1 - ktqx2.r1 -6.3 -5 0.8

Table 5.16: Local corrections applied at high �⇤ at injection in 2017 for the Q2 quadrupole as
applied in LHC Software Architecture LSA.

5.3.3 First measurements and corrections performed on the virgin
machine

The analysis of the first on-momentum measurements shows a large �-beating, as it can be
seen in Tab. 5.17. In order to improve the performance of the optics, two sets of corrections
were applied into the machine. The first set that attempts to reduce strong localized �-beating
sources in the IRs, consisted on local corrections applied in the interaction regions (IRs) 1 and 5
by changing the strength of the several common quadrupoles. Tables 5.15 and 5.16 summarize
the relative, absolute and nominal values of the strength change. Due to the electrical config-
uration of the LHC magnets, a change on the strength of the power supply can a↵ect one or
several magnets. On the other hand, a magnet can be powered by one or more power supplies.
In the IR, the quadrupole placed in the middle of the triplet, the Q2, is powered by two power
supplies: the main one kqx and ktqx that is used for small strength changes. Table 5.15 sum-
marizes the corrections of the magnets powered by one power supply while Tab. 5.16 reflects
the change in the Q2 magnet strength after changing the ktqx strength.

The weakest quadrupoles placed in IR1 are the kq4.l1b1 and kq7.l1b1 while for IR5 the
quadrupole with less current is the kq4.l5b1. The largest optics corrections was needed for
kq5.l1b1 and kq4.l1b1 in IP1 and kq4.l5b1 in IP5. In order to ensure proper operation of
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Beam 1 Beam 2

Before local corr. After local corr. Before local corr. After local corr.

Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical

rms ��
�
(%) 15.7 10.8 14.7 8.1 30.6 19.5 23.7 13.8

Table 5.17: rms �-beating before and after local corrections at high-�⇤.

the quadrupoles, the value of the strength in operation should not be lower than 2% of the
maximum value. In this optics, the final value of the magnet strength, k, after applying optics
corrections has been kept above this limit.

For the Q2 quadrupoles, the values of the strength correspond to approximately 70% of the
injection optics strength.

The Q1 strength has been set to 75% of the current of the quadrupoles in the injection optics
configuration.

The e↵ectiveness of the corrections is evaluated by measuring the rms �-beating in the machine
before and after corrections. Figures 5.18a and 5.18b show the �-beating around the LHC before
and after local corrections. These values are summarize in Tab. 5.17. Even though a decrease
in the rms �-beating can be seen in both planes, the values obtained are too large for safe
operation [105, 51].

(a) Beam 1. (b) Beam 2.

Figure 5.18: �-beating before and after local corrections.

�⇤ calculations

The value of the � at the interaction point can be calculated either by using the segment-
by-segment technique [2] or using k-modulation [124, 45]. Table 5.18 summarizes �⇤ values
measured using segment-by-segment technique as well as the values expected by the model in
IP1 and IP5 for Beam 1 and Beam 2.

�⇤ measurements obtained using k-modulation are summarized in Tab. 5.19.
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IP 1 IP 5

Measured Model Measured Model

Hor. Ver. Hor. Ver. Hor. Ver. Hor. Ver.

�⇤ [m]
Beam 1 53.6 ± 0.5 88 ± 2 52.9 98.1 108 ± 2 107 ± 3 75.9 96.5
Beam 2 61.9 ± 0.5 95 ± 1 52.7 101.4 45 ± 1 77 ± 2 63.2 95.4

Table 5.18: �⇤ value measured using � from phase and expected value predicted by MADX in
IP1 and IP5 for both planes after applying local corrections.

IP 1 IP 5

Measured Measured

Horizontal Vertical Horizontal Vertical

�⇤ [m]
Beam 1 55 ± 5 88.8 ± 0.2 100 ± 8 104 ± 1
Beam 2 66 ± 7 95.8 ± 0.3 47.3 ± 0.3 80.1 ± 0.6

Table 5.19: �⇤ value measured in IP1 and IP5 for both beams using k-modulation after applying
local corrections.

� from phase and k-modulation results agree within given error bars. The large �-beating of
about 20% is because these measurements were performed before global corrections.

Some of the k-modulation measurements have poorer resolution and accuracy than �⇤ results
obtained using the segment-by-segment technique.

The poor resolution and accuracy obtained in k-modulation results can be due to large tune
fluctuations. Tune jitter for a given optics can be simulated using MADX in order to have a
first order estimation of its value. An error of one part per million with respect to the circuit
current is introduced in the di↵erent circuits in order to see the impact on the tune. Figure
5.19 summarizes the e↵ect of each di↵erent circuit in the horizontal and vertical tune jitter, |�
Q|.

Fluctuations of the tune jitter during the measurements performed in October have been mea-
sured by analyzing the data acquired using the diode-based base-band-tune (BBQ) technique
(Tab. 5.20) and the data obtained with the Turn-by-Turn measurements (Tab. 5.21). Turn-
by-turn measurements are performed using the AC-dipole as external excitation [122]. The
AC-dipole data values are the mean values of the individual tune distributions from each mea-
surement file. For the BBQ-data, an average smoothing was used to reduce the noise and the
AC-dipole excitations were cleaned.

Figures 5.20-5.23 show the tune evolution during the measurements performed in October.
These plots combine the measurements obtained using BBQ and turn-by-turn techniques.

A significant slow drift of the tunes is observed for both beams and planes, implying probably
a decay of mean quadrupolar field.
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Figure 5.19: Simulations of tune variation per ppm of quadrupole circuits.

BBQ

Horizontal Vertical

Tune jitter � tune jitter Simulated Tune jitter � tune jitter Simulated
in [10�4] in [10�4] tune jitter in [10�4] in [10�4] tune jitter

in [10�4] in [10�4]

Beam 1 2.3 -1.0 | +1.1 1.5 2.4 -1.1 | +1.1 1.5
Beam 2 3.1 -1.1 | +1.1 1.5 2.4 -0.9 | +1 1.5

Table 5.20: Tune jitter simulated and measured by analyzing the data recorded using BBQ
technique.

5.3.4 Global corrections

After the implementation of local corrections, global corrections were computed in order to
reduce the large �-beating observed after local corrections. The modification of the strength of
the quadrupoles �k is shown in Figures 5.24a and 5.24b. Plots are divided by type of magnet
MQM (dispersion suppressor areas), MQY (matching sections) and MQT (trim quadrupoles).

Figures 5.25a and 5.25b compare the �-beating before and after global corrections.

Table 5.22 quantifies the performance of global corrections showing the rms �-beating after the
local corrections and after global corrections. From this table, it can be concluded that global
corrections were highly e↵ective for both planes and both beams.

Table 5.23 summarizes the �⇤ measurements performed after global corrections using � from
phase approach and model values for both beams and IPs. The larger �⇤ measurements can be
seen in IP5 for both beams, with an average �⇤-beating of 6%.
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Turn-by-turn

Horizontal Vertical

Tune jitter � tune jitter Tune jitter � tune jitter
in [10�6] in [10�6] in [10�6] 10�6

Beam 1 2.8 -1.2 | +0.7 3.4 -1.5 | +0.20
Beam 2 2.8 -1.2 | +0.5 3.2 -0.9 | +1.0

Table 5.21: Tune jitter measured by analyzing the data recorded using TbT method.

Figure 5.20: Horizontal tune jitter measured using BBQ (blue) and turn-by-turn (dots) as a
function of time (Beam 1).

Beam 1

After local corr. After global corr.

Hor. Ver. Hor. Ver.

rms ��
�
(%)

Beam 1 14.7 8.1 4.9 2.7

Beam 2 23.7 13.8 3.3 3.8

Table 5.22: rms �-beating after local corrections and after global corrections at high-�⇤.



84 Chapter 5. High-�⇤ runs in LHC as test-bench of the calibration factors calculation

Figure 5.21: Vertical tune jitter measured using BBQ (blue) and turn-by-turn (dots) as a
function of time (Beam 1).

Figure 5.22: Horizontal tune jitter measured using BBQ (blue) and turn-by-turn (dots) as a
function of time (Beam 2).
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Figure 5.23: Vertical tune jitter measured using BBQ (blue) and turn-by-turn (dots) as a
function of time (Beam 2).

IP 1 IP 5

Measured Model Measured Model

Hor. Ver. Hor. Ver. Hor. Ver. Hor. Ver.

�⇤ [m]
Beam 1 53.8 ± 0.6 95 ± 1 52.9 98.1 79 ± 1 88 ± 1 75.9 96.5
Beam 2 52.1 ± 0.8 101 ± 1 52.7 101.4 65 ± 2 90 ± 2 63.2 95.4

Table 5.23: �⇤ value measured using � from phase and expected value predicted by MADX in
IP1 and IP5 for both planes after applying local corrections.



86 Chapter 5. High-�⇤ runs in LHC as test-bench of the calibration factors calculation

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

IR2 IR3 IR4 IR5 IR6 IR7 IR8 IR1  IR2

∆
K 
 [
10

-3
 m

-2
]

MQT

(a) MQT quadrupoles power supplies.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

IR2 IR3 IR4 IR5 IR6 IR7 IR8 IR1  IR2

∆
K 
 [
10

-3
 m

-2
]

MQM
MQY

(b) MQM and MQY quadrupoles power supplies.

Figure 5.24: Change in the quadrupolar strength, �k, applied in order to perform global
corrections for Beam 1.

(a) �-beating Beam 1. (b) �-beating Beam 2.

Figure 5.25: �-beating after local corrections and after local and global corrections.

5.3.5 Second set of measurements

A second set of measurements was performed the 08/11/17 in order to validate the results
obtained during the first set of measurements. A tune shift of 0.03 was observed at the beginning
of the second set of measurements. One possible explanation is the e↵ect of the quadrupole
hysteresis especially when running with small strength values. In order to match the tune to
the design one the MQTs are used. The change in the tune observed in the BBQ was corrected
by trimming the MQTs to larger values than in the first set of measurements. Figure 5.26
shows a comparison of the MQTs strength between October and November.
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Figure 5.26: Comparison of the strength of the MQTs set into the machine in October and in
November after the tune correction.(left Beam 1 and right Beam 2).

The reproducibility of the �-beating computed in October was evaluated during this second
iteration of high �⇤ at injection. Figures 5.27a and 5.27b shows �-beating measured around
the LHC in October and November with local and global corrections.

(a) �-beating Beam 1. (b) �-beating Beam 2.

Figure 5.27: �-beating measured in October and November.

Table 5.24 shows a comparison of the rms �-beating measured in October and in November.
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Beam 1 Beam 2

October November October November

Hor. Ver. Hor. Ver. Hor. Ver. Hor. Ver.

rms ��
�
(%) 4.9 2.7 3.5 2.6 3.3 3.9 3.0 3.6

Table 5.24: rms �-beating measured in October vs November.

IP 1 IP 5

Measured Model Measured Model

Hor. Ver. Hor. Ver. Hor. Ver. Hor. Ver.

�⇤ [m]
Beam 1 53 ± 1 99 ± 1 52.9 98.1 77 ± 1 94.5 ± 0.7 75.9 96.5
Beam 2 53.3 ± 0.6 100 ± 2 52.7 101.4 66 ± 1 94 ± 1 63.2 95.4

Table 5.25: �⇤ value measured using � from phase and expected value predicted by MADX in
IP1 and IP5 for both planes measured in November.

The largest discrepancy between this two measurements have been observed in Beam 1 in
horizontal plane. For the rest of the planes and beams the di↵erences between October and
November is less than 1%. Therefore, the overall reproducibilty of the �-beating is kept bellow
2%.

Table 5.25 summarizes the �⇤ values measured in November using � phase approach at IP1
and IP5. Comparing the measured � to the values predicted by the model, it is possible to see
a decrease of the �-beating for both beams and planes in IP5. On the other hand, the largest
discrepancies between the two di↵erent set of measurements in �⇤ have been observed in IP5.
These changes can be explained due to the change in the MQT strength at the beginning of
the MD. From Fig. 5.26 it can be seen that the strength of two defocusing and one focusing
MQTs have been changed in IP5 while only the current of one MQT was modified in IP1.

5.3.6 E↵ectiveness and re-validation of calibration factors calcula-
tion

Figures 5.28a and 5.28b show the �-function measured after corrections using ��, �A and
�A,calibrated. A decrease of the measured �-beating of the �A with respect to �� , defined as
(�A

x

���

x

)

��

x

, can be seen in both Figs. 5.28a and 5.28b when applying the calibration factors in IR1

and IR5.

Table 5.26 summarizes the �-beating of the �A with respect to the �� for both beams before
and after re-calibrating the BPMs in IR1 and IR5. An improvement of the BPM re-calibration
has been observed in 2017 with respect to 2016 since the maximum remaining �-beating, has
been decreased to values lower than 2% after applying the calibration factors.
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Beam 1 Beam 2
Before re-cal. After re-cal. Before re-cal. After re-cal.

(�A

x

���

x

)

��

x

(%) -6.1 -0.5 -6.8 -1.6
(�A

y

���

y

)

��

y

(%) -6.1 0.3 -7.4 -2.0

Table 5.26: rms and maximum values for the horizontal �-beating of the �A with respect to
the �� for both beams before and after recalibrating the BPMs in IR1 and IR5.

(a) �-beating Beam 1 (b) �-beating Beam 2

Figure 5.28: �-beating measured using three di↵erent techniques (��,�A,�A,calibrated).

5.4 Summary

Even though virgin high-�⇤ optics presented high rms �-beating, the combination of local and
global corrections managed to reduce it below 5% rms.

High-�⇤ optics was first commissioned in October 2017 and revalidated lately in November
2017. The comparison of both measurements, October and November, shows a discrepancy
between the two sets of measurements of up to 1.5 % in the rms �-beating. Rms �-beating
value was well controlled below 4% in November, which is the relevant one as it was performed
with the operational cycle.

On the other hand, the most accurate results of �⇤ were obtained using � from phase method
with a resolution of 2%. In terms of accuracy, larger �-beating has been observed in IP5 in
both beams and planes.

The tune jitter level, shown in Fig. 5.19, is between 1.5 and 2 times large than the simu-
lated value a↵ecting the �⇤ function measurements using the k-modulation method, introduc-
ing large error-bars in the values of the � function measured in the BPMs closest to the IP.
Therefore, these values have not been used for the global corrections. Finally, BPMs have
been re-calibrated by implementing calibration factors computed using optics measurements
approaches. A decrease of approximately 6% has been observed on �-beating of the �A with
respect �� both for Beam 1 and Beam 2 in horizontal and vertical plane.



Chapter 6

PSB Optics measurements and
Corrections

As part of the LHC Injector Upgrade Project the injection energy of the CERN PS Booster
will be changed to increase intensity and brightness of the delivered beams. The new injection
scheme is likely to give rise to � beating above the required level of 5% and new measure-
ments techniques are required. Achieving accurate optics measurements in PSB lattice is a
challenging task that has involved several improvements in both hardware and software. This
chapter summarizes all the improvements that have been performed in the optics measurement
acquisition system together with a brief summary of the first results obtained.

Several major changes have been performed in PSB and in the rest of the injectors as part of
the LHC Injector Upgrade project (LIU) [125]. LINAC4 will replace injection of protons by
H� ions. New injection system is based in charge-extraction principle, ions will be injected into
a stripping foil used to strip electrons, located at the centre on the injection bump. The new
system will present many advantages with respect to the old injection system such as decrease
in the space-charge e↵ects, improvement of the injection e�ciency (from current 50% to 98%)
but it will require a more accurate control of the optics functions. The new injection system
will have an unknown e↵ect in the �-function, with a possible strong error at the injection
location. In order to have a full control on optics, the acquisition, control and analysis systems
have been further developed including both software and hardware aspects.

The accuracy of the optics functions reconstruction in PSB is limited by its lattice configuration.
The value of the phase advance between consecutive BPMs is approximately equal to Qx,y/16.
The study of the dependency of the �� as a function of the phase advance value �x,y,i,j is
presented in [2]. An alternative method to �� is the �A, but it also presents a limitation since
it is biased by the calibration factors as shown in Ch. 4. An optics-based-bpm-calibration
method has been implemented at the PSB in order to measure the calibration factors and
therefore be able to use the �A approach. A dedicated optics with di↵erent working point with
a more favorable phase advance between BPMs has been developed in order to get a �� that
can be used for reference value for �A. This new working point, denoted as Q3Q5 has been
developed exclusively for optics-based-BPM calibration factor calculations. The maximum tune
shift is limited by the strength of the magnets dedicated to the tune shift. The error-bar of
the �� (��) associated to the new working point and the nominal working point are signaled
in Fig. 6.1.
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Figure 6.1: �� error bar as a function of the phase advance together with the phase advance
values for the PSB taken from [2].

The implementation of optics measurement based on turn-by-turn data also required the up-
grade of the existing hardware and software dedicated for the PSB turn-by-turn optics mea-
surements. This chapter summarizes the studies performed as part of the commissioning of a
new optics measurements since the beginning of 2016 to 2018, including:

1. Commissioning of the new pick-up system.

2. Commissioning of the upgrade of the experimental kickers: the transverse feedback system
and the tune kicker.

3. Commissioning of a new working point denoted as Q3Q5, with di↵erent horizontal and
vertical tunes that will be used for obtaining a reference value of th �� function for
computing calibration factors.

4. Implementation of the otpics-based-BPM-calibration procedure introduced in Chapter 4
based on the ratio

p
�A/��.

5. Implementation of the optics-based-calibration factors measured using the Q3Q5 working
point into the normal operational working point.

6.1 Experimental setup used during performance of op-
tics measurements

Beam optics has been measured in PSB since 2013, using both turn-by-turn data and ORM
[14, 126, 127, 128]. Optics functions measurements based on turn-by-turn data requires ex-
perimental kickers to excite the beam in phase-space to larger amplitudes. This excitation
is performed by using experimental kickers, introduced in Ch. 1. In case of PSB, there are
two di↵erent kicker magnets operating in di↵erent modes, installed at PSB that can be used
for optics measurements. Nonetheless the hardware specifications were a limitation factor for
the accuracy of the optics measurements based on turn-by-turn method and several equipment
upgrades were required in order to improve the resolution of the optics measurements.
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Figure 6.2: Hardware configuration used for optics measurements in 2018 (Horizontal and
vertical plane) using the TFB system.

6.1.1 Hardware configuration

External excitation is performed as described in Ch. 1, both one time per cycle and periodically
within the same cycle. In PSB, beam excitation can be performed using two external excitation
sources, allowing to drive the beam in both horizontal and vertical plane to larger phase space
amplitudes. Single kick measurements are performed by using the BBQ kicker while multiple
kick excitation are performed using the transverse feedback (TFB or ADT) originally installed
for beam stabilization but used as an AC-dipole during these studies [86].

The frequency of the TFB is usually expressed as a function of the beam tune denoted as driven
tune, Qd = f

excitation

/f
beam

. Both the amplitude of the driven oscillations and the number of
turns recorded have an impact on the Fourier analysis resolution [129].

Single kick excitations in PSB is performed using the kicker BR.QMK12L1 that it is used
in normal operation for tune, dispersion and chromaticity measurements. The tune kicker is
operated by ramping up and down within one turn in order to apply a single transverse kick
then allow free betatron oscillations.

Figure 6.2 shows an schematic of the complete instrumentation installation including the ex-
ternal kickers and an illustration of how they are triggered.

Figure 6.3: Optics measurements procedure in PSB.
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Figure 6.3 shows the beam response to the two types of external excitation, the single kick
and the transverse feedback. The single kick beam response shows a decoherence e↵ect after
the beam receives a single kick, which is caused by the di↵erent oscillating frequencies of the
particles inside the beam. The e↵ect leads to a measured center of charge in the vicinity
of 0 after a number of turns. The number of turns than can be acquired before the beam
completely decoheres can be modified – increase in one plane and decrease in the other plane
– by changing the sextupolar current. Several measurements with di↵erent sextupolar current
were performed in November 2017 in order to decrease the vertical chromaticity from -1.2 units
to -0.1 increasing therefore, the number of turns available for the analysis. Nonetheless, the
increase in the number of turns, only in the vertical plane, did not have a direct impact on the
�-resolution. A large decoherence e↵ect is observed just after the excitation and it cannot be
avoided by changing the sextupolar current. Because of the reduced number of turns available
for the analysis, this excitation method had not been used as widely as the TFB.

Decoherence e↵ect can be avoided by exciting the beam in continuous mode (ramping up and
ramping down the beam) [48] using the TFB system working as an AC-dipole. The excitation
amplitude induced by the BBQ kicker will depend on the maximum kicker strength, while in
the case of the TFB the amplitude will depend both on the angular kick strength, the di↵erence
in the frequency values (�Q) and the values of the � functions at the AC-dipole [87].

Transverse feedback has been the main excitation source thanks to its two main advantages:
a larger driven amplitude for the same given voltage and a larger number of turns acquired
thanks to the lack of decoherence. On the other hand, the operation of TFB is more complex
since involves a large control of the beam tune.

6.1.2 Hardware improvements

External excitation kickers

The amplitude of the transverse driven excitation obtained during the measurements performed
in 2013-14 was not large enough to accurately measure �-function based on turn-by-turn tech-
niques and optics measurements were mainly based on orbit [128]

Prior to 2015, the maximum power delivered by the TFB power amplifier was 100 W. In order to
increase the driven oscillations amplitude, the transverse feedback power amplifiers have been
upgraded from an initial power to a nominal final value of 800 W. The internal TFB amplifier
has been upgraded in two steps: in 2016 and 2017 the power amplifier was only operational in
vertical plane and, finally, in 2018 it became fully operational in both planes. The larger driven
voltage allowed to increase the peak-to-peak beam response without having to reduce the �Q
and therefore without exciting resonances.

Nonetheless, during 2018 studies, it was found that the power amplifier started saturating for
input voltages larger than 2 V and, therefore, the input voltage value was kept under this value.
A frequency analysis of the TFB response has been analyzed in [130]. This analysis concludes
that there was no remarkable jitter in the driven tune, but however, there is a considerable
pollution of higher order modes.

The strength of the power amplifier connected to the single kick magnet has been also increased
allowing to obtain a larger peak to peak amplitude. In this case the limitation is the number of
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turns available for the analysis. An attempt of increasing the length of the excitation before the
beam completely decoheres was performed by changing the sextupole configuration. Di↵erent
values in a range of 0 to 90 A were tested without obtaining a clear improvement in number of
turns available for the analysis. Figure 6.3 shows that due to the dechorence e↵ects, the number
of turns available for Fourier analysis is only about 500 turns while in case of the transverse
feedback it is possible to analyze 5000 turns.

BPM upgrades

The new BPM system installed in 2015 at the PSB produces turn-by-turn trajectories for
individual bunches over the full acceleration cycle since the old analog to digital converters
were replaced by new ones that deliver a continuous sample stream at a rate of the order of
100 MS/s (mega samples per second), i.e. 100 times faster than the beam revolution frequency.
BPM gain can be optimized for di↵erent beam intensity values in order to keep the noise to
signal ratio as low as possible. The gain calibration of the BPMs cannot be done separately for
the two channels associated to each channel: ⌃ channel proportional to the beam intensity and
� value proportional to the di↵erence. Therefore the gain has to be carefully set in order to
not overflow the ADCs associated to each channel). For typical beam displacements less than
1/10 of the beam pipe aperture, the di↵erence � is smaller by about this factor compared to
the sum.

Reaching a final level of the hardware settings has been an iterative work where di↵erent teams
were involved. The new BPM hardware, detailed described in [131], was tested during the
commissioning. The collaboration between BE-OP, BE-BI and BE-ABP allowed to improve
the acquisition system including the sett up of the new excitation kicker and the new BPM
ADC commissioning.

6.2 Software improvements

The performance of optics measurements in PSB has been fully automatized. New tools have
been developed in order to acquire the data and to analyze it, as well several di↵erent instru-
mentation have been upgraded in order to improve the optics measurements accuracy.

The lattice design and especially the location of the BPMs was not originally designed for
measuring �-functions. Several software and analysis methods have been developed in order to
be able to measure the �-function with a 5% resolution requested by the PSB Operations team.
Several improvement were required in all the di↵erent steps of the acquisition-analysis process.
A summary of the di↵erent software upgrades performed at di↵erent stages of the measurement
process are described below and have been summarized in Fig. 6.4.
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Figure 6.4: Optics measurements procedure in PSB.

• Setting the beam parameters for optics measurements

SA new BPM turn-by-turn application has been fully developed. This new appli-
cation combines all the functionality required during the optics measurements: se-
lection of the ring, BPM gain, beginning of the acquisition (time), number of turns
being recorded. Additional beam parameters such as the intensity, the tune or the
chromaticity are configured in a di↵erent software. Di↵erent studies have been per-
formed in order to optimize the beam intensity used during the optics-measurements.
For the given energy of 160 MeV, the BPM resolution will delimit the region of in-
tensity operation. A study of the performance of the BPMs was performed for a
range of intensities of 100-250 ·1010 for the four rings, without observing a direct im-
pact on the resolution while changing the beam intensity within that range thanks
to the BPM gain suggestion that is evaluated automatically. Improvement on the
creation of a MADX model for each di↵erent working point and excitation value.
The model can now be created using a graphic interface that allows to obtain the
lattice parameters for a given natural tune and external tune values. These lattice
parameters are later used for the optics analysis [132] (accelerator class).

–––• Instrumentation

– Improvement in the data conversion from raw analogue signal to data accessible
in the Front-End Software Architecture (FESA) [133]. BPM granularity has been
increased from 0.1 mm to the maximum number of digits allowed by the ADC
converter. This improvement enhances the BPM resolution from an average of 0.05
mm to 0.03 mm.

• Analysis

– Adaptation of the existing LHC code analysis code: signal analysis and optics com-
putation based on Fourier analysis. The Single-Value-Decomponsition (SVD) [129]
has been adapted by decreasing the number of modes that are kept and that are
considered to be related to physics parameters of the beam motion. Additionally,
the �� code has been modified in order to adapt the number of BPMs used for
the �-function analysis. The �� combined the information from phase advances be-
tween three BPMs located at di↵erent places of the machine. A summary of the
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most relevant errors has been created for first time for PSB in order to be able to
implement the �� method introduced in [4] and not using [1] restricting the BPM
to the neighbor BPMs.

– � function can only be directly measured at the BPM location. Nonetheless in some
scenarios it is also interested to measure optics functions at a di↵erent locations.
A discrepancy in the emittance measured at PSB extraction line and PS injection
[17] motivated the adaptation of LHC software to PSB, that allows to obtain the
optics functions at an arbitrary position. Creation of a segment-by-segment [42, 134]
in order to obtain the values of the � at di↵erent element. Segment-by-segment
runs MADX [109] in a part of the accelerator in between two BPM positions. The
measured optical functions at the BPMs are used as boundary conditions for MADX.
� function can be obtained using both �� and �A while ↵ and � functions are
currently only computed using phase advance measurements, and their resolution is
limited by the � advance value. Alternative ways of computing the ↵ and � function
based on �A and MADX are being analyzed. This method has first been developed
for LHC [42] and it has been adapted to PSB.

– Creation of an script for the calculation of the optics-based-BPM calibration factors
and adaptation of the code in order to apply the calibration factors to the frequency
analysis.

6.3 Optics measurements procedure

6.4 Optics-measurements methods limitations in PSB

Optics functions reconstruction, both based on phase advance and amplitude, have been further
developed for PSB since the beginning of the BPM commissioning. Reconstruction of �-function
based on phase advance measurements is known as N-BPM method �� [2]. On one hand, the
old �� error-bar calculation based on Monte-carlo simulations [2] approach has been replaced by
analytical calculations [4]. The implementation of the analytic phase advance method, requires
the knowledge of the systematic errors (quadrupole misalignements, sextupole misaligments
and BPM misalignements) [135] that have been summarized in a error file.

The accuracy of �� approach is limited by the PSB lattice. PSB rings are divided into 16
equivalent cells, each of then is composed by a focusing quadrupole, defocusing quadrupole,
dipoles and two BPMs (horizontal and vertical) [14, 126, 127]. PSB operational working point
at 160 MeV is Qx = 4.18, Qy = 4.30 (showing a large dependency with beam intensity). The
location of the BPMs combined with the values of the tune lead to a phase advance between
consecutive BPMs close to 90°, (�x,n � �x,n�1

= 96.1° and �y,n � �y,n�1

= 96.3° ).
Those phase advances between consecutive BPMs represent a challenge for the �� method [4].
In this approach, the relation between the phase advance � and the �-function is given by a
cotangent function, that vanishes for � = n⇡

2

and goes to ±1 for � = n⇡. The number of
BPMs used in the � calculation will directly a↵ect the accuracy of the measurements. More
accurate results will be obtained for larger number of BPMs, but this will require a very precise
values of the di↵erent magnetic errors and misalagniments. A compromise between this two
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Figure 6.5: Magnetic cycle in PSB [17].

paramaters has been reached by using 5 BPMs (two to the left and two to the right of the BPM
being studied).

On the other hand, the �A method [10] has been adapted to the PSB lattice by removing
the more noisy BPMs from the action calculation and by developing a dedicated optics-based-
approach for obtaining the calibration factors of the BPMs.

This Chapter introduces and evaluates an optics-based-BPM approach for calculation of cali-
bration factors based on the ratio �A/��. In order to obtain the BPM calibration factor it is
necessary to have an accurate reference value, obtained using the �� method. This �� reference
value is obtained by optimizing the phase advance between the consecutive BPMS, by changing
the working point of the machine.

6.5 Operation of PSB

6.5.1 Development of a new operation cycle of PSB

A specific cycle has been developed for the performance of optics measurements. Beam is
injected from LINAC at 50 MeV 275 ms after the start of the cycle and then it is ramp up
to 160 MeV. This energy is reached after approximately 125 ms (or 400 ms after the start
of the cycle) and it is kept constant until the 675 ms (plateau) as shown in Fig. 6.5. Optics
measurements are performed during this flat part of the cycle, covering a small fraction of the
plateau. Beam is ejected 530 ms after the injection.

Optics measurements have been performed using the two possible radio-frequency systems (H1
and H2) in order to maximize the stability of the machine.

An overview of the di↵erent software used in the process of acquiring, measuring and analyzing
is shown in Fig. 6.4. This figure is divided in di↵erent parts associated to di↵erent steps that
have to be performed during the optics measurements.
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6.5.2 Developing of a new working point, Q3Q5

A more optimal phase advance for �� reconstruction can be achieved by moving the machine
tunes. New working point aims to move the phase advance between consecutive BPMs further
from 90° in order to improve the accuracy of the measurements. The new working point will
be defined by the settings of the trim quadrupoles, the set of quadrupoles that are in charge
of moving the working point. The maximum tune change allowed by the power supplies were
Qx = 3.38 and Qy = 5.47 at 160 MeV, moving the phase advance to ��x = 14° and ��y = 32°
with respect to 90°. Change in the measured phase advance between consecutive neighbours
when changing the working point is shown in Fig. 6.6.

A comparison of horizontal and vertical phase advance in the optics Q3Q5 and Q4Q4 is shown
in Fig. 6.6, where it can be seen that the phase advance between consecutive BPMs moves from
90 °. Horizontal and vertical �-function are also modified when moving the working point, as
it can be seen in Fig. 6.7.

Figure 6.6: Phase advance at the two di↵erent working points Q3Q5 and Q4Q4.

Figure 6.7: �-function at two di↵erent working points Q3Q5 and Q4Q4.

Analysis of the PSB stability

One of the main limitations that we had to face during the commissioning was the lack of the
stability of the machine. PSB MD are performed in parallel with many other users and the
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Figure 6.8: Phase advance stability using correlation between phase advance measured in con-
secutive acquisitions (Q3Q5): Horizontal (left), vertical (right).

time dedicated to each user is limited in one supercycle. During one cycle in the supercycle,
the beam is injected and extracted. The intensity of the beam is fixed by the number of
turns being injected from LINAC and by the e�ciency of the injection process. Due to lack
of reproducibility of the machine, even if the number of turns is kept constant, the intensity
in every measurement may vary in a range of 10%. Intensity fluctuations lead to changes in
the tune, and in consequnce, to a di↵erent values in the � (di↵erence between the natural and
the driven tune). The stability of the injection LINAC (LINAC4) to PSB also plays a very
important roll in the accuracy of the measurements. Tune stability depends on the intensity
fluctuations that, at the same time, depend on the injection e�ciency.

Correlation matrix

The e↵ects of the lack of stability have been studied by analyzing the phase advance correlation
matrix (between two given BPMs). Because the phase advance are equally spaced in terms of
phase advance, a correlated phase advance fluctuation should have an equal impact on all
the BPMs. On the other hand, arbitrary change in the phase advance (not correlated) will
be extremely di�cult to correct and will present a limitation for the method, a↵ecting the
accuracy of the results.

The study of the stability of the machine has been analyzed for the Q4Q4 working point
(Fig. 6.8) and the working point Q3Q5 (Fig. 6.9). In both cases, the change of phase ad-
vance between two BPMs in consecutive measurements is not correlated and therefore these
fluctuations will have a great impact on the optics measurements accuracy.

6.6 Measurement procedures and results

Optics measurements have been performed in several days in order to find the optimal settings
both for the beam intensity and the external kickers [136, 137].

On one hand, di↵erent studies have been performed with di↵erent intensities within a range of
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Figure 6.9: Phase advance stability using correlation between phase advance measured in con-
secutive acquisitions (Q4Q4): Horizontal (left), vertical (right).

100 ·1010 – 250 ·1010 particles per bunch (ppb) and with di↵erent external frequency kickers.
The e�ciency of the injection (from LINAC4 controlled by the numbers of turns that are being
injected) it is not constant, leading to a relative fluctuation of ± 10%. The observed detuning,
for this range of intensities, is 2 ·10�3 in the horizontal plane and 1 ·10�2 in the vertical plane.
A clear tendency between the BPM resolution and the intensity has not been observed in
this intensity range, therefore the lower intensity has been selected for the studies in order to
decrease the space charge e↵ects.

The distance between the external tune and the natural frequency, �Qx,y, should be large
enough to induce large excitation within triggering a resonance. The optimal �Q should
not be within the natural tune range of values. The most used �Q tunes during the optics
measurements for both were: �Qx = -4·10�3 and �Qy = +4·10�3. Stability issues were
addressed during the first turn-by-turn acquisitions. Optimization in the lattice (octupolar
current, harmonics) were needed in order to find stable conditions with the highest charge per
bunch.

Performance of optics measurements in all the 4 rings started once the final settings were
optimized. Measurements have been first performed in the working point Q3Q5, in order to
obtain the calibration factors of all the 4 rings. Since the first prototypes of new ADC converters
were first installed in Ring 2, this has been the ring that has been most studied and that will
be used as an example for the other 3 rings.

During the measurements performed at both Q4Q4 and Q3Q5 a larger noise level was observed
for three BPMs: “BPM4”, “BPM6”, “BPM15”. The di↵erence in noise with respect to the
other BPMs is larger in the new working point distorting the turn-by-turn data, not allowing
to measure the � function accurately. One possible explanation BPMs failure could be given
by the fact that those BPMs are connected to the radial loop feedback that stabilize the beam
specially in the working point Q3Q5 where the beam is less stable. Since the reason of the
BPM malfunctioning is not clear and the additionally noise has not been filtered using SVD
cleaning, the BPM has been removed from the analysis in the Q3Q5 in order to a↵ect the rest
of the BPMs both in the �� and the �A method. This e↵ect has not been as strongly observed
in the Q4Q4 working point and therefore the BPMs in that scenario have not been removed.
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A study of the phase advance uncertainty has been performed in order to understand the e↵ect
of the machine stability in the measurements as opposed to the error introduced by the phase
advance value. Figure 6.10 and Tab. 6.1 summarizes the phase advance uncertainties measured
in the 4 rings for both planes and both working points Q4Q4 and Q3Q5. The lack of stability in
the new working point increases the statistical component of the error-bar, leading to a larger
than expected error-bar

Figure 6.10: Horizontal and vertical phase uncertainty for all rings.

r.m.s (�(�x,ij)) r.m.s (�(�y,ij))
Q3Q5 1.4 ·10�3 1.4 ·10�3

Q4Q4 0.8 ·10�3 0.8 ·10�3

Table 6.1: Summary of phase-advance error in 2⇡ units measured in September and October
in Ring 2 for the working point Q3Q5 and Q4Q4.

6.6.1 Working point Q3Q5

�� Q3Q5 measurements using �� and �A

� functions measured in both horizontal and vertical planes in ring 2 are shown in Fig. (6.11).
Rings 1, 3 and 4 have the same optics configuration and for simplicity they will not be included
in this chapter.

Calibration factors

Electronic calibration factors, that relate the voltage di↵erence induced in the pick-up with the
beam position, [131] depends on the geometry of the pick-up. The previous geometric cali-
bration factor value used during the turn-by-turn measurements (2015) were measured during
their installation. Optics-based-calibration calculation approach aims to provide a method for
keeping track of the BPM calibration factors changes with time in a fast and non-invasive way.
The fundamentals of this approach are described in Ch. 4, and they have been measured for
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Figure 6.11: Horizontal � function measured as a function of position for two di↵erent working
points Q3Q5: �� (top), �A (bottom) (Ring 2).

Figure 6.12: Calibration factors and calibration factors uncertainty measured (Ring 2).

all the rings using the optics functions measured at Q3Q5. Spread of both calibration factors
and their associated error bar have been analyzed for all the rings. Figure 6.12 shows the
calibration factors (top) and their associated errors (bottom) measured in Ring 2 as a sample
for all the rings. Measurement calibration factor uncertainty is dominated by the uncertainty
of the �� and �A-function, limiting the average calibration factor resolution to a 6% ± 1% in
both horizontal and vertical plane for the 4 rings.

6.6.2 Working point Q4Q4

Once the calibration factors were computed using the � functions in the working point Q3Q5,
optics functions were measured in Q4Q4.

Figure 6.13 shows the �-functions measured with three di↵erent techniques: ��, �A and
�A,calibrated in the horizontal and vertical plane in the Ring 2. As in the previous section,
this ring will be used as a representative sample of the 4 rings. A more quantitative analysis
of the results obtained using the three techniques including the rms �-beating and the average
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Figure 6.13: � function measured as a function of position: ��, �A and �A,cal.

Figure 6.14: �-beating measured as a function of position: ��, �A, �A,cal.

�-error bar is summarized in Tab. 6.2. The �-beating, ilustrated in Fig. 6.14, is defined as
(�meas��MADX)/�MADX where �meas refers to the � measured using three di↵erent approaches:
��, �A, �A,cal.

6.7 Conclusion

The installation of the new injection system has served as motivation for improvements in
the di↵erent steps required in order to obtain the optics functions. The performance of op-
tics measurements in the early stage of the BPMs upgrade have been a very useful tool for
the commissioning of the installation of the new pick-up system, allowing to debug di↵erent
synchronization issues. Additionally, all the hardware upgrades and software development de-

Horizontal Vertical
�� �A,cal �A �� �A,cal �A

r.m.s. (��
�
)% 11 10 5 4 11 6

average (�-errorbar) % 17 6 2 20 6 2

Table 6.2: Summary of r.m.s �-beating measured in Ring 2.
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scribed in this section will allow to measure in a fast and systematic way the PSB optics just
after the start of the RUN 3. The measurement acquisition has improved the automatizing of
the measurements allowing to perform faster measurements. All these improvements will be
very useful in the detection of any possible problem when injecting the beam from Linac4.

On the other hand, the poor stability of the machine in the working point Q3Q5 is a limiting
factor while computing the calibration factors. Several sources contribute to the machine
instability, but only one of them has been identified: fluctuations in the intensity of the beam
injected. Figure 6.1 shows that the error-bar associated to the new working point should be
approximately 5 times smaller than the measured in the nominal working point. Nonetheless,
only a factor of 2 is observed mainly due to the lack of stability of the new working point.
Fluctuations in the machine over time a↵ects both the phase advance measurements and the
amplitude measurements. �-function reconstruction based on the phase advance are more
solid against machine variations since this approach relays on relative quantity, phase advance
between two BPMs. In case of the amplitude approach, machine instabilities will impact
directly the precision of the measurements, obtaining readout far from the value of the real
�-function.

Machine instabilities at Q3Q5 have an impact on the calibration factors calculation that will
propagate to the �A,cal measured in Q4Q4. This e↵ect can be observed by comparing two
quantities: the average �A errorbar before and after the BPM re-calibration and the rms �-
beating of �A with respect to the ��, before and after the BPM re-calibration. An increase in
the error-bar after re-calibrating the BPMs is introduced in the propagation of the calibration
factor error-bars. On the other hand, the increase in the rms �-beating when using �A,cal is
due to the calibration fluctuations. These two quantities are summarized in Tab. 6.2 both for
horizontal and for vertical plane.

The lack of stability of the alternative working point Q3Q5 might introduce in some cases
possible outliers, as it can be seen in Fig. 6.12. An improvement in the stability of the machine
in the working point Q3Q5 will also improve the precision of the �A,cal method obtaining an
alternative method of ��, not biased by the calibration factors and within the tolerances set
by the operation team.



Chapter 7

Summary of Thesis Achievements and
Future Work

A novel approach of computing the calibration factors of Beam Position Monitor (BPMs) based
on optics measurements has been presented in this thesis. Optics measurements and corrections
are essential activities carried out in accelerators during the commissioning period and during
the time allocated to improve the machine performance. Those activities allow delivering to
the experiments the design luminosity within the tolerance limits. Those tolerance values are,
at the same time, correlated to the optics measurements precision. The precision achieved
during optics measurements is highly dependent on the optics configuration, defined by the
�-function at the experiment’s location (�⇤). Most extensively methods used for computing
the optics functions in accelerators around the world, such as the Large Hadron Collider (LHC)
and its injectors are based both in the turn-by-turn approach and in K-modulation technique.
�-function obtained using the phase of the turn-by-turn data in the frequency domain, ��, and
K-modulation present some limitations in scenarios where knowledge of �-function is critical
for the performance of the experiment. In the case of ��, this limitation on accuracy is reached
when the phase advance value between a pair of BPMs i an j, �i,j, is close to n⇡. Phase
advance values in the vicinity of n⇡ are observed for two accelerators at CERN, in the Proton
Synchrotron Booster (PSB) in regular operation and in the LHC when is running with low values
of the �-function at the interaction point (�⇤ < 60 cm). On the other hand, K-modulation
resolution is limited by the machine tune jitter that has to be kept close to 10�5 [45]. Results
presented in [57] show that for LHC, tune stability fluctuates between 2⇥ 10�5 and 10�4 being
on the limit of the required resolution.

The need for reaching a constant level of precision and accuracy for all the di↵erent optics
scenarios has motivated the study and further development of an existing alternative method,
denoted as �A. This approach is based on the measurement of the amplitude of transverse
oscillations. It has not been as extensively used as the two methods previously described since
it is biased by the BPM calibration factors. BPMs are calibrated before installation to obtain
the most accurate possible relation between the induced voltage in the BPMs electrodes and
the position of the centre of charge [138]. Nonetheless, reconstruction of �-function using in-
formation contained in the amplitude, �A, showed a systematic o↵set with respect reference
values obtained using the phase �� or K-modulation, �K-modulation. During the first optics mea-
surements after the LHC shutdown performed in 2015 and described in detailed in Ch. 3, it
was found that the ratio between the �A and the other approaches- that is directly propor-
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tional to the calibration factors of the BPMs- did not agree with the BPM calibration factor
specifications. By further analyzing several optics measurements in 2015, it was found that the
di↵erence between �A and the reference values only depends on the BPM geometry and not on
the optics configurations. A more significant discrepancy has been observed in the experimental
regions, where the geometry of the BPMs di↵ers from the geometry of the BPMs placed in the
rest of the accelerator. The fact that the ratio between the measured �-functions is independent
of the optics configuration motivated the developement of an alternative calibration approach,
based on two optics function: � and dispersion. This approach aims to complement the existing
electronic calibrations.

Optics-based-BPM calibration factors studies in LHC have involved the adaptation of an ex-
isting optics previously used for the alignment of the triplet quadrupoles denoted as Ballistic
or alignment optics. Ballistic optics was first tested in 2015, and since then it has been pro-
gressively modified to extend the range of BPMs being calibrated. In the latest version of
the optics, developed and implemented in 2017, the dispersion function in the IRs was not
matched to 0 leading to an alternative optics function that can be used in combination with ��

to measure calibration factors. The suitability of ballistic optics for optics calibration factors
together with the commissioning of this optics carried out in 2017 have been assessed in Ch. 4.
Calibration factors have been measured using optics-measurement-based approaches both in
Beam 1 and Beam 2 in IR1 and IR5, achieving a sub-per cent uncertainty. Accuracy of those
calibration factors has been assessed by computing the relative di↵erence between the �A and
a reference value, �� and �K-modulation. An average reduction of 6% has been observed in this
relative di↵erence after re-calibrating the BPMs using optics-measurement-based techniques.
The e↵ect of re-calibrating the BPMs using optics-measurement-based approaches on the �A

has been analyzed in detail in Ch. 4

Calibration factors measured using �-function ratio,
p
�A/�� have been validated computing

the ratio between dispersion function and normalized dispersion, Dx/NDx

p
�x. Nonetheless,

the large error-bars associated with the dispersion measurements propagate directly to the
calibration factor calculations a↵ecting the accuracy of the measurements.

Analysis of BPM calibration factors, based on optics measurements, has led to fruitful discus-
sions and collaborations with the CERN team that is in charge of the BPM system. The results
introduced in Ch. 4 will be used during Run III to improve not only the �⇤ measurements but
also the operation. Additionally, detailed information about the limitations of the BPM system
that have been observed while performing optics measurements will be used as an input for the
new BPMs that will be installed in the HL-LHC.

Optics-based-BPM calibration factors studies in PSB involved hardware upgrade and software
developments. The commissioning of the PSB optics measurements has been successfully per-
formed. The optics configuration developed for computing the calibration factors consisted of
moving the working point, i.e. the horizontal and vertical tunes. Measurements performed
in this new working point presented some limitations due to the beam instability in the new
optics configurations. The radial feedback system, in charge of mitigating the instabilities, is
connected to three BPMs also used for performing optics measurements. It has been found
that the noise level of those BPMs is larger than the average value altering the turn-by-turn
signal recorded, not allowing to compute the calibration factors values accurately. Nonetheless,
results obtained in the four rings using the new technique �A,calibrated shows a decrease in the
� uncertainty of almost a factor three with respect to �� technique.
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Additional activities had to be performed in PSB to obtain a su�ciently large beam response
that will allow measuring the optics functions accurately. Those activities covered the instal-
lation of di↵erent hardware elements, including the new ADC converters in the BPMs, the
external beam exciters and a system dedicated to measurement acquisition. Software used for
measurement acquisition and analysis have been developed to simplify the optics measurements
procedure. The improvements implemented in the machine, together with the in-depth analysis
of the �A error-bar will allow to speed up the commissioning of the new injection scheme at
the beginning of Run III.

In summary, the present work completes the �A approach by computing optics-based-calibration
factors and by further analyzing the error-bar associated with this method. The revisited �A

approach aims to give an accurate value of the �-function covering all possible operational
scenarios presented in accelerators that are currently operating such as PSB, PS and LHC and
future generators of accelerators.
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[17] A. Santamaŕıa. Emittance measurements in the PS. https://indico.cern.ch/event/
706213/contributions/2897724/attachments/1617487/2580063/LIU_MDday2018_
emittance_PSB_final.pdf. Presented in LIU MD Day.

[18] M. Stanley Livingston. “Early history of Particle Accelerators”. In Advances in Electron-
ics and Electron Physics, number 50, pages 1–88, 1980.

[19] Geneva, 1994. CERN Accelerator School : 5th General Accelerator Physics Course
http://cds.cern.ch/record/235242.

[20] R. W Hamm and M. E Hamm. “Industrial accelerators and their applications”. World
Scientific, Singapore, 2012. https://cds.cern.ch/record/1477757.

[21] O. Barbalat. “Applications of particle accelerators”. (CERN-AC-93-04-BLIT-REV), Feb
1994. https://cds.cern.ch/record/260280.

[22] G. Aad et al. “Observation of a new particle in the search for the Standard Model Higgs
boson with the ATLAS detector at the LHC”. Phys. Lett., B716:1–29, 2012.

[23] S. Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC”. Phys. Lett., B716:30–61, 2012.

[24] R. Aaij et al. “Evidence for exotic hadron contributions to ⇤0

b ! J/ p⇡� decays”. Phys.
Rev. Lett., 117(8):082003, 2016. [Addendum: Phys. Rev. Lett.118,119901(2017)].

[25] E. Wilson. “An Introduction to Particle Accelerators”. Oxford University Press, Singa-
pore, 2013.

[26] M. Karl H. Chao, A. Wu and Frank Tigner, M. Zimmermann. “Handbook of accelerator
physics and engineering; 2nd ed.”. World Scientific, Singapore, 2013.

[27] S. Y. Lee. “Accelerator physics; 4th ed.”. World Scientific, Singapore, 2019.

[28] H. Wiedemamm. “Particle accelerator physics, 4th edition”. Springer, 2015.

[29] E. D. Courant and H. S. Snyder. “Theory of the Alternating-Gradient Synchrotron”.
Ann. Phys., 3:1–48, 1958.

https://indico.cern.ch/event/706213/contributions/2897724/attachments/1617487/2580063/LIU_MDday2018_emittance_PSB_final.pdf
https://indico.cern.ch/event/706213/contributions/2897724/attachments/1617487/2580063/LIU_MDday2018_emittance_PSB_final.pdf
https://indico.cern.ch/event/706213/contributions/2897724/attachments/1617487/2580063/LIU_MDday2018_emittance_PSB_final.pdf


110 BIBLIOGRAPHY

[30] O. S. Bruning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proudlock.
“LHC Design Report: volume 1”. CERN Yellow Reports: Monographs. CERN, Geneva,
2004. http://cds.cern.ch/record/782076.

[31] O. S. Bruning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proudlock.
“LHC Design Report: volume 2”. CERN Yellow Reports: Monographs. CERN, Geneva,
2004. http://cds.cern.ch/record/815187.

[32] M. Benedikt, P. Collier, V. Mertens, J. Poole, and K. Schindl. “LHC Design
Report: volume 3”. CERN Yellow Reports: Monographs. CERN, Geneva, 2004.
http://cds.cern.ch/record/823808.
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Appendix A

Analysis of error-sources in
�A-calculation

A.1 ��-error propagation in action calculation

The errorbar of the �D,� will propagate to the action calculation shown in Eq. (4.10) according
to:
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Assuming that the action value at a BPM i, 2JD,�
i , and the �� relative error,
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correlated, the action value can be taken out the summation as the average action value 2JD,�,
leading to:
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The average relative error-bar from �� measured in several optics of 2017 was 0.9%.

�
2JD,�

2JD,�
|�D,�

i

⇡ 0.05% (A.3)

A.2 Tune uncertainty propagation in �A-calculation.

The e↵ect of the natural and driven tune uncertainty in the AC-dipole compensation have been
analytically studied. Performing error propagation in Eq. 4.9. Lambda factor, used in the
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compensation of the AC-dipole e↵ect is given by:
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(A.4)

Its associated error, induced by the tune uncertainty, is given by:
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Assuming that the uncertainty of the natural tune �(Q) and the driven tune �(Qd) are equiv-
alent and equal to �(Q) and using the parity properties of the sinusoidal functions, the two
terms of Eq. A.4 are equivalent. Applying trigonometrical identities, the numerator of Eq. A.4
can be expressed as:
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The maximum uncertainty introduced in the � calculation due to previously computed error
in � calculation is therefore given by:
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A.3 �-beating evolution in a lattice with errors

The perturbed � function in a ring is expressed as a function of the amplitude and phase of
the generating driving term f

2000

[139] and the unperturbed �
model

function, as

�meas. = �model(1 + 32|f
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2000

| sin q
2000

) , (A.8)

where |f
2000

| and q
2000

are the amplitude and phase of the generating function term. With many
small random errors |f

2000

| and sin q
2000

would tend to be uncorrelated giving a ring-average
�-beating of ⌧
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�
= 32h|f

2000

|2i . (A.9)
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Figure A.1: Beta-beating average as a function of the beta-beating rms considering only BPMs
placed in the ARCs.

The rms of the �-beating around the ring is given by:
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Using that sin2 x = (1� cos 2x)/2 and, again, the assumption that |f
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| and q
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are uncor-
related, the standard deviation takes the form
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From Eqs. (A.9) and (A.11) the following identity is obtained
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, (A.12)

which implies that the ring-average � function increases with the square of the standard devi-
ation of the �-beating, also known as rms �-beating. This seems to be a universal property of
all lattices since no assumptions on the lattice is made other than random error sources. The
relation between these two quantities, average �-beating and rms �-beating have been studied
in MADX simulations. Figure A.1 shows the LHC Ballistic simulations including the prediction
from Eq. (A.12).

Action calculation 2JD

C

introduced in Ch. 4, can be alternatively computed using a model �
function provided by MADX [109]. Expanding the action calculation 2J�

C

using ��
i = �model

i +
���

i , it is possible to obtain the deviation introduced in the action calculation when a model
values it is used as a reference value:
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The relative error introduced in the action calculation when using a �-model is proportional to
the rms �-beating errors. Since the rms �-beating is a always positive, the action calculation
will be sistemaytically underestimated.

A.4 �A/�� spread

The spread of the ratio �A/��-function over the BPMs can be analytically estimated. This
spread depends on the spread associated with the calibration factors of the specific BPM type
being studied, the action error-bar and the average relative �� error-bar. In case the BPMs
have been re-calibrated, then the relative error-bar associated with the Ballistic calibration
factor contribute to the spread replacing the spread associated with the calibration factors.

Relative error-bar �� have been analyzed for several optics in LHC measured in 2017 as shown
in Fig. 5.1. In the case of standard BPMs the average relative error-bar �� is approximately
1% with a spread of 0.3% independently of the optics analyzed. In the case of stripline BPMs,
the relative errorbar �� depends on the optics, for the optics analyzed in Ch. 5, the average
relative error-bar is approximately 2% with a 0.6% spread.

The spread associated to the ratio ��/�A is generated by three di↵erent contributions: the

spread associated to the calibration factors distribution
⇣
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, the spread associated to the

action calculation
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. The analysis has been divided

into three possible scenarios according to the BPMs being analyzed: standard, stripline and
stripline calibrated:
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• Standard

�

✓
�A

��

◆
2

=

 
2�(CA)

C2

i

!
2

+

✓
2�(CA)p
N 0 � 1

◆
2

+

✓
���

��

◆
2

⇡
 
2�(CA)

C2

i

!
2

+ 0.012. (A.15)

• Stripline
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• Stripline calibrated. In this case, the e↵ect of the calibration factor spread is substituted
by the calibration factors uncertainty measured using the Ballistic optics.
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