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Introduction.

Recently, quantum algebras [1] have raised considerable interest among theoretical physi-
cists. This wide interest may be explained by the fact that quantum algebras are continuous
deformations of well known Lie algebras and that their representation theory is very similar
to that of non deformed Lie algebras. In particular, the irreducible representations of quan-
tum algebra Uy(su(2)) have the same structure as those of su(2) algebra. It has been shown
in several papers (2], (3], [4], [5], that for the quantum algebra U,(su(2)), the Racah-Wigner
calculus can be fully developed following the same lines as in the classical case. It is quite
remarkable that all topics that are relevant for the classical Racah-Wigner calculus have
their direct quantum analogue in the representation theory of quantum algebra U, (su(2)).
A very eflicient method for the analysis of the properties of irreducible representations is the
projection operator method, first introduced to derive the su(2) Clebsch-Gordan coefficients
(C-Gc) by Shapiro [6]. Recently, Smirnov, Tolstoy and Kharitonov (7], [8] have used the
projection operator method to derive an analytical formula for the C-Ge of the quantum
algebra U;(su(2)) and to study the corresponding Racah-Wigner calculus .

The superalgebra osp(1|2) was first introduced by Pais and Rittenberg [9]. Using the
inclusion sl(2) C osp(1]2), Scheunert, Nahm and Rittenberg [10} and Berezin and Tolstoy
(1] shew that any osp(1]2) Clebsch-Gordan coefficient can be factorized into the product of
a usual su(2) Clebsch-Gordan coefficient and a so-called scalar factor. In Refs.[12], {13], [14]
(see also references therein), it has been shown that the Racah-Wigner calculus can also be
constructed for this superalgebra. In particular, the super s3-j and super s6-; symbols have
been defined and expressed in terms of the classical 3-j and 6-; symbols.

The quantum superalgebra U,(0sp(1|2)), which is the subject of this article, can be consi-
dered either as the quantum analogue of osp(1|2) superalgebra or as the super-analogue
of Ug(su(2)) quantum algebra. However, it is to be noticed that there is no inclusion
U,(s1(2)) ¢ Uyosp(1]2)). This quantum superalgebra has been defined and studied by Kulish
and Reshetikhin [15], [16]. Its Clebsch-Gordan coefficients were derived by Kulish [17}], using
a recursion relation, and in Ref.[18] using the projection operator method. A particular case
of C-Gc was also given by Saleur [19].

In Ref.[18], it has been shown that in the reduction of the tensor product of two irredu-
cible representation spaces of U(osp(1|2)) with positive definite bilinear Hermitean forms,
it appears representation spaces the Hermitean forms of which are not positive definite and
where the highest weight vector is normalized to —1. In this paper, in order to study the
most general case, we consider the reduction of tensor product of representation spaces whose
bilinear Hermitean forms are not necessarily positive definite, and using the projection ope-
rator method, we derive an analytical formula for the Clebsch-Gordan coefficients. This
analytical formula does not differ from the analytical formula obtained in {18], which proves
that Clebsch-Gordan coefficients do not depend on the signatures of the bilinear [lermitean
forms defined in the representation spaces. Besides, we study several properties of Clebsch-
Gordan coefficients: orthogonality relations, symmetry properties, particular values and it
is also shown that Clebsch-Gordan coefficients satisfy a conditional Regge symmetry.
Similarly to the case of U,(su(2)), the study of the symmetry properties of the Clebsch-
Gordan coefficients allows one to define for U,(0sp(1]2)), s¢3 — ; symbols that possess good



symmetry properties. We first define sq3 — j A symbols which depend on the parities X of the
graded representation space bases. Then, we show that the dependence on parities can be
factorized out, so that one can define for quantum superalgebra Uy(osp(1{2)) parity indepeu-
dent 3 — j symbols that are superanalogues of 3 — j symbols for quantum algebra U,(su(2))
and have symmetry properties very similar to those of these 3 — j symbols (7}, [8].

This paper has the following structure: Section 11 contains the definition of the quantum
superalgebra Ug(osp(1[2)) and the basic properties of its irreducible representations, and
we recall the explicit expression of the projection operator for the quantum superalgebra
U,(0sp(1]2)). In section 111, we consider the tensor product of two irreducible representa-
tions of U,(osp(1|2)) with arbitrary Hermitean forms and the projection operator is used
to derive an analytical formula for the Clebsch-Gordan coefficients. Pseudo-orthogonality
relations, recursion relations and symmetry properties of the Clebsch-Gordan coefficients
are given in the following subsections of section IIL. Section 1V is devoted to 3 — j symbols:
parity dependent and parity independent 3 —j symbols for U,(osp(1]2)) are defined and their
properties are discussed.

2 The irreducible representations of the quantum su-
peralgebra U,(osp(1]2))-

2.1 Representation spaces.

The quantum superalgebra U,(0sp(1]2)) is generated by three elements: H (even) and vs
{odd) with the following (anti)commutation relations

(H,vs) = £hvs, [oarv-]s = ——"E%%) (2.1)
where the deformation parameter 7 is real and is related to the g-deformation parameter by
q = e"3. One can also define the quantum analogue of Ly (which in non deformed case
together with H span si(2) subalgebra of osp(1]2)) and their quantum commutation relations.
Explicit formulae, worked out by Lukierski and Nowicki [20], show that for the quantum
superalgebra Ug(0sp(1]2)), the generators H and Ly do not form a Uyg(sl(2)) subalgebra.
Thus, for U,(0sp(1|2)) there is no inclusion U,(sl(2)) ¢ U,(osp(1]2)-
The following expressions for coproduct A, antipode S and counit € define on Ug(osp(12))
the structure of a Hopf algebra

Alvy) = v ® ¢ +q7 " @us, (2.2)
A(H) = H®1+1@H, A1) = 181, (2.3)
1

S(H)=-H, S(vs)= —gtruy, (2.4)
e(H) = e(ve) =0, 1)y=1. (2.3)
For the homogenous elements of Uy{osp(1]2)), one can define a parity function deg such that
deg(H) =0, deg(vs) =1, deg(1) =0, (2.6)

3

deg(A(H)) = deg(H), deg(B(v)) = deg(ve), deg(A(1)) = deg(1), (2.7)

and furthermore one defines
n
deg(Xy Xa...Xn) = 3 deg(Xi), (2.8)
i=1

for any X; € Ug(osp(1{2)). Obviously, any product of generators H, vy, involving au even
(odd) number of generators v is an even (odd) element of Uy(osp(1{2)).

A finite dimensional representation space V of Uy(osp(1]2)) is a graded vector space V =
V(0)® V(1) where V(0) is an even subspace and V(1) is an odd subspace. We assume that
there exists in V a bilinear Hermitean form ( , ), not necessarily positive definite, such that

(v(o),v(1)) =0. (2.9)

For the representation space, there exists also a parity function deg, defined on homogenous
elements of V, such that .
_Joif ye v(0), .
deg(y) —{ 1 if yev(l). (2.10)

A representation of the quantum superalgebra U,(osp(1]2)) in the finite dimensional graded
space V is a homomorphism T
T: Uosp(112)) — L(V\V), (2.11)
of the associative graded algebra U,(0sp(1]2)) in the associative graded algebra of linear
operators in V, L(V, V), such that for any X € U,(osp(112))
deg(X)=0 = TX(V(®) C V(O), TV € V), (212
deg(X)=1 = T(X)(V(0)) C v(Q), TXXV(L) c V(0). (2.13)

The operators T(H), T{vs), which represent the generators H, vy satisfy the defining rela-
tions

(T(H), T(va)] = £5T(vs), [T(v4), T0-) = ‘_Shs(Z(Tz(wg 2,

From the (anti)commutation relations (2.1), one can derive the following fundamental for-
mula

(2.14)

min(m,n)

T = X e i e
@T(H)-n+m]!

(T TN Gy —n g m =it (2.15)
where h()
— ¢ 4
1= hon) (2.16)
and [n] is the Kulish symbol defined as follows (17
shEe) o
-% ch(%) 1 n 1s even
—(—=1)"q%
(n] =1 _L( )Lq = (2.17)
:
eer c‘—“c(h‘((nr;)) if n is odd.
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We have set ¢ = ¢~ therefore, the symbol [n] is positive if n > 0. Note that the limit ¢ — |
depends on the parity of the argument n of the symbol. As a particular case of rclation
(2.15), we have (see also Ref.[19])

T(oe)(T(v-))" = (=D)™(T(-))"T(02) + (T(w)*"[4H —=n+1)fn)y)  (218)

Scheunert, Nahm and Rittenberg [21] have introduced the concept of grade star representa-
tions. In such a representation the operators satisfy the following relations

T(HY =T(H), T(vg)'==%(-1)T(vg), T(Q) =T(Q), (2.19)
where (*) is the grade adjoint operation defined in the following way
(T(X)*f,9) = (~1)tsX)s)( £, T(X)g), (2.20)

forfm)’ X € Uy(osp(1)2)) and f,g € V. The index ¢ = 0,1 defines the class of the represen-
tation. The grade adjoint operation (%) has the following properties

(X1 Xo)* = (—1)feenddeslXal i xv, (XD = (—1)oXx, . (2.21)

Thus, (*) is an anti-isomorphism of the graded algebra L(V, V) (i.e., it changes the order of
the product of operators) and we-have

(T(XD)T(Xa)... T(Xp))* = (1) e S XMeaXdp X VX, )L T(X),  (2.22)

2.2 Finite dimensional irreducible representations.

Let V! be a finite dimensional rapresentation space with highest weight ! (! is a non negative
integer). The highest weight vector is denoted by e} and is defined by the following propertics

T(H)(e) =3¢, T(vs)(e)) =0, (2.23)

N |~

(el e}y = (=1)%, with ¥ =0,1. (2.24)
The last condition is motivated by the fact that, for a tensor product of two irreducible re-
presentations of U,(osp(1]2)) with positive definite bilinear Hermitean forms, in the Clebsch-
Gordan series appear representation spaces whose Hermitean forms are not positive definite
and where the highest weight vector is normalized to —1 [18]. Therefore, in order to study
the general case, we consider representation spaces where condition (2.24) holds.
From relations (2.23), it follows that e} belongs either to V!(0) or to V¥(1), i.e., it has a
definite parity. Therefore, we set ef = el(A) and V! = V!()), where A = 0,1 is the parity of
the highest weight vector in the graded representation space.
Thus, any finite dimensional representation of U,(0sp(1]2)) is characterised by four para-
meters : the superspin [ (a non negative integer), the parity A = 0,1, the normalization
parameter ¢ = 0,1 and the class € = 0,1 of the representation.

One can construct an orthogonal basis in V(1) in the usual way, by repeated application of
the lowering operator v_

Cﬁ{()) = m Ul—m ef(/\) . (225)
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Using relation (2.15), the normalization factor N(q,{,m) is determined to be

N(g,1,m) = (=1)lHM+Dl=m)ty (ﬂ[—lr—i[;”!,yz_m) : (2.26)

and m = [,1—1,... = [+ 1, !, so that the representation space V(A) is 2! + 1 dimensional.
The vectors e/4(\) are orthogonal and normalized to £1; more precisely we have

(R (), em(A)) = (=1) e -mitvg (2.27)

Now, in order to characterize the representation of U,{0sp(1]2)), it is convenient to introduce
a new parameter p = 0,1

p=A+e+1 mod(2). (2.28)
With this parameter, the normalization relation (2.27) can be written in the more compact
form

(em(N), eme(N) = (=) e, (2.29)
In the particular case

$=0, p=0 & A=c+1 mod(2), (2.30)

the basis vectors e/2()) are normalized to +1, which means that the Hermitean form { , )
is positive definite. This case was considered in Ref.[18]. In the following, we shall consider
the general case where ¢ and ¥ are not fixed.

The parity of the basis vectors e/?()) is determined by the values of [,m and A,

deg(el () =l—-m+ A mod(2). (2.31)

The operators T(vs) and T(H) act on the basis €/()) in the following way :
T(H)R(Y) = 3 e, (2:32)
T(oa)eg(Y) = (=)' " Vii—mlll+m+ 1y (0, (2.33)

T(v)e¥(\) = Jii+mlll—m+1]y e (). (2.34)

This action of the operators T'(v4) and T(H) does not. depend on the parameters A, ¢, 4. The
representation T, characterized by the class € and acting in the representation space Vi(\)
whose Hermitean form signature is determined by @ and # is denoted by T%,. However,
in the following, the indices ¢,,9 will often be omitted in the notation. Note that from
relation (2.28), the parity index A can be expressed in terms of the other parameters

A=¢e+p+1, mod(2). (2.35)

In the limit ¢ — 1, we obtain a basis for the superalgebra osp(1|2) representation space
lime(3) = en(}), (2.36)

however, this basis e/ () is not the classical basis fI (A) of osp{1]|2) built from the reduction

chain sl(2) C osp(1}2), cf. Ref.[21],[11]. The classical basis can be obtained as the liunit
g — 1 of another basis f!,()) defined by

) = (-1

temlGem=il )y, (2.37)
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i.e., we have

Sm(¥) = lim f1(A). (2.38)
The operators T(vs) and T(/{) act on the basis fi4(A) in the following way :
TN = 5 [0, (2.39)
T)f) = —Jli=mlli+m+ 1y fila ), (2.40)
T(u)f2(0) = (D)W +mlll=m+ Ly £l (). (241)

For ¢ = 1 the action of the operators T(vs) and T(H) on the basis f!, () takes the classical
form {11}, [21]

Hin(d) = 5 V), (2.42)
: =4V fr (V) I-m even

v fm(d) = (2.43)
—4VI=n fra(d) I-m odd,
, IVi=n fl_,(2) l—m even

v_fm(A) = (2.44)
—fv/nF1 1 _(A) l—m odd.

It is quite remarkable that for ¢ # 1 the action of the generators of the quantum algebra
Uy(osp(1]2)) can be written in a more compact form than in the classical case ¢ = 1.
In the following we shall work with the canonical basis e/4(}).

2.3 The projection operator P! for the quantum super-algebra
Uy(osp(1]2)).

In this Section, we recall the definition and some properties of the projection operator for
tk.xe quantum superalgebra U;(0sp(1]2)). This operator P? acts linearly in the space V, the
direct sum of all representation spaces V'. It is defined by the following requirements

[T(H),P?) =0, T(v,)P*=0, (P)=P1, Plef(\)=ef()). (2.45)

The las.t condition means that the restriction of P? to the irreducible representation space
Vi, projects on the highest weight vector e[(A). It has been shown in Ref.[18], that the
operator P? can be written in the form of a series

P = z_%Cr(T(H))(T(v—))'(T(W))' ) (2.46)

where
__ 4TH)+1)! )
«(TH) = 7 iy +r + 00T (247)

General formula.e for the projection operator of quantum orthosymplectic superalgebras have
been derived by Koroshkin and Tolstoy {22]. In the limit ¢ — 1, this coefficient and therefore

the projection operator are equal to the corresponding osp(1|2) coefficient and projection
operator P, cf. [11],

giﬂll P'=P. (2.48)
The operator P? defined by Eqs.(2.46) and (2.47) has the following properties
(P9)* = P!, Phw._=0, (2.49)

and, by definition, its action on an arbitrary vector [ of the representation space Vs

E = lz: Eimel(}) = PIU(E)= Z E et (2.50)
m i

Note that the bases ¢/¢ and f7 have the same highest weight vector, therefore the operator P1
is the same in both bases.
Let us consider the space Wi, of all vectors of weight m, i.e., Wn = {fAIT(H)f =2f} The
restriction of P9 to this space is denoted by P™ and it has the form
P =3 e (m)(T(v-)) (T(v4))" (2.51)
r=0
where the coefficients ¢.(m) are now numbers
_ [2m +1]! o
&(m) = 2m +r+ 1))y (2.52)

In the sequel, we will use so-called shift operators P4 actingin V;. For{>mand 2 n

they are defined by the expression

P"'?n = (_1)“_—")%——"19'J _[l_-l_-_r_n]_'_ (l-m) J_ﬂ_—tﬂ_.y-(l—n) (T(v_))""' Ple (T(v+))"" ,

R —m) BRI = n)!
(2.53)
and they satisfy the following properties :
(P, = (=1)0-mm e Pl (2:54)
Pl Pl? = 6ubu Py, (2.55)
Pl eB(A) = € (), (2.56)

with no summation over n in the last relation.

3 The Clebsch-Gordan coefficients for the quantum
superalgebra U,(osp(1]2)).

3.1 Tensor product of two irreducible representations.

Let V() and V'2();) be the representation spaces of two representations TL“",‘ and T2,
of the same class €. From Eq.(2.28), this implies that the parities A, and signatures @i
(i = 1,2) are related by

M+ = A+ mod(2). (3.1)

8




The bilinear Hermitean form in the tensor product space V(A1) ® V'2(A,) is defined by
(X1 ® Xa), (Y ® Ya)) = (~1)4oneatid(x, 1) (X,, Y2), -(32)

where X;,Y; € Vii()), X;,Y: € V3(X3). It should be stressed that even if both Hermitean
forms in the representation spaces V''(A;) and V2(A;) are positive definite, the form (3.2)
is not necessarily positive definite.

The vectors

et (M) ® et (M), (3.3)
for all admissible values of my, m,, form a basis in the representation space V(A Vh(,),
and their parity is

deg(eld(M) ®eli(M)) =h+h—mi—ma+ A+ mod(2). (3.4)

TPe spa.ce‘V'l {M)®V"'2(A;) is a representation space for the tensor product of representalious
1o, ® T2y, and the action of the generators vy and H in this space is represented by the
following operators :

v3(L,2) = (Th @T")Avs) = Th(vs) ® ™) + ¢ T H @ Th(vy),  (3.5)
H®(1,2) = (T @ T")A(H) = T"(H)®T"(1)+T"(1) @ T"*(H), (3.6)
The grade adjoints of operators v&(1,2) and H®(1,2) are defined by
(02(1,2))" = (T"(ve))* @ TN 4 =T @ (T (uy))", (3.7)
(H®(L,2))* = (T"(H)" @ T"(1)* + T"(1)* ® (T*(H))", (3.8)

i.e., the grade adjoint operation does not change the order in coproduct. With this defini-

tion, the tensor product of representations T;‘:h ® Tg‘h is a representation of class ¢ with

respect to the Hermitean form (3.2) Since the representations T! and the coproduct A are
homomorphisms of the algebra structure we have
(v2(1,2)" = (T" @ T")A(v}) (3.9)
(H®(1,2))" = (T" @ T")A(H™) (3.10)
This property, together with relations (2.2), imply
(01,20 = Y [ k ] (¢7) (T (o))" T ) @ (Th(wg))* 720, (311)

k=0

where [ : ] is the quantum graded Newton symbol

(2] =[E] o= p=e o1

Formula (3.11) allows one to calculate the explicit form of the projection operator P'® for

. lye 17%3
the representation T, ® T2,

PRo(1,2) = 35 ¢, (D(v2(1,2)) (42(1,2)) (3.13)

r=0

This operator will be used to construct the reduced basis e (I, {3, 4) in V(A1) ® V2(A;)
and the C-Gc for U,(0sp(1]2)). It has been shown in Rel.[18] that the tensor product of
representation spaces Vi (M) ® V'3(A;) can be reduced into a direct sum of subspaces Vi(A)

V(M) ® VE(A) = @V, (3.14)
where [ is an integer satisfying conditions
lh=hi<i<sh+h. (3.15)

In this reduction, each subspace appears only once, i.e., the tensor product of two represen-
tations of the same class is simply reducible.

3.2 U,(osp(1|2)) Clebsch-Gordan coefficients.

By definition, the Clebsch-Gordan coefficients (himi A, lamaAg|imA); relate the pseudo-nor-
malized basis el¥(M) ® ei21()2) to the reduced pseudo-normalized basis el (I, 13, A) in the
following way :

6‘:'(11,12, /\) = Z (llmll\l,lgmzz\g‘lm/\); Ci::(Al) @ C:Z‘Z(/\z) N (3“))

my,mg

where m; + m; = m. From the definition (3.2) of the bilinear form in VH(A) @ Via(X,) it
follows that

(imidy, bmada|lmA)y = ("1)("_m'H’)(l’—m”'\’)(—l)(zz"W“'_m')w')
(eh? (A1) ® €22 (Aa), €2 (1, 12, V) - (3.17)

In order to calculate the right hand side of this relation, the vector eid(l1, 12, A) is represented
in the form

et (b, 1aA) = PriP(ent (M) ® e (Aa)), (3.18)

where m; 4+ ma = n, and it can be shown, cf, Ref.[18], that without loss of generality, this
vector can be chosen as follows

L
IN(g,1,m)]|

Using the properties of the shift operators vy, the normalization factor N(g,l,m) is shown
to be

(11,1, )) = PEB(elI(M) ® e, (M) (3.19)

N(g,l,m)

(P8l 9(M) ® e, (Ma), PI8(eh (M) ® e, ()
(_1)w(l—m)+wq£1¢‘z;')$;_+‘z—_‘xﬂl {20+ 1]'24]! ’
-G+ 0L +hL+1+1]

(3.20)

and therefore, one has
(€901, 2)  enilli 2, 0))

mm‘:?(ei:“(m ® €2, (N2) » Prif(en(M) ® ey, (M)

N(g,1,m)

AL L) g St = it St (—1)ET™IY 5.
IN(g, L, m)] " w Smm(=1) (3.21)
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where
e=h+hL+!l+M+p; mod(2), (3.22)
p=(l+hL+l1+)A+e(i+L+ D)+ +192 mod(2). (3.23)

Th}xs, the basi§ el4(ly, Iz, A} is orthogonal but not positive definite. Its signature is the same
as in the classical osp(1|2) case [14]. If we set ¢; = ; = 0, i = 1,2, we obtain the same
formula as in Ref.[18].

Using the recu'rsion relations (2.2, 2.3) one can check that the operators H®(12) and v$(12)
act on the basis e/¢(1;, 13, A) in the standard way given by formulae (2.32, 2.34).

From relation (3.19), it follows immediately that the parity A of the reduced basis e!?(1,, I, A)
can be expressed as e

By substitution of expression (3.19) into relation (3.17), one gets
(hmidy, lamada|lmA); = (—1)("—m'+'\‘)uznmﬂu\’)("’1)(2?"“."U'—"")H")——-———-———1 X
VIN(g, L, mm)|
(ema (M) ® el (), A(P)el (M) @ e, (32)), (3.25)

ie., fi?e ‘Clebsch-Gorda.n coeflicients are proportional to the matrix elements of the operator
A(_P,,,,) in the basis ef?(\;) ® €22(A;) of the space V;, @ Vi,.
Using the properties of the projection operators, after a laborious calculation, we get the fol-

lowing analytical expression for the Clebsch-Gordan coefficients of the quantum superalgebra
Uy(osp(1]2)

(llml)“, lgmgAgllmA); =

(_ 1 ),\,(I.Hl _,,‘2)(_1) (l1+l2—l)(;1+l2 —t41) q_((, +iy -1)(:+12+:1 +1) | hma—iym, N

([21 oyt bt D milE b b 1~ maltf + b — ) 5
[l - m]'[11 + m;]'[lg + TnQ]'[lg - 11 + I]'[Il - m;]' )
Z(-—l)i:#lqﬁh_pﬂ [12+l| —m-—z]![2lg--z]!

z [Mh+b~l=2th+L+1+1 =2l —my — 2]}’

(3.26)

where the summation index z runs over all possible values such that the arguments of the
symbol [n] are non negative. The Clebsch-Gordan coefficients do not depend on the parame-
ters ¢y, 1, (1 = 1,2) and ¢, i.e., C-Gc do not depend on the signature of the representation
spaces. Exactly the same formula has been obtained in Ref.[18] where the particular case
pi = 1/);'= 0 ( = 1,2) was considered.

It is quite noticeable that this formula differs from the corresponding formula for U,(s!(2))
Clebsch-Gordan coefficients only by the phase factor and by the definition of the l’symbo!

[n). I\{Iorcj precisely, setting A; = 0 in the analytical formula (3.26) and making the following
substitutions, for the symbol [n]

-5~ g8
(] = (). ==L, (3.27)
q t—q2
and for the phases
afa-1)
(-1)77 - (-1)°, (3.28)

then, Eq.(3.26) becomes identical to the analytical formula of Clebsch Gordan coefficients
for the quantum algebra Uy(su(2)) {7].

Using methods similar to those described in Ref.[7], one can show that for the particular
case m = [ the Clebsch-Gordan coefficients take the form

(limihy, amada|UA)g =

(_I)A,(l-l1—mz)(_l)(lx—m1)(12—-m1)+("-m‘x‘,'-m”” “'“2_‘)(‘.“’_"*& -("-m;)('“)

)’ . (3.29)

20 4+ 1Ml + ma){l + mu )l + b = 1!
([Il —m |l —ma) =L+ ML — L+ 0L+ L+ 1+ 1!

This formula has also been derived using a recursion relation in Ref.[17].
The analytical values of the simplest Clebsch-Gordan coefficients (I my, 1 ma|l m); are given
in table 1. Note that

(hhid, bl lh+h L+ + s =1 (3.30)
and that the Clebsch-Gordan coefficients
(11 11 A], 12 ma /\le l /\): (331)

are always positive. Therefore these Clebsch-Gordan coefficients satisfy the classical Condon-

Shortley convention.
Relation (3.25) and the limits (2.36), (2.48) give, as limit of the U,{osp(1{2)) C-Gc the
0sp(1|2) C-Gc in the basis ek, (1),

}'iﬂ’l\ (llmp\l, IQYTLQ/\zllmA); = (11m1A1,12m2/\2|lm/\)’ . (332)
Substituting relation (2.37) in equation (3.25) the Clebsch-Gordan coeflicients in the bases
f19()) and e!4(A) are related by

(hmudy, madalimA)] = (—1)thmmolamma)(o)-mlidtd o
(llml)q, Igm';/\gllmA)Z , (333)

and it is obvious that the same relation holds, for ¢ = 1, between osp(1]2) Clebsch-Gordan
coefficients in both basis f! (1) and el (}).

3.3 Properties of the Clebsch-Gordan coefficients.

From equations (3.2) and (3.21), it follows that the Clebsch-Gordan coefficients satisfy the
following pseudo-orthogonality relations :

Z (_1)(’x-m+4\1)(11-mz+»\a)(_1)(23ﬂw.(l.—vn.)+w.) x
mymg

(hmyh, madgimA)e (hmy Ay, lma A2'm' )] = (=D 606 s, (3.34)
;(-1)(v’<'-m)+¢)(z,mlAl, limadalimA)s(im) Ay, lami A |imA); =
(_1)(l,—m1+»\1)(12—m2+h)(_1)(2;; w.(l-—m:)*"l’-)&m]m; 6,,[2,.,.3 . (3.35)
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l my =1 my =0 my = —1

-m
L+l g5 (-1)Mg~Fx q’J—-‘ T %

(l|+m+1 1y 4m 2)[5 +m+1][} ~m+1 Uy —-m41}[l; ~m
|211+1"211+2 20, +1]{21+2 20 +1j[20 42

b (=M +g=Fx g7 x (-1)Mg % x

t =t
LlL[_2 homitllhrm) | (=)0l bmi1]4g Ty —me] (2l +m 1) ~m]
201 }{20, 42 \/[2‘11(2[l+2] 24|28, 42

h=1] g™ x (-1)hgFx ¢4 x

Gy —~m][l; ~m+1 [} =m][l; +m Uy +m][l +m+1
[21,][21,+1] G Eh+1 Lzh+1

Table 1: Clebsch-Gordan Coefficients (hmid, 1madgllm /\)5
where , 1 are given by formulae (3.22, 3.23). These pseudo-orthogonality properties reflect

the fact that the bases (3.3) and (3.19) are not positive definite. Using relations (3.22, 3.23,
3.24) one can simplify the pseudo-orthogonality relations and get

Z (*l)(ll—m')("_m’)(hmv\l, I;THQ/\gllmA):(ljm]/\l, lgmgl\g“’m'/\); =

mymy

(—1)(I_M)L6ll’6mm’1 (3.36)

Y (-DE=mL(m, A, lamads|lmA)e (Lhmi Ay, lamiAa|imA)e =

im
(=)mmaammalg e By« (3.37)

where L =, + I; + 1. Thus actually, the pseudo-orthogonality relations do not depend on
the parameters ¢;, v;, A; and e.

From relation (3.33), it follows also that the Clebsch-Gordan coefficients

(hms Ay, lmadallm,)! in basis f9(A) have the same pseudo-orthogonality relations as the
C-Ge (hmidi, LmaAg|lmA)¢ in basis €/(A). Note that the classical C-Ge for 03p(1|2) super-
algebra satisfy also the same pseudo-orthogonality relations [14].

Considering the action of operators v$(1,2) on the defining relations for Clebsch-Gordan
coeflicients, one can derive the following recursion relations

VIE+mll—m + 1y(lmi A madglim — 1 A); =
qﬂ’l\/[lx = mllh +mi + 1y(hmy + 1 Ay, Lmadglim A +
(=)™ T Sl — mal{l + ma + Uy(lma As,lama + 1 Aglim A), (3.38)

q

(-—1)’1+l2+l+'\‘ [1 - m][l +m+ 1]"/(11"11/\1, Izmg)\gllm +1 /\); =
(=17 T [+ malh = my + Ly(hm = 1, madallm A +
q:;i\/[rlﬁ + mZ]["l —m; + 1]7(11"11 /\1,127712 -1 Agllm /\); . (339)

Such recursion relations were used in Rel.[17] to derive an analylical formula for Clebsch-
Gordan coefficients equivalent to Eq.(3.26).

In the theory of the classical Racah-Wigner calculus, a very important role is played by
the Clebsch-Gordan coefficient (jm, jn]|00) which defines an invariant metric in the repre-
sentation space. In the case of the quantum superalgebra U;(0sp(1[2), the corresponding
coefficient has the form

Clta(A) = (mA, InAJ00D); = (~)N-m(-1) =0t s, (340)
(20 + 1]
It defines also an invariant metric and it satifies the properties :
-1 -1 6
lg A = (=1 m g A lg A lq - mp ) .
CHaN) = (-D"CE'), OO = g (341)

This invariant metric will be used to construct the symmetric 3 —j symbols for the quantum
superalgebra U,(0sp(1]2)). One easily checks that in the limit ¢ = 1, the invariant metric
(3.40) becomes the invariant metric for the classical superalgebra osp(1]2) [14].

3.4 Symmetries of Clebsch-Gordan coefficients

Using techniques similar to those described in Ref.[7], or using the recursion relations (3.38,
3.39), one can prove that the Clebsch-Gordan coefficients possess the following symumetry
properties :

(I my Ay, I mg Aglla mg ,\3); - (_1)(11—m1+,\l)(12—m7+/\1) x
_ -
(_1)(M+Az)(u+1;+la)+xu\,(_1)“—-2—““—“——" e N (1Y VR A W ey Aa)ior, (3.42)
Lhmy Ay, I mg Al ma A3)8 = 1 24m ‘2+m U )Ml -me)
q

i
2

(b —ma Xy, lamads|hy my M)iar,

(—1) DNl Ha=ms) =3 <[2l3 + 1]) (3.43)

260 +1]



(L my Ay, lamg Az|ls mg ,\3); = (_l)u—-LLth—l——’ e _l)(_l)Aa(l:+ls—m|) x

, oy m (261
(_.1)0\ +L){L1+1s 2)q—2l (}212 T 1]]) (13 ma /\3, 11 - m11\1|12 ma AQ):_l . (344)

The Clebsch-Gordan coefficients satisfy also the “mirror” symmetry

{(hhmy Ay, I mg Agfly ma /\a)z =
3 b —~m, )i, —~m, =1

(~)Z =G A de —ma dglls —ma Aa)jn, (3.45)
where L = I, + [; + 3. All these symmetries have the same structure as the symmetries of
Clebs.ch-G(‘frda.n coefficients for quantum algebra U, (su(2)) [7], excepted that the phases are
non lmear' in l;ym; and that they depend on the parities );, ( = 1,2,3).
Another similarity between both cases is the existence of Regge symmetry. However, in the
case of quantum superalgebra U,(0sp(1{2)), Regge symmetry is realized only under some

condition. Assume that in the analytical formula (3.26) for Clebsch-Gordan coefficients the
condition

L+lL+m +my=0, mod(2) (3.46)
is satisfied, and consider the following linear transformation on the arguments :
=gl +ltmtma), mh= 5= bt m —ma) (3.47)
f= gt l—mi—ma, my= (= =+ o) (3.48)
=1, my =l —h. (3.49)

The superspins I}, 7 = 1,2,3 satisfy relation (3.15), the projections m/ satisfy m{ +m; = mj
fmd condition (3.46) guarantees that [; are integers. Thus, the transformation (3.47-3.49)
is an admissible transformation on superspins [; and projections m, in the tensor product
V(A1) ® V2(X;). If we substitute now in the analytical formula (3.26) the values of I! and
m}, then the phase is invariant and all expressions in symbols [n] either remain invariant
or are exchanged pairwise so that the expression (3.26) remains unchanged. Therefore, the
Uq(0sp(1]2)) C-Ge satisfy Regge symmetry

(’I1m'1 AL, l’gm;,\gllgm;,\:,); = (hmih, lzm-z/\zllsma/\a); (3.50)

Let us observe that the numerical value of the right hand side of expression (3.26) is invariant
under transformation (3.47-3.49) even if condition (3.46) is not satisfied. But in this case, the
‘ttansforma.t.ion introduces superspins which are half-odd-integers which do not correspond to
irreducible representations of U,(0sp(1|2)). Thus, the analytical formula (3.26), obtained by
application of the projection operator method, exhibits in a natural way the Regge symmetry
of the coefficients. Regge symmetry of Clebsch-Gordan coefficients for a tensor product of
rep.resentations with ¢ = 9 = 0 has been discussed in Ref.{23].

Using relation (2.27) one can easily check, that Clebsch-Gordan coefficients in basis [9{})
have similar symmelry properties "

(I my Ay, 1 mg Ap|la ma /\3)1/ = (_l)(ln—m|+/\x)(lz—m2+/\7) x

- - 1
(_1)(M+Az)(l,+l;+lg)+,\,,\,(_1):,«2 Q)i vzt (2 ma Aqy [y myA]la my /\3)5_, . (3.481)
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Wy preg Rigtmy =)
(h my Ay, I ma Az|ly ma /\a)g = (—l)"M‘_’L—J_—'(“1)“””“'“3_1"2) X

gy m (2 1) ,
(_1)(A7+L)(lx+lz 3)q =2 ({21?+ 1%) (I —ma Xy, I3 mazll my A )5—: . (3.52)

(h m1 A1, b3 ma dalls g '\3).,! = (-1) g (_l)(h“)“’“"’"‘) x

oy m ([20s + 11}
(_1)(A1+L)(11+l3 a)q-zL ({2; T ID (lama Az, Iy — miA|l; ma ,\2)0’_, ,  (3.53)

(o my A, lamg Aol ma /\3).,1 =
(=1)Tim s

The first symmetry and “miror” symmetry are the same in both bases. In the limit ¢ — 1,
these symmetry properties become symmetry properties of Clebsch-Gordan coefficients for
the classical superalgebra osp(1{2) derived in Ref.[13].

L —myp A, b —ma Aglls —my /\3)5-1 . (3.54)

4 Symmetric 3—j symbols for quantum superalgebra
Uy(osp(1]2))
4.1 The parity dependent s¢3 — jA symbols.

In analogy with the classical case of su(2) algebra, one can define for quantum superalgebra
U,(0sp(1]2)), s¢3 — 7A symbols that possess good symmetry properties

( W b b ) _

my mz M3 ]

(_l)ua(_l)ﬂ&ﬂlﬁiﬂﬂ(_l)m;u&;zﬂm(_l)mmxgﬂm y
q;’"‘;-}(ml—m:)C’I:Zma()\g)(llml)\1, l'lmZ/\'l“:imlgz\a): , (1)

where C29, ()3) is the invariant metric defined by relation (3.40). Using the explicit form
of the invariant metric, the definition of the symbol s¢3 — jA may be written

(11)\1 lhy BAs )‘ - (__1)(l,+lq—m3))\,(_1)('1+'"1)(l’1+v"1-11(_1)(‘2""2)(;2—"'2-')x

my mz M3 e

q—%(mx-ma)

\/[213 +1]

The symbols 33 — j\ satisfy the same constraints as Clebsch-Gordan coefficients, namely

(i, lama dalls — mads); (4.2)

Ih=-bLl<+<h+1, (4.3)
my+my+m3y=0, (4.4)
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h+ Iy + = Az + AL+ A2 mod(2) . (45)

Taking into‘account the symmetry properties of Clebsch-Gordan coefficients, one can show
that 33 — ;A symbols are invariant under even permutations of columns

(lv\n hhz ), )’ - ( laAs LAy b, )' - ( Lha L A, )ﬁ

my mg; my mz m; my m; m3 m, (4.6)

Uf\der an odd permutation of columns and simultaneous change g — ¢}, they are multi-
plied by a phase factor B

(AAI la)g zaxa)’= P (lm h 13A3)° i
1

my m; my m3 mpy my

Lt Lhs ha \* BBz br; 4L \©
ﬂ( momy mg ), =4 my my; m, ),,-1 ) (4.7)
where the phase is
3 {—m, - —m=A -]
B = (~1)Tr, At (4.8)

Under “mirror” symmetry, the sq3 — j\ symbols transform in a slightly different way

( PYR '9 PR S W )e - (__1)):?_‘ my)(l—m; -1 (11/\1 Ay B3, ), (4.9)
9 9!

~mip -m; —my m; m; my

Finally, if condition
L+bh+m+my =0, mod(2), (4.10)
is satisfied, then the symbols satisfy Regge symmetry

( haq Bha B \° _ (hd by B, \©
m, mj mj TAm o omp om ’ (4.11)
where I, m/,i = 1,2, 3 are of the form
o1 r o1
11 = 5(11+12+7R1+m2), m, = 5(11“12‘}'7"1 —mg), (412)
. p_ 1
2 = 5(11 th-m —m; m= 5(11 ~b~my +my), (4.13)
lé = 13’ mg = lg - I]. (414)

From the definition of 8¢3—j A symbols, and from pseudo-orthogonality relations for Clebsch-

Go.rda,n coefficients, it follows that these symbols satisfy modified pseudo-orthogounality re-
lations, as follows

Z(__l)(l)*m:)(l:—m:)q%(m,—mz) har By By \°f 40, LAy ), "_
myms m; my; my my omy, m -

(-1 )(la—ma 12 6’3‘5 6"‘3’"5

R +1)° (115)
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har LAy Las N[ 6 A, Lda \©
__1\(a=m3)L 141 243 {343 171 t2A2  {3A3 _
T ) ( ) -

= m,  mg mi  m), mg
1= [ —iim, = .
(=1)mmlammalg=stmmmalg Gy - (1.16)

We have also the following relation between $¢3—j A symbols and Clebsch-Gordan coefficients

Cl,q—l ()‘3) ( 11/\1 12/\2 13/\3 )E - (_I)Lz\;(_l)mm“(‘;”ml_l)(_l)utml)(;rm-” X

mamy my m; mj

~}(mi~my)
q e
m([lmll\l,lzmzl\gu;;mg/\a)q . (417)

Let us now consider sq3 — jA symbols in the basis fU(A). They are defined by

!
(11,\1 ) 13,\3) _ (_1)(,,+,2_,,,3)W+,)(_1)m+_'ux;um;nz(_l)<‘mu%z-_muzX
9

my my msa

=}(m1~m3)
g‘m(hmlAl, Izmzl\'z“:i - mS’\S): (418)
3

The first phase is different from the corresponding one in definition (4.2) of s¢3 —j symbols
in basis €/4()), and therefore 393 — jA symbols in bases €/4()) and (X differ by a phase
factor

( har by B )I = (~1)lomms)Lr)+L( _1yli=mi)(ia-mz) ( LA ldy B3y )c .
my my mg e my ma m3 ¢

(4.19)
Both types of s¢3 — jA symbols (in basis f9()A) and in basis €l())) possess the same sym-
metry properties, i.e., they transform with the same phase § under an odd permutation
of colums and with the same phase under “mirror” symmetry. They satisfy also the same
pseudo-orthogonality relations. :
In the limit ¢ — 1, s¢3 — 7\ symbols in basis F8(A) are identical to the s3 — JA symbols
for superalgebra osp(1]2) defined in Ref.[14].
The s¢3 — jA symbols have better symmetry properties than Clebsch-Gordan coefficients,
but they still depend on parities );, so these symbols are not real analogues of g3 —j symbols
for quantum algebra Uy(su(2)). It has been shown in Ref.[14] that in case of superalgebra
03p(1{2), the dependence on ); can be factored out, so that it was possible to define s3 — j
symbols that do not depend on parities A;. In the next Section, we will show that such a
factorization is also possible in case of quantum superalgebra U;(osp(1]2)), which gives the
possibility to define parity independent sq3 — j symbols.
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4.2 Parity independent s¢3 — j symbols.
Parity independent sq3 — j symbols are defined in the following way

[
( 11 12 13 - (__I)chrc("_m‘)(‘i+]+’\'+l) 11/\1 12/\2 13/\3 e 5
m; mg mg mpy mp; Mg ’ (4‘20)
q
with the short notation
Z-’Ciym = ZiY2 + ZTays + Tayr - (+.21)

arc

Using ‘relation (4.2), the sq3 — j symbols may be expressed in terms of Clebsch-Gordan
coefficients

1 It ¢
< ":1 77:2 ;33 ) - (__I)A,(l.+13—m1)(_1)lx(12+la—m)(_1)lz(lx+lz—"u)(_I)L('l+'2—m:) x

_ Urtmy X 4my —1) (g =ma)(lg=mp~1) q'%("‘"”")
( 1) 2 (-—1) —[2—1__*—_—1_?(11 my /\1,12 my /\2“3 - ms3 A:;): . (422)
3

The symbols satisfy constraints (4.3) and {4.4). Using the analytical formula for Clebsch-
Gordan coeflicients, one can easily check that sg3 — 7 symbols do not depend on parities ;.
The symmetry properties satisfied by the parity independent sq3 — j symbols are similar to
the symmetry properties of s¢3 — jA symbols :

( Wl LY _ (b b bk R A "N S A o
mpy mz ™My ‘ my My My Jo - m; ma m q’ (4.23)
( L L & ) - a( b h Y ol b b b )

m; m; mj ‘ m; m; m3 ! my m3g m; st

_ (b b kY .
my omy omi ) y (4.24)
where the phase o is
o = (_1)2;"-‘&&:211%1&1‘_2(_1)2?:‘“"\;. (4.25)

Under “mirror” symmetry, sq3 — j symbols transform in the same way as s¢3 — jA symbols

( 11 I 13 )e _ (—l)z?" Qﬂxﬁ}x‘_"‘l‘_‘l ( 11 12 I3 )

m
1 M2 My . —-m; —my —mj

e

(4.26)
q—l
.Besid'es, tbefe exists a conditional Regge symmetry, but in this case the symbol is not
invariant, it is changed by a phase factor

U ¢ J €

l [} ! ¢

1 2 i3 ) _ (_1)(11+l;+m2)(‘z+(l/2)(ll+lq+m3)( L L L ) (4.2
q

my my my my mp; mg 127
where l[,m{,1 = 1,2,3 are given by formulas (4.12-4.14) and /; and m; satisly the condition
l‘+12+m1+m2=0,

mod(2), (4.238)
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which guarantees that the phase is real.

The sq3 — j symbols satisfy pseudo-orthogonality relations identical to those of 5g3—jA
symbols

Z (_1)(ll—m1)(lz—mz)q§(ml—"‘2) Il 12 13 I\ l‘l ls e
m my ma j my, my m q

mym3

(_ 1 )(lg—m;)L 6‘3“! 6’"3'".{:

2h+1]" (4.29)
E(—l)(l;—m;)l‘pla + 1] h b b : h b fs ) =
Im m M T3/, my mp ms q
(_I)U,——m‘)(l,-mz) —%(m'—m’)sm.m’,&mzm’, . (4.30)

From the parity independent sq3 — j symbol, one can define an invaraint metric that is
independent of A

1 10 € ~ l—m){l=m—1 q%‘
ch, = ¢im = (o L
q

e o (4.31)

Smin -

It is related to the invariant metric C!9,()) defined by relation (3.40) in the following way

Cf,‘{,, = (_1)(:_m)u+1)c'::ﬂ(,\) . (4.32)

One can also define sg3 — j symbols in the basis f15(A) in the same way as in basis (),
ie.,

e

!/
( L L I3 ) ____(_I)Emc(l.-m.)(l.n+«\.‘+1) ( W b 13/\3> ) (4.33)

m, my M3 . my M2 M3 q

and they are related by

'
R N R N DN (e fa
m; mg Mg q

my m; M3

(4.34)

q

These sg3—j symbols in basis f¥(X) have exactly the same symmetry properties and pseudo-
orthogonality relations as symbols sq3 — § in basis el7(A).

In the limit ¢ — 1, 3¢3 — j symbols become s3 — j symbols for the superalgebra osp(1]2).
In particular, for ¢ = 1, the last symbols (sg3 — j symbols in basis fl9(A)) are ideutical to
the s3 — j symbols defined in Ref.[14].

5 Conclusion.

The quantum superalgebra U;(0sp(1]2)) can be considered either as the quantum analogue
of 0sp(1]2) superalgebra or as the super-analogue of U,(su(2)) quantum algebra.
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In this article, it has been shown that the irreducible representations of the quantum super-
algebra U,(osp(1]2)) have the same structure as those of the not deformed superalgebra
0sp(1|2). In particular, Clebsch-Gordan coefficients have been defined such that they satisfy
the same symmetry properties and pseudo-orthogonality relations as in the non deformed
case. Moreover, after factorization of the parity dependence, we have defined syminetric
5¢3 — j symbols which are, at the same time, quantum deformations of s3 — j symbols for
superalgebra osp(1]2) and supersymmetric analogues of ¢3 — j symbols for quantum algebra
Ug(su(2)).

In a forthcoming publication, this analysis of the Racah-Wigner calculus for U (0sp(1]2))
quantum superalgebra will be continued with the definition and analysis of s¢6 — j symbols.
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