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Abstract

Based upon a first principle, the generalized gauge principle, we construct a general
model with Gy, x Gy x Z, gauge symmelry, where Z, = ry(Gy) is the fourth homotopy
group of the gauge group Gy, by means of the non-commutative differential geomelry
and reformulate the Weinberg-Salam model and the standard model with the Higgs field
being a gauge field on the fourth homotopy group of their gauge groups. We show that in
this approach not only the Higgs field is automatically mtroduced on the equal footing
with ordinary Yang-Mills gauge potentials and there are no extru constraints among
the parameters at the tree level but also it most tmportantly 1s stable against quantum

correlation.
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1 Introduction

Unlike Yang-Mills gauge fields, lliggs fields and Yukawa couplings seen to be artificial
although they play a very important role in modern QFT. Eventually, the peice paid
for them is the beauty of the gauge principle. How to regain the beauty of the gauge

principle is one of the most intriguing problems in modern QFT.

Receutly, we have generalized the ordinary Yang-Mills gauge theory in order to take
both Lie groups and discrete groups as gauge groups {1,2] and completed an approach to
this generalized gauge theory coupled to the fermions in the spirit of nou-commutative
geometry [4, 5]. We have shown that Higgs fields are such gange fields with respect to
discrete gauge symmetry over 4-dimensional space-time M* and the Yukawa couplings
between Higgs and fermnions may automatically be introduced via generalized covariant
derivatives. In this approach, Higgs appears as discrete fields on the equal footing with
ordinary Yang-Mills fields over spacetime M*. In other wards, the beauty of the gauge
principle may be regained. Of course, how to understand the physical meaning of
the discrete group to be gauged is a most crucial point in this approach. Ou the
other hand, like other approaches [6-11} based upon the non-cornmutative differential
geometry do not survive the standard quaatum correlation (2], the approach in [1,2]
may also be unstable against the standard quantum correlation unless there is certain

special mechanism to guarantee its stability.

In the letter (3], we have presented an 5SU(2) generalized gauge field model with the
Higgs mechanism and shown that it is able to get rid of all those problems based upon a
first principle, the generalized gauge principle. The key point is that we have taken into
account the fourth homotopy group of SU(2) as a discrete gauge group on the footing
with the Yang-Mills gauge group SU(2). It is well known that the fourth homotopy
group of SU(2) is non-trivial, r,(SU(2)) = 2, (L3, i'e. the gauge translormations
of SU(2) may be divided into two different equivalence classes. Once the Yang-Mills
fields for the gauge group SU(2) is introduced, the role played by its fourth homotopy
group must be taken into account. In view of the generalized Yaong-Mills gauge theory
(1] based upon the non-commutative differential geometry, we should also introduce
the generalized gauge field with respect to this internal discrete group T (SU(2)) due

to the fact that the gauge transformations depend on its elements. Although there



. H M ' i
SN e A s Ty e ) VoD e s ol frlenomenogecianty

reahistic.

[ this paper, we generalize the model presented in [3] to the realistic cases, such as
the Weinberg-Salarn model and the standard model. We show that the most respon-
sible iuternal discrete symmetry for the Higgs, say, in the standard model is the focth
homotopy group of the gaige groups, i.e. my(SU(3)x SU(2) x U1)) = my(SUR2)) = 2,
Similar to the model given in [3], there are several remarkable advantages in this ap-
proach. Pirstly, it is a most natural choice of the discrete group for the Higgs and
secondly it indicates that why the Higgs in the standard model is an SU(2) doublet
and SU(3) singlet. Most importantly, it is stable against quantum correlation. We will

discuss these issues at the end of this paper.

In what follows, we first construct a general model with G x Gr x Zy gauge
symmetry, where Zy is the fourth homotopy group of the gauge group Gy x G, ie.
75(Gr x Gg), because we pay our attention on the case of m,(G) = 0, then T, (G =
Gr) = m(CGr). By means of the generalized gauge theory formulation (1] in the
section 2. We also show that the Higgs mechanism is automatically included on the
equal footing with ordinary Yang-Mills gauge fields and there are no extra constraints
ab the tree level among the coupling constants and mass parameters under suitable
normalization. [n the section 3, we reformulate the Weinberg-Salam model witl, Higgs
being taken as the discrete gauge field on m((SU(2) x U(1)) = Z;. Then we deal
with the standard model in the section 4. Finally, we end with some discussions and
remarks. [n the Appendix, we briefly introduce the noa-cormmutative calculus on the
discrete groups and show the tiggs fields is the gauge potentials with respect to the
discrete gauge groups, while the Higgs potential may be given by a Lagrangian of the

Yang-Mills type.

2 A model with G, x Gy X Zr-gauge symmetry

Let us first construct a model of the G x Gy x Zygauge symmetry, where 7,(G) =
and Z, ts taken 1o be the fourth homotopy group of the gauge group Gy, e m, () =

Z2, anintrinsic internal discrete group of the model. Nauely, the gauge transformations

of G, may be divided into two ditterent equivalence classes. Consequently, All leptons

‘

AL B TR aug-Mitls gauge potentialy ALty the Jauge gioup by, -,
and Higgs d(x, h) with respect to the discrete gauge group 5,{( ) = Z, wcluded in
this model of the generalized Yang-Mills type should be divided with respect to two
elements of 7,(Gr) = Z,. The construction of the model is based upon the generalized
Yang-Mills gauge theory by means of the non-commutative ditfferential geometry. [t
combines both the Yang- Mills gauge polentials and Lhe-lliggs as a kind of generalized
Yang-Mills gauge potentials. For the details of this formalisny, it is ceferred to (1} and

some relevant notions are briefly introduced in the Appendix.

Let us regard those fields as elements of function space on M* as well as on G x Gy x
Z3 aud assign them into two sectors according to two elements of 7,(G,) = %, = {e,r}.

The ny(GL) = Zp symmetry requires that
Lu(z,r) = UL,(,e)U™" — “ua,u-",
g

where U(z) is a topologically nontrivial gauge transformnation. Correspoudingly, the
left handed fermions should also be set down al these two elements noted as L° and

L” respectively. Nanely, there is a Z, symietry hetween L° and 7
o) = 6(0)" = Red(z,e) = Ula)p, (x,¢) = p(a) = Rl r) = U p(o)?

As for the right handed fermions, we may take R" = R® = R. Therefor, we have

Vla,) = p(z) = ( fg) Wla,r) = prs) = ( “)
L 0 L0
A“(l‘,e). = A,(z) = ( 0“ R ) ioAu(z,r) = An(z) = < U“ i > (2.1

-3 —
®(z,¢) = B(x) = ( ot f ) P 0(z,r) = @7 (2),

with the properties
L'=UL, ¢" =Ug,uUl =1,

U is a non-trivial gauge transformation of Gr. In {2.1), L (R) is the left (right) handed
fermion, L, (R,) the gauge poteatial valued on the Lie algebra of the gauge group

G {GYR), p and A two constants.

Iromn the assignments (2.1), it is easy Lo see thal the field coutents of the nodel

15 of Zy symumetry and the Higgs in such a model may he regarded as the gauge field

4



Prootbubae sl However, 1L shouii e rentioned Lhal LUe dasmigiitnents
{2-1) not ouly assign the telds o the elewents of Zy but alss nnply that all lields ace
arranged nto certain matrices. ln fact, this aspect of the arrangements is nothing to
do with discrete gauge symmetry but for convenience iu the forthcoming calculation.
Of course, 1t must be kept in wind that this is a working hypothesis and sometinies

oue shonld avoid certain extra constraints corung from this working hypothesis.

From the geperal framework in (1], it follows the generalized connection one-form

A
Alz h) = A, (2, h)du* + Zd(z, h)y, he Z,, (2.2)
u

where y denotes y" in the Appendix, and the generalized curvature two-form

F(h) = dA(h) + A(k) & A(h)
(2.3)

B

Fu(h)de* A de* + ﬁ[’“,(h)dx“ ©x+ f;[",,(h)x @ Xx.-
Using the above assignments, we get

Flr,e) = Fr(x, )

L, 0 0 -D,¢

=L do* A de + A “2 ) dgt

( 0 Rw) v *“(—(Dmf)' 0 ) TOX g
of w2 0

(45@ 2 )Y®X;

"“ A 2
0 o lor— &

A
ol

where

Du¢: a;t‘b+ Lu‘pﬁ‘p[zw (2'5)

Having these building blocks, we may tntroduce the generalized gauge invariant
Lagrangian with respect to each element of my(Gr) = Zy, then take the Haar integral
of them over Zy to get the entire Lagrangian of the model. Under certain consideration
on the normalization in the Lagrangian, we may get a Lagrangian without any extra
coustraints among the coupling constants and the mass parameters at the tree level.

For the Lagrangian of the bosonic sector with respect to each element of Zy, we

have
Lyv-n(z,e) = Lyprgle,r)

= *F\llle'[‘(/[l,w[,‘“) - r,\lETY'R(/f“u[f“”)
F05 T Dup(2))( Do o))t

? Al

—‘\;112;7'11r(¢(1;)¢:(£)r - %)2 + const;

n

waere Vo, Ny and WV are notmalization constants intiod e Here Lo avord sote extia
constrants from the matrix attangenment tn (2.1), 4 15 a inctric parameter defined by
=<\, X >, Dun(y) = p® tere we suppose both Gy and (Y be semi-siimple.
Eventually, this is not necessary. For example, in the case of the Weinberg-Salam
model and the standard model, Gy, is SUQ2), x U(L)y and SU(3), < SUR2), x U(1)y
respectively. In those cases, we must change the way of taking normalization in order

to avoid some extra constraints from the matrix arrangement (2.1),

For the fermionic sector, the Lagrangian with respect 1o cach clement of Zy may

also be given as follows:

Lp(z,e) = Lq{x,r)

_ o (2.7)
=Ly (0, + L)L + tRy#(8, + ROR + ALoft + Rol L).
[t is easy to get the entire Lagrangian for the model:
1 . . .
Llz) =5 20 (Lele,h) + Lyar_p(z, h)}. (2.8)

= h=er

[t is easy to see that first this is a Lagrangian with the Higgs mechanism of sponta-
neously symmetry breaking type included automatically which will be studied in detajl
in the forthcoming sections and secoudly there do not exist any extra constraints among

the coupling constants and mass parameters which is different from other approaches

(6-11].

3 The Weinberg-Salam Model

[t is well known that the fourth homotopy group of the gauge group (g in the Wernberg-
Salam model is 7y(SU(2), x U)y) = ny(SU2)L) = Zs. As was mentioned before,
once the Yang-Mills fields for the gauge groups SU(2)y x U(L)y are introduced, the
role played by their fourth bomotopy group must be taken into account. In view of the
generalized Yang-Mills gauge theory (1] based upon the non-commutative ditferential
geomelry, we should also introduce the (generalized) gauge field with respect to this

internal discrele group Z, as well.

Now let the elements of m (SU(2), x U{l)y) = Zy be {U,, U} where U, represeuts

the first topologically trivial equivalence class of the gauge transformations and {/, the



second class which s topologically gon-teivial. \We ay lirst wssign the SU(2), < {1 )y
gauge fclds into two sectors with respect Lo these two elements as what we have
done in the last section and make use of the formulation in the last section, where

:

Ulz,e) = V{x) € U, Ule,r) = U()V{x)U""(z) € U.. The bosonic part of the

Lagrangian may also be given.
To be concrete and for the sake of simplicity, let us consider the Weinberg-Salam
model with one [amily of leptons only and assign leptons, Yang-Mills gauge potentials

and Higgs iuto two sectors according to two elements of the group m,(SUL(2) x Uy (1)) =

Zy as follows:

L, 0 ) 0
Au(z)e) = ( 0 R“ ); A“(l‘,r) = ( 0 Ru ); (31)
‘I)(.L',e):q)f(z,r)z ( fuf —4)) ;
-6 &

where L and ¢ ate SU(2) doublets, R an SU(2) siuglet and

.
uw=(7), R(x) = ly; un=(f0}
(4
Ly=—ig3Wi+i$B,, LY(e,r)=UL,(z,e)U~" - tU8, U™, R, =ig'B,.

Thus ,
L, = ~ig2 Wi, + i$B,.; R, = w'B,,
(3.2)
D,p=(0, - w3 W, — il B¢
From the general model we have set up in the last section, we may directly get the

Lagrangian. For the Yaug-Mills gauge bosous and the Higgs in the Weinberg-Salam
model, we have
Lyy_ny(z) = ‘T/\IT‘%}W;,W'W - L Mg g

+ 3 (5 Tr(D,p())( D p()) (3.3)

where v, Vy and ¥V are Lhe normalization constants witl respect to SU(2), U(1)

v
and the Higgs sector. The normalization of the coeflicients of cach term results
4* 3¢ A2 ;
==, ¥y = — N = Q.
~VL 3 ) .Vy B N N _,/‘2 1. (.i 1)
7

lushoutd be point vut that the normalization have been taken here s ditferent {froim the
vne i the last section since the gauge group G = SUL2) <Ly (1) 1s not semi-simple.

Similarly, we may get the Lagrangian for leptous Lu(c) as follows:

Le(z) = —iL(2)y*(0u + ig3 W~ iLB,)L
—tR(x)y*(9, — iy'B,)R (3.5)

~MI(x)(2) R(z) + R(z)p(x)! L(z)).

Thus, the entire Lagrangian for the Weinberg-Salam model reads
L{z) = Le(e) + Lyy-n(s). (3.6)

It is easy to see that the Higgs potential takes its minimum value at Tr(tpq')i) = (%)
and the continuous gauge syminetry will spontaneously be broken down when the

vacuum expectation value (VEV) is taken as

<¢>=<;), (3.7)
2

where py = \/Ef\i Now we take Lhe VEV of ¢ and introduce a new field n{x) as the

0 o
$= ( fotp(z} ) ’ (3.8)
2

as well as the photon and Z boson via W bosons and the Weinberg angle

Higgs field in the model

A, = Bycosby + PVESinﬂw
Z“ = B‘,sinﬂw - LVSCOSH;V (39)

gsindy = g'cos Oy = AL = ¢,
g W =g v W
where ¢ is the charge of the positron. Using these definitions, we get

g ”?2 .’VY

in*fy = —2 = Y . 3.10
sinBy pEa { AN, T Ny} ({ )
Aund we have
Ir{Dup(Dug)l — y2(psl - 2272}
= 30.00"p + L(py + W WS + (95 + 9" po + )2, 2, (3.11)

~1320* (08 + pop + &) + const.
It is easy to see that only 4, and v remain massless while fecmion [ together with £
and Z become massive and following mass relations hold at the tree level:
Miermion =, My = Lgpq,
Mz = V97 + 9%py = My [ cos . (3.12)

1"[",y_,,, =2 \/I_]



s casy 1o see that wll these relations at the troe level are the same as the vaes
for the Weinberg-Salam model except the last one for the Higgs mass but ditferent
fromt what is given in [6]. The reason is that we have introduced two independent
normalization constants V., Vy aad ¥ in order to avoid some extra constrai;lts from
the matrix arrangement (1). In fact, if we would take ¥, = Ny we could get the
same constraint lor the Weinberg angle in [6]. {n other wards, as was meuntioned in
(1] the constraints in [6] are not essential but completely dependent on the working
hypothesis. As for the Higgs mass given bere at the tree level, it depeads on the metric

parameter 7. If we let it free of choice, there is no constraint for the Higgs mnass at all.

4 Standard Model for Electroweak-Strong Inter-
action

We now turn to the standard model for the electroweak-strong interactions. This should
be mare realistic from both conceptual and phenomenological points of view. We take
into account the colour degree of freedom together with the weak isospin and the weak
hybercharge degrees of freedom for both leptons and quarks in three families. Similac
to what we have done in the last section, we first introduce the gauge fields of the
Yang-Mills gauge groups SU(2), x U(1)y x SU(3). and assign them into two elements
of my(SU(2), x U(V)y x SU3).) = Z; symmetry respectively. Such assignments foc
the fermions and the Higgs will be given according to their couplings to the Yang-Mills
gauge fields as well.
The assignment for the fermions with respect to m(SU(2), x U(l)y x SU(3),) =
Zy = {e,r} may be takea as follows:
weer=( f ), o= (). (1)

. Ud Lo (s
with LY = UYL = ( @holh U1 )L, U the topologically non-trivial gauge
A .

transtoriation of S/(2), and

.\ GFC
u u-
b <
L= . R=| b (4.2)
Ve ]
. u
T L T R

Here superscript ¢ stands for the colour degree of freedom. Taking into account ail
stroug and eleciroweak interactions among leptons and quarks according to {4.2), we
assign the gauge fields as follows:

L, 0 L4 0
A“(I,6)2< 0 R ), A“(.L',I‘)=( 0 B ),

m

where
, LWL IS ® IS
- 2 g (9

iop (OO IE R 2R O
95 —%12®[;;G WA
LY = ULU + UB U~

2
_ 3 ®If®If
Y A CRS LY-EY

( Lo If @ 96,8 )
_[30 0
(4.3)
where Gi,i = 1,---,8, are gluons, A; 3 x 3 Gell-Mann matrices, and [, n X n unit
matrices. For the Higes field, we take it as before
0 ¢(z)
Q" :LDT',~: ., 4.4
o =olen=( ol ) (1.4

But, ¢(z) field being gauge field with respect to Zp-symmetry is more complicated:

¢ gt
(_¢+_ ¢0)®/$®1§ Ay S
b(s) = : AL ¢

i L
(3o

Here the blocks in the last matrix ace 3 x 3 matrices in the space of generatiou, AY, AP
the matrices for quarks and A* the matrices for leptons. These matrices play the role

of the Yukawa coupling constants.



AW R wate dowii the generalized councetion ote-tocan including botly oedi-
nary Yang-Mills potentials and the Higgs fictd vn the equal looting and the geuecalized
Curvature two-lorm. Especially, the comiponents £, of the generalized feld strength

are the ovdinary covariant derivative of the Higgs field as before:

Dy®=0,0+ L, 0 oR,

Making use of the model in the section 2, we may get the Lagrangian as long as
the normalization is suitably taken. The bosonic part of the entire gauge invariant

Lagrangian, by some straightforward calculation, is

i

Lyar-y -y < FF>
= B W gy 47\‘,;109;’8“,8“” — 693G, G (4.3)
T 2B 00 - 22 (xl - m 2y,
where NV, Ny, V. and .V are uormalization constants with respect to gauge fields W,
B, G and the Higgs sector respectively, the field 7 is introduced as + = io , and
vt g e
or=Tr ot g e
Ayt
AT g e
oy = Tr a0l g e
AbpLt

The normalization of the coefficients of the terms in the entire Lagrangian leads to that
2 2 ;2 591
Ny =69°, Ny = 10gf, N.=6g;, N = ._‘L?r]. (4.7)

This gives rise to the following form for the Yang-Mills-Higgs Lagrangian

Lysg-y = —iW: W _ LB, B - LG, G

‘ (4.8)
+H D)t Drr - EHZ(rln — 2ty

[t is obviously that together with the Lagrangian of the usual gauge fields the kinetic

energy of Higgs field and the interaction between liggs field and the usual gauge fields

are all included here.

s casy to see that whea 7 ticld takes value

In) = /2, (4.9)
T2

the Higgs potential is at its minimum. [f we set the vacuum expectation value as

0 20,
<7 >= w0 | v ==y, (4.10)
Vi o2
the coatinuous gauge symmetry is broken down. Introducing a field p(x)
0
T =1 potaz) |, {(4.11)
2

and the photon A as well as the boson Z

Ay =sin0, W2 + cosb,B,,

(4.12)
Z, = cos {).,,W‘;J -sind,B,,
where
g9smnb, =g’ cosd, = —L—e (4.13)

Veitgt

we may get spontaneous symimetry breaking version of (4.8).

For the fermions, we can also write down the Lagrangian in a way similar to what

we have done for the model of leptons in the last subsection:

Le(z) =3  @v*Dugi+ 3_ Ly D, 1,

€r ui
“(Er i TRYAN |y | 4 (8% & B) AV @ 1, & ‘
. (4.14)
Ty, tL
. di
+ (& 55 )AL st |+ ke 2(1+2)
by
As is well known, both AL and AY may be diagnolized as
Ae A
AL = AL , AV = A
Ay A
while A2 may be written as
Ay
AD =y A, vt (4.15)

As
where V' is the Kobayashi-Maskawa matrix.

12



SHICC e hass ot Lop quark 15 oen heavier than other tettmons, el w2,

where me, 15 the mass for the ferunon ¢ except ¢, we have

3 1 gy 1 n .
= - —_— ¢ = = 416
ot ¥ oy A€ \ o ( )

where A is the coupling constant corresponding to the top quark. Then the Lagrangian
for the generalized gauge fields can be rewritten as

Crsen = —YWoLW — LB, B 4Gy G
, T (4.17)
+(D,x) T Drr — r,;';(n“r - ‘{7‘) .

Consequently, when m field takes value |r} = £, the Higgs potential is at its minimun..
0 V2

< me>= v Po=

v A

the symmetey SU(2), x U(1)y will spontaneously be broken down. [ntroducing new

If we set

field p to replace the feld 7 in eq.{4.17), just as we have done in the last section, and
adding the fermionic part through generalized covariant derivative, we get the final
expression of the entire Lagrangian as follows

L(z) = Le(z)+ Lyp_p(x)

= Zﬁh7“[)uqi + Zlﬁi"lul)u{-

Ny er My, ug
~ | (€r iR Tr) n, KL |+ (@R Gk 1R) e @5
m, 7L m, 7

- } Iy dCL

+ (d 5% b3) V m, viorel s | +he (1+£)
Ty b§

Zy

—iwlwe 1z e vy e

1
1
+50.00%p + Llpo + o)W Wt 4 égf;‘wr(Po +p)?Z,.z¢
E p 4
—uroleep® + pop® + )
(4.18)
[t is easy to see that neutrinos, photon and gluons remain massless while other
pacticles become massive. And we can also get the following mass relations,

1
mw = 59p0

my = l?’:i;ll;L
. (4.19)
Miiigys =2 2./
e Xop
13

Similar o the bast section, it s casy 16 see that all these 1elations at the eee level
are the satme as the vnes tor the standard model except that for the Higgs mass. {he
Higgs mass given here also depends on the metric parameter . If we let it free of

choice, there is no coustraint for it at all. Otherwise, if we would take

n=p {.20)

we could get

My = 2n,. (4.21)

However, there is no profound reason to do so.

5 Concluding Remarks

Now we summarize what we have done as follows:

We have first constructed a general model with GL x Gy x Zy gauge syimmetry,
where Zj is m¢(Gr), by means of the generalized gauge theory on both Lie groups and
discrete groups. We have shown that the Higgs mechanism is automatically included in
the generalized gauge theory and there are no constraints among the parameters at the
tree level in this model. Then we have reformulated the Weinberg-Salam model and
the standard model with the Higgs field being a gauge field with respect to the fourth
homotopy group of the gauge groups, i.c. o (SU@B)x SU2)x U(1)) = 7 (SU(2)) = Z,.

It is worthy to point out that there are several advantages in this approach as
was mentioned at the introduction of this paper. First of all, this m,(SU(2)) = Z,
syminetty is a most natural internal symmetry Lo be gauged in these models in the
sense of non-comrnutative differential calculus on the function space on M* as well as
on Gp x Gy x my(Gp, % Gr) = Z,. Iu fact, for these models, the fourth homotopy group
of the gauge groups is already there and it should play certain role in the gauge theory.
What we have done here is just to combine the ordinary Yang Mills gauge theory
with the won-commutative differential caleulus in the function space on this discrete
group to formulate a generalized gauge theory with Higgs and spontaneously symmetry
breaking. In other wards, the Higgs mechanism should be introduced automatically
at same [ooting with the ordinary Yang-Mills gauge field theory, if the role played by

the fourth homotopy group of the gauge groups would he taken into account at very

L4



beginming

Secoudly, it is also interesting to see that the mystery of the Iliggs patiern n the
standard model may be understood better. In faci. that T SUB)) =0, = (UQ1)) =
0 and 7 (SU(2)) = Z, indicates that Higgs should play certain role for the SU(2)
gauge field and nothing to do for the SU(3) gauge symmetry. Taking into account the
properties of the fermions the Higgs in the standard model should be an SU(2) doublet

and SU{3) singlet.

Finally, it is remarkable that the approach preseunted here with the fourth homotopy
group of the gauge groups being the discrete gauge group is stable against quantum
correlation. This is due to the following reasons. Firstly, there are no constraints
among the parameters ab the tree level so that we do ot need Lo pay attention to
them in the course of quantization and renormalization. Secondly, since the Higgs
potential is automatically introduced in the generalized gauge theory, the SU(2) gauge
syminetry should be spontaneously broken dowu. Therefore, this Z, symmetry, the
fourth homotopy group of the gauge symunetry in those models is also broken down
as well. Consequently, what we got is, say, the same version as the ordinary standard
medel and we of course do not need to concern about this Z»-gauge symmetry when we
cousider the quantum correlation of the model. Needless to say, this is a very important
point different fromn other approaches to the Higgs by means of the non-commutatjve
differential geometry. In fact, Connes like approaches [6-10] do not survive the quantum

correlation {11].

In conclusion, the Higgs mechanism may be a part of a generalized Yang-Mills
gauge theory as long as a global aspect, the fourth homotopy group, of the gauge
group is taken into account in the sense of the non-commutative differential geometry.
For the standard model the most natucal and meaningful discrete symmetry on which
the Higgs is a generalized gauge felds is just the fourth homotopy group of the gauge
groups.

[Lis clear that the model presented tn the section 2 inay be.generalized Lo the case
of 7 (G x () = Zy x Zy and it may be applied to the left-right symunetric model. On
the other hand, since the fourth homotopy group of SUBI(SU(3) x SU(2) « U(ly))

is also non-trivial, it may play certain role in the SU(5)-GUT together with the fourth

homotopy group of SUS) » SU(2) ~ L{1). Aud all models of (hese Krud may have the
same advantages as the approach presented in this paper. Especially, all of themn miay
be stable against quantum correlation. As for other discrete symunetctes such as CPT
and so on, they may play other roles such as CP violation and so on. We will study

these issues elsewhere.

6 Appendix

Differential Calculus on Discrete Group G

In this appendix, we briefly introduce some notions in the gon-commutative differential
calculus oa the function space on discrete groups and show the Higgs may be regarded
as the (generalized) gauge potential on the gauged discrete group. For the details, it
is referred to Sitarz in (5] and our papers (1.

Let G be discrete group of size Vg, its elements ace {e. 90,92, gng_1 ), and A
the algebra of the all complex valued functions on G. o order to construct the first
order differential calculus (!, d), one can give first the definition of its dual space F,

the vector space on 4 with basis O, (i=1,--,Ng— 1) as follows:
9 =f~-RJf, g€, fe A, (0.1)

where
(Rif)(9) = fFlg © gi) (0.2)

which is nothing but the difference operator on A, and satisfies

8,0]' :chsak, Clk] =§f+6;~5k (03)

iy
where 7,,--- (i - j) denote 9,45, (i - gj) respectively. The basis X' of Q' are just
the dual of 4;,
X'(9;) = ¢, (0-4)
Then the first order differential calculus (2", d) is given by
Ng -1

df = 3" a.fy' (0.5)

i=1
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o the ditlerential algebra 827 over L4 and extertor denvative,

dQr Qo (0.6)

satisfies the nilpotency and the graded Leibaiz rule

(1) d* =0,
‘ (0.7)
() d(fg) =df g+ (—1)=9! [ . dyg, Vg€,
could be obtained provided that x* satisty the tollowing two conditions,
f= (Rif)x', fe A,
(0.8)

d' = L Chv et ged.

The involution operator + on the differential algebra 0° is well defined if it agrees
with the complex conjugation on A, takes the assumption that (x#)" = —y9™", and
(graded) commutes with d, i.e. d{w?) = (—1)%9(dw)*. The integral, which remains
invariant under the group action, is introduced as a complex valued lincar functional

on A as,

1
[ = 2. (0.9)

9€CG
Let us consider the case that there are Lie group transformations among the ele-
ments of the function space and those transtormations also depend on the elements of
the discrete group. Then the derivatives troduced above are no longer covariant. [n
order to get meaningful differential caleulus in this case, the counection one form is
needed to define the covariant exterior diferential:

D =dg + o, _ (0.10)

where the connection one form ¢ may be written as

P =gy (0.11)

from which we get the generalized cucvature two form

F=dtApd=YF,o" (0.12)
2.h ’
where
Fon = yon + 0, Ry — C h* g, (0.13)

L7

Phis toanula is simpler in terms of ¢ = | — @
Fyh = Pgu, Ry(dy) - Phrog- (0.14)
After introducing the the metric, we can get the Lagrangian for the theory.
For the Z, case, we can define the metric as
SXHX>=n, <XQx,XQ x >= g (0.15)

then
L==<F,F>=—p}sel _ 1) (0.16)
This is of Higgs potential type up to some coupling constants. To get the entire

Lagrangian of the Higgs, we need to consider the space-tiume part. For detail il is

referred to 1, §).
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