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I Introduction.

This paper is a continuation of the study, begun in earlier papers {1}, [2], of the Racah-Wigner
calculus for quantum superalgebra U,(osp(1{2)). The quantum superalgebra Ug{osp(1]2))
can be considered either as the super-analog of the Uy(su(2)) quantum algebra, for which
the Racah-Wigner calculus has been developed in several papers [3], [4], [5], [6} or as the
quantum deformation of the super algebra 0sp(1j2), the Racah-Wigner calculus of which has
also been constructed in Refs.[7], [8], [9], [10].

The quantum superalgebra Ug(osp(1|2)) has been defined and studied by Kulish and

Reshetikhin [11], [12]. Its Clebsch-Gordan coefficients were derived by Kulish [13] using a
recursion relation and in Ref.[1] using the projection operator method. A particular casc of
Clebsch-Gordan coefficients was also given by Saleur [14].
The general case of reduction of tensor product of two arbitrary irreducible representations of
the quantum superalgebra U, (0sp(1]2)), where the bilinear Hermitean form is not necessarily
positive definite, has been studied in Ref.[2]. It has been shown that the Clebsch-Gordan co-
efficients for the quantum superalgebra Ug(0sp(1}2)) do not depend either on the signatures
of the bilinear Hermitean form or on the class of the represntations but they depend on the
parities of the representation spaces. Several properties of Clebsch-Gordan coeflicients for
U,(0sp(1]2)), such as orthogonality relations and symmetry properties of these coeflicients
have been derived in Ref.[2]. In particular, it was shown that under some condition, Clebsch-
Gordan coefficients satisfy Regge symmetry. The study of the symmetry properties of the
Clebsch-Gordan coefficients allowed one to define 3 — jA symbols which possess good sym-
metry properties but which depend on the parity of bases in graded representation spaces.
It has been shown that the dependence on parities in this symbol can be factored out, so
that one can define parity independent 3 — j symbols, which are super-analogs of 3—j sym-
bols for the quantum algebra U,(su(2)) [6]. In this article, Clebsch-Gordan coeflicients and
3 — j symbols will be used to define Racah coefficients and 6 — j symbols for the quantum
superalgebra U,(osp(1{2)).

The paper has the following structure : Section Il contains the definition of the quantum
superalgebra U,(0sp(1]2)) and the basic properties of its irreducible representations. ln scc-
tion I1I, we recall the definition and some propertics of Clebsch-Gordan coefficients for the
quantum superalgebra Uy(osp(1]2)). Section IV is devoted to the definition and basic proper-
ties of parity dependent and parity independent 3 —j symbols for the quantum superalgebra
U,(0sp(1{2)). In section V, we consider the tensor product of three irreducible representa-
tions of U,(osp(1|2)) with arbitrary Hermitean forms. We define Racah coefficients for the
quantum superalgebra Uy(0sp(1{2)) and we derive the basic properties of these coefficients:
symmetry properties, pseudo-orthogonality relations and some particular values. In Section
V1, we consider 6 — j symbols for the quantum superalgebra Uyg(osp(1]2)). In the first sub-
section, we define in a conventional way using an invariant metric and parity dependent 3 -7
symbols, parity dependent 6 — j symbols and we derive their basic properties. Tu the second
subsection, it is shown that that it is possible to factor out the dependence on parities in the
parity dependent 6 — j symbols, so onc can define parity independent 6 — j symbols whose
properties are quite similar to those of the 6 —j symbols for the quantum algebra U,(su(2)).



II Theirreducible representations of the quantum su-
peralgebra U,(osp(1{2)).

The qua.ntum superalgebra U,(osp(1]2)) is generated by three elements: H (even) and vy
{odd) with the following (anti)commutation relations

sh(nH)

(H,vs] = £5vs, ~h (@) 2.1

(o4, v-]4 =

where the deformation parameter 7 is real and ¢ = e~3. We choose n > 0 so that ¢ < 1.

The following formulae for coproduct A, antipode S and counit ¢ define on Uy(osp(1{2)) the
structure of a Hopf algebra

Alvg) = 12 ®@¢" + ¢ @y, (2.2)
AH) = HR1+1®H, A(l) = 1@1, (2.3)
1
S(H)=—H, S(vs)=—¢"%vs, (24)
e(H)=¢(vg) =0, €1)=1, (2.5)
where the coproduct A is the horhomorphism
A 2 Ug(osp(1]2)) — Uy(0sp(112)) ® Uy(osp(1(2)) . (2.6)

A r'epresent.a.tion of a quantum superalgebra U,(osp(1]2)) in a finite dimensional graded space
V is a homomorphism T

T: Uy osp(1]2)) — L(V,V), (2.7)

o'f the associative graded algebra U,{0sp(1|2)) into the associative graded algebra L(V, V) of
linear operators in V, such that

sh (nT(H))

[T(H), T(vs)] = £§T(vs), sh(27)

[T(vs), T(v)s =~ (2.8)

It has been shown in Ref.[2}, that any finite dimensional grade star representation of
U,(0sp(1]2)) is characterized by four parameters: the superspin ! (a non negative integer),
the p'arity A = 0,1 of the highest weight vector in the representation space and by ¢, = 0,1
the signature parameters of the Hermitean form in the representation space V. The parity
A and the signature ¢ define the class ¢ = 0,1 of the grade star representation by

e=A+p+1 mod(2). (2.9)
The representation space V = V!()) is a graded vector space of dimension 2! + 1 with basis

el(A), where —I < m < [. The parity of the basis vectors /() is determined by the values
of [,m and A,

deglel (M) =l—-m+ X mod(2). (2.10)

tl‘he vecto.rs €!7(}) are orthogonal with respect to the Hermitean form and their normalization
is determined by the signature parameters p,

(19(X), e, (N) = (=1)P= ™6 (2.11)

3

——p

where (, ) denotes the Hermitean form in the representation space. The operators 7'(v4)
and T(H) act on the basis e!{(}) in the following way :

m

5 elt(n), (2.12)

(=1l = mll+ m e+ Uy ey (V) (2.13)
i+ mlll = m+ 1]y e, (), (2.14)

where the symbol [n] is the Kulish graded quantum symbol [13] defined by

T(H)e(N)

T(v4)ed(A)
T(v-)en(})

“# - (=1)g?

q
= 2.15
[n] q‘%+q% (2.15)

Note that the action of the operators T{vs) and T(H) does not depend on the parameters
X, ,%. The representation T of class ¢ which acts in the representation space V() with
an Hermitean form characterized by the signature parameters o and ¢ is denoted by T«‘:w-
However, for simplicity, the indices ¢,¢, 1 will sometimes be omited in the following. Note
that the parity A is expressed in terms of the other parameters by relation (2.9), i.e.,

A=e+p+1, mod2). (2.16)

In the limit ¢ — 1, the grade star representation Ti,‘,‘, becomes a grade star representation
of superalgebra osp(1|2). For more details on the irreducible grade star representations of
U,(0sp(1]2)), see Ref.[2].

III Clebsch-Gordan coefficients for the quantum su-
peralgebra U,(osp(1]2)).

A  Tensor product of two irreducible representations.

In this section, we will recall basic properties of the tensor product of two irreducible repre-
sentations T::w: and Tg‘ of the same class ¢. The bilinear Hermitean form in the tensor
product space V1 (A)® V'3(\g) is defined in the following way :

(X1 ® Xa), (Y1 ® Ya)) = (—1)stXaMesMi) (X, ¥,)(Xz, V) (3.1)

where X1,Y; € VA())), Xa,Ys € V()g). The space Vi) ® V'2(A;) is a representation

space for the tensor product of two representations T:,‘l‘wl ® Té’)‘%. The generators vz and H

are represented in this case by the following operators acting in the space V1 ()) ® V2();)

08(1,2) = (Th @ T*)(A(vg)) = Th(vg) @ ¢ 4 ¢ T H) @ T (vy), (3.2)
H®(1,2) = (T" @ T")A(H) = T"(H)®T%(1)+T"(1) & T*(H). (3.3)
It has been shown in [2] and [1] that the tensor product of representations T, ® T,

is a representation of class ¢ with respect to the Hermitean form (3.1) and that the tensor
product of representation spaces Vi(A) ® Vi2();) can be decomposed into a direct sum of
subspaces V!(\)

Vi () @ Va(h) = B1V/(), (3.4)



where [ is an integer satisfying the conditions

h—lj<lsh+h. (3.5)
In this decomposition, each subspace appears only once, i.e., the tensor product of two
representations of the same class is simply reducible.

B U,(osp(1]2)) Clebsch-Gordan coefficients.

By definition, the Clebsch-Gordan coefficients (hm Ay, bmaAg|imA), relate the pseudo-nor-
malized basis el7(A;) ® €21()y) to the reduced pseudo-normalized basis efi(l1,12,A) in the
following way :

el A) = 3 (imahy, amadalimA), (A1) ® €23(Xa).- (3.6)

my,my

where m = m; + m,. The bases €/(l;,l2, ) in the reduced tensor product space are ortho-
gonal and satisfy the normalization condition

(el(l, 12, ), €l b, N) = (=)™ Sy b (3.7)

where
e=h+hL+1+M+p mod(2), (3.8)
P = (11+12+I+,\2)A. + @a(ly +lh+ )+ 1+ ¥ mod(2), (3.9)
A=h+bL+14+M+2 mod?). (3.10)

It should be noticed that even if the bases el(A;) and €f21(),) are positive definite, i.e.,
i =1 = 0, 1 = 1,2, the reduced basis €!(l;, 13, A) need not be positive definite.

The operators H®(1,2) and v$(1,2) act on the vectors e!1(ly, 1z, A) in a standard way given by
formulae (2.12), (2.14). Recently, Clebsch-Gordan coefficients for the quantum superalgebra
U,(0sp(1]2) have been derived by use of various methods [13], (1], {2]. In the following we
will use the results obtained in Refs.[1], (2] by application of the projection the operator
method. In the limit ¢ — 1, the quantum Clebsch-Gordan coefficients become osp(1{2)
Clebsch-Gordan coefficients

lll’rll (llml)\l, l;mﬁ;“m)\), = (llmy\l N lgmgAg“m/\) y (3 t })

Let us recall some properties of the Clebsch-Gordan coefficients for the quantum superalgebra
U,(osp(1]2)) [2]. They satisfy the pseudo-orthogonality relations

Z ("‘1)(‘l—m')(zz_m2)(11m\A1, lzmg/\gllm/\)q(l‘m,z\l, lgmg/\glllml/\)q
mimy
= (=158 b mom (3.12)
(=G m A, lamadalimA) (limy Ay, lamagda|lmA)g
tm

= (=)l by (3.13)

where [ = [y + I3+ [. These pseudo-orthogonality relations do not depend on the parameters
@i, ¥i, A and €.

Counsidering the action of operators v®(1,2) on the defining relations for Clebsch-Gordan
coefficients, one can derive the following recursion relations for Clebsch-Gordan coeflicients,

cf. Ref.[13]
VI +m]ll = m + 1y (hmidy, lamadafim — 1 A)
= ql"il [11 - ml][ll + my + 1]”[ (Ilml + 1 /\l,lgmg)\gll'fn ’\)q
+ (=10 gl — mallla + ma + Uy (hma My lama + 1 Aallm A), . (3.14)

(=1t S = w4+ m+ 1y (s, bmade|lm + 1 A),
= (-—1)'2-""4”\](]221\[[[1 + mI][lx -m + 1]’7 (llml -1 /\1‘12'{".7/\2“7’11 ’\)q
+ q'ﬂ"-"‘\ﬁl, 4+ myl{la = ma + 1y (hmy Ay, lama = 1 Aglim A),. (3.15)

In the classical theory of Racah-Wigner calculus, a very important role is played by the
Clebsch-Gordan coefficient (jm, jn|00), which defines an invariant metric. In the case of the
quantum superalgebra Uy(osp(1]2), the corresponding coefficient also defines an invariant
metric. It has the form (1]

Cis (3) = U+ 1](ImA, InA[000), = (~1)M0-m () =52 e%s, o (316)

and it satisfies the properties
Clo(A) = (=)™ CI(A),  CH(X) CET(A) = bmp- (3.17)

In the following, we will use this invariant metric to construct parity dependent 6 — j symbols
for the quantum superalgebra Ug(osp(1(2).

One easily checks that in the limit ¢ = 1, the invariant metric (3.16) becomes the invariant
imetric for the classical superalgebra osp(1]2) defined in Ref.{10].

It has been shown in Ref.[2], that Clebsch-Gordan coefficients have the following symmetries

(I my Ay, lama Malla ma A3)y = (=1)l=m+hdla=matia) (—1)Prthalbthtis) s

(1 +ig—t3 Xy 42 =13 41)
X (—1) (12 ma A'l, ll mlAlllg m3 t\3)q-l N (118)

(I my A1, 2 mg dalls ma ha)g = (4)“—-’1‘3—1—1‘ tmakgemast) (4 -ma)

m (20 + 1)}
X(_l)(/\2+b)(‘l+‘7‘m3)q‘_gz (}213:1]]) ([2 —my /\2, 13 mu/\glll m /\|),I—l R (3]())
1

‘l'ml!‘l—"‘l—'!
(11 my A\, 12 my /\2“3 m3 ’\3)q = (—'1) (—1)'\3(12+13-ml)

1

m (20 4 1])?
X (—1)(«\|+L)(lu+la—m:)q—z" ([ 3+ ]) (3 m3 Aa, I —myAllz ma Ay - (3.20)
(20 +1]
6



The Clebsch-Gordan coefficients satisfy also the “mirror” symmetry

(hmy Ay, lamg Aalla ma /\3)q

= (=)Dl SRR A B ma dalls —ms Aa)gm, (320)

where L = Iy + 3 + I;. Al these symmetries of Clebsch-Gordan coefficients present the same
structure as the symmetries of Clebsch-Gordan coefficients for quantum algebra Ug(su(2))
[6], excepted that the phases are non linear in L;,m; and that they depend on the parities
A, 0=1,2,3).

Besides, it has been shown that these Clebsch-Gordan coefficients for the quantum superal-
gebra U,(0sp(1]2)) satisfy also Regge symmetry. However in this case, Regge symmetry is
realized only under some condition on the arguments, cf. Ref.[15].

IV Symmetric 3—j symbols for quantum superalgebra
Uq(osp(1]2))
A Parity dependent 3 — jA symbols.

For the quantum superalgebra U,,‘(osp(ll‘Z)), the parity dependent 3 — j symbols, denoted
5g3 — j), have been defined in Ref.{2] as follows

Ly b bhs - (_1)(h+lz—m:),\s(_1)(-l-—*-x~‘——‘-—l‘ tm g dms (_1)0—3-&3——3—' =maila—mg=1)
my mo ms3 e

-1(my-ma)

q
* V2 +1)

Their arguments satisfy the same constraints as for Clebsch-Gordan coefficients

(llml/\h LymaAg|ls — ms)\a)q : (4.1)

I -hi<ls<h+i, (4.2)
m1+m2+m3=0. (43)
11 + 12 + 13 = /\3 + /\1 + /\2 mod(‘Z) N (44)

and the symbols have symmetry properties similar to the symmetry properties of 3 —J
symbols for the quantum algebra Uy(su(2)). Under an even permutation of columns one has

(11/\1 [2/\2 13/\3) _ (13/\3 11/\1 12/\2) - ( 12A2 13/\3 Il’\l) (45)
[ 9 9

m, ma m3a ms my ma ma my my

and under an odd permutation they tranform as

(ly\, 2998 13/\3) _ ﬂ(h/\? Lz '3/\3>
q ¢!

my m, my ma my msa

-8 ( Ly B3 12/\2) - ﬂ<ls)\3 LA LM ) ; (4.6)
e !

m;, ms m: my m; T

~

where 8 is the phase factor
B = (—1)2?:1 2 “2 =t i (4.7)

Under “mirror” symmetry, the sq3 — 7\ symbol transform in a slightly different way

( 129 VRN /9 PR (VX ) - (_1)23“ OELNCELNN ( ha LAy BAs ) . (4.8)
—-—m; -—my —m3 ¢ m, ma my ot

Note also that the sq3 — j symbols, as well as the Clebsch-Gordan coefficients, satisfy a
conditional Regge symmetry, cf. Ref.[2], and that they satisfy modified pseudo-orthogonality
relations, namely

T (—1)h=ma)tla=ma) g} ms=ma) ( ha by 13/\3) (ll/\l LA; lg,\3>

m, my m3 m; mg mj

- S &
= (mplmmt S, (4.9)
Z(_l)('a—m:)la[ma +1) ( 139 VI /9 PR G PN ) ( 11/\’1 12/\'2 I3As )
{ams m mz M3 j my my; my ),
= (_1)('1—'"1)(‘2—"'1) q-%("n-m) Bt Sy - (4.10)

In the limit ¢ — 1, the sq3 — jA symbols become identical to the $3 — jA symbols for
superalgebra osp(1|2) defined in Ref.(10].

B Parity independent 3 — j symbols.

In Ref.[2], it has been shown that for 393~ j A symbols, the dependence on A; can be factored
out, so that for the quantum superalgebra U,(osp(1]2)) one can define parity independent
3 — j symbols that will be called sg3 —j symbols

L Lk - (_1)4\,(!,+lg—mg)(_I)I,(lg+lg—m|)(_1)lq(l1+l2-—m3)
my Mg M3 ‘

(h+my ) +my—1) (ig=mp)(ig —mz-1)
2 -1 2

x (_1)L('1+lz-m:) (-1)
q-*(ml'"‘?)

x 1
[26: 4+ 1]

The parity independent s¢3 — j symbols satisfy the constraints (4.2) and (4.3) and they have
symmetry properties similar to those of the sq3 — jA symbols: for an even permutation of

columns
hobh kY _(6 b b _ [k &L & (12)
m; my; ms . my my my /o my Mz My q’ e

and for an odd permutation of columns

hobh Y _ (b bk
my my; mg . my My My j o,
{ i 1 1
=a(‘ 3 ’) =a(312 I‘) , (4.13)
my Ma My - mg My Ny 9!
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where a is the phase factor
a = (_1))::?.3 o (—I)Z?-ll'm‘ . (41")

As sq3—j ) symbols, these sq3—j symbols satisfy also a “mirror” symmetry and a conditional
Regge symmetry. But for the latter property, the sq3 — j symbols are not invariant, they
are multiplied by a phase factor, cf. Ref.[2]. Moreover, the 5¢3 — j symbols satisfy the same
pseudo-orthogonality relations (4.9) (4.10) as s¢3 — jA symbols.

Using the parity independent sqg3 — j symbol, one can define a parity independent invariant
metric

Cla, = gim [21+1](r; TII g) = (~1)-m(—) =t R L (4.15)
q

It is related to the parity dependent invariant metric C',(}) defined in relation (3.16) by
Cli, = (=1)U-mOHICk (). (4.16)

The parity independent sq3 ~ j symbols and invariant metric will be used in the following
to construct the parity independent symmetric 6 — j symbols for the quantum superalgebra
Us(osp(112). .

In the limit ¢ — 1, 3q3 — j symbols become identical to the parity independent s3—j symbols
for the superalgebra osp(1|2) defined in Ref.[10}.

V Racah Coefficients for the quantum superalgebra
U,(osp(12)).
A Tensor product of three irreducible representations

Let us consider the tensor product of three irreducible representations of the quantum super-
algebra U, (0sp(1{2)) of the same class ¢

1€ 1793 dye r
T«l’nﬁl ®T, “»® T‘Paa%' {5.1)

L)

The representation space for such a tensor product is the tensor product of the representation
spaces

Vi) @ VE(Aa) ® VE(Aa), (5.2)
with a basis spanned by the vectors
e, (A1) ® €2,(12) ® e, (Aa)- (5.3)

The bilinear Hermitean form in the graded space (5.2) is defined with the bilinear Hermitean
forms in each space V*();), i = 1,2,3, in the following way

(e (M) ® ez (ha) @ €3, (ha) , €ll (A1) @ e (A2) ® €3, (Xa))
— (_1)(Z.q(‘-—"‘-+'\-)(‘J“"‘)+’\1))(_1)(23_‘ @-(li—m-)‘i"l“)‘s

myn 6"12-"26"'3.":‘ (54)

The reduction of the tensor product of representations (5.1) can be done, as in the classical
case, in two different schemes. In the first scheme, one couples first the representations T

9

and T% and then the result is coupled to the representation T in order to give as a final
result the representation T'. This scheme can expressed in the short way

o

T C (T @ T)g ® T, (5.

ot

The reduced basis corresponding to this scheme is given by the expression

Cl:.(llz,lay)\) = Z(llmv\h12m2/\2|112m12)\12)q

m

x (hamizhg, lsmadslimA), 52.,('\1) ® 617351(’\2) & 553.3(’\3% (5.6)

where ¢ = 1,2,3,12 and we have

m = my + m, + ms, (57)
3

A=Y (M+)+L (5.8)
i=1

The operators H,vy are represented in this reduced representation space by
vQ(12,3) = (T" @ T* @ T")((A ®id)A(vs)), (5.9)
H®(12,3) = (T" @ T" @ T®)((A ®id)A(H)). (5.10)

In the second scheme, one couples Tt with result T’ of the coupling of representations T
and T' in order to yield T'. That is we consider

T'C (Th @ (T @ T*)g)s- (5.11)
In this case, the reduced basis vectors are of the form
ed(l,l3,A) = ;(lzmz/\z, lzmadsllaamaares)g
x (limyAq, lamashaa|imA), el (A1) ® €2, (A2) ® e, (Ma), (5.12)

here i = 1,2,3,23 and m and A satisfy the same condition as in the previous reduction
scheme.
The operators H and vy are represented in this case by

v3(1,23) = (T @T"? @ T*)((id ® A)A(vs)), (5.13)
H®(12,3) = (Th @ T @ T")((id ® A)A(H)). (5.14)
Due to the coassocialivity of the coproduct, we have
v8(1,23) = vP(12,3) = vg(123), (5.15)
H®(12,3) = H®(1,23) = H®(123) (5.16)

and

v2(123) — Th(vt) ® qT‘Z(H) ® qT‘3(H) + q—T‘l(H) ® Th(v:k) ® qT‘l(H)
+g TN ET v),  (517)
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H®(123) = TY(H)@T*(1)@Th(1) + T"(1)® TR (H)® T"(1)
+ Th(1) @ Th(1) @ TH(H). (5.18)
Using the recursion formulae (3.14) and (3.15), one can check that the operators v$(123) and

H®(123) act on the bases e/ (1}, a3, A) and e!(l13,13, X) in the standard way given by formulae

(2.12), (2.14). The bases e!4(11, s, A) and €113, 15, A) are orthogonal and normalized in the
following way

(€9(Liay Ig, ) 5 €09(lhg1a, ) = (= 1)1 0™V 8y S B, (5.19)
(9, a3, A) , ety 1, A)) = (=1yeralmmIdnas g b Bty » (5.20)

where
praa=pua=L+h+ X2+ s mod(2), (5.21)

3
t/’1‘2.3 = ([1 + 1+ lm)(ﬁ + 1) + (/\1 + A+ tpz)[, + Z )\.'/\J‘ + Zt/), mod(?), (5.22)

i<j =1

a
Yraa={la+ i+ bLa)(L+1)+ (M +Aa+e)l+ SN+ 3% mod(2), (5.23)
i< =]
and

£=11+12+13+1. (5.24)

B Racah Coefficients

Racah Coefficients for the quantum superalgebra Uy(osp(1]2)), called sqgRacah coefficients
and denoted by U*(ly, I, I, 1, h2, 23, q), are defined in the standard way as the coefficients
that relate two reduced bases in two different reduction schemes

el Iy, \) = Z(—l)“’“’“”““” Ut(h,lay 13,1, b2, 103, 9) ey, L3, ). {5.25)

la
From the defining relations relations (5.6), (5.12) and from the orthogonality relations for
Clebsch-Gordan coefficients (3.12), (3.13) the sqRacah coefficients are related to the Clebsch-

Gordan coefficients as follows
U (1, 1oy I, 1, Ly, Do, q) = Z(_1)(l—m)C(_1)Zk<,(lk—mul(l;-m;)

X (!lml/\la[2m2A2lll'lmn/\l'))q(ll'lml?/\lﬁy13m3)‘3“m’\)q
x (lamaha, lamads|laamaadas) (A, laamazAgalimA)g, (5.26)

where i = 1,2,3,12,23 and k,j = 1,2,3. Similarly to Racah coefficients for U, (osp(1]2)),
ngacah coefficients depend on the parities A; but they depend peither on class € nor on the
signature parameters p;, ¥; i=1,2,3.

Considering the action of operators v$(123) and H®(123) on the defining relation (5.25)
for sqRacah coefficients and using the relation @123 = @123, one can show that the coefhi-
cients U*(ly, Iy, I3, 1, 13, l2s, g) do not depend on m. Besides, sqRacah coefficients satisfy the
following orthogonality relations

Z("1)(““’“")(“')(]’(11' Iy, 13,1, Iy, laa, (l) U’Uh Iy, b, L, 1123, q)

12

— (L2 4+l +t23)(L+1 o
_(_1) 241+l )6’73['2:‘ (5.27)
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Z(_1)(12+l:+123)(5+1)U'(11, 12, lg, l, [12, 123, q) U’(ll, 12, 13, l, ll”, 123, q)

i2a

= (_1)('1+lz+l|2)(5+l)6“21,”. (5.28)
Using these properties, one can easily inverse relation (5.25) :

e, sy A) = Z(—1)("“’“")(“1)(/’(11. Iy, 13,1, bz, L3, @)e (N, B3, ). (5.29)

ha

Let us now derive some special values of sqRacah coeficients. If any one of the superspins
Iy, 15, 13 is zero, then by definition the sqRacah coefficient is equal to unity

U0, 1, 13,1, 12, 1,9) = U*(h,0,03,0, 11, 13,9) = U*(h,1,0,0,0,1,9) = 1. (5.30)
The case | = 0 can be calculated directly by means of expression (5.26), which gives
U,(ll} 12) 131 0: 131 llv q) = (—1)(,\X+,\3)(“+h+la)~ (531 )

Similarly, it can be proved that

3

L
U’(ll)llyllh I3a0$ llSa q) = ('_']‘)xl(ll-H:'-H”)(__]')Q‘Lﬂﬂ;ln)ShLlﬂ:—‘‘ui’—ll ( [2113+ 1] )’

(24 + 128 + 1)’
(5.32)
1
(1l -l th=tig+1) {202 + 1] :
U* (s, la, la, 1z, 0, ) = (=1) 0 ¥a+hd (-1 3 (————— .
(12, lay I3, 02 g)=(-1) (-1) [211+1][212+1]
(5.33)
These formulae are very similar to the corresponding ones for quantum algebra Ug(su(2}) of.

Ref.[6].
Taking into account the fact that the coefficients U, la, b, I, L2, 33, q) do not depend
on m and making use of the identity

{
T (-nEmg = 2+ 1), (5.34)

m=-!

one can express the coefficient Ul I3, 83,1, oy Lasy q) in terms of Clebsch-Gordan coefficients
in a more symmetric way

1
Ut(h, o, I3, 1 hiay 123, 9) = e

kj=1,2,3

Z(—l)(""‘)(“”(—l)):«; (e =mi)lly=m; ) =
all m .
X (llmlAl 3 12m2A2“12ml2A12)q(112m12)\12, l3m3>\3|lﬂl)\)q
X (l'zmzx\z,Iams)\3|123m23/\23).,(1,m,)\,,Izgrngg)\mllm)\)q .(5.35)

Using this formula and the “mirror” symmetry of Clebsch-Gordan coefficients (3.21), one
can prove the following property of the sqRacah coefficients

U*(h, la, I3, L hay 13y ) = U*(ly, lay 13,1, hiay la g7 (5.36)
Comparison of the two coupling schemes

(TP @ T")g-1 ® ") and (T @ (T? @ T" )41 )g=1» (5.37)

12



and use of the first symmetry (3.18) of Clebsch-Gordan coefficients yield the following sym-
metry of sqRacah coefficients

U*(ly, b, 3, b hiay 23, @) = U*(la, l2, 11, 1, 123, 2, 9)- (5.38)

Using symmetry properties of the Clebsch-Gordan coefficients (3.18-3.20), one can write the
expression (5.26) in the form

KI=UAA Nl emy) —m,
U"(llv Iy, 13,1, L, l33, q) = [_2.1_%—1-] Z (_1)(l1—m1)(5+1)(_1)2k<, (le=mx )i, ;)q
1 all m

X (lnmn/\n,12m2/\2\11m1/\1)q(1m)\,lsma)\:s\lumn)\n)q
X (lsma)\aylzmz)w“asmn/\za)q(lm/\,lzsmzaf\zalllmv\l)q, (5'39)

where the phase p is
p = (_1)C(l:+13+':3)(_1)»\2(11+l+h:+ln)+)\3(l;+lg+ln+ln)_ (540)
This relation, together with relation (5.35), leads to the symmetry property
U’(lhlz,[a,l,l}zylm‘q) = p Ui, ts, Iy, ha, 123, 9)- (5.41)
In the next section, we will show that similarly as in the non deformed case of osp(1|2) {10],

sqRacah coefficients are related to 6 — j symbols that have better symmetry properties.

VI The 6 — j symbols for the quantum superalgebra
Uy(osp(1]2))
A Parity dependent 6 —j symbols.

By analogy with the corresponding construction of su(2) 6—j symbols, the parity dependent
3¢6 — 7 symbols for the quantum superalgebra U,(osp(12)) are defined by contraction of a
product of four sg3 — jA symbols with use of the parity dependent invariant metric C12,(}) :

L LAy ks & Ly bh B )
= W (N
{ 14)\4 15/\5 le/\e . 0“2"‘:'"‘, '_I;Ilc’"-"‘i( ) my maq m3a e

% L Isds leds L hre lehe lda shs lads 6.1)
m’lmgmsqrmmamgqm"msmgq"

Using the explicit form (3.16) of the invariant metric, the symbol may be written

{ Lt hhe By } _ Z (_1)(2:?:‘X.(l.-m.))(__l)(Z?_lLl——‘)i-‘——‘—l‘ SLVC R qg(m.+m5+ma»

ladg 1shs lshs
L lde ks Lo lshs leds
x m) my ma v —-my —MmMms Ms q

y (lm l2ho 16/\6) (Lm Ishs 13A3> L (62)
L) u

all m

myg —M2 —1Mg —-my ms —MN3

In order for the sqb — jA to exist, the four superspin-parity triplets
{(1, M), (I, A2), (s, M)}, {Uzy Aa), (las Xa)s (Isy As) } (6.3)
{(ll’)‘l)v([fi:)‘ﬁ)v(lsv ’\5)}7 {(127’\2)1“41)‘4)1([67 )‘6)} ) (6-4)

must satisfy triangular constraints of the form (4.2), (4.3) and relation (4.4) for the paritics.
Comparison of definition (6.2) with the expression (5.35) for the sqRacah coefficients shows
that both quantities are proportional. Explicitly, taking into account a change of notation,
this relation reads

U’(lx,lz,ls,l,lm,lza,Q) = ("1)Alu”‘a+‘”)+'\J(h+h+l")(—1)("“”“2“23)““)
_ LL+1) llAl I’l/\'l 11‘2)‘1’2 r
x (-1)" 7 y/[2hz + 1}[2ha + 1] { lshs A ladas | (6.5)

The symmetry properties of sg3 — jA symbols and sqRacah coefficients imply that the sq6 —
jA symbols satisfy the same symmetry properties as su(2) and osp(1|2) 6 — j symbols.
Namely, they are invariant under any permutation of columns and they are invariant under
interchange of upper and lower arguments in each pair of columns.

Besides, the orthogonality relations (5.27), (5.28) for sqRacah coefficients imply the following
orthogonality relations for the sq6 — 7\ symbols :

175 VR 0% YRR (PP Uy gy LN
(s oL 4 1](21 1 1A l2Az lizAn A lzAg A,
2(=1) Rha+ R+ U 130 I8 bodgs [, | lhe DA lwda

- (_1)(c+x)(h+t.,+m)6l p (6.6)
LT .

l2a

LAy LA 12X LA e L
L \(EHD i HaHha) 1h 2t T2 R
Z( 1) (2h2 + 1]{26s + 1]{ I3As 1A ladas } { T YRR P W A U }1

— (__1)(C+1)(11+13+l73)6‘“‘l . (67)
23

ha

By means of relations (5.30-5.33), one can readily obtain particular values for 5q6 — jA
symbols with one zero superspin, for instance

i 1
{11)\1 o), 13,\3} _ (—1)(l,+lz+:,)$-l-;+tz+;+1
s 00 W [T foh +1Rh+1]

In the limit g — 1, the s¢6 — 7 A symbols are identical, up to a phase factor, to the 6 — jA
symbols for the superalgebra osp(1{2) defined in Ref.{10).

(_1)W ll’\l 12’\2 13/\3 — j.l’\l j-"l’\i ]:3)\3 , (6())
14A4 15)\5 Isz\s =1 ]4/\4 _)5)\5 ]GAG osp(A12)

with [, = 2j; and where the phase V¥ is

(6.8)

¥ = 26:1:‘ + (h + )l + 1) + (a+1s)(la+ o) + (Is + L)1 + L) (6.10)

=1
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Note that the phase ¥ has the same symmetry as s¢6 — 74 symbol. The difference between
the two symbols in Eq.(6.9) follows from the fact that in Ref.[10] a different basis in the
representation space has been used. For more details on bases in representation spaces, sce

Ref.[2].
In the next subsection it will be shown that the parity dependence of sg6 — jA symbols can

P)e factored out so that, exactly as in the case of 3 — j symbols, it is possible to define parity
independent 6 — j symbols.

B Parity independent 6 — j symbols

Along the same lines as in the previous subsection, we define parity independent s¢6 -7
syrnbol_s for the quantum superalgebra U,(0sp(1{2)) by contraction of four parity independent
593 — j symbols with use of the parity independent metric cl,

L I s & i L b kL L s &
{ gy Is g - ”z (I:-[l C'"-"‘i) m, m; m3 ) ( m] my mg )
q all m \1= q q

x(z. 12’ 161> (I.I ls 13’ )
Mg My Mg J, my ms My J

Using the explicit form (4.16) of the invariant metric, the symbol may be written

L & 4 $  llicm 8 (Li=mNt=mi=1 m
{ 14 15 le . = Z(_l)(z,,,l.(l. '))(—1)(2"“ 7 q%( «+ms+me)

all m

x ll 12 13 Il 15 16
m; mga ms e —m; —Ms Mg v
l l l
x(‘ ? 6)(" ks 13>. (6.12)
my —my —me J \ ~M4 Ms N3/,
The sq6 — j symbols satisfy the same triangular conditions as the sg6 — jA symbols.

Using the definition (6.12) of the sg6 — jA symbol and the analytical formula of the sq3 -3
symbols (2], one can derive the following proportionality relation between sq6—jA and sq6—]

symbols
ll/\l 12/\2 13/\3 - d(h:) ll 12 13 )
{zm Ishs lehe .,’( 1) Wols s f {6.13)

where the phase ®();) is given by

8 8 6
@(A.) = (Z /\‘)(Z l,) + (Z l‘)\.) (6.14)
i=l =1 i=1

Thus, all the dependence on A; in sq6 — jA symbols is contained in the phase factor. It is
noticeable that ®();) is a completely symmetric function of the six indices and hence, the
:sq6 — j symbols have all the symmetry properties of the sg6 ~ jA symbols. Furthermore, it
is easy to check that the sq6 — j symbols satisfy pseudo-orthogonality relations similar to
relations (6.5), (6.7) satisfied by the sg6 — jA symbols.

Let us remark that

o(l)=0 mod(2), (6.15)

15

therefore, the sg6—j symbol coincides with the sq6—j A symbol for the fixed parity convention
A = i mod(2). Note also that when one argument vanishes, the value of the sg6— j symbols

18 { l] 12 13 } _ (—l)(l +i+i (; 4+l +iz+1
s 0 4 Vizh +1]126 + 1)
thus, in this particular case, parity dependent and parity independent 6 — ; symbols are
equal.
In the limit ¢ — 1, the sq6 — j symbols become identical, up to the phase factor ¥, to the
6 — j symbols for the superalgebra o0sp(1]2) defined in Ref.[10]
.. . \S
(el h bl fagn : (6.17)
Iy 55 g =1 Jea Js Js

osp(1{2)

(6.16)

with l; = 2j;.
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