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Abstract

We present a perturbative formalism, up to second order, for calculating spin tune shift
on the closed orbit of a storage ring due to misalignment. This is based on the familiar
concepts of the SLIM[1] formalism and can treat rings of arbitrary geometry. The final
formulae agree with those already given using another approach by Yokoya [2] and are
valid for arbitrary particle velocity i.e. above and below transition.
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1 Introduction

In a perfectly planar storage ring with no longitudinal fields, the frequency of spin precesssion,
Qspin, around the vertical dipole field along the design orbit is ay precessions per turn [3]. Qspin
is called the spin tune. The spin tune can be measured by resonantly depolarizing the beam
with a radial sinusoidal magnetic field. In the case of the perfect planar ring it is then possible
to determine ay and hence the beam energy with very high precision [4, 5]. However, in the
presence of misalignments, the closed orbit is distorted. In the vertical plane the distortion
is due to horizontal quadrupole fields, sextupole fields and correction fields. In this case the
spin tune is no longer exactly given by av and the precision on the measurement of the energy
is determined by the spin tune shift 6@, caused by distortions. An estimate of 6(Q)pin 1s
therefore an essential ingredient when measuring the beam energy by resonant depolarization.

In proton storage rings operating in the TeV range, the spin tune shift can become very
large. and although the energy might have been chosen so that Qi is far from an integer.
6Qspin can be so big that one is in reality sitting close to integer spin tune. In that case
the equilibrium polarization axis iy could be tilted away from the design direction by a large
amount. Since the imperfections are usually insufficiently well known, the direction of the
equilibrium polarization would be unknown. Thus in this example we see again that we need
to be able to estimate 6@, with sufficient precision. This is still the case if the ring contains
solenoids or Siberian Snakes [2, 6]: the spin tune of the otherwise perfectly aligned ring, Q5.
is no longer given by a7 [7] but the spin precession rate in transverse fields is still proportional
to the energy and at very high energy the shift 6@, could be large in this case too.

Methods for estimating 6Qspin have been presented on several occasions. For example
Assmann and Koutchouk have treated the special case of LEP, by studying the trace of the
one turn 3 x 3 spin transfer matrix on the closed orbit [8] and Yokoya has used a canonical
perturbation theory to study the spin tune shift in very high energy proton storage rings with
and without snakes [2].

Spin tune can also be calculated from the trace of the one turn spinor transfer matrix [7].
In this paper we use methods familiar from the SLIM formalism [1] and obtain the same resul
as Yokova up to second order and for arbitrary storage ring geometry. The calculations are
similar in spirit to those used for calculating energy level shifts in quantum mechanics.

2 The Equations of Spin Motion.

2.1 The Unperturbed Eigenvalue Spectrum.

Using the notation of Refs. [3. 9], the motion of a spin vector £ on the design orbit is
described by the Thomas-BMT equation [10. 11]:

d - .o
ggﬁ = Qx¢
Q¢ (2.1)



where we write the spin as

) 3
§ = €x
£
and where the precession vector §)
. QS 0 _Qz Ql‘
Q = Q. 1 Q= 1. 0 =
Q. Q. Q 0

depends on the magnetic and electric fields, the velocity and the energy. We calculate in the
machine coordinate system. In the presence of misalignments the closed orbit deviates from
the design orbit and we write:

d nd - - —
&= OEFIRY;
= [Q4w]¢ (2.2)
where
Wy 0 —W, Wy
“ = lw |y ow=] w 0 —w
W, —Wy W 0

is the contribution to the precession vector due to closed orbit distortions and is assumed to
be small compared with 2. The detailed form can be found in Refs. [3, 9].

Denoting the 3x3 orthogonal rotation transfer matrix solving (2.1) by My(s + L, s). the
corresponding matrix in the presence of distortions is written as:

M(s+L,s) = My(s+L,s)+éM(s+L,s).

The spin tune is extracted from the eigenvalues of the one turn eigen problem. lor &
perfectly aligned machine of arbitrary geometry this takes the form (see Refs. [3, 9, 12] ):

My(so+ L,so) Tulso) = - Uu(s0); (2.4
(h=1,2 3)
with
o = 1;
a, = e—H © 27 Qspin ; (2.1)
as = o1 27 Qspin
and
U1(s0) = T7io(So) ; (2.5a)

62(50) - % . [7%0(80) + 7- Z)(So)] ; (25]))
{)‘3(30) = % . [7’710(50) -1 - E)(So)] ) (.2«3()
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The (7o, Mo, lp) are real vectors and the spin tune is the real number Q) pin-

The vectors 7ig(sg), mio(so) and lo(so) form an orthonormal system:

Ifio(s0)] = |molso)] = [lo(so)] = 1 (2.6a)

7_1‘0(80) 4L 7?’1‘0(80) 1 Z;)(So) . (261))

(Choosing the direction of 7y(sp) such that

—
-

fio(s0) = molso) % lo(so0) (2.6¢)
these vectors represent a right-handed coordinate system.

7y is by definition periodic, having eigenvalue equal to 1. In one turn around the ring. g
and [ effectively rotate around 7y by the angle 27Q) pin .

The orthonormal system of vectors at an arbitrary position s can be defined by applying
the transfer matrix M,(s, so) to the vectors 7ip(so), mo(S0) and lo(so):

no(s) = My(s,s0) Mo(so) ; (2.7a)
mo(s) = My(s,80) Mo(So) ; (2.7b)
lo(s) = Mq(s, s0) lo(so) (2.7b)

whereby the orthonormality relations remain unchanged:

no(s) = moe(s) x E)(s) (2.8a)
np(s) L lo(s): (2.8b)
lio(s)] = |iio(s)] = |lo(s)| = 1. (2.8¢)
The eigenvectors v,(s)
Fu(s) = MO(S*SO) {;H(SO)
obey the orthonormality relations:
Th(s)-T(s) = bu . (2.9)

In a perfectly aligned planar machine 7ig is vertical and g, ly are horizontal.

Remark:
For
1
Qspin 5
we obtain from (2.4):
Gy = Q3 = -1 3



i.e. the eigenvalue spectrum is degenerate. Then the eigenvectors @; and ¥'3 become real since
the eigenvalues a, and a3 are real. This means that the vector l—;, in (2.5b, ¢) vanishes and @,
and vz are arbitrary vectors perpendicular to 7.

Thus as is usually the case with degeneracy, the eigenvectors are no longer orthogonal and
eqn. (2.9) is no longer valid. However, given iy and an arbitrary unit vector perpendicular
to 1o which we will call mg we can always construct an l_;) as Tig(sg) X Mo(sp). We then have
a perfectly valid orthonormal dreibein even in the case of degeneracy. This is in any case the
procedure to follow if one wants to construct a dreibein at s, which varies smoothly with energy
and which is not susceptible to the arbitrary rotations around g, (i.e. arbitrary phase factors)
which subroutines in computer calculations introduce.

2.2 The Perturbed Part of the Revolution Matrix

In order to determine the perturbation éM(s + L,s) of the revolution matrix due to
distortions we first note that according to eqn. (2.2) the transfer matrix

MO(S*, 30) + 6M(Ss 50)

obeys the equation:

d i
ds [Mo(s,80) + 6M(s,50)] = [Q4w]-[Mo(s,s0) +6M(s,50)] : (2.10a)
M o(s0,50) + 0M(s0,50) = 1. (2.10b)
Furthermore we write:
SM = oMW £ oM 4 sMB 4. .. (2.11)

whereby SM™) denotes the v'* order in & of §M.

a) Calculation of §M ™).

Taking into account the corresponding equations for the unperturbed transfer matrix:

iA/_I_O(Sasﬂ) - Q'MO(SVSO) ;
ds

MO(Sm sg) = 1
we obtain from (2.10) the differential equation for 6 MM (s, s0) in the form:

di MW (s, 50) = Q- 6MM(s,50) +w- Mo(s,s0)
S

with the initial condition:

6M(1)(80,80) = 0.



The solution of this equation (and thus the first order solution of eqn. (2.2)) reads as:

sM W (s, 50) = /sd§~M0(s,§)-g(é)-Mo(é.so)
50

= Mo(soso)+ [ ds MG (s0) - w(3) - Molssa) - (2.

8%}
—
[ O}

The perturbative part §M "V (sq + L, s9) of the one turn matrix is therefore:

30+L
MW (so+ Lyso) = [ ds- Mofso+L,3)-w($) - Mo(3.s0)

so+L
- M_0(30+L,50)-/0 di - M1 (3. s0) - w(3) - Mo(3,50) . (2.13a)

In general we have:

s+L
MM (s+ L,s) = MO(H_L,S)-/ ds - M7'(5,s) w(3) Mg(3,8).  (2.13b)

b) Calculation of §M .

The differential equation for §M?)(s, s) reads as:

d
M (s.50) = Q- SMP(s,50) +w - 6MM (s, 50)
S

with the initial condition:
6M(2)(30,30) = 0.
The solution of this equation (and thus the second order solution of eqn. (2.2) ) is given by :
SM(s,50) = Mo(s,0)- / di - M3 (3, 50) - w(3) - 6MWV(3.50) .
The perturbative part 6_]\1(2)(50 + L, sp) of the revolution matrix is therefore:
SO+L
SMP(so + Loso) = Mol(so+ L,so)- / di- Mg'(3,50) - w(3)- SM™M(3,50) (2. 14a)
S0
and for §M® (s + L.s) one may thus write:
s+L
SM®P(s+ L.s) = Mo(s+L.s)- ] di - MY, s) - w(d) - 6MM(3.5)  (2.14b)

with §M(Y given by eqn. (2.12).

Remark:

In general we can write for n > 0:

d ‘

T OMU (5.50) = Q- EMTH(s,50) - MM (s 50)
S

SM N (s0.50) = 0

with the solution:

MU (s,50) = Mo(s.so)-/sdéﬂal(s,so)-g(é)-mﬂ")(é,sw.

In this paper we will only consider § M) and M@

b |



3 Perturbation Theory for the Spin Tune Shift

Since the sum of the eigenvalues of a diagonalisable matrix is given by its trace we have:

Sp [6M(SO+L.50)] = (501 +5a2+503 (31)

with !

6&2 — 6+l - 27 [Qspin + 6Qspin] _ 6+2 2w QSPi”

= - |et 2T 0Qun 1} (3.2b)

baz = 6—2' 2w [QSPW + 6Q3Pm] — 6—2. 27 Qspm
= da;. (3.2¢)
In the spirit of the series expansion (2.11) we write:
6Q3Pi’ﬂ- = 6Qspzn + 6Qspzn to. (33)
From (3.2b) and (3.3) we then obtain:

with
;. 1
el ‘)ﬂ' 6Qsp1n — 1 _+_ 27-(-1 . 6Q.(Slp‘)ln -+- 5 ()7{‘2 5Qspzn) PR ’
- (2)
&2 = yor 6Q), +
Thus:
Qs in + 6Qs n 1 , (1) 2
[ P P ] 1+ 277 - 6Qspm 3" (27rz - 5Qspm) +-
X [ Qspln 1
2
= 14 2mi-6QW, +2mi - 6Q\, — 2% (6Q4)) " +
and
day, = 601(21) + 6a(22)
with
sl = - 6Q0) . (3.4a)
2
sal? = 2 5Q, — 272 (6Q1),) ] . (3.4b)

L M is orthogonal, so it still has at least one unit eigenvalue [12].
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Equations (2.11), (3.1) and (3.4) finally lead to:

QI) [6M(1)(30 _+_ L’,So)] — 5(1(21) + [6(1(21)]*

= 6Qspln 02 - 03) ;

SpISM®P (so+ Loso)] = 6ot + [6aP]
= 27r? ) 6Q~(95’271 ) (QQ - a3) - 27'!'2 : ( Qspzn) 02 + 03)

or:
1
sQ). = . - Sp MM (s + L, s0))] ; (3.5a)

271 - (g — a3)

1

2re - (ay — a3)

6Q£?)Zn ' {Sp [6M(2)(30 + Lv SO)] + 27T2 : ( Qspzn) ' (Q2 + QS)} . (331))

We now write the orthogonality relation of the eigenvectors (2.9) in the form

‘_+K = l(3x3) = KK+ = l(3x3)

by introducing the 3 x 3 matrix
V = (6,0.0) = V' = Ty

where the columns of V. are the eigenvectors o, v, v3. Recalling the relation for the trace of «
matrix

we may now write the trace of Sp [§M™] appearing in (3.5a.b) as:

v 1+

(¥, Uz, U3) A SM™

Sp [6M7] =

+
Uy

“+
= { U2+ 6A[( (i_;l-, 623 173)

U3+
From™ 61+6M(")62 SR
= +6M T 6MMT, TFreM™ o,
vFoM™ v+5]\4( '8, TFEM ™,
3
= > ir-sM™ .G, . (3.6)

v=1

Furthermore, taking into account the orthogonality relation of the transfer matrix Af (. 52):
M7(s1,82) Mo(s1,82) = 1;
9



i

— () Mols+ Lys) = §F(s)- [Mg'(s +L.s)]

we finally have:

3
Sp6M™) = S a, - FF(s0) My (so + L. so) - 6M ™ (so + L. so) - 5, (s0)

v=1
and thus:
3
Sp6M™M] = 3 a, T (s0) - My (so + L.so) - sMW(so + L, s0) - T,(50); (3.7a)
v=1
3
SpeMP] = S a, 51 (s0) - Mo (so + L,so) - 6 MP(so + L, s0) - T,(s0) (3.7h)

N
ﬂ‘

with «, given by eqn. (2.4).
As we shall see, these forms allow the traces to be calculated directly in terms of the un-

perturbed vectors 7ig(s), mo(s), lo(s) and the perturbation & instead of by evaluating Sp [6.\/]
from scratch.

a) ('alculation of 6Q(1) .

spin *

From (3.7a) and (2.13) we obtain:

Sp [5&(1)] = Z a, - 0, (o) 'Mal(so + L,so) - 5M(1)(80 + L, s0) - U,(s0)

v=1
80+L
= o itso) [ di e Mg'(3,50) - w(3) - Mof3s0) - Eu(s)
v=1 S0
50+L
= Y e [T s M(5,50) - ulso)] - wl3) - B03)
v=1 S0

so+L
= Yo [ 58 9 5

= S o [T s @) (56) < 509))



leading to:

1 so+L
Q= g [ 48 ST ol
S0

(see eqn. (3.5a)) 2
This expression agrees with that given by Yokoya |

1S

..

Remark:

(3.9)

In the case of a coasting beam, i.e. in the absence of accelerating cavities and radiation.
the energy along the closed orbit is constant. Eqn. (3.9) can then be used to calculate at first
order the spin chromaticity defined as the derivative of the spin tune with respect to a constant

fractional energy deviation from the design energy [13].

In a nominally planar machine, vertical closed orbit distortions cause no first order spin tune
shift since 77y and the & due to radial fields on the closed orbit are orthogonal. Uncompensated

solenoids cause no first order tune shift for the same reason.
For horizontal closed orbit distortions, & due to vertical fields on

the closed orbit is parallel

to 71y but since the horizontal closed orbit is periodic the one turn integral vanishes and the

first order tune shift is also zero.

b) Calculation of 6Q?

spin *

From (3.7b) and (2.14) we obtain:

M)«
Q
®

Sp[6M™] =

®
It
—

1
M
o
x

S0

®
Il
—

XéM(l)(S,a s0) - 5;1(30)

I
NE

50

h
Il
—

!

o /s dSH 'MO(SI’SII) 'Q(SH)

S0

*Equation (3.9) can be rewritten as

i so+L

’ 1—":(50) : M61(50 + L, so) - 5M(2)(80 + L,s0) - vu(s0)

50+L
'F:(So)'/ ds' - Mg'(s', s0) - w(s')

so+L
oy / ’ ds' - [Mo(s", s0) - Tu(50)] T - w(s')

* M o(s". 50) - Tuls0)

Qo = o= di - 7 (5) - w(3) - 7a(5) |

27

3o

revealing the similarity with the expression for an energy shift in quantum mechanics.
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x/ ds" - Mo(s'.s") - w(s") - Tuls") . (3.10)

valid for an arbitrary vector 7 for the case when

Fom [ M) ) RS

we may write > :

3.3 so+L
SpIOM™) = 3 Mo [T A GHE) wls) - 3

u=1 v=1
s! +
X/ ds” [Mol(s',s”) UU(S,)] u_J(S”) ~u(5//)
50
3.3 so+L
= > > a“./ s TS - w(s) - O(s")
=1 v=1 So
’
x [T s B (s )
50
SR so+l — Nt
= =X S e [ TS wls) )
n=1 v=1 So
o " 4 1 " ~ T
X ds" - [v# (") - w(s”) - vy (s )]
S0
(since wt = _LL')
2 2 so+lL [ N -~ - 7
= =Y Y o [ THS) S X ()]
pu=1 v=1 So
' +
x [ ds" - {Er(s")  [S(s") x Bus")]}
50
3 3 30+L .
= -3 a#./ s 3T() [ Fls) x B3]
u=1 v=1 S

3This is equivalent to inserting the relation V*V = 1 in (3.10) before the second integrand.



with

v X Ug

Ve X Uy

Uy X Ug

173 X ’l_);

—1-MNgp ;

_ Jo+i b x =
—= Mg 1- 0] X —=

2 V2
7 o B . -
5[0X7710+T77,0X 0]
0
— [t x v5]”

e

—1- 7,
—1 ’[;3,

— [ty x U]

13
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(3.12b)

(3.12d)



\)
-
~
—
o
-2
I_I
ol
S
-EW 1.2
—
X
X oy
=
— bl
=2 +
- o
=
_ o~
o X
S -9
|
. ﬂ —
-
o ' KN

(3.12i)

Thus:

~— S—

—
* *
e e N N
— — T
=~ < < =~
N N = x
o) 2] B <90
* * * *
[} ap] o [a2]
1 o T2 o
X X X X
— ~ N o~~~
N N BN NN
<90 o) < €0
—— ~— — e
o ™ — -
12

_— e N S

— _— —~~ _—
< < < <
o) o ) 2]
* o~ * fae) * o~ * foe)
o 12 2 1)
X X X X
—~ o~~~
< < < <
E2) oy 1) )
~ o — —
1= 1o o Lpat
oL L S
< Y < <
oA ks 0 )
b~ B~ B~ B~

Putting (3.12) into (3.13), we obtain:

—

——— ——— *

M) H\l/ —

2 8 e e
— T~ =} ° = X
= = LESJ F N P PO
NS . . R
N TGRS
o~ o~ -~ . ~ -~

o o
. L= = 22
R
) w 13 13 13 13
_ = 2= 3 3,
o & . . .
3 = =
. . T o Tw o
—_—— 5 5 % T
— =
< < 1 T 1= 1
R
=~ ﬂﬂ —~ o~ o~
= = ) w o ww s
. . — S—— ~—
—~ o/~ N B R S
) 3013 t3 13 e o
N~ . } -
3 3 ~ ™ o~ ™ -
— g J o) o] o
~ 4+ + F F F 7

+(1 + az) -



(3.14)
with

so+L s!
Ty = —/ ds’- [ s
50 50

X {2 e T Qi -cos[ﬂQspm] . [@'T(s’) -

2(s)] - [T (s f(s")]

AT Qunind - [ST () - 5] - 57, ey

+2.eTTQyp,

So +L

= -2 cos [7Qspin] / ds’ -/Si ds"
« {e—szmn . [JT( /
+etTQup [@‘T (3.15h)
With

SPIBM™ (50 + L. 5g)] 4 252 (6050) (a2t ) = 7,
we finally obtain from (3.5b)

1
Qb = — 1



1 so+L s’
= -2 cos [WQspin] : / ds' - / ds"

4 - sin 2w Q) spin s0 s0
=T Qspin . [T Y. (! =T .m0
x{ e P -[w (b)-@(s)]-[w (") - Ty s")

+ 6+i7TQspm . [QT(S/) . 1—;2(3’)]* ) [@'T(S”) . 62(811)} }

1 so+L s!
= — / ds’ - / ds”
4w - sINTQspin  Jso s0

T Qe [3T(9) )] - [BT() - Fals)

1T Qupin . [@‘T(s’) - {;’2(5')]

1 1 S Y Y b
B Z.Im{e_zﬂ-iQst—l'v/so ds’ ["‘) (8).1)2(5 )]

x / ds" [ZT(s") - Ty(s")] } , (3.16)
50
This is similar to the form given by K. Yokoya [2].

It is now clear that both vertical closed orbit distortions and solenoids can cause second
order spin tune shifts. In the case of an isolated solenoid in an otherwise flat machine the tune
shift can be calculated analytically in a very simple way using spinor algebra [7]. One sees
there also that the lowest order term in the tune shift is of second order.

4 Summary

We have presented a perturbative formalism for the investigation of the spin tune shift on
the closed orbit of a storage ring due to misalignment. The results are in agreement with those
already obtained by Yokoya using another approach.

In this paper we have calculated §Qpi, only up to second order. But the method developed
can be extended up to an arbitrary order in a straightforward manner.

Examples of the numerical application of these results may be found in [2].
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