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Abstract

A search for Lorentz-boosted Higgs bosons decaying to charm quarks in the CMS

experiment using deep neural networks

by

Huilin Qu

Measurement of the decay of the Higgs boson to charm quarks provides a direct

probe of the Higgs coupling to second-generation quarks. Therefore, it is crucial for

understanding the structure of Yukawa couplings. In this thesis, a search for the Higgs

boson decaying to charm quarks with the CMS experiment is presented. The search is de-

signed for Lorentz-boosted Higgs bosons produced in association with vector (V) bosons

(W or Z bosons). A novel approach that reconstructs both quarks from the Higgs boson

decay with a single large-radius jet is adopted. The charm quark pair is identified with

an advanced deep learning–based algorithm. This approach leads to a highly competitive

result: Using proton-proton collision data corresponding to an integrated luminosity of

35.9 fb−1, an observed (expected) upper limit on σ(VH) × B(H → cc) of 71 (49) times

the standard model expectation at 95% confidence level is obtained.

A detailed description of the deep learning–based boosted object identification algo-

rithm is also presented in this thesis. It is a versatile algorithm designed to identify and

classify hadronic decays of highly Lorentz-boosted top quarks and W, Z, Higgs bosons.

Using deep neural networks to directly access and process the raw information of all con-

stituent particle-flow candidates of a jet, this advanced algorithm has achieved significant

performance improvements compared to traditional approaches.
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Part I

Introduction to Experimental

Particle Physics
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The study of the properties and interactions of the elementary particles is a fascinat-

ing subject. It is a way to probe the finest structure of space-time and to uncover the

fundamental laws of the universe. To investigate the most elusive microscopic phenomena

of the elementary particles, large-scale and highly intricate macroscopic experimental ap-

paratuses, such as the 27-km long Large Hadron Collider, the 15-m high Compact Muon

Solenoid detector with hundreds of millions of electronic readout channels, are needed.

This makes experimental particle physics a particular challenging but also exciting field.

This part of the thesis serves as a brief introduction to experimental particle physics.

Chapter 1 provides a concise overview of the standard model of particle physics and the

phenomenology of the Higgs boson at a particle collider. Chapter 2 describes the setup of

the Compact Muon Solenoid experiment with which the studies presented in this thesis

are performed.
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Chapter 1

Theoretical Background

The quest for the fundamental laws of nature, particularly, the elementary building

blocks of the universe, drives the development of particle physics. The discovery of the

electron by J. J. Thomson in 1897 marks the beginning of the exploration of the sub-

atomic world. Since then, a plethora of new particles has been discovered, as shown in

Figure 1.1. Advancements in experiments are always intertwined with progress in the-

ories. Quantum field theory, incorporating quantum mechanics and special relativity,

was gradually developed in the 20th century and since then became the mathematical

language of particle physics. Theories for the newly discovered strong and weak interac-

tions were proposed, developed, and eventually evolved into the Standard Model (SM)

of particle physics in the 1970s. The discovery of the W and Z bosons in 1983 marked

a great triumph of the SM. Since then, the SM has undergone extensive precision tests

at various experiments and has shown impressive agreement with observations. In 2012,

the discovery of the Higgs boson marked the completion of the last missing piece of the

SM, and particle physics has entered a brand new era.

Although the SM has achieved great success, various kinds of evidence, such as its

incapability to account for the existence of dark matter, indicate that the SM is still

3



Theoretical Background Chapter 1
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Figure 1.1: Timeline of particle discoveries. Figure adapted from [6].

not a complete theory. Furthermore, the newly discovered Higgs boson opens a whole

new portal that remains yet to be fully scrutinized experimentally. Any deviation from

the SM prediction, if observed, is a clear sign of new physics. Therefore, studying the

properties of the Higgs boson is of paramount importance at current and future particle

physics experiments.

This chapter provides a brief discussion of the theoretical background needed for

studying the Higgs boson properties at a particle collider. Section 1.1 gives a concise

overview of the SM1, with an emphasis on the Brout-Englert-Higgs mechanism. Section

1.2 discusses the production mechanisms and the decay modes of the Higgs boson.
1A more thorough treatment of the SM can be found in many excellent textbooks on quantum field

theory (e.g., Refs. [1, 2, 3]) and particle physics (e.g., Refs. [4, 5])
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Theoretical Background Chapter 1

Figure 1.2: Summary of the particle content of the SM. Figure from [7].

1.1 The Standard Model of Particle Physics

The SM is a theoretical framework that describes all known elementary particles and

their interactions2. A particle is considered elementary if it has no internal structures. In

the SM, the elementary particles fall into 2(+1) categories: the spin-1/2 fermions and the

spin-1(0) bosons. The spin-1/2 fermions are often referred to as “matter particles”, as all

macroscopic matter are composed of elementary particles in this category, specifically,

the up and down quarks (constituting protons and neutrons and therefore the atomic

nuclei) and electrons. The fermions can be further divided into quarks and leptons, with

only the quarks interacting via the strong force. The leptons include the electrically

charged electron, muon and tau, and their electrically neutral counterparts, the electron

neutrino, muon neutrino, and tau neutrino. The spin-1 (vector) bosons are the so-called
2Gravity is not accounted for in the SM, as the gravitational force between elementary particles is

extremely weak at energy scales probed so far.
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Theoretical Background Chapter 1

“force carriers”, i.e., they mediate the interactions between particles. The photon is

responsible for the electromagnetic interaction, the W± and Z bosons are responsible

for the weak interaction, and the gluons (with eight different “colors”) are responsible

for the strong interactions. As the only spin-0 elementary particle observed so far, the

Higgs boson has a special role in the SM. It is an indispensable ingredient of the unified

electroweak (EW) theory and is also the origin of the masses of the fermions and the W±

and Z bosons. The various types of elementary particles of the SM are summarized in

Figure 1.2, with the main quantum numbers, the mass, and the participating interactions

of each particle also displayed.

The description of the strong, weak, and electromagnetic interactions in the SM is

based on a quantum field theory with a SU(3) × SU(2) × U(1) gauge symmetry. The

SU(3) group is the symmetry group of quantum chromodynamics (QCD) that describes

the strong interaction, while SU(2)×U(1) corresponds to the electroweak theory unifying

the weak and electromagnetic interactions. The Lagrangian of the SM can be written,

in a rather formal manner without making explicit all the fields and indices, as

L = −1

4
F a
µνF

µν
a + iψ̄/Dψ + (yijψ̄iψjϕ+ h.c.) + |Dµϕ|2 − V (ϕ), (1.1)

where ψ denotes the fermion fields, and ϕ denotes the scalar field, F a
µν = ∂µA

a
ν − ∂νA

a
µ +

gfabcAb
µA

c
ν is the field strength tensor of a gauge filed Aµ, and Dµ = ∂µ − igAa

µta is the

gauge covariant derivative in which ta is the group generator in the chosen representation.

The definition of the field strength tensor and the covariant derivative ensures that the

Lagrangian is gauge-invariant.

One feature of the SM Lagrangian in eq. (1.1) is that there are no explicit mass terms

for the fermions or the gauge fields. In fact, a fermionic mass term like mψ̄LψR + h.c. is

not invariant under gauge transformation. Mass terms for the gauge bosons of the form

6



Theoretical Background Chapter 1

m2Aa
µA

µ
a are also prohibited by the gauge symmetry. This poses a severe problem as the

fermions and the W± and Z bosons are massive. In the SM, this is solved by the Brout-

Englert-Higgs mechanism [8, 9, 10, 11, 12, 13] by the introduction of a self-interacting

complex scalar field ϕ which spontaneously breaks the SU(2) × U(1) symmetry. The

scalar field is a SU(2) doublet with four degrees of freedom,

ϕ =
1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
. (1.2)

The scalar potential term in the SM Lagrangian is

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2, (1.3)

where λ > 0 in order to have a finite minimum. When µ2 > 0, the potential has a unique

minimum located at ϕ = (0 0). If µ2 < 0, the potential has an infinite set of minima

defined by

ϕ†ϕ =
−µ2

2λ
. (1.4)

The physical vacuum state will correspond to a particular configuration in this infinite

set of minima. Without loss of generality, the vacuum state can be chosen to be

⟨ϕ⟩ = 1√
2

(
0

v

)
, where v =

√
−µ2

λ
. (1.5)

The choice of a specific vacuum state breaks the gauge symmetry, although the potential

itself respects the symmetry. The scalar field can then be expanded around the vacuum

expectation value (VEV) as

ϕ =
1√
2

(
ϕ1 + iϕ2

v + h+ ia0

)
. (1.6)

7



Theoretical Background Chapter 1

Substituting eq. (1.6) into the SM Lagrangian in eq. (1.1) yields three massless Goldstone

degrees of freedom, corresponding to ϕ1, ϕ2 and a0, which mix with the electroweak gauge

fields and become the longitudinal components of the W± and Z physical gauge bosons.

The W± and Z bosons acquire masses,

m2
W =

g2v2

4
, m2

Z =
(g′2 + g2)v2

4
, (1.7)

where g and g′ are the SU(2) and SU(1) gauge couplings, respectively. The remaining

degree of freedom of the scalar field, h, is the physical Higgs boson with a mass

mH =

√
−2µ2 =

√
2λv. (1.8)

After the electroweak symmetry breaking, the fermions acquire mass through interactions

with the Higgs field, i.e., the Yukawa interactions. The fermion mass mf and the Yukawa

coupling yf is related by

mf =
1√
2
yfv. (1.9)

In the SM, the VEV of the Higgs field is fixed by the Fermi coupling constant

GF =

√
2g2

8m2
W

= 1.166 378 7(6)× 10−5 GeV−2, (1.10)

hence

v =
(√

2GF

)−1/2

≃ 246GeV. (1.11)

The quartic coupling λ is a free parameter in the SM, so there is no a priori prediction for

the mass of the Higgs boson. The experimentally measured Higgs mass, mH ≃ 125GeV,

implies that λ ≃ 0.13 and |µ| ≃ 88.8GeV. Once the Higgs mass is known, the SM

Lagrangian in the Higgs sector is entirely fixed. The interaction terms involving the

8



Theoretical Background Chapter 1

Higgs field can be written as [14]:

L = −gHff f̄fh+
gHHH

6
h3 +

gHHHH

24
h4 + δVVµV

µ
(
gHVVh+

gHHVV

2
h2
)

(1.12)

with

gHff =
mf

v
, gHVV =

2m2
V

v
, gHHVV =

2m2
V

v2
, gHHH =

3m2
H

v
, gHHHH =

3m2
H

v2
(1.13)

where V = W± or Z and δW = 1, δZ = 1/2. From eq. (1.13), we can see that the Higgs

couplings to fermions are linearly proportional to their masses, while the couplings to

bosons are proportional to the square of the boson masses. As a result, the dominant

mechanisms for Higgs boson production and decay involve the coupling of H to W±, Z

and/or the heavier third-generation fermions (top and bottom quarks and the τ leptons).

1.2 Higgs Boson Production and Decay Mechanisms

At a hadron collider such as the LHC, the Higgs boson can be produced mainly via

the following processes:

• Gluon-gluon fusion (ggF), gg → H;

• Vector boson fusion (VBF), qq ′ → qq ′H;

• Associated production with a vector (W, Z) boson (VH), qq → WH/ZH plus a

small contribution (∼ 14% at
√
s = 13TeV) from gg → ZH (ggZH);

• Associated production with a top quark-antiquark pair (ttH), qq/gg → ttH;

Figure 1.3 shows the representative Feynman diagrams for these Higgs production pro-

cesses. The cross sections of these production processes are shown in Figure 1.4a as
9



Theoretical Background Chapter 1

a function of the center of mass energy (
√
s) of the proton-proton collisions, and also

summarized in Table 1.1 for
√
s = 13TeV.

g

g

t

tW, Z

W,Z

q

q

g

g

q

q

q

q
(a) (b)

(c) (d)

H

HH

H

Figure 1.3: Main leading-order Feynman diagrams for Higgs boson production via
the (a) ggF (b) VBF (c) VH and (d) ttH production processes. Figures from [14].

Production process Cross section [pb] TH uncertainty [%] Accuracy

ggF 48.58 ±3.9 N3LO QCD and NLO EW

VBF 3.782 ±2.1 (approx.) NNLO QCD and NLO EW

WH 1.373 ±2.0 NNLO QCD and NLO EW

ZH (incl. ggZH) 0.8839 +4.1
−3.5 NNLO QCD and NLO EW

(ggZH) 0.1227 +25.2
−19.1 NLO + NLL QCD

ttH 0.5071 +6.8
−9.9 NLO QCD and NLO EW

Table 1.1: Summary of the cross sections and the current theoretical (TH) uncertain-
ties of the dominant SM Higgs boson production processes for proton-proton collisions
at

√
s = 13TeV [15]. The mass of the Higgs boson is assumed to be mH = 125GeV.

The ggF process is the dominant Higgs production mechanism at the LHC, accounting

for almost 90% of the total Higgs production cross section. As shown in Figure 1.3a, this

process is loop-induced, with the most significant contribution coming from the top quark

as it has the largest Yukawa coupling to the Higgs boson. Therefore, the measurement

of the ggF cross section also provides an indirect probe of the Higgs coupling to the top

quark.
10
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Figure 1.4: The SM Higgs boson (a) production cross sections as a function of the
center of mass energy (

√
s) of the proton-proton collisions (b) branching fractions as

a function of the Higgs boson mass. The bands in both figures correspond to the
theoretical uncertainties. Figures from [15].

The VBF process is the sub-leading production mechanism, contributing about 7% to

the total cross section. The Feynman diagram is shown in Figure 1.3b. The VBF process

features the presence of two forward quark jets, which can be exploited to identify such

events. The process can be used to probe the Higgs coupling to the W and Z bosons.

The Higgs coupling to the W and Z bosons can also be probed in the VH process,

shown in Figure 1.3c. Though with a much smaller cross section, the VH process has

an essential advantage over ggF and VBF for experimental searches, as the presence of

a W or Z boson provides an additional handle for event selection. This is particularly

valuable to searches for Higgs bosons decaying to quarks (e.g., H → bb , H → cc), as

one can exploit the leptonic decays of the W or Z bosons to effectively suppress the

overwhelming background consisting of quarks and gluons produced by QCD radiations.

The event topology of the VH process is relatively simple, consisting of a vector boson

and a Higgs boson recoiling against each other, with little additional activity in the event.
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Theoretical Background Chapter 1

The ttH process has an even smaller cross section, yet it is considered highly impor-

tant as it provides the only way to directly probe the Yukawa coupling to the top quark

— the H → tt decay is kinematically forbidden. The production of top quark-antiquark

pair (tt) constitutes the main background for the ttH process. Depending on the decay

modes of the tt system (di-leptonic, semi-leptonic, fully hadronic) and the Higgs boson

itself, the final state can be quite complicated for this process.

With a mass of 125GeV, the Higgs boson can decay to almost all other SM particles

(except the top quark which has a mass of 173GeV). Therefore, it is possible to probe a

large variety of the Higgs couplings by studying the decay of the Higgs boson to different

particles. The branching fractions of the Higgs boson as a function of the Higgs boson

mass are shown in Figure 1.4b, and the branching fractions for mH = 125GeV are

summarized in Table 1.2. At mH = 125GeV, the dominant decay mode is H → bb and

H → WW∗, where W∗ indicates an off-shell W boson. This is followed by H → gg,

H → τ+τ−, H → cc and H → ZZ∗. Almost an order of magnitude smaller in branching

fractions, the loop-induced H → γγ and H → Zγ decays are much rarer. Due to the small

mass of the muons, the branching fraction of H → µ+µ− is only 2.176× 10−4.

12
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Decay channel Branching fraction Relative uncertainty [%]

H → bb 5.824× 10−1 ±2.2

H → τ+τ− 6.272× 10−2 ±2.8

H → cc 2.891× 10−2 +7.7
−3.4

H → µ+µ− 2.176× 10−4 ±2.8

H → gg 8.187× 10−2 ±8.2

H → γγ 2.270× 10−3 ±3.3

H → Zγ 1.533× 10−3 ±7.3

H → WW∗ 2.137× 10−1 ±2.6

H → ZZ∗ 2.619× 10−2 ±2.6

Table 1.2: Summary of the branching fractions and the uncertainties for an SM Higgs
boson with mH = 125GeV [15].
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Chapter 2

Experimental Setup

This chapter provides an overview of the experimental apparatus on which all the studies

in this thesis are based. A brief introduction of the Large Hadron Collider (LHC) is given

in Section 2.1. The Compact Muon Solenoid (CMS) detector, one of the two general-

purpose detectors at the LHC, is discussed in Section 2.2.

2.1 The Large Hadron Collider

Located on the border between Switzerland and France near Geneva, the LHC is the

world’s largest and highest-energy particle collider. The LHC is constructed and oper-

ated by the European Organization for Nuclear Research (CERN). It occupies a tunnel

of 26.7 km in circumference and at a depth of between 50 to 175 meters underground,

originally built for the Large Electron Positron (LEP) collider. After a 10-year construc-

tion from 1998 to 2008, the LHC was first turned on and commissioned in 2008. The first

record-setting high-energy proton-proton collision at a center of mass energy of 7 TeV was

established on 30 March 2010, marking the start of the main physics program. A detailed

description of the working principles and the design choices of the LHC is presented in
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Figure 2.1: The CERN accelerator complex. Figure from [20].

the LHC Design Report [16, 17, 18], and an abridged version can be found in Ref. [19].

Below we provide a brief introduction based on Refs. [16, 17, 18, 19].

As a hadron collider, the LHC is designed to accelerate proton beams to an energy of

up to 7 TeV, and lead ions to an energy of up to 2.76 TeV per nucleon. The acceleration

of protons (or lead ions) to the highest energy at the LHC takes a series of steps and

a complex chain of upstream systems. Figure 2.1 shows an illustration of the CERN

accelerator complex. Using protons as an example, the acceleration process is briefly

summarized in the following. The protons are first obtained by stripping hydrogen atoms

of their electrons with an electric field. The extracted protons are sent to a linear collider

(LINAC2) and accelerated to 50 MeV. This is followed by a series of three synchrotrons,
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the Proton Synchrotron Booster, the Proton Synchrotron (PS), and the Super Proton

Synchrotron (SPS). With increasing diameters, they further accelerate the protons to

1.4 GeV, 25 GeV, and 450 GeV, respectively. Protons leaving the SPS are eventually

injected into the LHC main ring to be accelerated up to their maximum energy.

Proton beams orbit the LHC in two metal pipes with a very high vacuum – the beam

pipes. A large number of superconducting magnets of various types are installed along

the beam pipes to control the trajectories of the proton beams. A total number of 1232

dipole magnets are used to bend the path of proton beams to follow a circular trajectory.

Made of NbTi, the superconducting dipole magnets operate at 1.9 K and can generate a

magnetic field of up to 8.3 T. A large number of quadruple magnets are also used at the

LHC to focus the beams before they collider in the detectors.

One of the key parameters of a collider is the instantaneous luminosity L. This is

directly related to the observed rate of an interaction process, with

dN

dt
= σL, (2.1)

where σ is the cross section of the process. The instantaneous luminosity L of a collider

is given by

L =
N2

b nbfrevγr
4πϵnβ

∗ F, (2.2)

where Nb is the number of particles per bunch, nb is the number of bunches per beam,

frev is the revolution frequency, γr(≡ E/m) is the relativistic gamma factor, ϵn is the

normalized transverse beam emittance, β∗ is the beta function at the collision point, and

F is the geometric luminosity reduction factor due to the crossing angle at the interaction

point. The design peak instantaneous luminosity of the LHC is L = 1034 cm−2 s−1, while

a record instantaneous luminosity of L = 2.06 × 1034 cm−2 s−1, twice the design value,
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Figure 2.2: A cutaway view of the CMS detector. Figure from [21].

was achieved in 2017.

2.2 The Compact Muon Solenoid Detector

The CMS detector [22] is a general-purpose particle detector installed at interaction

point 5 of the LHC. It features a large superconducting solenoid, capable of delivering an

axial and uniform magnetic field of 3.8 T over a length of 12.5 m and a free-bore radius

of 3.5 m. A compact design is made possible by the strong magnetic field: the tracking

detector, the electromagnetic calorimeter (ECAL) and the hadron calorimeter (HCAL)

are all installed inside the solenoid, therefore minimizing energy losses due to particle

interactions with the coil and other supporting material in front of the calorimeters.

Outside the solenoid is the iron return yoke of the magnet, interleaved with layers of the
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muon detector. The detector is 15 m high and 21 m long and weighs a total of 14000

tons. A schematic view of the CMS detector and its components is shown in Figure 2.2.

The CMS detector uses a coordinate system as depicted in Figure 2.3. It is oriented

such that the x axis points to the center of the LHC ring, the y axis points vertically

upward, and the z axis is in the direction of the counterclockwise proton beam, when

looking at the LHC from above. The origin is centered at the nominal collision point

inside the experiment. The azimuthal angle ϕ is measured from the x axis in the (x, y)

plane. The polar angle θ is measured with respect to the z axis in the (r, z) plane,

where r is the radial coordinate in the (x, y) plane. The pseudorapidity, η, is defined as

η = − ln tan(θ/2).

x

y

z

P

N

Jura LHCCMS

ATLASALICE

LHCb

ϕθ

Figure 2.3: Illustration of the CMS coordinate system. Figure from [23].

2.2.1 Inner Tracking System

The innermost component of the CMS detector is a silicon-based tracking system

(tracker) [24, 25]. It is a cylinder-shaped detector surrounding the beam pipe, with an

outer radius of 1.2 m and a length of 5.6 m. It consists of a pixel detector with three (two)

layers in the barrel (at each of the two endcaps), closer to the beam pipe, and a strip

detector with ten (twelve) layers in the barrel (at each of the two endcaps) surrounding

the pixel detector. A total of 16588 silicon sensor modules are finely segmented into 66
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Figure 2.4: Schematic cross-sectional view of the CMS tracker in the (r, z) plane.
The tracker is symmetric about the horizontal line r = 0, so only the top half is shown
here. Figure from [26].

million 150× 100µm pixels and 9.6 million 80-to-180µm-wide strips. The layout of the

tracker is shown in Figure 2.4. The pixel and strip detectors are combined to provide

coverage in pseudorapidity of up to |η| < 2.5.

The performance of the CMS tracker was studied in detail in Run 1 [26]. The CMS

tracker provides a precise and efficient measurement of the trajectories of the charged

particles. Combined with the strong bending power of the 3.8 T magnetic field produced

by the superconducting solenoid, the tracker achieves a high resolution in the measure-

ment of the transverse momentum pT of charged particles. The tracker measures the

pT of charged particles at normal incidence with a resolution of 1% for pT < 20GeV,

and ∼ 2% at pT ∼ 100GeV. The tracker also provides a precise reconstruction of the

primary and secondary vertices. For primary vertices with the sum of the track pT above

100 GeV, the spatial resolution was measured to be better than 14µm in the (x, y) plane,

and better than 19µm in z direction in the 2016 data [27].
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2.2.2 Calorimeters

The electromagnetic calorimeter

The ECAL [28, 29] is a hermetic homogeneous calorimeter, consisting of a barrel

covering |η| < 1.479 and two endcaps covering 1.479 < |η| < 3.0. The lead tungstate

(PbWO4) crystal was chosen in the CMS ECAL design due to its short radiation length

(X0 = 0.89 cm) and small Molière radius (2.2 cm). This allows the design of a compact

ECAL inside the magnetic field, with fine granularity, excellent energy resolution, and

radiation hardness. The length of the PbWO4 crystals in the barrel (endcap) is 23

(22) cm. This corresponds to 25.8 (24.7) radiation lengths, making it sufficient for the

PbWO4 crystals to contain more than 98% of the energy of electrons and photons up to

1 TeV. The crystal material also amounts to about one interaction length, causing about

two-thirds of the hadrons to start showering in the ECAL before entering the HCAL.

The crystal transverse size is 2.2×2.2 cm2, corresponding to 0.0174×0.0174 in the (η, ϕ)

plane, for the front face of the barrel crystals, and 2.9× 2.9 cm2 for the endcap crystals.

Such high transverse granularity makes the ECAL particularly powerful in separating,

e.g., two collimated photons from the decay of a high momentum resonance (e.g., the

Higgs boson), or photons and hadrons from a highly energetic hadronic jet. The intrinsic

energy resolution of the ECAL barrel was measured with an ECAL supermodule directly

exposed to an electron beam [30], with no attempt to account for the tracker material in

front of the ECAL. The relative energy resolution is parameterized as a function of the

electron energy as:
σ

E
=

2.8%√
E

⊕ 12%

E
⊕ 0.3%, (2.3)

where the energy E is measured in GeV.

As a complement to the ECAL, the preshower detector is installed in front of each

endcap of the ECAL. It has two layers, each consisting of a lead (Pb) radiator followed
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HF

HE

HB

HO

Figure 2.5: Cross-sectional view of a quadrant of the CMS detector in the (r, z)
plane, showing various components of the HCAL systems. Figure from [22].

by a plane of silicon strip sensors. The depths of the two Pb radiators correspond to

approximately two and one radiation lengths, respectively. The two planes of silicon

sensors have orthogonal strips with a pitch of 1.9 mm. The high granularity of the

preshower detector can provide an accurate measurement of the shower position, useful

for e.g., discriminating the two collimated photons resulting from a π0 decay from a single

prompt photon.

The hadron calorimeter

The HCAL [31] is a hermetic sampling calorimeter. It is built around the ECAL inside

the solenoid, with a barrel covering |η| < 1.3 and two endcaps covering 1.3 < |η| < 3.0.

The HCAL consists of alternating layers of brass absorber and plastic scintillator tiles.

The brass absorber has a radiation length of 1.49 cm and a nuclear interaction length

of 16.42 cm. The absorber thickness corresponds to about six interaction lengths in the
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barrel and increases to over ten interaction lengths at larger pseudorapidities. The HCAL

Outer (HO), installed outside the solenoid, serves as an additional absorber covering

|η| < 1.3 and corresponding to 1.4 interaction lengths at normal incidence. This is

further enhanced in the very central region by a 20 cm-thick layer of steel. Taking all of

them into account (including also the ECAL), the total depth of the CMS calorimeter

system reaches more than twelve (ten) interaction lengths in the barrel (endcaps). The

HCAL has a much more coarse segmentation compared to the ECAL, 0.087× 0.087 for

|η| < 1.6 and 0.17 × 0.17 at larger pseudorapidities in the (η, ϕ) plane. The combined

(ECAL+HCAL) calorimeter energy resolution was measured in a pion test beam [32] to

be
σ

E
=

85%√
E

⊕ 7%, (2.4)

where the energy E is expressed in GeV.

The hadron forward (HF) calorimeter, installed at ±11.2m from the interaction point,

further extends the angular coverage to |η| ≃ 5. The HF is a sampling calorimeter,

consisting of grooved steel plates as the absorber and quartz fibers, inserted in the grooves

along the beam direction, as the active material. Photomultipliers are used to read out

the Cherenkov light signal, generated by charged shower particles above the Cherenkov

threshold (E ≥ 190 keV for electrons).

The layout of the CMS hadron calorimeter system is illustrated in Figure 2.5.

2.2.3 Muon System

The muon system [34, 33] is the outermost component of the CMS detector, also

consisting of a barrel and two endcaps. As illustrated in Figure 2.6, the muon detection

planes are interleaved with the steel yoke used to return the magnetic flux of the solenoid.

Three types of gaseous particle detectors are used in the muon system. Drift tube (DT)
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Figure 2.6: Cross-sectional view of a quadrant of the CMS detector in the (r, z)
plane, showing the layout of the muon detector. Figure from [33].

chambers and cathode strip chambers (CSC) are used to detect muons in the barrel

region (|η| < 1.2) and the endcap regions 0.9 < |η| < 2.4, respectively. The DT and

CSC subsystems not only provides muon identification and momentum measurement,

but can also trigger on the pT of muons with excellent efficiency and high background

rejection, independent of the rest of the detector. The third type of gaseous detector,

the resistive plate chambers (RPC), is installed in both the barrel and the endcaps as a

redundant trigger system covering |η| < 1.6. The RPCs produce a fast response, with

good time resolution in resolving muons from different bunch crossings, but their position

resolution is coarser than the DTs or CSCs. The RPCs also help to resolve ambiguities

when attempting to construct muon tracks from multiple hits in a chamber.
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2.2.4 Triggering and Data Acquisition

At the LHC, proton beams cross at an interval of 25 ns, meaning that collision events

are produced at an extremely high rate of 40 MHz. Clearly, it is impossible to store and

process the large amount of data associated with all of these events. On the other hand,

most events are from low-energy inelastic collisions and therefore are not of much interest.

At CMS, the trigger system is designed to drastically reduce the event rate by selecting

only events that are more likely to be important. A two-level trigger system is adopted

by the CMS experiment, including a Level-1 (L1) Trigger [35] which first reduces the rate

to less than 100 kHz, and a High-Level Trigger (HLT) [36] that further reduces the rate to

∼ 1 kHz. The L1 Trigger analyzes each beam crossing using coarsely segmented data from

the calorimeters and the muon system while holding the high-resolution data in pipelined

memories in the front-end electronics. In less than 3.2µs, the L1 Trigger must decide on

whether to reject an event or to accept it for further evaluation, and transmit it to the

detector front-end electronics. To meet such a strict requirement on the latency of the

system, the L1 Trigger is solely based on specialized hardware. For reasons of flexibility,

field-programmable gate arrays (FPGA) are most commonly used to implement the L1

Trigger, but application-specific integrated circuits (ASIC) and programmable memory

lookup tables (LUT) are also widely used where the requirements on speed, density, and

radiation resistance are higher. Events accepted by the L1 Trigger are sent to the HLT

for further evaluation. At the HLT, more sophisticated algorithms, similar to those used

in offline event reconstruction, are implemented to analyze each event. Readouts from

the full detector can be incorporated, including information from the tracker. The HLT

operates on a large computing farm, with about 22000 CPU cores in 2016.

24



Experimental Setup Chapter 2

2.3 Event Reconstruction

Data acquired by the CMS detector are processed by a set of advanced algorithms to

identify the particle content of the event and to reconstruct the properties of each identi-

fied particle. Often, a particle leaves traces in more than one subdetectors, as illustrated

in Figure 2.7. Therefore, simultaneously utilizing information from all subdetectors is

likely to improve the particle identification and reconstruction performance significantly.

In CMS, the particle-flow (PF) reconstruction algorithm [37] is designed to combine infor-

mation from all subdetector systems to identify and reconstruct physics objects. The PF

algorithm provides a global event description that leads to unprecedented performance

for jet reconstruction and missing transverse momentum (pmiss
T ) determination, as well

as efficient mitigation of pileup contamination.

2.3.1 Reconstruction of Particle-Flow Elements

The PF algorithm starts with building charged-particle trajectories (tracks) and find-

ing calorimeter clusters. Together, tracks and clusters form the basis of the PF algorithm

and are combined later to reconstruct various kinds of particle candidates.

Track finding

The track reconstruction is based on an iterative tracking approach [26]. A combina-

torial track finder based on Kalman Filtering (KF) [38] is used to build tracks from hits

on the pixel and strip layers of the inner tracker. The combinatorial track finder runs in

multiple iterations. In each iteration, initial seeds are first generated with only a few (2

or 3) hits compatible with a charged-particle trajectory, followed by a KF-based track

building process to collect hits from all tracker layers compatible with the extrapolated

charged-particle trajectory. A fitting procedure is subsequently performed to determine

25



Experimental Setup Chapter 2

1m 2m 3m 4m 5m 6m 7m0m

Transverse slice
through CMS

2T

3.8T

Superconducting
Solenoid

Hadron
Calorimeter

Electromagnetic
Calorimeter

Silicon
Tracker

Iron return yoke interspersed
with Muon chambers

Key:
Electron
Charged Hadron (e.g. Pion)

Muon

Photon
Neutral Hadron (e.g. Neutron)

Figure 2.7: A sketch of the signatures of different types of particles in the CMS
detector. Figure from [26].

all the track parameters and their uncertainties. Finally, track selection criteria are ap-

plied to set quality flags for the identified tracks and reject low-quality tracks. After

each iteration, hits that are already associated with tracks are removed, and the next

iteration, with a different seeding strategy and final selection criteria, is performed. The

iterative tracking approach significantly increases the track finding efficiency while still

preserving a low misreconstruction rate.

Muon tracks

Muon tracks are reconstructed using both the inner tracker and the outer muon detec-

tor. Depending on the different roles of the tracker and the muon detector, reconstructed
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muons fall into three categories:

• Standalone muon. The standalone muons are reconstructed using only the muon

detector. Muon tracks are seeded by hits within each DT or CSC detector, and

then a track building process is performed to collect all DT, CSC, and RPC hits

along the muon trajectory, followed by a fit to extract the muon track parameters.

• Global muon. If the track parameters of a standalone muon are compatible with

that of a track in the inner tracker (when both are propagated onto a common

surface), then the hits from both tracks are combined and fit together to form a

global-muon track. Including hits on the muon detectors in the fit improves the

momentum resolution for high-pT muons.

• Tracker muon. Each inner track with pT > 0.5GeV and a total momentum p >

2.5GeV is extrapolated to the muon system. If at least one muon segment matches

the extrapolated track, the inner track is considered as a tracker-muon track. This

approach is particularly efficient for low-pT muons.

Electron tracks

Electron tracks are reconstructed using information from both the inner tracker and

the ECAL. Two approaches with different seeding strategies are used. The ECAL-based

approach uses energetic ECAL clusters as initial seeds to infer the position of the expected

hits in the innermost tracker layers and find compatible track seeds. Bremsstrahlung

photons, due to interaction between the electron and the tracker material, must be taken

into account in this process. Since the electron is bent in the magnetic field while the

bremsstrahlung photons are not, the energy deposition of the photons is more spread in

the ϕ direction. Therefore, superclusters that combine clusters in a small window in η
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and an extended window in ϕ are used to collect the energy of the electron and possible

bremsstrahlung photons. Superclusters with ET > 4GeV are used as seeds.

While the ECAL-based approach works well for high pT and well-isolated electrons,

for less isolated electrons such as those in jets, or electrons with low pT, it shows large

inefficiencies. A tracker-based electron seeding method performs better in such a scenario.

It considers all tracks from the iterative tracking with pT > 2GeV as potential seeds for

electrons. The large probability for electrons to radiate in the tracker material can be

exploited to disentangle electron tracks from charged hadron tracks. With increasing

energy loss due to radiation, the track may contain fewer hits or have a higher fit χ2.

Therefore, a preselection based on the number of hits, and the χ2 is applied and the

selected tracks are fit again with a Gaussian-sum filter (GSF) [39], which is more suitable

than the KF for electrons as it allows for sudden and substantial energy losses along the

trajectory. The final selection for the tracker-based electrons is based on a boosted-

decision-tree (BDT) classifier that combines several variables, including the number of

hits, the χ2 of the GSF track fit and its ratio to that of the KF track fit, the energy

loss along the GSF track, and the distance between the extrapolation of the track to the

ECAL inner surface and the closest ECAL cluster.

In the PF algorithm, electron seeds obtained with both the ECAL-based and the

tracker-based methods are merged, and a full GSF tracking with twelve components is

performed on this collection of seeds.

Calorimeter clusters

The clustering algorithm is performed separately in each component of the calorime-

ter system: ECAL barrel and endcaps, HCAL barrel and endcaps, and the two preshower

layers. The clustering algorithm is seeded by calorimeter cells with an energy above a

threshold and larger than the energy of the neighboring cells. Then, topological clusters
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are grown from the seeds by adding neighboring cells with an energy above twice the

noise level. An expectation-maximization (EM) algorithm based on a Gaussian-mixture

model is then used to disentangle the clusters within a topological cluster. The energy

deposition of a topological cluster is modeled as a sum of N Gaussian energy deposits,

where N corresponds to the number of seeds. The parameters of the Gaussian, i.e.,

the amplitude and the center (mean) coordinates in the (η, ϕ) plane, are extracted with

the EM algorithm. Dedicated methods are developed to calibrate the calorimeter clus-

ters, as an accurate measurement of their energy is crucial for a consistent global event

description.

2.3.2 Particle Identification and Reconstruction

The linking algorithm

For a typical particle, multiple PF elements (tracks and clusters) are often produced in

different subdetectors, and these elements need to be linked together to fully reconstruct

the particle and avoid double-counting in different subdetectors. In the PF algorithm,

a link between a track and a calorimeter cluster is established in the following way.

The track is extrapolated from its last hit in the tracker, first to the two layers of the

preshower, then to the ECAL at a depth corresponding to the expected maximum of a

typical longitudinal electron shower profile, and finally to the HCAL at a depth corre-

sponding to one interaction length. If the extrapolated position of the track is within

the boundary of a cluster, then they are considered as linked. The link distance, defined

as the distance between the extrapolated position and the cluster position in the (η, ϕ)

plane, provides a metric to quantify the quality of the link.

In order to collect the energy of Bremsstrahlung photons emitted by electrons, tan-

gents to the tracks are extrapolated to the ECAL from the intersection points between
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the track and each of the tracker layers. A cluster is linked to the track as a potential

Bremsstrahlung photon if the extrapolated tangent position is within the boundaries of

the cluster.

Linking between ECAL clusters and HCAL clusters, and between ECAL clusters and

preshower clusters is also performed. A link is established if the cluster position in the

more granular calorimeter (ECAL or preshower) is within the boundary of a cluster in

the other calorimeter (HCAL or ECAL). The link distance is defined similarly as that of

the track-cluster link.

Finally, linking is also performed between tracks reconstructed in the inner tracker

and segments reconstructed in the muon detector, as described in Section 2.3.1.

The output of the link algorithm is a collection of PF blocks, with each block consist-

ing of elements associated either by a direct link or by an indirect link through common

elements. Owing to the high granularity of the CMS detector, most of the PF blocks

contain only a handful of elements originating from one or few particles. From each PF

block, particle candidates are identified and reconstructed in the following order: Muon

candidates have a very clear signature and are reconstructed first. This is followed by

electrons and isolated photons, identified in the same step. The remaining elements are

then identified and reconstructed as charged hadrons, neutral hadrons, and (nonisolated)

photons. A list of mutually exclusive PF candidates is produced at the end.

Muons

In the PF algorithms, muons are reconstructed with the inner tracker and the outer

muon detector as described in Section 2.3.1. Additional identification criteria, based

on various quality parameters from the muon reconstruction, as well as the isolation of

the muon, are applied to the standalone, global, or tracker muon candidates in order

to effectively suppress misidentified muons (e.g., punch-through charged hadrons) while
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preserving a high efficiency for both the isolated mouns and muons inside jets. The muon

momentum is chosen to be that of the inner track if pT < 200GeV. Above this threshold,

the momentum is determined by the fit with the smallest χ2 of the following: tracker

only, tracker and first muon detector plane, global, and global without the muon detector

planes featuring a high occupancy.

Electrons and isolated photons

An electron candidate is seeded from a GSF track if the corresponding ECAL cluster

is not linked to three or more additional tracks. A photon candidate is seeded from an

ECAL supercluster with ET > 10GeV and not linked to any GSF track. To account for

the energy loss due to bremsstrahlung photons and photon conversion to e+e− pairs, all

ECAL clusters in the PF block linked either to the supercluster or to one of the GSF

track tangents are associated with the candidate. Tracks linked to these ECAL clusters

are associated if the track momentum and the energy of the corresponding ECAL cluster

are compatible with the electron hypothesis. The tracks and ECAL clusters belonging

to identified photon conversions linked to the GSF track tangents are associated as well.

The total energy of the collected ECAL clusters is corrected for the energy missed in

the association process. For the photon, this corrected energy is assigned as its energy,

while its direction is defined by the primary vertex and the centroid of the supercluster.

Additional identification criteria based on the isolation, the energy distribution on ECAL

cells, and the ratio between the HCAL and ECAL energies are applied. For the electron,

the final energy is obtained from a combination of the corrected ECAL energy with the

momentum of the GSF track, and its direction is chosen to be that of the GSF track.

Additional identification criteria based on a BDT combining properties of the GSF track,

the ECAL cluster, the track-cluster association, etc., are applied.
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Hadrons and nonisolated photons

Once muons, electrons, and isolated photons are identified and removed from the

PF blocks, the remaining are mostly hadrons and nonisolated photons from quark frag-

mentation and hadronization. They are identified broadly into a few categories, namely

charged hadrons, neutral hadrons, and photons in the PF algorithm, without any attempt

to uncover the specific species of the particle (e.g., pions, Koans, protons). These PF

candidates are essential ingredients for jet reconstruction, as will be discussed in Section

2.3.3.

The ECAL and HCAL clusters not linked to any track are reconstructed as photons

and neutral hadrons. Within the tracker acceptance (|η| < 2.5), all these ECAL clusters

are turned into photons, and all these HCAL clusters are turned into neutral hadrons.

The precedence is given to photons for the ECAL clusters, because in hadronic jets, 25%

of the jet energy is carried by photons, while neutral hadrons leave only 3% of the jet

energy in the ECAL. Outside the tracker acceptance, such an assignment can no longer be

justified as charged and neutral hadrons cannot be separated anymore, which together

deposit ∼25% of the jet energy in ECAL, comparable to photons. Therefore, ECAL

clusters linked to a given HCAL cluster are assumed to arise from the same (charged- or

neutral-) hadron shower, while ECAL clusters without such a link are reconstructed as

photons.

Remaining HCAL clusters of the PF block are linked to tracks, and these tracks

may, in turn, be linked to some of the remaining ECAL clusters. If the calibrated

calorimetric energy is above the sum of the track momenta by a certain amount, the

excess may be interpreted as the presence of photons and neutral hadrons. Each track

is reconstructed as a charged hadron, whose momentum and energy are directly taken

from the corresponding track momentum assuming a mass of the charged-pion. If the
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calibrated calorimetric energy is compatible with the sum of the track momenta, no

neutral particle is identified. The charged-hadron momenta are redefined by a χ2 fit of

the measurements in the tracker and the calorimeters, taking advantage of the better

resolution of the tracker at low energy and the better resolution of the calorimeters at

high energy.

2.3.3 Jets and Missing Transverse Momentum

Jets

Jets are collimated sprays of particles reconstructed with a clustering algorithm. They

are typically used to reconstruct the showers of quarks or gluons and to infer the prop-

erties of the quarks or gluons in the hard-scattering process. In CMS, jets are typically

reconstructed by clustering the PF candidates with the anti-kT algorithm [40] imple-

mented in the FastJet package [41]. The anti-kT algorithm works as follows:

1. For each pair of particles, i, j, compute the anti-kT distance

dij = min(p−2
T,i, p

−2
T,j)

∆R2
ij

R2 (2.5)

with ∆R2
ij ≡ (yi − yj)

2 + (ϕi − ϕj)
2, where yi, ϕi are the rapidity and the azimuth

of particle i, respectively. R is a distance parameter related to the radius of the jet

cone. For each particle i, compute also the beam distance

diB = p−2
T,i (2.6)

2. Find the minimum, dmin, of all the particle distances dij and beam distance diB. If

dmin is a dij, then merge particles i and j into a single particle and sum up their
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four-momenta; otherwise, i.e., if dmin is a diB, then particle i is declared to be a

final jet and removed from the list.

3. The two steps are repeated until no particles are left.

The distance parameter R is chosen based on the use cases of the resulting jet collection.

The jet collection clustered using the anti-kT algorithm with a small distance parameter

R = 0.4, referred to as the “AK4” jet collection, is the default jet collection in CMS. Due

to the small R, each AK4 jet typically corresponds to a single quark or gluon from the

hard-scattering process. Jet collections produced with larger R values, such as R = 0.8

and R = 1.5 (referred to as “AK8” and “AK15” jets, respectively), are widely used

to reconstruct Lorentz-boosted hadronically decaying massive particles (top quarks and

W, Z and Higgs bosons). When these particles are produced with a high boost, their

decay products become collimated and can be contained in a single large-R jet. The

identification of these hadronically decaying boosted particles with large-R jets is the

subject of Part II.

Particles originating from pileup (additional proton-proton collisions) can cause sig-

nificant contamination to the reconstructed jets. For the AK4 jets, effects due to pileup

are mitigated with the charged-hadron subtraction (CHS) method [42], which removes

the charged PF candidates identified as originating from pileup interactions before the

jet clustering. An event-by-event jet area–based correction is applied to the jet four-

momentum to remove the remaining (neutral-particle) energy from pileup interactions.

For the large-R jets, the pileup contamination is mitigated with the “PileUp Per Particle

Identification (PUPPI)” method [43], which estimates the probability for each particle to

originate from the primary interaction vertex based on local energy distribution around

the particle, event pileup properties and tracking information (for charged particles) and

uses this estimation to scale the four-momentum of each PF candidate, before clustering
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them into jets. A detailed description of the implementation of the PUPPI algorithm in

CMS can be found in Ref. [44]. For large-R jets, the PUPPI method shows improved

performance and robustness compared to the CHS method, particularly for high pileup.

Reconstructed jets are calibrated to have the correct energy scale. The jet energy

scale calibration [42] is performed in a series of steps. The first step corrects for the

offset energy due to pileup. The offset corrections are derived from the simulation of

dijet events processed with and without pileup overlaid. Residual differences between

data and simulation are determined using the random cone method in zero-bias events.

This pileup offset correction step is applied only for CHS jets, while PUPPI jets do

not need such a correction. Then, effects due to detector response are corrected using

correction factors derived from simulated samples as a function of the jet pT and η. Last,

residual differences between data and simulation are measured in Z+jets (Z → ee or

Z → µµ) events, photon+jets events, and dijet events, and corrections are applied to

data to account for the difference. Uncertainties on the jet energy correction are also

derived in the last step.

Missing transverse momentum

The missing transverse momentum vector p⃗miss
T is defined as the negative of the vector

sum of the pT of all the PF candidates in an event:

p⃗miss
T = −

∑
i

p⃗T,i. (2.7)

Its magnitude is denoted as pmiss
T . The pmiss

T measures the undetected transverse momen-

tum in the event, which can arise from neutrinos in the SM, or new particles that do

not interact with any SM particles as predicted in some theories beyond the standard

model. As pmiss
T is reconstructed using all the PF candidates in an event, it is sensitive to
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the responses of all parts of the detector. To improve the estimation of pmiss
T , corrections

derived for the (AK4) jets can be propagated to pmiss
T in the following way [45]:

p⃗miss
T = p⃗miss

T
, raw −

∑
jets

(
p⃗T

corr
, jet − p⃗T

raw
, jet
)
, (2.8)

where p⃗miss
T

, raw refers to the uncorrected pmiss
T as defined in eq. (2.7), and the sum is over

jets with pT > 15GeV.
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The identification (“tagging”) of highly Lorentz-boosted hadronically decaying mas-

sive particles (top quarks and W, Z, and Higgs bosons) has become an increasingly

important topic at the LHC, as it provides powerful handles for both searches for new

physics and probes of the SM in the high-momentum regime. This part of the thesis

discusses some new developments in this area. We begin with a brief introduction of jet

substructure techniques and machine learning methods in Chapter 3. Then, top quark

and W boson tagging algorithms based on boosted decision trees (BDT), developed for

a search for supersymmetric partners of the top quark, is presented in Chapter 4. A con-

tinuation of this development resulted in the DeepAK8 algorithm, which is an advanced

multi-class identification algorithm for boosted top quarks and W, Z, and Higgs bosons

using particle-level inputs and deep neural networks (DNN). The DeepAK8 algorithm

is described in detail in Chapter 5. A more novel machine learning approach for such

identification, ParticleNet, which treats a jet as an unordered set of particles and exploits

the permutation symmetry explicitly in the neural network, is introduced in Chapter 6.
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Introduction

A jet is a collimated spray of particles. It is often associated with the production of a

colored particle, i.e., quark or gluon, whose evolution is governed by the strong inter-

action. The parton (i.e., quark or gluon), produced in the hard-scattering process of

the proton-proton collision, keeps radiating as it travels, and the emitted partons also

radiate, therefore resulting in a “parton shower”, i.e., a cascade of quarks and gluons,

at the end. These partons eventually hadronize and become color-neutral particles that

constitute a jet. Therefore, a jet serves as a handle to probe the elementary particle from

the hard-scattering process that initiates the jet.

Jets are ubiquitously produced at the LHC due to the proton-proton collision na-

ture of the machine. The vast majority of the jets, though, are initiated by a single

quark or gluon, and therefore are not of particular interest here. On the other hand,

a high-momentum electroweak scale particle, such as the top quark and the W, Z, and

Higgs boson, with a subsequent hadronic decay, results in a triplet or pair of highly col-

limated quarks, which then can lead to a single large-radius jet, instead of several well-

separated jets that correspond to each individual quark. Such large-radius jets initiated

by highly Lorentz-boosted hadronically decaying massive particles have characteristic ra-
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diation patterns. Therefore, they can be distinguished from the ubiquitous jets initiated

by a single quark or gluon, by studying the internal structure, or “substructure”, of the

jets.

The study of jet substructure has become a very active research area on both the

theoretical and experimental sides. For LHC experiments, jet substructure techniques

are now commonly used in searches for new heavy particles that subsequently decay to

highly boosted top quarks or W, Z, and Higgs bosons (e.g., [46, 47, 48, 49]), and have

been increasingly adopted in measurements of the SM processes (e.g., [50, 51]) as well,

particularly in the high-momentum regime. On the theoretical side, many new sub-

structure observables and techniques have been proposed in recent years, significantly

improving the discrimination power and the robustness of the jet substructure–based tag-

ging algorithms. The quest for better jet substructure techniques has triggered a renewed

interest in Quantum Chromodynamics (QCD), thus deepening our understanding of the

strong interaction. Most recently, advance machine learning techniques, particularly

deep learning, have brought further progress and deeper insights into jet substructure.

A comprehensive review of the current status of jet substructure is provided in Ref. [52]

and [53] on the theoretical and experimental sides, respectively. A more pedagogical

overview of jet substructure can be found in Ref. [54].

In this chapter, we first discuss some substructure techniques that are widely used in

the CMS experiment. They serve as the basis for the new developments and provide a

baseline to evaluate the performance of the new algorithms. Then, a brief introduction

to machine learning is presented in Section 3.2, with an emphasis on its application to

jet tagging.

40



Introduction Chapter 3

3.1 Jet Substructure

For the identification of boosted massive particles, AK8 jets, introduced in Section

2.3.3, are typically used in CMS. These AK8 jets are obtained by clustering the PF

candidates using the anti-kT algorithm with a distance parameter R = 0.8. As the

angular separation between the decay products of a Lorentz boosted particle with mass

m scales like ∆R ∼ 2m/pT, jets clustered with R = 0.8 can in principle contain all decay

products from W and Z bosons with pT ≳ 200GeV, Higgs bosons with pT ≳ 300GeV

and top quarks with pT ≳ 400GeV.

3.1.1 Groomed Mass

The jet mass, defined as the invariant mass of the sum of the four-momenta of the jet

constituents, is one of the most powerful observables to separate signal jets (originating

from a top quark or a W, Z or Higgs boson) and background jets (originating from a

gluon or a light quark). At leading order in the perturbation theory, the quark and gluon

jets should have a mass closer to zero, while the mass of the signal jets should be much

higher, close to the intrinsic mass of the top quark or the W, Z or Higgs boson. In

reality, the picture is much more complicated, as effects due to initial state radiation,

the underlying event (interactions between partons other than the hard-scattering ones)

and pileup (additional proton-proton interactions) can contribute significantly to the

reconstructed jet mass, especially for large-radius jets.

Methods have been developed to remove soft or uncorrelated radiation from jets,

called “grooming” methods. The grooming method most commonly used in CMS is

the “modified mass drop tagger” algorithm (mMDT) [55], which is a special case of the

“soft drop” (SD) algorithm [56]. The SD algorithm operates by first reclustering the jet

constituents with the Cambridge-Aachen (CA) [57, 58] algorithm, and then declustering
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the CA jet to remove wide-angle soft radiation. The declustering starts from breaking

the CA jet into two subjets by undoing the last stage of the CA clustering and then

checks the SD condition:

min(pT1, pT2)

pT1 + pT2
> zcut

(
∆R12

R0

)β

, (3.1)

where pT1 (pT2) is the pT of the leading (sub-leading) subjet and ∆R12 is their angular

separation. The parameters zcut and β define what the algorithm considers “soft” and

“collinear,” respectively. The values used in CMS are zcut = 0.1 and β = 0 (making this

identical to the mMDT algorithm). If the SD condition is not met, the lower-pT subjet

is removed, and the same procedure is repeated until eq. (3.1) is satisfied, or no further

declustering can be performed.

The two subjets returned by the SD algorithm are used to calculate the jet mass.

Figure 3.1 shows the distribution of the jet mass after the SD grooming (mSD) in signal

and background jets in simulation. The mSD of background jets peaks at low values and

falls rapidly, whereas for signal jets a peak around the mass of the corresponding signal

particle (top quark or W, Z, Higgs boson) is observed.

3.1.2 N-subjettiness

An additional handle to separate signal from background jets is to exploit the energy

distribution inside the jet. For a boosted massive particle, the partons from the decay

typically all carry a sizeable fraction of the initial particle’s momentum. Therefore, the

resulting jet tends to have multiple hard cores (“prongs”). In contrast, quark and gluon

jets, which are dominated by the radiation of soft gluons, typically have only one hard
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Figure 3.1: Comparison of the mSD shape between signal and background AK8 jets
in simulation.

core in each jet. The N -subjettiness variables [59, 60],

τN =
1

d0

∑
i

pT,i min
[
∆R1,i,∆R2,i, . . . ,∆RN,i

]
, (3.2)

provide a measure of how compatible the jet is with having N “subjets”, i.e., hard ra-

diation cores. The index i refers to the jet constituents, while the ∆R terms represent

the spatial distance between a given jet constituent and “subjets”. The quantity d0 is a

normalization constant. The “subjets” are found by performing the exclusive kT algo-

rithm [61, 62] on the jet constituents before the application of any grooming techniques.

A smaller τN value implies that the jet is more compatible with having N or more “sub-

jets”. Better discrimination power can be achieved by the ratio of different τN variables.

For example, the ratio τ21 ≡ τ2/τ1 can be used to identify 2-prong jets, e.g., those arising

from W, Z or Higgs bosons, and τ32 ≡ τ3/τ2 can be used for tagging the 3-prong top

quark jets. The distributions of τ21 and τ32 for signal and background AK8 jets are shown

in Figure 3.2.
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Figure 3.2: Comparison of the τ21 (left) and τ32 (right) shapes between signal and
background AK8 jets in simulation.

3.2 Machine Learning Techniques

Broadly speaking, machine learning (ML) involves algorithms and statistical methods

that allow a computer system to perform specific tasks without explicit instructions. A

typical scheme is that the ML algorithm is first presented with a “training” dataset to

build a mathematical model for the task, and then the “learned” model can be used to

make predictions or decisions for previously unseen data. The current machine learning

algorithms roughly fall into three categories, as illustrated in Figure 3.3. For supervised

learning, a target output is always provided for each input object during the training

phase, and the goal of the algorithm is to produce a model that can predict the output

as closely as possible. Depending on whether the target output is discrete or continuous,

supervised learning is further subdivided into classification (for discrete output) and

regression (for continuous output). Within the context of ML, jet tagging is an ideal

task for classification algorithms. Another example in particle physics is to distinguish

between signal and background events, for which boosted decision trees (BDT) have

been extensively used for many years. Another category is the so-called unsupervised
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Figure 3.3: Three main approaches in machine learning and examples of the corre-
sponding applications. Image from [63].

learning, for which no target output is provided (or can even be unambiguously defined)

for each input object, and the algorithms are supposed to find emergent patterns from

the inputs. An example of unsupervised learning in jet physics can be found in Ref.

[64, 65]. Reinforcement learning, on the other hand, involves how the system should take

a series of actions in response to an environment to maximize some notion of reward.

This has been applied to study jet grooming recently in Ref. [66].

In recent years, deep learning [67], characterized by the use of big training datasets,

often containing millions of samples, and deep neural networks (DNN) with millions of

parameters, has become the prevailing ML approach due to the tremendous improvements

it brought. This has certainly inspired research in high energy physics, especially jet

physics where tools and algorithms are constantly being improved by both theorists and

experimentalists. Indeed, the application of deep learning techniques brings significant

performance improvements, as will be presented in Chapter 5 and Chapter 6. Below we

give a very brief introduction to the basics of deep learning, with a focus on its usage in a

classification task such as jet tagging. An accessible introduction and hands-on tutorial
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x y

z1 z2

Figure 3.4: Illustration of a simple neural network with two hidden layers.

to deep learning is available in Ref. [68], and a more in-depth treatment of this subject

can be found in Ref. [69].

Mathematically, a neural network is a parameterized function,

y = f(x;θ), (3.3)

where x is the (high-dimensional) input vector, y is the output (vector), and θ represents

the set of parameters that will be learned from the training data. The functional form of

f depends on the architecture of the neural network. One of the simplest architectures,

called a “fully-connected” (or “dense”) network, is illustrated in Figure 3.4. It consists

of four “layers”: one input layer, one output layer, and two intermediate (“hidden”)

layers. Except for the input layer, each (hidden or output) layer is a mapping1, typi-

cally consisting of a linear transformation followed by a point-wise (nonlinear) function

(“activation”), in the form

z = σ(Wx+ b), (3.4)

where Wx+ b is a linear transformation with learnable parameters W (“weights”) and

b (“biases”), and σ(·) denotes the activation function. A nonlinear activation function is
1The input layer can be considered as an identity map.
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necessary for hidden layers, as otherwise, a stack of linear transformation is equivalent to

one linear transformation with a different set of parameters. For hidden layers, the most

commonly used activation function nowadays is the Rectified Linear Unit (ReLU) [70]:

ReLU(x) =


x, x ≥ 0

0, x < 0

(3.5)

while other variations, such as ELU [71], SELU [72], LeakyReLU [73], and PReLU [74]

are also widely used. The choice of the activation function for the output layer depends

on the task. For a binary classification task (i.e., discriminating between “signal” and

“background”), the sigmoid activation function

sigmoid(z) = 1

1 + e−z (3.6)

is often used, producing an output within [0, 1] which can be interpreted as a probability.

For multi-class classification tasks, the softmax activation function

softmax(z)i =
ezi∑
j e

zj
(3.7)

is typically used, where i denotes the ith class. The outputs are all within [0, 1] and

therefore can also be considered as probabilities. A deep neural network consists of many

layers, and can be used to approximate a very complex function.

The training of a DNN can be viewed as an optimization problem, or a “fit” to the

training dataset, which is a more familiar concept to particle physicists. The goal is to

find an optimal set of parameters that minimize an objective function, often referred to

as a “loss function” in ML. For classification tasks, the cross-entropy loss function is most
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widely used:

CE(θ) = −
∑
i

ŷi log yi(θ), (3.8)

where ŷi is the truth label for the ith class, which equals 1 if the sample2 is from the

ith class and 0 otherwise, and yi is the DNN output for the ith class, after applying the

softmax activation function. A lower loss function indicates a more accurate prediction.

The minimization of the loss function is typically carried out via a mini-batch stochastic

gradient descent (SGD) method. The whole training dataset is divided into mini-batches

with a typical mini-batch size of O(10) to O(1000). For each mini-batch, the total loss

function L(θ) is evaluated as the sum of the loss function of each sample, and the gradient

of the total loss function with respect to the parameters, ∇L(θ), is computed and used

to update the parameters. In the simplest form, the parameter update is formulated as:

θ′ = θ − η

n
∇L(θ), (3.9)

where n is the size of the mini-batch, and η is the learning rate that controls the magnitude

of the update. In practice, more sophisticated algorithms, such as Adam [75] or SGD

with momentum [76], are used to achieve better convergence and reduce the minimization

time. In addition, the choice of the parameter initialization method, the hyperparameters

such as the learning rate, the mini-batch size, the regularization method, and particularly

the neural network architecture, such as the depth of the network and the number of

units in each layer, have significant impact on the final performance, and often need

to be carefully tuned to achieve the best performance. Some helpful guidelines on the

hyperparameter tuning for DNNs are provided in Ref. [77].

2Here a sample refers to a single item in the dataset.
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BDT-Based Top Quark and W

Boson Tagging Algorithms

To improve the performance for identifying highly boosted top quarks and W bosons,

BDT-based algorithms using jet-level observables were developed in the search for super-

symmetric (SUSY) partners of the top quark in the all-jet final state [46]. The algorithms

target hadronically decaying top quarks (W bosons) with pT > 400 (200)GeV, whose

decay products are expected to be contained in a cone with ∆R < 0.8. Therefore, AK8

jets are used to identify and reconstruct the boosted top quarks and W bosons.

An AK8 jet is required to pass a preselection before being considered as a candidate for

a top quark or a W boson. The preselection requires the AK8 jet to satisfy pT > 200GeV,

|η| < 2.4, mSD > 50GeV, and have exactly two subjets identified by the soft drop

algorithm, both with pT > 20GeV. For the identification of top quarks, the pT threshold

on the AK8 jet is raised to 400 GeV. To uniquely identify each AK8 jet, a requirement of

mSD > 110 (50 < mSD < 110)GeV is further imposed for top quark (W boson) candidate.

After preselection, two separate BDTs are developed for tagging boosted top quarks and

W bosons. The input variables, training procedure, and performance of the BDTs are
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described in the following sections.

4.1 Input Variables

A total of 14 (12) input variables are used in the BDT for top quark (W boson)

tagging. The input variables include:

mSD: The groomed mass of an AK8 jet is one of the most discriminative variables for

separating signal jets (originating from top quarks or W bosons) from background

jets (originating from QCD radiation), as the mass distribution of the signal jets

peaks around the particle mass (mt or mW).

N-subjettiness ratios: The N-subjettiness ratios τ32 (τ21) are powerful for identifying

jets with 3 (2) hard radiation centers, which are characteristics for top quark (W

boson) jets.

Kinematics of the subjets: Signal and background jets show differences in the kine-

matics of the subjets, such as the pT balance, the angular separation, etc. A few

variables are constructed to exploit such differences. The product of the pT of the

AK8 jet and the ∆R between the two subjets, pT ·∆R, is centered around 2mt or

2mW for signal jets, while for background the distribution is more widely spread.

The pT of the two subjets are also more balanced for signal jets. An observable

inspired by the soft drop condition defined in eq. (3.1) with β = −2, SDβ=−2, is

found to be quite powerful for W boson tagging.

Quark and gluon jet discrimination variables: Three variables related to quark and

gluon jet discrimination [78], i.e., the constituent multiplicity, the major axis σ1,

and the jet fragmentation distribution pTD, are used for each subjet. Subjets of
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the signal jets are always quark-induced, while they can be gluon-induced for back-

ground jets. Therefore, the use of these variables brings additional improvement in

performance.

Heavy flavor tagging discriminant: The identification of top quarks can benefit greatly

from tagging the b quark coming from the top quark decay. Therefore, the CSVv2

[79] b-tagging discriminants of the subjets are also used in the BDTs. For W bo-

son tagging, the use of b-tagging discriminants can help reject background jets

originating from b quarks.

Note that variables strongly correlated with the pT of the candidate, such as the ∆R of the

two subjets, are not used in the training. Instead, pT ·∆R, which is largely uncorrelated

with pT, is used. This is to avoid introducing any bias on the candidate pT distribution

in the BDTs. As signal jets typically have a harder pT spectrum than background jets

in the training samples, the BDTs can learn to exploit such difference and favor high-pT

candidates as signals, when the input variables contain pT-related information. However,

as the mass scale of the SUSY particles is unknown, so is the pT spectrum of the top

quarks or W bosons from the decay of the SUSY particles. Therefore an unbiased tagging

algorithm is much more desirable.

The full lists of input variables and their definitions are summarized in Table 4.1 and

4.2 for the top quark and W boson tagging BDTs, respectively. In the case of top quark

tagging, the two subjets are ranked by the b-tagging discriminants and denoted “CSV1”

and “CSV2” in Table 4.1. The reason for this choice is that “CSV1”, with a higher

b-tagging discriminant, is more likely to correspond to the b quark from the top decay

when the jet is originated by a real top quark. Therefore, ranking the two subjets in

this way provides a more consistent distinction between the two subjets, and was found

to provide better performance than other orderings. On the other hand, no such clear
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distinction exists in the case of W boson tagging1. Therefore, the two subjets are simply

ranked by pT and denoted by “sj1” and “sj2” in Table 4.2.

Variable Description
mSD soft drop mass of the AK8 jet
pT ·∆R the product of the pT of the AK8 jet and the ∆R between the two subjets
pT asymmetry normalized pT asymmetry between the two subjets, |pCSV1

T − pCSV2
T |/pT

τ21 N-subjettiness ratio, τ2/τ1
τ32 N-subjettiness ratio, τ3/τ2
mCSV1

mass of the subjet leading in b-tagging discriminant
mCSV2

mass of the subjet subleading in b-tagging discriminant
pTD(CSV1) jet fragmentation distribution, pTD, of the subjet leading in b-tagging discriminant
pTD(CSV2) jet fragmentation distribution, pTD, of the subjet subleading in b-tagging discriminant
σ1(CSV1) major axis, σ1, of the subjet leading in b-tagging discriminant
σ1(CSV2) major axis, σ1, of the subjet subleading in b-tagging discriminant
multiplicity(CSV1) constituent multiplicity of the subjet leading in b-tagging discriminant
multiplicity(CSV2) constituent multiplicity of the subjet subleading in b-tagging discriminant
CSVmax maximum b-tagging discriminant of the two subjets

Table 4.1: Variables used in the training of the top quark tagging BDT.

Variable Description
mSD soft drop mass of the AK8 jet
pT ·∆R the product of the pT of the AK8 jet and the ∆R between the two subjets
pT asymmetry normalized pT asymmetry between the two subjets, defined as |psj1

T − p
sj2
T |/pT

τ21 N-subjettiness ratio, τ2/τ1
SDβ=−2 soft drop condition with β = −2, defined as min(p

sj1
T ,p

sj2
T )

p
sj1
T +p

sj2
T

· 1

∆R
−2

(sj1,sj2)

pTD(sj1) jet fragmentation distribution, pTD, of the subjet leading in pT
pTD(sj2) jet fragmentation distribution, pTD, of the subjet subleading in pT
σ1(sj1) major axis, σ1, of the subjet leading in pT
σ1(sj2) major axis, σ1, of the subjet subleading in pT
multiplicity(sj1) constituent multiplicity of the subjet leading in pT
multiplicity(sj2) constituent multiplicity of the subjet subleading in pT
CSVmax maximum b-tagging discriminant of the two subjets

Table 4.2: Variables used in the training of the W boson tagging BDT.

1Actually, one possible handle to exploit here is the c quark, which is present in around 50% of the
hadronic decays of the W boson. However, the existing flavor tagging algorithms for subjets at the time
when this analysis was carried out were not powerful enough to bring any noticeable improvement.
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4.2 Training Procedure

The top quark and W boson tagging BDTs are trained with simulated jets using the

Toolkit for Multivariate Data Analysis (TMVA) [80]. For the top quark tagging BDT,

the signal jets are those matched to the hadronic decays of the generated top quarks in

a simulated SUSY sample enriched in highly boosted top quarks. The matching requires

that a signal AK8 jet is close to a hadronically decaying top quark, with ∆R(AK8, t) <

0.8, and all three quarks from the decay of the top quark are contained in the AK8 jet,

satisfying ∆R(AK8, q) < 0.8. The background jets are those that cannot be matched to

a hadronically decaying top quark, selected from a simulated tt sample instead, as the

simulated SUSY sample contains very few un-matched AK8 jets.

A similar definition for signal and background jets are used for the training of the

W boson tagging BDT. In this case, both signal and background jets are selected from

a simulated tt sample. Each signal jet is required to be matched to the hadronic decays

of a generated W boson, with ∆R(AK8,W) < 0.8, and both quarks from the W boson

decay must be contained in the AK8 jet, i.e., ∆R(AK8, q) < 0.8. The background jets

are the remaining ones that cannot be matched.

4.3 Performance

A single working point is defined for each of the top quark and W boson tagging

BDTs and used in the search for SUSY partners of the top quark [46]. The chosen work-

ing points correspond to a typical tagging efficiency of 30–50%, depending on pT. The

efficiencies in identifying matched top quarks and W bosons as a function of the pT of

the generated top quarks and W bosons are shown in Figure 4.1. The corresponding

misidentification rate for jets initiated by gluons or light quarks, determined from sim-
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ulated Z+jets events where the Z boson decays to neutrinos, are shown in Figure 4.2.

The typical misidentification rate ranges from 1 to 4% (2 to 10%) for the top quark (W

boson) tagging BDT.
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Figure 4.1: Efficiencies in simulation for identifying the hadronic decays of top quarks
(left), and W bosons (right), as a function of the pT of the generated top quarks or
W bosons to which the jets are matched. Figures from [46].
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Figure 4.2: Misidentification rate for jets initiated by gluons or light quarks for the
top quark (left) and W boson (right) tagging BDTs, as a function of the pT of the
AK8 jets.
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Chapter 5

DeepAK8: DNN-Based

Identification Algorithms Using

Particle-Level Inputs

In CMS, jets are reconstructed by clustering the PF candidates with a jet finding algo-

rithm. The PF reconstruction combines measurements from all subdetectors, therefore

providing an excellent description with a rich set of properties for each individual par-

ticle. The most basic properties are the energy and momentum of each particle, which

are used in all jet substructure observables. The PF reconstruction also identifies the

type of each particle candidate, i.e., electron, muon, photon, charged hadron, or neutral

hadron. This provides additional information for each jet that can be exploited. In ad-

dition, for charged particles, the trajectories are reconstructed by the tracker, therefore

an even larger set of properties are available, such as the association to the reconstructed

vertices, displacement from the primary vertex, the quality of the reconstructed track, a

more precise momentum and energy in most cases, etc. These properties are extensively

used in the identification of heavy-flavor jets, but have not been used so widely for tag-
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ging boosted massive particles (top quarks and W, Z, and Higgs bosons), though they

are expected to provide significant help here too, especially in the case in which one or

more b or c quarks are present in the decays of these boosted particles.

Traditional tagging algorithms typically rely on a few jet-level observables constructed

from the constituent particles, or additionally a small subset of properties of a limited

number of selected constituent particles. An example is the top quark and W boson

tagging BDTs described in Chapter 4, which use only O(10) jet-level observables and no

particle-level properties. To achieve as high performance as possible for tagging boosted

massive particles, all properties of all constituent particles of a jet should be exploited.

However, this leads to a very high-dimensional input, with O(1000) variables, for each

jet. Moreover, the correlation between these variables is likely to be rather complicated.

On the other hand, this is particularly suitable for ML, especially using a DNN, which

is capable of handling high-dimensional inputs and complex correlations. Motivated by

this, the DeepAK8 algorithm has been developed, featuring the use of a DNN to directly

process the constituents of a jet for the identification of boosted massive particles. AK8

jets reconstructed from PUPPI-weighted [43] PF candidates are used as the basis for

this algorithm. The DeepAK8 algorithm shows significant improvement in performance

compared to traditional multivariate approaches such as the BDT-based algorithm in

Chapter 4.

5.1 Jet Labelling

The DeepAK8 algorithm is designed to be a multi-class tagging algorithm that uses

a single DNN to separate jets originating from top quarks, W, Z and Higgs bosons,

or from QCD radiations. The multi-class approach has significant advantages over the

binary approach in simplicity and flexibility, as the training needs to be performed only
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once for all classes, and the output scores can actually be aggregated and transformed for

different tagging purposes. When proper output scores are used, the multi-class approach

typically shows no loss of performance compared to a dedicated binary tagger.

Well-defined truth labels are of vital importance in the development of any ML clas-

sifiers, especially a multi-class classifier. To design a comprehensive algorithm for the

identification of boosted massive particles, we implement a set of fine-grained labels for

the AK8 jets. Five main categories are first defined, depending on if an AK8 jet is

matched to the hadronic decay of a top quark, W, Z or Higgs boson, or not matched to

any of them (labeled as “QCD” jets). The matching requires that all quarks from the

decay of the massive particle be contained in the AK8 jet with ∆R(AK8, q) < 0.8. In

the case of top quarks, two scenarios are considered. The fully merged scenario requires

that all three quarks be contained in the jet, while the partially merged scenario requires

only the b-quark and one of the quarks from the W boson to be contained in the jet.

Within each category, jets are further divided based on the decay modes of the matched

particle (e.g., Z → bb , Z → cc and Z → qq in the Z boson category), or based on the

number of b-hadrons or c-hadrons associated to a jet in the case of an un-matched QCD

jet.

The full list of 17 classes is summarized in Table 5.1. The 17 classes are mutually

exclusive to each other by construction. In the case where a jet can be matched to more

than one truth particle (e.g., a top quark and the W boson from its decay), priority is

always given to the Higgs boson first, followed by the top quark, and then the W and Z

bosons, as shown in the table. The orthogonality of the labels allows for easy aggregation

of different classes to target the needs of different analyses, therefore making DeepAK8

a highly versatile algorithm.
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Category Class

Higgs
H(bb)
H(cc)
H(WW∗/ZZ∗ → qqqq)

Top (fully merged) Top(bcq)
Top(bqq)

Top (partially merged) Top(bc)
Top(bq)

W W(cq)
W(qq)

Z
Z(bb)
Z(cc)
Z(qq)

QCD

QCD(bb)
QCD(cc)
QCD(b)
QCD(c)
QCD(others)

Table 5.1: Summary of the truth label definition for the DeepAK8 algorithm.

5.2 Simulated Samples

The DeepAK8 algorithm is developed using simulated samples. The signal jets, i.e.,

those matched to hadronically decaying top quarks or W, Z, or Higgs bosons, are selected

from simulations of BSM processes that are enriched in boosted massive particles. The

signal jets are obtained from either heavy spin-1 Z′ resonances or spin-2 graviton reso-

nances, with subsequent decays to a pair of top quarks or a pair of W, Z, or Higgs bosons.

These Z′ or Graviton resonances are generated with masses ranging from 500 to 5000 GeV

to produce sufficient signal jets over a wide range of pT. They also have narrow intrinsic

widths, equal to 1% of the resonance mass. The Z′ and Graviton samples are gener-

ated with MadGraph [81] and interfaced with pythia 8.212 [82] for parton showering

and hadronization. The leading-order (LO) NNPDF3.0 [83] parton distribution function
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(PDF) set is used to produce these samples. For the background jets, a simulated QCD

multijet production sample generated with pythia 8.212 using the LO NNPDF2.3 [84]

PDF set is used to acquire a large number of jets originating from gluons or light quarks.

For all these samples, the CUETP8M1 tune [85] for the underlying-event modeling of

pythia is used. The response of the CMS detector is simulated with GEANT4 [86].

Additional pp interactions in the same or neighboring bunch crossings (referred to as

“pileup”) are simulated and used to overlay the hard-scattering process.

5.3 Input Variables

The DeepAK8 algorithm features the direct use of jet constituent particles as inputs.

Basic kinematic properties of each particle, such as the momentum, the energy deposit,

the angular separation between the particle and the jet axis or the subjet axes, etc., are

included to help the algorithm learn about the radiation pattern of a jet. Additionally,

the electric charge, the particle identification information, and the PUPPI weight of

each particle are also included. For charged particles, a large set of extra properties

measured by the tracking detector are included, such as the impact parameters and the

covariance matrix of the track, the quality flags of the trajectory fit, etc. These inputs

are particularly useful for the algorithm to identify the existence of heavy-flavor (b or c)

quarks. In total, 42 variables are included for each constituent particle. The full list of

the input variables, along with their definitions, is shown in Table 5.2.

To further strengthen the capability of identifying heavy-flavor quarks, properties of

the secondary vertices reconstructed with the inclusive vertex finding algorithm [87, 79]

are added to the inputs of the DeepAK8 algorithm. Only secondary vertices contained

in the AK8 jet, i.e., ∆R(SV,AK8) < 0.8, are considered. A total of 15 variables are

included for each SV, such as the kinematics, the impact parameters, and the quality of
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Variable Definition
For both charged and neutral particles.

log pT logarithm of the particle’s pT
logE logarithm of the particle’s energy

log(pT/pT(jet)) logarithm of the particle’s pT relative to the jet pT
|η| absolute value of the particle’s pseudorapidity

∆η(jet) difference in pseudorapidity between the particle and the jet axis
∆ϕ(jet) difference in azimuthal angle between the particle and the jet axis
∆R(jet) angular separation between the particle and the jet axis

∆R(subjet 1) angular separation between the particle and the subjet leading in pT
∆R(subjet 2) angular separation between the particle and the subjet subleading in pT
min∆R(SV) angular separation between the particle and closest secondary vertex
wPUPPI PUPPI weight of the particle
q electric charge of the particle

isMuon if the particle is identified as a muon
isElectron if the particle is identified as an electron
isPhoton if the particle is identified as a photon

isChargedHadron if the particle is identified as a charged hadron
isNeutralHadron if the particle is identified as a neutral hadron

fHCAL fraction of energy deposited in HCAL
For charged particles only. A default value of 0 is assigned for neural particle.

pvAssociationQuality flag related to the association of the track to the primary vertices
lostInnerHits quality flag of the track related to missing hits on the pixel layers

dxy transverse impact parameter of the track
dz longitudinal impact parameter of the track

dxy/σdxy significance of the transverse impact parameter
dz/σdz significance of the longitudinal impact parameter
χ2/dof χ2 value of the trajectory fit normalized to the number of degrees of freedom

qualityMask quality flag of the track
cov(q/p, q/p) variance of the track parameter q/p

cov(λ, λ) variance of the track parameter λ
cov(ϕ, ϕ) variance of the track parameter ϕ

cov(dxy, dxy) variance of the track parameter dxy
cov(dz, dz) variance of the track parameter dz
cov(dxy, dz) covariance of the track parameter dxy and dz
cov(ϕ, dxy) covariance of the track parameter ϕ and dxy
cov(λ, dz) covariance of the track parameter λ and dz

ηrel pseudorapidity of the track relative to the jet axis
pT,rel ratio track momentum perpendicular to the jet axis, divided by the magnitude of the track momentum
ppar,rel ratio track momentum parallel to the jet axis divided by the magnitude of the track momentum

d2D signed 2D impact parameter (i.e., in the transverse plane) of the track
d2D/σ2D signed 2D impact parameter significance of the track
d3D signed 3D impact parameter of the track

d3D/σ3D signed 3D impact parameter significance of the track
trackDistance distance between the track and the jet axis at their point of closest approach

Table 5.2: Input variables of each jet constituent particle.
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Variable Definition
log pT logarithm of the SV’s pT
logE logarithm of the SV’s energy

log(pT/pT(jet)) logarithm of the SV’s pT relative to the jet pT
|η| absolute value of the SV’s pseudorapidity

∆η(jet) difference in pseudorapidity between the SV and the jet axis
∆ϕ(jet) difference in azimuthal angle between the SV and the jet axis
∆R(jet) angular separation between the SV and the jet axis
mSV mass of the SV
Ntracks number of tracks associated with the SV
χ2/dof χ2 value of the SV fit normalized to the number of degrees of freedom
d2D signed 2D impact parameter (i.e., in the transverse plane) of the SV

d2D/σ2D signed 2D impact parameter significance of the SV
d3D signed 3D impact parameter of the SV

d3D/σ3D signed 3D impact parameter significance of the SV
cos(p⃗SV,

−−−−−−→
(PV, SV)) cosine of the angle between the SV momentum and the vector pointing from the primary vertex to the SV

Table 5.3: Input variables for each secondary vertex (SV) inside the jet.

the SV reconstruction, etc. The full list of input variables for the secondary vertices is

shown in Table 5.3.

5.4 DNN Training

The DeepAK8 algorithm uses a DNN classifier to process the high-dimensional con-

stituent particle and secondary vertex inputs for the identification of boosted massive

particles. The development of such a DNN, including the preprocessing of the inputs

and the training samples, the architecture of the DNN, the training procedure, etc., is

presented in this section.

5.4.1 Preprocessing

Sample reweighting

As described in Section 5.2, signal jets for the training of the DNN are selected

from heavy resonance samples, while background jets are selected from a QCD multijet

sample. Therefore, signal and background jets have very different distributions in pT.
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To avoid the DNN exploiting such artificial differences in pT as a handle to separate

signal and background jets, the jets in the training sample are “reweighted” to have a

flat distribution in pT, and the contributions from each category (top quark, W, Z, Higgs

boson, and QCD jets) are equalized. This eliminates any difference in the pT distribution

seen by the DNN during the training, therefore preventing the DNN responses from

showing any bias on pT.

Such a “reweighting” can be implemented in a number of ways. The most straight-

forward way is to assign a weight to each jet and take the weight into account when

computing the loss function during the training. However, from our studies, we found

that this approach could lead to instability or even failure in convergence, especially

when the weights vary over a very large range (e.g., orders of magnitude). Alternatively,

events can be removed from the training sample to achieve the reweighting, but at the

cost of a potentially significant reduction on the size of the training dataset, therefore

limiting the effectiveness of the training. As a result, we implement the reweighting in

a different way. It is performed “on-the-fly” by randomly sampling the training dataset

to form each mini-batch for the training, with the probability for each jet to be selected

being proportional to the weight. This approach is more efficient than removing events

completely, as in principle, all events can still be utilized, therefore preserving the diver-

sity of the training sample. Meanwhile, the training does not suffer from any instability

as events are “unweighted” in each mini-batch.

Input transformation

A common practice in the training of DNNs is to “standardize” the inputs such that

all inputs fall in similar ranges, e.g., in [0, 1], after the transformation. This makes the

training more stable and can potentially improve performance. Such standardization is

particularly important for DeepAK8, as different input variables have different charac-
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teristic scales, and they can range over several orders of magnitude for different variables.

The most commonly used standardization method is to subtract the mean and then di-

vided by the standard deviation for each variable. This works well if the distribution of

the variable is close to a normal distribution. However, some of the variables used in

DeepAK8 have long tails in the distribution and, in a few cases, extreme outliers. The

mean and standard deviation are sensitive to tails and outliers, which can cause the bulk

of a distribution to be squeezed into a very small range and become unusable. Thus, we

use percentiles for standardization. Each input variable x is transformed as follows:

x̃ =
x− p50%

p84% − p50%
, (5.1)

where p50% and p84% are the 50th and 84th percentiles of the variable x. In the case when

p84% = p50% (which happens for some discrete variables), the denominator is simply taken

to be 1, as those discrete variables are typically O(1). The use of percentiles instead of

the mean and the standard deviation tends to be less sensitive to outliers and long tails of

the distributions, leading to more unified scales for different variables. The transformed

values are further clipped to be in the range of [−5, 5] to prevent any extreme outliers

from being fed into the neural networks and demolishing the training.

Jets typically have varying numbers of particles and secondary vertices associated with

them. Figure 5.1 shows the distribution of the number of particles for AK8 jets of different

categories. The number of particles in an AK8 jet ranges from around 20 to almost 100

depending on the category and pT of the jet. The particle multiplicity is generally higher

as the jet pT increases, and top quark jets tend to have more constituent particles than

other types of jets. Across all categories and pT ranges, very few (<∼ 6%) jets have more

than 100 particles. The distribution of the number of secondary vertices associated with

AK8 jets is shown in Figure 5.2. As expected, secondary vertex multiplicity is higher
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Figure 5.1: The distribution of the number of particles for AK8 jets of differ-
ent categories in three pT ranges. Top left: 300 < pT < 500GeV; Top right:
500 < pT < 1000GeV; Bottom: 1000 < pT < 1500GeV.
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Figure 5.2: The integrated distribution of the number of secondary vertices associated
with AK8 jets of different categories in two pT ranges (low pT: 400 < pT < 500GeV;
high pT: 1000 < pT < 1400GeV). The vertical axis shows the fraction of jets with no
more than N secondary vertices, where N is the label of each bin.

for top quark and Higgs boson jets due to the presence of b quarks in their decays.

Overall, less than ∼ 2% of jets contain more than 7 secondary vertices. Based on these

observations, only up to 100 particles and up to 7 secondary vertices are used as inputs

to the DNN. The particles of each AK8 jet are sorted in descending pT order, while

the secondary vertices are ranked by their signed 2D impact parameter significance, also

in descending order. Standardized input variables of the leading 100 particles and the

leading 7 secondary vertices are assembled into two fixed-size arrays, respectively. In the

case that a jet has less than 100 particles or less than 7 secondary vertices, zero values

are used to fill the remaining entries of the two arrays. These two arrays, referred to as

the “particle” array and “SV” array hereafter, are the inputs to the DNN.

5.4.2 Network Architecture

A significant challenge posed by the direct use of particle-level information is a sub-

stantial increase in the number of inputs. Meanwhile, the correlations between these
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inputs are of vital importance. Thus an algorithm that can both process the inputs effi-

ciently and exploit the correlations effectively is needed. A customized DNN architecture

was developed in DeepAK8 to fulfill this requirement. As illustrated in Figure 5.3, the

architecture consists of two steps. In the first step, two one-dimensional convolutional

neural networks (CNN) are applied to the particle array and the SV array separately to

transform the inputs and extract useful features. Then, in the second step, the outputs

of the two CNNs are combined and processed by a simple fully-connected network to

perform the jet classification. The CNN structure in the first step is based on the ResNet

model [88], but adapted from two-dimensional images to one-dimensional particle lists,

in which each variable corresponds to a “color” channel. The CNN for the particle array

has 14 layers1, and the one for the SV array has 10 layers2. A convolution window of

length 3 is used, and the number of output channels in each convolutional layer ranges

between 32 and 128. The ResNet architecture allows for an efficient training of deep

CNNs, thus leading to better exploitation of the correlations between the large inputs

and improving the performance. With the CNNs in the first step being already very pow-

erful, the fully-connected network in the second step can be fairly simple: it consists of

only one layer with 512 units, followed by a ReLU [89] activation function and a Dropout

[90] layer of 20% drop rate. The detailed configuration of the network is illustrated in

Figure 5.4(a). The neural network is implemented using the MXNet package [91] and

trained with the Adam [75] optimizer to minimize the cross-entropy loss. A mini-batch

size of 1024 is used. The initial learning rate is set to 0.001 and then reduced by a factor

of 10 at the 10th and 20th epochs to improve convergence. The training is stopped after

35 epochs. A sample of 50 million jets is used, of which 80% are used for training, and

20% are used for development and validation.
1Including 13 convolutional layers and 1 global pooling layer.
2Including 9 convolutional layers and 1 global pooling layer.
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Figure 5.3: A simplified schematic of the DeepAK8 network.

5.4.3 Decorrelation with the Jet Mass

As will be discussed in Section 5.5.3, background jets selected by the DeepAK8 algo-

rithm exhibit a modified mass distribution which is similar to that of the signal. This is

because the mass of a jet is one of the most discriminating variables, and although it is

not directly used as an input to the algorithm, the CNNs can extract features that are

correlated to the mass to improve the discrimination power. However, such modification

of the mass distribution may be undesirable if the mass variable itself is to be used for

separating signal and background processes. Thus, an alternative DeepAK8 algorithm,

“DeepAK8-MD”, is developed to be largely decorrelated with the mass of a jet while pre-

serving the discrimination power as much as possible. The adversarial training approach

[92] is used to achieve this goal. In addition, jets from various signal and background

samples are reweighted to yield flat distributions in both pT and mSD to aid the training.

The training procedure of DeepAK8-MD is illustrated in Figure 5.5, and the detailed

configuration of the network is shown in Figure 5.4(b). Compared to the nominal version

of DeepAK8, a mass prediction network is added with the goal of predicting the mass

of a jet from the features extracted by the CNNs. When properly trained, the mass

prediction network becomes a good indicator of how strongly the features extracted by

the CNNs are correlated with the mass of a jet, as the stronger the correlation is, the
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Figure 5.5: A simplified schematic of the training procedure of the DeepAK8-MD network.

more accurate the mass prediction will be. With the introduction of the mass prediction

network, the training target of the algorithm can be modified to include the accuracy of

the mass prediction as a penalty, therefore preventing the CNNs from extracting features

that are correlated with the mass. In this way, the final prediction of the algorithm

also becomes largely independent of the mass. As the features extracted by the CNNs

evolve during the training process, the mass prediction network itself needs to be updated

regularly to adapt to the changes of its inputs and remain as an effective indicator of

mass correlation. Forcing the algorithm to be decorrelated with the jet mass inevitably

leads to a loss of discrimination power, and the resultant algorithm is a balance between

performance and mass-independence. As the training of DeepAK8-MD is carried out only

on jets with 30 < mSD < 250GeV, jets with mSD outside this range should be removed

when using DeepAK8-MD. Typically, to achieve the best performance, a suitable mass

window requirement should be applied together with the DeepAK8-MD algorithm.

5.5 Performance in Simulation

The performance of the DeepAK8 algorithm is first studied in simulation, using the

signal and background samples described in Section 5.2. Only events not used in the
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training are considered when evaluating the performance. To avoid any bias from the

difference in the pT distribution of different samples, events in the signal samples are

reweighted to have the same distribution in pT as the background sample.

5.5.1 Signal and Background Efficiency

The performance of the algorithms is evaluated using the signal and background

efficiency, ϵS and ϵB, respectively, as a figure of merit. The ϵS and ϵB are defined as:

ϵS =
N tagged

S

N total
S

and ϵB =
N tagged

B

N total
B

, (5.2)

where N tagged
S(B) is the number of signal (background) jets satisfying the identification crite-

ria of each algorithm, and N total
S(B) is the total number of generated particles considered to

be signal (background). Hadronically decaying top quarks and W, Z, and Higgs bosons

are considered as the signal, while light quarks and gluons from the QCD multijet process

are considered to be the background. For the Higgs boson, only the H → bb decay is

considered.

The discrimination power, i.e., ϵB as a function of ϵS, is evaluated in terms of re-

ceiver operating characteristic (ROC) curves. Figures 5.6–5.9 show the ROC curves of

DeepAK8 and DeepAK8-MD for the identification of top quarks and W, Z, and Higgs

bosons, respectively. Baseline algorithms widely used in CMS are also included for com-

parison. The baseline algorithm for top quark (W, Z boson) tagging is based on the

soft drop mass mSD and the N-subjettiness ratio τ32 (τ21), described in Chapter 3. For

top quark tagging, both versions with and without the subjet b-tagging requirement

are considered, and the version requiring at least one of the two subjets to be b-tagged

is labeled with mSD + τ32 + b. For Higgs bosons tagging, the double-b algorithm [79]

designed to specifically target Higgs decays to pairs of b quarks in the boosted regime
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is used as a baseline. The comparisons are performed at low and high values of truth

particle pT. The fiducial selection criteria applied to the truth particles are displayed on

the plots. For all algorithms except the nominal DeepAK8, a selection on the soft drop

mass is always applied and indicated on the plots, while for the nominal DeepAK8, the

mass information is learned by the algorithm based on the particle kinematics inputs

and no explicit cut is needed. On the contrary, allowing the DNN to apply the mass

selection implicitly results in better performance than imposing a mass window by hand.

Overall, both the nominal DeepAK8 and mass-decorrelated DeepAK8-MD algorithms

achieve significant improvement in performance, lowering ϵB by an order of magnitude

compared to the baseline algorithms in some cases.

To gain a deeper understanding of the large performance improvement in DeepAK8,

alternative versions of DeepAK8 were trained using a subset of the input features. Three

sets of input features were studied and compared. The “Particle (kinematics)” set con-

sists of only the kinematic information of the PF candidates, e.g., the four momenta,

the distances to the jet and subjet axes. This set serves as a baseline to evaluate the

performance using only the substructure of the jets. The “Particle (w/o Flavour)” set

includes additional experimental information of each PF candidate, such as the electric

charge, particle identification, and track quality information. Compared to the nominal

DeepAK8 algorithm, input features that contribute to the identification of heavy-flavor

quarks, such as the displacement of the tracks, the association of tracks to the recon-

structed vertices, as well as the SV features, are not included in the “Particle (w/o

Flavour)” set. The performance of the three versions of DeepAK8 is compared in Figure

5.10 for top quark and Z boson identification. In both cases, the addition of experimental

information brings a sizable improvement in performance. While the additional features

contributing to heavy flavor identification yield no improvement for the identification of

Z bosons decaying to a pair of light quarks, a significant improvement is observed for Z
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Figure 5.6: Performance comparison of the hadronically decaying top quark tagging
algorithms in terms of ROC curves in two regions of the truth particle’s pT. Left:
500 < pT < 1000GeV; Right: 1000 < pT < 1500GeV. Additional fiducial selection
criteria applied to the truth particles are displayed on the plots. For all algorithms ex-
cept the nominal DeepAK8, a selection on the soft drop mass is applied and indicated
on the plots.
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Figure 5.7: Performance comparison of the hadronically decaying W tagging al-
gorithms in terms of ROC curves in two regions of the truth particle’s pT. Left:
500 < pT < 1000GeV; Right: 1000 < pT < 1500GeV. Additional fiducial selection
criteria applied to the truth particles are displayed on the plots. For all algorithms ex-
cept the nominal DeepAK8, a selection on the soft drop mass is applied and indicated
on the plots.
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Figure 5.8: Performance comparison of the hadronically decaying Z boson tagging
algorithms in terms of ROC curves in two regions of the truth particle’s pT. Left:
500 < pT < 1000GeV; Right: 1000 < pT < 1500GeV. Additional fiducial selection
criteria applied to the truth particles are displayed on the plots. For all algorithms ex-
cept the nominal DeepAK8, a selection on the soft drop mass is applied and indicated
on the plots.
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Figure 5.9: Performance comparison of the hadronically decaying Higgs boson tag-
ging algorithms in terms of ROC curves in two regions of the truth particle’s pT. Left:
500 < pT < 1000GeV; Right: 1000 < pT < 1500GeV. Additional fiducial selection
criteria applied to the truth particles are displayed on the plots. For all algorithms ex-
cept the nominal DeepAK8, a selection on the soft drop mass is applied and indicated
on the plots.
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decaying to a pair of b quarks, as well as the identification of top quarks, demonstrating

the strong complementarity between heavy flavor identification and jet substructure for

heavy resonance identification when heavy flavor quarks are involved in the decay.

5.5.2 Robustness of Tagging Algorithms

An important aspect of a tagging algorithm is its stability with respect to jet kine-

matics (e.g., pT) and data-taking conditions (e.g., pileup). To quantify this, we study the

ϵS and ϵB of the algorithms as a function of the pT of the truth particle and the number

of reconstructed vertices (Nvtx). For the sake of these studies, a common working point

is defined, corresponding to ϵS = 30% (50%) for top quarks (W, Z, and Higgs bosons)

with 500 < pT(truth particle) < 600GeV.

The distributions of the ϵS and ϵB as a function of the pT of the truth particle for

different tagging scenarios are displayed in Figures 5.11 and 5.12, respectively. Overall,

the ϵS and ϵB of the DeepAK8 and DeepAK8-MD algorithms are fairly stable as a function

of pT. In the top quark tagging case, the ϵS for all the algorithms drops rapidly as pT

decreases below pT ∼ 600GeV, due to the fact that the decay products of a top quark

are not fully merged to be contained in an AK8 jet at such low pT. Similar behavior

is observed for the top quark misidentification rate of the DeepAK8 and DeepAK8-MD

algorithms.

The dependence on Nvtx is also examined using simulated events. Figure 5.13 (5.14)

displays the distribution of ϵS (ϵB) as a function of Nvtx for truth particles with 500 <

pT(truth particle) < 1000GeV, operating at a working point with ϵS = 30% (50%) for top

quark (W, Z, and Higgs boson) identification as defined above. Since all the algorithms

make use of jets that exploit PUPPI for pileup mitigation, the resulting algorithms

exhibit pretty good stability, showing a roughly constant ϵS and ϵB distribution across
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Figure 5.10: Alternative versions of DeepAK8 trained using a subset of the input
features. The details about each version are discussed in the text. The performances
of the three versions of DeepAK8 are compared for top quark (upper) and Z boson
(lower) identification. For the latter, the left plot corresponds Z bosons decaying to a
pair of b quarks, and the right to a pair of light quarks (excluding b and c quarks).
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Figure 5.11: The distribution of ϵS as a function of the pT of the truth particle
for a working point corresponding to ϵS = 30% (50%) for top quark (W, Z, and
Higgs boson) identification. Upper left: top quark, upper right: W boson, lower left:
Z boson, lower right: Higgs boson. Additional fiducial selection criteria applied to
the truth particles are displayed on the plots. For all algorithms except the nominal
DeepAK8, a selection on the soft drop mass is applied and indicated on the plots.
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Figure 5.12: The distribution of ϵB as a function of the pT of the truth particle
for a working point corresponding to ϵS = 30% (50%) for top quark (W, Z, and
Higgs boson) identification. Upper left: top quark, upper right: W boson, lower left:
Z boson, lower right: Higgs boson. Additional fiducial selection criteria applied to
the truth particles are displayed on the plots. For all algorithms except the nominal
DeepAK8, a selection on the soft drop mass is applied and indicated on the plots.
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the different pileup scenarios.

5.5.3 Correlation with Jet Mass

Finally, a set of studies was performed to understand the correlation of the DeepAK8

algorithm with the jet mass. Figure 5.15 displays the mSD distribution of jets obtained

from the QCD multijet sample, inclusively and after applying a selection on each tagging

algorithm. The working point chosen corresponds to ϵS = 30% (50%) for top quark

(W, Z, and Higgs boson) tagging, as defined in Section 5.5.1. The nominal version of

DeepAK8 exhibits significant “mass sculpting”, i.e., after applying a selection on the

DeepAK8 tagging algorithm, the mSD distribution of the background jets is modified

significantly and resembles that of the signal jets, showing a peak around the mass of the

signal particle. Such mass sculpting itself is not necessarily a problem, but it can limit

the applicability of the DeepAK8 algorithm, as many analyses require a smoothly falling

background jet mass spectrum under a signal peak (for instance, in Ref. [93]). On the

other hand, DeepAK8-MD trained with dedicated mass-decorrelation techniques show

very little modification of the background jet mass spectrum.
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Figure 5.13: The distribution of ϵS as a function of Nvtx for a working point corre-
sponding to ϵS = 30% (50%) for top quark (W, Z, and Higgs boson) identification.
Upper left: top quark, upper right: W boson, lower left: Z boson, lower right: Higgs
boson. Additional fiducial selection criteria applied to the truth particles are displayed
on the plots. For all algorithms except the nominal DeepAK8, a selection on the soft
drop mass is applied and indicated on the plots.
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Figure 5.14: The distribution of ϵB as a function of Nvtx for a working point corre-
sponding to ϵS = 30% (50%) for top quark (W, Z, and Higgs boson) identification.
Upper left: top quark, upper right: W boson, lower left: Z boson, lower right: Higgs
boson. Additional fiducial selection criteria applied to the truth particles are displayed
on the plots. For all algorithms except the nominal DeepAK8, a selection on the soft
drop mass is applied and indicated on the plots.
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Figure 5.15: The shape of the soft drop mass distribution for background jets with
500 < pT(jet) < 1000GeV, inclusively and after selection by each algorithm. The
working point chosen corresponds to ϵS = 30% (50%) for top quark (W, Z, and
Higgs boson) tagging. Upper left: top quark, upper right: W boson, lower left:Z
boson, lower right: Higgs boson. The error bars represent the statistical uncertainty
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selection criteria applied to the jets are displayed on the plots.
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5.6 Top Quark and W Boson Identification Perfor-

mance in Data

The performance of the DeepAK8 tagging algorithm is validated in data using several

samples. In this section, we focus on the validation of the top quark and W boson identi-

fication. The signal efficiency for the top quark and W boson identification is calibrated

in the single-µ sample, which is enriched in semi-leptonic tt events. The multijet sample,

dominated by light-flavor quarks and gluons, is used to study the misidentification rate

of background jets in a wide range of pT. The misidentification rate depends on the

flavor of the parton that initiated the jet. Therefore, in addition to the multijet sample,

the single-γ sample is further utilized. The multijet and single-γ samples differ in the

light-quark and gluon fractions, with the former having a larger fraction of gluon jets

than the latter. A detailed description of the data and simulated samples, the event

selections, and the systematic uncertainties is presented in Ref. [94]. In this section, we

briefly discuss the event selection and summarize the results.

5.6.1 Event Selection

The single-µ sample

The single-µ sample is collected using a single-muon trigger that selects events with a

high pT muon. Candidate events are required to have exactly one muon with pT > 55GeV

and |η| < 2.4 satisfying the tight identification requirement [95]. A custom isolation

criterion is applied, by requiring a minimum distance between the muon and the nearest

“AK4” jet, ∆R(µ,AK4) > 0.4, or the perpendicular component of the muon pT with

respect to the nearest AK4 jet, pT,rel > 25GeV. The AK4 jets used in this selection

are reconstructed by clustering the PF candidates using the anti-kT algorithm with a
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distance parameter of R = 0.4, after removing muons with pT > 55GeV from the event.

The custom isolation requirement has better efficiency than the standard muon isolation

variable computed with an isolation cone of ∆R = 0.4 [95], as the lepton from the W

boson decay often overlaps with the b jet from the top quark decay in boosted semi-

leptonic tt events.

To suppress the contribution from QCD multijet processes, we require pmiss
T > 50GeV.

To enhance the purity of tt events, we require the presence of at least one b-tagged

AK4 jet. In addition, to enrich boosted tt events, we require the pT of the leptonically

decaying W boson, defined as p⃗T(W) = p⃗T(µ) + p⃗miss
T , and the scalar sum pT of the AK4

jets, denoted HT, to be greater than 250 GeV. The highest pT AK8 jet in the event with

pT > 200GeV is selected to probe the hadronically decaying top quark or W boson. To

further improve the purity, we require the azimuthal angle ∆ϕ between the AK8 jet and

the muon to be greater than 2 radians. The purity of the sample in semi-leptonic tt

events is ∼ 70%. Other contributions arise from QCD multijet (∼ 15%) and W+jets

(∼ 10%) processes.

The multijet sample

The multijet sample is recorded using a trigger that requires high HT. Events with

HT > 1000GeV are selected to ensure 100% trigger efficiency. Events are required to

have at least one AK8 jet and the absence of electrons or muons, leading to a sample

dominated by jets from the QCD multijet process.

The single-γ sample

The single-γ sample is collected using a single-photon trigger that requires the pres-

ence of a high pT, isolated photon. Events with a photon with pT > 200GeV and |η| < 2.5

are selected to ensure 100% trigger efficiency. The photon is further required to satisfy
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the standard CMS identification criteria [96]. In addition, the events are required to

have at least one AK8 jet. The sample consists of ∼ 80% γ+jets events, with a smaller

(∼ 15%) contribution from QCD multijet events.

5.6.2 Signal Efficiency in the Single-µ Sample

The signal efficiency for the top quark and W boson identification can be determined

using semi-leptonic tt events. The leptonically decaying W boson from one of the top

quarks provides a clear signature and can be exploited for identifying such events. The

other top quark, which decays hadronically, provides a boosted top quark or W boson

that is needed to probe the tagging efficiency.

The data-to-simulation comparison of fundamental jet substructure variables, such

as mSD, the pT(jet), the N-subjettiness ratios, τ32 and τ21, are shown in Figure 5.16.

Figure 5.17 displays the distributions of the top quark and W boson tagging discriminants

for the DeepAK8 and DeepAK8-MD algorithms. To focus the comparison on the shape

of the distribution, the total background yield is normalized to the observed number

of data events to account for a small difference in the overall normalization between

data and simulation. The systematic uncertainties discussed in Ref. [94] are taken into

account and shown via the shaded blue band in the figures. Overall, the shapes in data

are compatible with the expectation from simulation within uncertainties.

To measure the top quark and W boson tagging efficiency, the total SM sample is

decomposed into three categories based on if the AK8 jet being probed is matched to

a hadronically decaying top quark or a W boson. The “merged top quark” category

requires that all three quarks from the top decay are fully contained in an AK8 jet,

with ∆R(AK8, q) < 0.6. The “merged W boson” category requires that only the two

quarks from the W boson decay are within ∆R < 0.6 of the AK8 jet, and the b quark
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Figure 5.16: Distribution of the jet pT (upper-left), the soft drop mass mSD (up-
per-right), the N-subjettiness ratios, τ32 (lower-left) and τ21 (lower-right) in data and
simulation in the single-µ sample. The nominal tt sample is generated with powheg
and showered with pythia8, while the solid pink line corresponds to the distribution
obtained from the tt sample showered with herwig++. The background event yield
is normalized to the total observed data yield. The lower panel shows the data to
simulation ratio. The shaded blue (red) band corresponds to the total uncertainty
(statistical uncertainty of the simulated samples), the pink line corresponds to the data
to simulation ratio using the alternative tt sample, and the vertical lines correspond
to the statistical uncertainty of the data. Figures taken from [94].
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Figure 5.17: Distribution of the top quark (left) and W boson (right) tagging dis-
criminants of the DeepAK8 (upper row) and DeepAK8-MD (lower row) algorithms in
data and simulation in the single-µ sample. The nominal tt sample is generated with
powheg and showered with pythia8, while the solid pink line corresponds to the dis-
tribution obtained from the tt sample showered with herwig++. The background
event yield is normalized to the total observed data yield. The lower panel shows the
data to simulation ratio. The shaded blue (red) band corresponds to the total un-
certainty (statistical uncertainty of the simulated samples), the pink line corresponds
to the data to simulation ratio using the alternative tt sample, and the vertical lines
correspond to the statistical uncertainty of the data. Figures taken from [94].
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from the top decay is outside the jet cone. Any other scenario falls in the “unmerged”

category. The tagging efficiency in data is extracted via a maximum likelihood fit of

the mSD distribution, with both regions, one passing and the other failing the tagging

requirement, fitted to data simultaneously. The templates of the mSD distribution are

derived from simulation, and the normalization of the three categories in both the “pass”

and “fail” regions are allowed to float in the fit. The signal efficiency can be extracted

from the fit as:

ϵtop
S =

Npass
merged top quark

Npass
merged top quark +N fail

merged top quark
(5.3)

for top quark tagging and

ϵW
S =

Npass
merged W boson

Npass
merged W boson +N fail

merged W boson
(5.4)

for W boson tagging, respectively. The fit is performed in the range from 50 to 250 GeV

with a bin width of 10 GeV. The sources of systematic uncertainties discussed in Ref.

[94] are considered and are treated as nuisance parameters in the fit. After calculating

the efficiencies in data and simulation, the simulation-to-data scale factor is determined

as:

SF =
ϵdata

ϵsimulation
. (5.5)

The SFs are extracted differentially in jet pT. An example of mSD distributions for data

and simulation in the “pass” and “fail” regions for 400 < pT < 480GeV after performing

the maximum likelihood fit are displayed in Fig 5.18. The SFs are summarized in Figure

5.19. They are typically consistent with unity, within uncertainties.
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Figure 5.18: The mSD distributions for data and simulation for events that
pass (left) and fail (right) the top tagging requirement for AK8 jets with
400 < pT(jet) < 480GeV. The solid (dashed) lines correspond to the contribution
of each category after (before) the maximum likelihood fit as described in the text.
The lower panel shows the ratio of the observed data to the post-fit expectation from
simulation. Figures from [94].

5.6.3 Misidentification Rate in the Multijet and Single-γ Sample

The misidentification rate for the top quark and W boson identification is studied

in the multijet and single-γ samples. The data-to-simulation comparison of some fun-

damental jet substructure variables, such as mSD, the pT(jet), the N-subjettiness ratios,

τ32 and τ21, are shown in Figure 5.20 and 5.21 for the multijet and single-γ samples,

respectively. Figures 5.22 and 5.23 display the distributions of the top quark and W

boson tagging discriminants for the DeepAK8 and DeepAK8-MD algorithms. For both

samples, simulated events show a moderate discrepancy in the jet pT distribution com-

pared to data due to the lack of higher-order corrections in the simulation. Therefore,

simulated events are reweighted to match the jet pT distribution in data. For the multijet

sample, two samples generated with different event generators are considered to study

the dependence of the misidentification rate on the modeling of event kinematics and

parton showering. The nominal sample uses MadGraph for the event generation and
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Figure 5.19: Summary of the signal efficiency SFs of the DeepAK8 and DeepAK8-MD
algorithms for top quark (upper) and W boson (lower) identification. The markers
correspond to the SF value, the error bars to the statistical uncertainty on the SF
measurement, and the band is the total (statistical + systematic) uncertainty. Figures
adapted from [94].
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pythia8 for the parton showering and hadronization, whereas the alternative sample

uses herwig++ alone for event generation and the modeling of the parton showering.

The systematic uncertainties discussed in Ref. [94] are taken into account and are shown

via the shaded blue band in the figures. Overall, good agreement is observed between

data and simulation within uncertainties. Some discrepancy is observed in the low-value

region of τ32 and τ21 distribution. For the top and W tagging discriminants, the nominal

DeepAK8 algorithm generally shows better agreement between data and simulation than

the mass decorrelated DeepAK8-MD algorithm. The two multijet samples actually show

a large difference here, with a better agreement observed with the sample generated with

herwig++.

The misidentification rate in data is extracted from the multijet and single-γ samples

as the fraction of events in which the probe jet passes the tagging requirement. The

small contribution from processes with jets arising from real top quarks or W bosons,

such as tt and W+jets, is subtracted from the observed yield using the expected yield

from simulation with a conservative 100% uncertainty. The SFs for the misidentification

rate extracted from the multijet and the single-γ samples are summarized in Figures 5.24

and 5.25 for the top quark and W boson identification, respectively. For top quark tag-

ging, the misidentification rate SFs are typically between 1.0 and 1.2 in both the multijet

and the single-γ sample for the DeepAK8 and DeepAK8-MD algorithms, and are fairly

consistent between the MadGraph+pythia8 and the herwig++ QCD multijet sam-

ple. On the other hand, the misidentification rate SFs for W boson tagging show larger

variations between the two different QCD multijet samples, ranging typically between

0.6 and 1.4 for the DeepAK8 and DeepAK8-MD algorithms, while the SFs extracted from

the single-γ sample are in between them and are around 1.2. This is likely due to the

difference in the quark/gluon fraction between the multijet and the single-γ sample, and

the difference in the modeling of gluons between pythia8 and herwig++.
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Figure 5.20: Distribution of the jet pT (upper-left), the soft drop mass mSD (up-
per-right), the N-subjettiness ratios, τ32 (lower-left) and τ21 (lower-right) in data and
simulation in the multijet sample. The nominal QCD multijet sample is generated
with MadGraph and showered with pythia8, while the solid pink line corresponds
to the simulation distribution obtained using the alternative sample generated and
showered with herwig++. The event yield is normalized to the total observed data
yield as a function of jet pT. The lower panel shows the data to simulation ratio. The
shaded blue (red) band corresponds to the total uncertainty (statistical uncertainty
of the simulated samples), the pink line corresponds to the data to simulation ratio
using the alternative QCD multijet sample, and the vertical lines correspond to the
statistical uncertainty of the data. Figures taken from [94].
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Figure 5.21: Distribution of the jet pT (upper-left), the soft drop mass mSD (up-
per-right), the N-subjettiness ratios, τ32 (lower-left) and τ21 (lower-right) in data and
simulation in the single-γ sample. The event yield is normalized to the observed data
yield as a function of jet pT. The lower panel shows the data to simulation ratio. The
shaded blue (red) band corresponds to the total uncertainty (statistical uncertainty of
the simulated samples), and the vertical lines correspond to the statistical uncertainty
of the data. Figures taken from [94].
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Figure 5.22: Distribution of the top quark (left) and W boson (right) tagging discrim-
inants of the DeepAK8 (upper row) and DeepAK8-MD (lower row) algorithms in data
and simulation in the multijet sample. The nominal QCD multijet sample is generated
with MadGraph and showered with pythia8, while the solid pink line corresponds
to the simulation distribution obtained using the alternative sample generated and
showered with herwig++. The event yield is normalized to the total observed data
yield as a function of jet pT. The lower panel shows the data to simulation ratio. The
shaded blue (red) band corresponds to the total uncertainty (statistical uncertainty
of the simulated samples), the pink line corresponds to the data to simulation ratio
using the alternative QCD multijet sample, and the vertical lines correspond to the
statistical uncertainty of the data. Figures taken from [94].
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Figure 5.23: Distribution of the top quark (left) and W boson (right) tagging dis-
criminants of the DeepAK8 (upper row) and DeepAK8-MD (lower row) algorithms in
data and simulation in the single-γ background sample. The event yield is normalized
to the observed data yield as a function of jet pT. The lower panel shows the data
to simulation ratio. The shaded blue (red) band corresponds to the total uncertainty
(statistical uncertainty of the simulated samples), and the vertical lines correspond to
the statistical uncertainty of the data. Figures taken from [94].
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Figure 5.24: The ratio of the misidentification rate in data to that in simulation for
top quark identification in the multijet (upper and middle rows) and the single-γ (lower
row) samples. The QCD multijet process is simulated using MadGraph (MG) for the
hard-scatter process and pythia8 (P8) for parton showering (upper) and herwig++
for both (middle). Figures adapted from [94].
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Figure 5.25: The ratio of the misidentification rate in data to that in simulation
for W boson tagging in the multijet (upper and middle rows) and the single-γ (lower
row) samples. The QCD multijet process is simulated using MadGraph (MG) for
the hard process and pythia8 (P8) for parton showering (upper) and herwig++ for
both (middle). Figures adapted from [94].
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Chapter 6

ParticleNet: Jet Tagging via

Particle Clouds

In this chapter, a new deep learning approach for jet tagging using a novel way to

represent jets is presented1. Instead of organizing a jet’s constituent particles into an

ordered structure (e.g., a sequence or a tree), a jet is treated as an unordered set of

particles. This is very analogous to the point cloud representation of 3D shapes used

in computer vision, where each shape is represented by a set of points in space, and

the points themselves are also unordered. Therefore, a jet can be viewed as a “particle

cloud”. Based on Dynamic Graph CNN [98], “ParticleNet”, a customized neural network

architecture is designed that operates directly on particle clouds for jet tagging. The

ParticleNet architecture is evaluated on two jet tagging benchmarks and is found to

achieve significant improvements over all existing methods.
1This chapter is largely based on Ref. [97], with only some small modification.
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6.1 Jet Representations

The efficiency and effectiveness of ML techniques on jet physics relies heavily on how

a jet is represented. In this section, we review the mainstream jet representations and

introduce the particle cloud representation.

6.1.1 Image-Based Representation

The image representation has its root in the reconstruction of jets with calorimeters.

A calorimeter measures the energy deposition of a jet on fine-grained spatial cells. Treat-

ing the energy deposition on each cell as the pixel intensity naturally creates an image for

a jet. When jets are formed by particles reconstructed with the full detector information

(e.g., using a particle-flow algorithm [37, 99]), a jet image can be constructed by mapping

each particle onto the corresponding calorimeter cell, and sum up the energy if more than

one particle is mapped to the same cell.

The image-based approach has been extensively studied for various jet tagging tasks,

e.g., W boson tagging [100, 101, 102, 103, 104, 105], top tagging [106, 107, 108] and

quark-gluon tagging [109, 110]. Convolutional neural networks (CNNs) with various

architectures were explored in these studies, and they were found to achieve sizable im-

provement in performance compared to traditional multivariate methods using observ-

ables motivated by QCD theory. However, the architectures investigated in these papers

are in general much shallower compared to state-of-the-art CNN architectures used in

image classification tasks (e.g., ResNet [88] or Inception [111]). Therefore it remains to

be seen that if deeper architectures can further improve the performance.

Despite the promising performance, the image-based representation has two main

shortcomings. While it can include all information without loss when a jet is only mea-

sured by the calorimeter, once the jet constituent particles are reconstructed, how to
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incorporate additional information about the particles is unclear, as it involves combin-

ing non-additive quantities (e.g., the particle type) of multiple particles entering the same

cell. Moreover, treating jets as images also lead to a very sparse representation: A typical

jet has O(10) to O(100) particles, while a jet image typically needs O(1000) pixels (e.g.,

32 × 32) in order to fully contain the jet. Therefore, more than 90% of the pixels are

blank. This makes the CNNs highly computationally inefficient on jet images.

6.1.2 Particle-Based Representation

A more natural way to represent a jet, when particles are reconstructed, is to simply

view the jet as a collection of its constituent particles. This approach allows for the

inclusion of any kind of features for each particle and therefore is significantly more

flexible than the image representation. It is also much more compact compared to the

image representation, though at the cost of being variable-length, as each jet may contain

a different number of particles.

A collection of particles, though, is a rather general concept. Before applying any deep

learning algorithm, a concrete data structure has to be chosen. The prevailing choice is

a sequence, where particles are sorted in a specific way (e.g., with decreasing transverse

momentum) and organized into a 1D list. Using particle sequences as inputs, jet tagging

tasks have been tackled with recurrent neural networks (RNNs) [112, 113, 114, 115,

116], 1D CNNs [117, 118, 119, 120] and physics-oriented neural networks [121, 122, 123].

Another interesting choice is a binary tree, which is well motivated from the QCD theory

perspective. Recursive neural networks (RecNNs) are then a natural fit and have been

studied [124, 125].

One thing to note about the sequence or tree representation is that they both need

the particles to be sorted in some way, as the order of the particles is used implicitly in
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the corresponding RNNs, 1D CNNs or the RecNNs. However, the constituent particles

in a jet have no intrinsic order. Thus, the manually imposed order may turn out to be

suboptimal and impair the performance.

6.1.3 Jet as a Particle Cloud

An even more natural representation than particle sequences or trees would be an

unordered, permutation-invariant set of particles. As a special case of the particle-based

representations, it shares all their advantages, especially the flexibility to include arbi-

trary features for each particle. We refer to such a representation of a jet as a “particle

cloud”, analogous to the point cloud representation of 3D shapes used in computer vision.

They are actually highly similar, as both are essentially unordered sets of entities dis-

tributed irregularly in space. In both clouds, the elements are not unrelated individuals,

but are rather correlated, as they represent higher-level objects (i.e., jets or 3D shapes)

that have rich internal structures. Therefore, deep-learning algorithms developed for

point clouds are likely to be helpful for particle clouds, i.e., jets, as well.

The idea of regarding jets as unordered sets of particles was also recently proposed

in [126] in parallel with our work. The Deep Sets framework [127] was adapted to

construct the infrared and collinear safe Energy Flow Network, and the more general

Particle Flow Network. However, different from the Dynamic Graph CNN [98] approach

adopted in our work, the Deep Sets approach does not explicitly exploit the local spatial

structure of particle clouds, but only process the particle clouds in a global way. Another

closely related approach is to represent a jet as a graph whose vertices are the particles.

Message-passing neural networks (MPNNs) with different variants of adjacency matrices

were explored on such jet graphs and were found to show better performance than the

RecNNs [128]. However, depending on how the adjacency matrix is defined, the MPNNs
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may not respect the permutation symmetry of the particles.

6.2 Network Architecture

The permutation symmetry of the particle cloud makes it a natural and promising

representation of jets. However, to achieve the best possible performance, the architecture

of the neural network has to be carefully designed to fully exploit the potential of this

representation. In this section, we introduce ParticleNet, a CNN-like deep neural network

for jet tagging with particle cloud data.

6.2.1 Edge Convolution

CNNs have achieved overwhelming success in all kinds of machine learning tasks on

visual images. Two key features of CNNs contribute significantly to their success. Firstly,

the convolution operation exploits translational symmetry of images by using shared

kernels across the whole image. This not only greatly reduces the number of parameters

in the network, but also allows the parameters to be learned more effectively, as each

set of weights will use all locations of the image for learning. Secondly, CNNs exploit a

hierarchical approach [129] for learning image features. The convolution operations can

be effectively stacked to form a deep network. Different layers in the CNNs have different

receptive fields, therefore can learn features at different scales, with the shallower layers

exploiting local neighborhood information and the deeper layers learning more global

structures. Such a hierarchical approach proves an effective way of learning on images.

Motivated by the success of CNNs, we would like to adopt a similar approach for

learning on point (particle) cloud data. However, regular convolution operations cannot

be applied on point clouds, as the points there can be distributed irregularly, rather than

following some uniform grids like pixels in an image. Therefore, the basis for a convolu-
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tion, i.e., a “local patch” of each point on which the convolution kernel operates, remains

to be defined for point clouds. Moreover, a regular convolution operation, typically in

the form
∑

j Kjxj where K is the kernel and xj denotes the features of each point, is not

invariant under permutation of the points. Thus, the form of a convolution also needs to

be modified to respect the permutation symmetry of point clouds.

Recently, the edge convolution (“EdgeConv”) operation has been proposed in [98] as

a convolution-like operation for point clouds. EdgeConv starts by representing a point

cloud as a graph, whose vertices are the points themselves, and the edges are constructed

as connections between each point to its k nearest neighboring points. In this way, a

local patch needed for convolution is defined for each point as the k nearest neighboring

points connected to it. The EdgeConv operation for each point xi then has the form

x′
i =

k

□
j=1

hΘ(xi,xij
), (6.1)

where xi ∈ RF denotes the feature vector of the point xi and {i1, ..., ik} are the indices of

the k nearest neighboring points of the point xi. The edge function hΘ : RF ×RF → RF
′

is some function parameterized by a set of learnable parameters Θ, and □ is a channel-

wise symmetric aggregation operation, e.g., max, sum or mean. The parameters Θ of the

edge function are shared for all points in the point cloud. This, together with the choice

of a symmetric aggregation operation □, makes EdgeConv a permutationally symmetric

operation on point clouds.

In this work, we follow the choice in [98] to use a specialized form of the edge function,

hΘ(xi,xij
) = h̄Θ(xi,xij

− xi), (6.2)

where the feature vectors of the neighbors, xij
, are substituted by their differences from
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the central point xi, and h̄Θ can be implemented as a multilayer perceptron (MLP) whose

parameters are shared among all edges. For the aggregation operation □, however, we

use mean, i.e., 1
k

∑
, throughout this work, which shows better performance than the max

operation used in the original paper.

One important feature of the EdgeConv operation is that it can be easily stacked,

just like regular convolutions. This is because EdgeConv can be viewed as a mapping

from a point cloud to another point cloud with the same number of points, only possibly

changing the dimension of the feature vector for each point. Therefore, another EdgeConv

operation can be applied subsequently. This allows us to build a deep network using

EdgeConv operations which can learn features of point clouds hierarchically.

The stackability of EdgeConv operations also brings another interesting possibility.

Basically, the feature vectors learned by EdgeConv can be viewed as new coordinates of

the original points in a latent space, and then, the distances between points, used in the

determination of the k nearest neighbors, can be computed in this latent space. In other

words, the proximity of points can be dynamically learned with EdgeConv operations.

This results in the Dynamic Graph CNN [98], where the graph describing the point clouds

are dynamically updated to reflect the changes in the edges, i.e., the neighbors of each

point. Ref. [98] demonstrates that this leads to better performance than keeping the

graph static.

6.2.2 ParticleNet

The ParticleNet architecture makes extensive use of EdgeConv operations and also

adopts the dynamic graph update approach. However, a number of different design

choices are made in ParticleNet compared to the original Dynamic Graph CNN to better

suit the jet tagging task, including the number of neighbors, the configuration of the
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Figure 6.1: The architecture of (a) the EdgeConv block, (b) the ParticleNet network
and (c) the ParticleNet-Lite network.

MLP in EdgeConv, the use of shortcut connection, etc.

Figure 6.1a illustrates the structure of the EdgeConv block implemented in this work.

The EdgeConv block starts with finding the k nearest neighboring particles for each

particle, using the “coordinates” input of the EdgeConv block to compute the distances.

Then, inputs to the EdgeConv operation, the “edge features”, are constructed from

the “features” input using the indices of k nearest neighboring particles. The EdgeConv

operation is implemented as a 3-layer MLP. Each layer consists of a linear transformation,

followed by a batch normalization [130] and then the ReLU nonlinearity [89]. Inspired

by ResNet [88], a shortcut connection running parallel to the EdgeConv operation is

also included in each block, allowing the input features to pass through directly. An

EdgeConv block is characterized by two hyperparameters, the number of neighbors k,

and the number of channels C = (C1, C2, C3), corresponding to the number of units in

each linear transformation layer.

The ParticleNet architecture used in this work is shown in Figure 6.1b. It consists
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of three EdgeConv blocks. The first EdgeConv block uses the spatial coordinates of the

particles in the pseudorapidity–azimuth space to compute the distances, while the sub-

sequent blocks use the learned feature vectors as coordinates. The number of nearest

neighbors k is 16 for all three blocks, and the number of channels C for each EdgeConv

block is (64, 64, 64), (128, 128, 128), and (256, 256, 256), respectively. After the Edge-

Conv blocks, a channel-wise global average pooling operation is applied to aggregate the

learned features over all particles in the cloud. This is followed by a fully-connected layer

with 256 units and the ReLU activation. A dropout layer [90] with a drop probability of

0.1 is included to prevent overfitting. A fully-connected layer with 2 units, followed by a

softmax function, is used to generate the output for the binary classification task.

A similar network with reduced complexity is also investigated. Compared to the

baseline ParticleNet architecture, only two EdgeConv blocks are used, with the number

of nearest neighbors k reduced to 7 and the number of channels C reduced to (32,

32, 32) and (64, 64, 64) for the two blocks, respectively. The number of units in the

fully-connected layer after pooling is also lowered to 128. This simplified architecture is

denoted as “ParticleNet-Lite” and is illustrated in Figure 6.1c. The number of arithmetic

operations is reduced by almost an order of magnitude in ParticleNet-Lite, making it more

suitable when computational resources are limited.

The networks are implemented with Apache MXNet [91] and the training is performed

on a single Nvidia GTX 1080 Ti graphics card (GPU). A batch size of 384 (1024) is used

for the ParticleNet (ParticleNet-Lite) architecture due to GPU memory constraint. The

AdamW optimizer [131], with a weight decay of 0.0001, is used to minimize the cross

entropy loss. The 1-cycle learning rate (LR) schedule [77] is adopted in the training, with

the LR selected following the LR range test described in [77], and slightly tuned afterward

with a few trial trainings. The training of ParticleNet (ParticleNet-Lite) network uses

an initial LR of 3× 10−4 (5× 10−4), rising to the peak LR of 3× 10−3 (5× 10−3) linearly
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Variable Definition TOP QG QG-PID
∆η difference in pseudorapidity between the particle and the jet axis x x x
∆ϕ difference in azimuthal angle between the particle and the jet axis x x x

log pT logarithm of the particle’s pT x x x
logE logarithm of the particle’s energy x x x

log pT
pT (jet) logarithm of the particle’s pT relative to the jet pT x x x

log E
E(jet) logarithm of the particle’s energy relative to the jet energy x x x

∆R angular separation between the particle and the jet axis (
√

(∆η)2 + (∆ϕ)2) x x x
q electric charge of the particle x

isElectron if the particle is an electron x
isMuon if the particle is a muon x

isChargedHadron if the particle is a charged hadron x
isNeutralHadron if the particle is a neutral hadron x

isPhoton if the particle is a photon x

Table 6.1: Input variables used in the top tagging task (TOP) and the quark-gluon
tagging task (QG) with and without particle identification (PID) information.

in 8 epochs, and then decreasing to the initial LR linearly in another 8 epochs. This is

followed by a cool-down phase of 4 epochs which gradually reduces the LR to 5 × 10−7

(1 × 10−6) for better convergence. A snapshot of the model is saved at the end of each

epoch, and the model snapshot showing the best accuracy on the validation dataset is

selected for the final evaluation.

6.3 Results

The performance of the ParticleNet architecture is evaluated on two representative

jet tagging tasks: top tagging and quark-gluon tagging. In this section, we show the

benchmark results.

6.3.1 Top Tagging

Top tagging, i.e., identifying jets originating from hadronically decaying top quarks,

is commonly used in searches for new physics at the LHC. We evaluate the performance

of the ParticleNet architecture on this task using the top tagging dataset [132], which is
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an extension of the dataset used in [121] with some modifications. Jets in this dataset

are generated with Pythia8 [82] and passed through Delphes [133] for fast detector

simulation. No multiple parton interaction or pileup is included in the simulation. Jets

are clustered from the Delphes E-Flow objects with the anti-kT algorithm [40] using a

distance parameter R = 0.8. Only jets with transverse momentum pT ∈ [550, 650] and

pseudorapidity |η| < 2 are considered. Each signal jet is required to be matched to a

hadronically decaying top quark within ∆R = 0.8, and all three quarks from the top

decay must also be within ∆R = 0.8 of the jet axis. The background jets are obtained

from a QCD dijet process. This dataset consists of 2 million jets in total, half signal and

half background. The official splitting for training (1.2M jets), validation (400k jets) and

testing (400k jets) is used in the development of the ParticleNet model for this dataset.

In this dataset, up to 200 jet constituent particles are stored for each jet. Only kine-

matic information, i.e., the four-momentum (px, py, pz, E), of each particle is available.

The ParticleNet model takes up to 100 constituent particles with the highest pT for each

jet, and uses 7 variables derived from the four-momentum for each particle as inputs,

which are listed in Table 6.1. The (∆η,∆ϕ) variables are used as coordinates to compute

the distances between particles in the first EdgeConv block. They are also used together

with the other 5 variables, log pT , logE, log pT
pT (jet) , log

E
E(jet) and ∆R, to form the input

feature vector for each particle.

We compare the performance of ParticleNet with three alternative models: 2

• ResNeXt-50: The ResNeXt-50 model is a very deep 2D CNN using jet images as

inputs. The ResNeXt architecture [135] was proposed for generic image classifica-

tion, and we modify it slightly for the jet tagging task. The model is trained on

the top tagging dataset starting from randomly initialized weights. Note that the
2A comprehensive comparison between a wide range of machine learning approaches on this top

tagging dataset is presented in Ref. [134], where an earlier version of ParticleNet is also included.
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ResNeXt-50 architecture is much deeper and therefore has a much larger capacity

than most of the CNN architectures [100, 102, 103, 104, 105, 106, 107, 109, 110, 108]

explored for jet tagging so far, so evaluating its performance on jet tagging will shed

light on whether architectures for generic image classification are also applicable to

jet images.

• P-CNN: The P-CNN is a 14-layer 1D CNN using particle sequences as inputs.

It is essentially the DeepAK8 architecture described in Section 5, but using only

input features available in the top tagging dataset (i.e., only the 4-momenta of

the particle, without properties of the tracks or secondary vertices). The model is

trained on the top tagging dataset from scratch.

• PFN: The Particle Flow Network (PFN) [126] is a recent architecture for jet tag-

ging which also treats a jet as an unordered set of particles, same as the particle

cloud approach in this work. However, the network is based on the Deep Sets

framework [127], which uses global symmetric functions and does not exploit local

neighborhood information explicitly as is done with the EdgeConv operation. Since

the performance of PFN on this top tagging dataset has already been reported in

[126], we did not re-implement it but just include the results for comparison.

The results are summarized in Table 6.2 and also shown in Figure 6.2a in terms of

receiver operating characteristic (ROC) curves. A number of metrics are used to evaluate

the performance, including the accuracy, the area under the ROC curve (AUC), and the

background rejection (1/εb, i.e., the reciprocal of the background misidentification rate)

at a certain signal efficiency (εs) of 50% or 30%. The background rejection metric is par-

ticularly relevant to physics analysis at the LHC, as it is directly related to the expected

contribution of background, and is commonly used to select the best jet tagging algo-

rithm. The ParticleNet model achieves state-of-the-art performance on the top tagging
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Accuracy AUC 1/εb at εs = 50% 1/εb at εs = 30%

ResNeXt-50 0.936 0.9837 302± 5 1147± 58

P-CNN 0.930 0.9803 201± 4 759± 24

PFN - 0.9819 247± 3 888± 17

ParticleNet-Lite 0.937 0.9844 325± 5 1262± 49

ParticleNet 0.940 0.9858 397± 7 1615± 93

Table 6.2: Performance comparison on the top tagging benchmark dataset. The Par-
ticleNet, ParticleNet-Lite, P-CNN and ResNeXt-50 models are trained on the top
tagging dataset starting from randomly initialized weights. A total of 9 indepen-
dent trainings are performed. The table shows the result from the median-accuracy
training, and the standard deviation of the 9 trainings is quoted as the uncertainty.
Uncertainty on the accuracy and AUC are negligible and therefore omitted. The per-
formance of PFN on this dataset is reported in [126], and the uncertainty corresponds
to the spread in 10 trainings.

benchmark dataset and improves over previous methods significantly. Its background

rejection power at 30% signal efficiency is roughly 1.8 (2.1) times as good as PFN (P-

CNN), and about 40% better than ResNeXt-50. Even the ParticleNet-Lite model, with

significantly reduced complexity, outperforms all the previous models, achieving about

10% improvement with respect to ResNeXt-50. The large performance improvement of

the ParticleNet architecture over the PFN architecture is likely due to better exploitation

of the local neighborhood information with the EdgeConv operation.

6.3.2 Quark-Gluon Tagging

Another important jet tagging task is quark-gluon tagging, i.e., discriminating jets

initiated by quarks and by gluons. The quark-gluon tagging dataset from [126] is used to

evaluate the performance of the ParticleNet architecture on this task. The signal (quark)

and background (gluon) jets are generated with Pythia8 using the Z(→ νν) + (u, d, s)

and Z(→ νν)+ g processes, respectively. No detector simulation is performed. The final

state non-neutrino particles are clustered into jets using the anti-kT algorithm [40] with

R = 0.4. Only jets with transverse momentum pT ∈ [500, 550] and rapidity |y| < 2 are
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Figure 6.2: Performance comparison in terms of ROC curves on (a) the top tagging
benchmark dataset and (b) the quark-gluon tagging benchmark dataset.

considered. This dataset consists of 2 million jets in total, half signal and half background.

We follow the recommended splitting of 1.6M/200k/200k for training, validation and

testing in the development of the ParticleNet model on this dataset.

One important difference of the quark-gluon tagging dataset is that it includes not

only the four-momentum, but also the type of each particle (i.e., electron, photon, pion,

etc.). Such particle identification (PID) information can be quite helpful for jet tagging.

Therefore, we include this information in the ParticleNet model and compare it with the

baseline version using only the kinematic information. The PID information is included in

an experimentally realistic way by using only five particle types (electron, muon, charged

hadron, neutral hadron and photon), as well as the electric charge, as inputs. These

6 additional variables, together with the 7 kinematic variables, form the input feature

vector of each particle for models with PID information, as shown in Table 6.1.

Table 6.2 compares the performance of the ParticleNet model with a number of alter-

native models introduced in Section 6.3.1. Model variants with and without PID inputs
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Accuracy AUC 1/εb at εs = 50% 1/εb at εs = 30%

ResNeXt-50 0.821 0.8960 30.9 80.8
P-CNN 0.818 0.8915 31.0 82.3

PFN - 0.8911 30.8± 0.4 -
ParticleNet-Lite 0.826 0.8993 32.8 84.6

ParticleNet 0.828 0.9014 33.7 85.4
P-CNN (w/ PID) 0.827 0.9002 34.7 91.0
PFN-Ex (w/ PID) - 0.9005 34.7± 0.4 -

ParticleNet-Lite (w/ PID) 0.835 0.9079 37.1 94.5
ParticleNet (w/ PID) 0.840 0.9116 39.8± 0.2 98.6± 1.3

Table 6.3: Performance comparison on the quark-gluon tagging benchmark dataset.
The ParticleNet, ParticleNet-Lite, P-CNN and ResNeXt-50 models are trained on
the quark-gluon tagging dataset starting from randomly initialized weights. A total
of 9 independent trainings are performed for the ParticleNet model, and the table
shows the result from the median-accuracy training, with the standard deviation of
the 9 trainings quoted as the uncertainty. Due to limited computational resources,
the training of other models is performed only once, but the uncertainty due to ran-
dom weight initialization is expected to be fairly small. The performance of PFN on
this dataset is reported in [126], and the uncertainty corresponds to the spread in ten
trainings. Note that a number of PFN models with different levels of PID informa-
tion are investigated in [126], and “PFN-Ex”, also using experimentally realistic PID
information, is shown here for comparison.

are also compared. Note that for the ResNeXt-50 model, only the version without PID

inputs is presented, as it is based on jet images that cannot incorporate PID information

straightforwardly. The corresponding ROC curves are shown in Figure 6.2b. Overall, the

addition of PID inputs has a large impact on the performance, increasing the background

rejection power by 10–15% compared to the same model without using PID information.

This clearly demonstrates the advantage of particle-based jet representations, including

the particle cloud representation, as they can easily integrate any additional information

for each particle. The best performance is obtained by the ParticleNet model with PID

inputs, achieving almost 15% improvement on the background rejection power compared

to the PFN-Ex and P-CNN models. The ParticleNet-Lite model achieves the second-best

performance and shows about 7% improvement with respect to the PFN-Ex and P-CNN

models.
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6.4 Model Complexity

Another aspect of machine learning models is the complexity, e.g., the number of

parameters and the computational cost. Table 6.4 compares the number of parameters

and the computational cost of all the models used in the top tagging task in Section

6.3.1. The computational cost is evaluated using the inference time per object, which

is a more relevant metric than the training time for real-life applications of machine

learning models. The inference time of each model is measured on both the CPU and

the GPU, using the implementations with Apache MXNet. For the CPU, to mimic the

event processing workflow typically used in collider experiments, a batch size of 1 is used,

and the inference is performed in single-thread mode. For the GPU, a batch size of 100

is used instead, as the full power of the GPU cannot be revealed with a very small batch

size (e.g., 1) due to the overhead in data transfer between the CPU and the GPU. The

ParticleNet model achieves the best classification performance at the cost of speed, being

more than an order of magnitude slower than the PFN and the P-CNN models, but still,

it is not prohibitively slow even on the CPU. In addition, the current implementation

of the EdgeConv operation used in the ParticleNet model is not as optimized as the

regular convolution operation. Therefore, further speed-up is expected from an optimized

implementation of EdgeConv. On the other hand, the ParticleNet-Lite model provides

a good balance between speed and performance, showing more than 40% improvement

in performance while being only a few times slower than the PFN and P-CNN models.

Notably, it is also the most economical model, outperforming all previous approaches with

only 26k parameters, thanks to the effective exploitation of the permutation symmetry

of the particle clouds. Overall, PFN is the fastest model on both the CPU and the GPU,

making it a suitable choice for extremely time critical tasks.
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Parameters Time (CPU) [ms] Time (GPU) [ms] 1/εb at εs = 30%

ResNeXt-50 1.46M 7.4 0.22 1147± 58

P-CNN 348k 1.6 0.020 759± 24

PFN 82k 0.8 0.018 888± 17

ParticleNet-Lite 26k 2.4 0.084 1262± 49

ParticleNet 366k 23 0.92 1615± 93

Table 6.4: Number of parameters, inference time per object, and background rejection
of different models. The CPU inference time is measured on an Intel Core i7-6850K
CPU with a single thread using a batch size of 1. The GPU inference time is measured
on a Nvidia GTX 1080 Ti GPU using a batch size of 100.

6.5 Conclusion

In this chapter, we presented a new approach for machine learning on jets. The core

of this approach is to treat jets as particle clouds, i.e., unordered sets of particles. Based

on this particle cloud representation, we introduce ParticleNet, a network architecture

tailored to jet tagging tasks. The ParticleNet architecture achieves state-of-the-art per-

formance on top tagging and quark-gluon tagging benchmarks and improves significantly

over existing methods.

While we only demonstrate the power of the particle cloud representation in jet

tagging tasks, we think that it is a natural and generic way of representing jets (and

even the whole collision event) and can be applied to a broad range of particle physics

problems. Applications of the particle cloud approach to, e.g., pileup identification, jet

grooming, jet energy calibration, etc., would be particularly interesting and worth further

investigation.
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Part III

Search for Lorentz-Boosted Higgs

Bosons Decaying to Charm Quarks
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The search for the decay of the Higgs boson to charm quarks is crucial in under-

standing the structure of Yukawa couplings, as it provides a direct probe of the Higgs

coupling to second-generation quarks. However, such a search is extremely challenging

at the LHC due to the overwhelming jet production background and requires dedicated

methods for object reconstruction, e.g., the identification of the charm quarks. This

part of the thesis presents a search for the Higgs boson decaying to charm quarks using

proton-proton collision data collected by the CMS experiment in 2016. A new approach

to reconstruct the Higgs boson is developed, in which both quarks from the Higgs decay

are reconstructed with a single large-radius jet and the DNN-based DeepAK8 algorithm,

presented in Chapter 5, is adapted to identify the charm quark pair. This new approach

significantly improves the signal purity, leading to highly competitive results.

This part is organized as follows: In Chapter 7, we briefly discuss the motivation

for this search. Chapter 8 presents the strategy and the full procedure of this search,

including a description of the data and simulated samples, the definition of the physics

objects, reconstruction of the Higgs boson, the event selection, the background estimation

and the signal extraction method, as well as the effects of systematic uncertainties. The

results of the search are summarized in Chapter 9.

115



Chapter 7

Introduction and Motivation

The discovery of the Higgs boson [136, 137] at the LHC has opened a new chapter in

the history of particle physics. Investigating the properties of the discovered Higgs boson

has become one of the top priorities of the LHC physics program, as every measurement

has to be carefully compared with the SM prediction, and any deviation, if observed,

would be a clear sign of new physics. So far, the newly discovered Higgs boson has

been extensively studied at the LHC using proton-proton collision data at
√
s = 7, 8,

and 13 TeV. The mass of the Higgs boson is precisely measured using the H → γγ

and H → ZZ∗ → 4ℓ channels, yield a result of mH = 125.26 ± 0.21GeV by the CMS

experiment [138], and a compatible result of mH = 124.97 ± 0.24GeV by the ATLAS

experiment [139]. The couplings of the Higgs boson to vector bosons has been firmly

established already in Run 1 of the LHC by the observation of the Higgs boson decaying

to γγ , ZZ and WW [140, 141, 142, 143, 144, 145, 146]. As for the Yukawa couplings,

so far only couplings to the third-generation fermions have been directly observed. The

decay to τ leptons, H → τ+τ−, was first observed using a combination of the ATLAS

and CMS data in Run 1 [147]. Direct evidence of the Higgs coupling to the top quark is

established by the observation of the ttH production by the CMS [148] and the ATLAS
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[149] Collaborations using more data collected in Run 2. Most recently, the decay of the

Higgs boson to bottom quarks, H → bb , has also been observed [150, 151]. So far, all

measured properties are consistent with the expectations of the standard model within

measurement uncertainties.

Measurement of the Higgs couplings to second-generation fermions is clearly the next

milestone. However, due to the much smaller couplings compared to third generation

fermions, such measurements are extremely challenging. Searches for the decay of the

Higgs boson to a pair of muons, H → µ+µ−, have been carried out by both the ATLAS

and CMS Collaborations. Using Run 2 data corresponding to an integrated luminosity

of 139 fb−1 (35.9 fb−1), the ATLAS [152] (CMS [153]) search reported an observed upper

limit on the cross section times branching fraction, σ(pp → H) × B(H → µ+µ−), of

1.7 (3.0) times of the SM expectation at 95% confidence level (CL). Substantially more

data is needed to establish evidence for the muon Yukawa coupling. On the other hand,

couplings to second-generation quarks are even more difficult to probe at the LHC due

to the overwhelming background. The possibility of probing the Yukawa coupling to the

charm quark (yc) from a global fit to the Higgs data has been discussed in Refs. [154, 155],

and an upper bound on yc/y
SM
c of 6.2 at 95% CL is obtained in [155]. However, some

assumptions are made in this estimation, particularly, the LEP constraints [156] are

taken into account which carry some model dependence. Another approach to probe

the charm quark Yukawa coupling is via the decays of the Higgs boson to a final state

with charmonium, H → J/ψγ [157]. Searches for H → J/ψγ have been performed by the

ATLAS and CMS Collaborations [158, 159, 160, 161], and the current upper limit on

σ(pp → H)×B(H → J/ψγ) is around 100–200 times the SM expectation at 95% CL. The

search for the decay of the Higgs boson to a charm quark-antiquark pair, H → cc , provides

the most direct probe of the charm quark Yukawa coupling, but the reconstruction and

identification of the charms quarks poses significant experimental challenges. A direct
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search for H → cc in the ZH(Z → ℓℓ) channel (ℓ = e, µ) has been performed by the

ATLAS Collaboration [162]. Using 36.1 fb−1 of data, an observed (expected) upper limit

on σ(pp → ZH) × B(H → cc) at 95% CL of 110 (150) times the SM expectation is

obtained.

Recently, the CMS Collaboration has carried out the first direct search for H → cc

[163], using proton-proton collision data collected in 2016 corresponding to an integrated

luminosity of 35.9 fb−1. The search targets the Higgs boson produced in association with

a vector (V) boson, i.e., a W or Z boson. The V boson is required to decay into leptons,

i.e., W → ℓν, Z → ℓℓ or Z → νν. The presence of a charged lepton, or large pmiss
T from

the neutrinos, provides a clear signature to trigger the event efficiently and suppress the

overwhelming QCD multijet background significantly. To fully explore the kinematic

topology of the H → cc decay, two approaches for the reconstruction of the H → cc

candidate are adopted. The traditional “resolved-jet” approach uses two well-separated

and individually resolved jets to reconstructed the Higgs candidate. The “merged-jet”

approach reconstructs both charm quarks from the Higgs decay with a single, large-radius

jet. The former approach works well for Higgs candidates with lower pT, while the latter

performs better at higher pT, where the two quarks from the Higgs decay become more

collimated. The merged-jet approach is presented in detail in this thesis.
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Chapter 8

Analysis Method

8.1 Data and Simulated Events

This analysis uses proton-proton collision data collected by the CMS detector during

the 2016 run of the LHC at a center-of-mass energy of 13 TeV, corresponding to an

integrated luminosity of 35.9 fb−1. Events in the 0-lepton channel are collected with a

pmiss
T trigger, while in the 1- and 2-lepton channels, events are collected with a trigger

that requires the presence of an isolated electron or muon.

Simulated events are also used in this analysis to study the characteristics of signal

and background processes and design the overall search strategy. The quark-induced

ZH and WH signal processes are generated at next-to-leading order (NLO) accuracy in

QCD using the powheg v2 [164, 165, 166] event generator extended with the MiNLO

procedure [167, 168], while the gluon-induced ZH process is generated at leading order

(LO) accuracy with powheg v2. The mass of the Higgs boson is set to 125GeV in all

signal samples. The production cross sections of the signal processes are corrected as a

function of pT(V) to next-to-next-to-leading order (NNLO) QCD + NLO EW accuracy

combining the vhnnlo [169, 170, 171, 172], vh@nnlo [173, 174], and hawk v2.0 [175]
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generators as described in Ref. [15]. The cross sections of the signal processes are

summarized in Table 8.1.

Process Cross section [pb]
qq → W+(→ ℓ+ν)H 0.2828
qq → W−(→ ℓ−ν)H 0.1795
qq → Z(→ ℓℓ)H 0.0770
gg → Z(→ ℓℓ)H 0.0124
qq → Z(→ νν)H 0.1530
gg → Z(→ νν)H 0.0246

Table 8.1: List of the simulated VH signal samples and the corresponding cross sections.

The V+jets background samples are generated using MadGraph5_amc@nlo v2.4.2 [81]

at NLO QCD accuracy with up to two additional partons using the FxFx merging

scheme [176]. The production cross sections are scaled to the NNLO prediction ob-

tained from fewz 3.1 [177]. Events are reweighted as a function of pT(V) to account for

NLO EW corrections [178].

The tt process [179] is generated at NLO accuracy with powheg v2. The production

cross sections for the tt samples are scaled to the NNLO prediction with the next-to-next-

to-leading-log (NNLL) soft-gluon resummation obtained from Top++ v2.0 [180]. The

tt samples are reweighted as a function of top quark pT to account for known differences

between data and simulation [181].

The single-top process in the t-channel [182, 183] (tW-channel [184]) is generated

at NLO accuracy with powheg v2 (v1), while the s-channel single-top process is gen-

erated with MadGraph5_amc@nlo v2.4.2. The WW process [185] is generated at

NLO accuracy with powheg v2. The WZ and ZZ samples are generated with Mad-

Graph5_amc@nlo v2.4.2 at NLO with the FxFx merging scheme. The same generator

is also used at LO accuracy with the MLM matching scheme [186] to generate a sample

of QCD multijet events.
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The NNPDF3.0 [83] parton distribution functions (PDF) are used to produce all

simulated samples, with the NLO (LO) PDF set used for the NLO (LO) samples. In

all cases, parton showering and hadronization are simulated in pythia v8.212 [82]. A

GEANT4-based model [86] is used to simulate the response of the CMS detector. For all

samples, additional pp interactions in the same or neighboring bunch crossings (referred

to as “pileup”) are simulated and added to the hard-scattering process. The events are

then reweighted to match the pileup profile observed in the collected data.

8.2 Object Selection

8.2.1 Charged Leptons

In this analysis, two levels of identification criteria are defined for charged leptons

(electrons and muons). The baseline criterion is used to count the lepton multiplicity

and categorize events into the mutually exclusive 0-, 1-, and 2-lepton channels, while

more stringent requirements are imposed in the 1- and 2-lepton channels to select high-

purity samples of isolated leptons. In this section, we introduce the baseline criterion,

and the channel-specific requirements are described in Section 8.4.1 and 8.4.2.

Electrons

Reconstructed electron candidates are required to have pT > 7GeV and |η| < 2.4, and

have a transverse (longitudinal) impact parameter |dxy| < 0.05 cm (|dz| < 0.2 cm) with

respect to the primary vertex. Additional identification criteria based on a multivariate

method are imposed to suppress background, using a working point that corresponds to

a signal efficiency of ∼ 90% for prompt electrons. In addition, the electrons are required

to be isolated from any additional nearby activity in the detector. The PF isolation [187]
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is used, which is defined as

IsoPF =
∑

pcharged
T +max

(
0,
∑

pneutral hadron
T +

∑
pγ
T − pPU

T

)
, (8.1)

where the sums run over charged PF candidates, neutral hadrons and photons, within a

cone of ∆R = 0.3 around the electron direction. To avoid contamination due to pileup,

only charged PF candidates originating from the primary vertex are included in the sum,

and contribution from neural particles from pileup are corrected by the pPU
T term, which

is estimated from the event pileup energy density multiplied by an “effective” area that

takes into account the dependence on pseudorapidity. In this analysis, electron candidates

are required to have a relative isolation, defined as

Isorel =
IsoPF
pT

, (8.2)

smaller than 0.4.

Muons

Reconstructed muon candidates are required to have pT > 5GeV, |η| < 2.4, |dxy| <

0.5 cm and |dz| < 1.0 cm. In addition, we require the muon candidates to pass the loose

muon identification as described in [95]. Similar to electrons, the muons are also required

to be isolated. The PF isolation (eq. (8.1)) computation for muons is slightly different

from the electrons – it uses a larger cone of ∆R = 0.4, and the pPU
T term is estimated

as half of the sum of charged hadron deposits originating from pileup vertices. In this

analysis, muon candidates are required to have a relative isolation Isorel < 0.4.
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8.2.2 Jets

Two types of jets are used in this analysis and are described in this section.

Large-R jets

The primary jet collection used in this analysis is obtained by clustering the PF candi-

dates with the anti-kT algorithm using a fairly large distance parameter R = 1.5. This jet

collection will be referred to as “large-R jets” in what follows. The PUPPI algorithm [43]

is used to correct for pileup. The “modified mass drop tagger” algorithm [55], also known

as the “soft drop” (SD) algorithm [56], with angular exponent β = 0, soft cutoff threshold

zcut < 0.1, and characteristic radius R0 = 1.5, is applied to remove soft and wide-angle

radiation from the jet. In the default configuration, the SD algorithm identifies two hard

subjets of the large-R jet. We use the kinematics of these two subjets to calculate the

4-momentum of the large-R jet. The jet energy scale and resolution corrections derived

for PUPPI jets clustered with R = 0.4 are applied on the subjets. The large-R jets are

required to have pT > 200GeV, |η| < 2.4 and satisfy the tight PF jet identification crite-

ria [188]. The soft drop mass (mSD), computed as the invariant mass of the two subjets,

is required to be between 50 and 200 GeV. To avoid misidentifying leptons as jets, any

large-R jets overlapping with an electron or muon with ∆R(large-R jet, ℓ) < 1.5 are not

considered in this analysis.

Small-R jets

An additional jet collection is used in the event selection. These jets, which will be

referred to as “small-R jets”, are formed by clustering PF candidates using the anti-kT

algorithm with R = 0.4. Charged PF candidates associated with pileup vertices are

removed from the jet constituents using the charged hadron subtraction algorithm [189].
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Figure 8.1: Left: The pT(V) spectrum in the VH signal (blue line) and in the V+jets
background (red line) events. Right: Efficiency for both quarks from the Higgs decay
to be contained in a single jet clustered with different R (R = 0.8 or R = 1.5) as a
function of pT(H). For comparison, the corresponding efficiency when the two quarks
from the Higgs decay are resolved into two jets clustered with R = 0.4 is also shown.

The jet energy scale and resolution are corrected following the method in [42]. The

small-R jets are required to have pT > 25GeV and |η| < 2.4, and satisfy the tight

PF jet identification criteria [188]. To avoid misidentifying leptons as jets, small-R jets

overlapping with an electron or muon with ∆R(small-R jet, ℓ) < 0.4 are discarded.

8.3 Higgs Boson Reconstruction

Traditionally, when a Higgs boson decays to a pair of quarks, the Higgs boson is

reconstructed using two separate small-R jets (“resolved jets”), each corresponding to

one quark from the decay. However, in this analysis, the Higgs boson is reconstructed

with a single, large-R jet (“merged jet”). This approach targets mainly the Lorentz-

boosted Higgs bosons and has a number of advantages over the resolved-jet approach.

Firstly, the boosted regime has better signal purity, though at the cost of a significantly

lower signal acceptance. This is demonstrated in Figure 8.1 (left) which shows that the
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pT(V) spectrum in the VH signal is much harder than that in the V+jets background.

Therefore, the boosted regime (e.g., pT(V) ≳ 200GeV) provides a much higher reduction

of background events than signal events. Secondly, the use of a large-R jet is capable of

capturing both quarks from the Higgs decay (and potentially also the final state radiation

emitted by the quarks) in one jet, which allows for better exploitation of the correlation

between the two quarks, and helps avoid combinatorial backgrounds that can arise in the

resolved-jet approach. A more detailed discussion on the advantages of the merged-jet

approach can be found in the literature (e.g., Refs. [190, 191]).

On the other hand, the acceptance of both the VH signal and the V+jets background

drops very rapidly as a function of pT(V). No more than ∼5% of the signal events survive

a selection of pT(V) ≳ 200GeV. Therefore, it is crucial to strike a balance between signal

purity and acceptance. In the case of the merged-jet approach, this can be achieved by

choosing a suitable distance parameter R of the jet clustering algorithm. In general, when

a particle (e.g., the Higgs boson) with a high Lorentz-boost undergoes a two-body decay,

the angular separation between the two decay products is approximately ∆R ∼ 2m/pT.

For a Higgs boson with pT(H) ≃ 200GeV, this gives ∆R ≃ 1.25. Figure 8.1 (right)

displays the efficiency for both quarks from the Higgs decay to be contained in a single

jet clustered with the anti-kT algorithm using different distance parameters (R = 0.8 or

R = 1.5), as a function of pT(H). For comparison, we also include the corresponding

efficiency when the two quarks from the Higgs decay can be resolved into two jets clustered

with the anti-kT algorithm using R = 0.4. As expected, in the low pT(H) regime (pT(H) ≲

100GeV), the Higgs boson can only be reconstructed with two resolved jets. However, as

pT(H) increases, the merged-jet approach shows higher efficiency, getting comparable or

even better than the resolved-jet approach at pT(H) ≃ 200 (400)GeV for jets clustered

with R = 1.5 (0.8). Based on these observations, jets clustered with R = 1.5 are used in

this analysis to reconstruct the Higgs boson.
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Figure 8.2: Illustration of the characteristics of a c-jet: the presence of displaced
tracks, secondary vertices and charged leptons. Image from Ref. [79].

One of the biggest challenges for this analysis is to efficiently reconstruct and identify

the charm quark pair from the Higgs decay, while rejecting background jets arising from

light quarks (u, d, s) and gluons, as well as from b quarks. The identification of jets

arising from c quarks (“c-jets”) mainly relies on the long lifetime (≲ 1 ps) of the hadrons

containing c quarks, which leads to typical displacements of a few mm to one cm, depend-

ing on their momenta. These c-hadrons leave traces in the detector such as displaced

tracks, from which a secondary vertex may be reconstructed. In addition, a muon or

electron is present in the decay chain of a c-hadron in about 10% of the cases, which

can also be exploited for separating c-jets from light-flavor jets. These characteristics of

a c-jet are illustrated in Figure 8.2. However, the identification of c-jets is particularly

challenging, as these characteristics of c-jets are also present in b-jets, and the proper-

ties of the c-jets are actually in between light-flavor jets and b-jets. For example, one

of the most important handles for identifying c-jets, i.e., the lifetime of the c-hadrons,

though much longer than the light-flavor hadrons, is close to that of b-hadrons (≃ 1.5 ps).

This makes it particularly challenging to identify c-jets efficiently while rejecting both

light-jets and b-jets simultaneously.

In this analysis, advanced machine learning techniques are exploited to tackle this

challenge. Specifically, we attempt to identify both charm quarks from the Higgs decay
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simultaneously using a large-R jet. This approach has the advantage of being able to

exploit the correlation between the decay products of the Higgs boson, thereby improv-

ing the performance. The DNN-based identification algorithm, DeepAK8, described in

detail in Section 5, is adapted to the identification of charm quark pairs by performing a

dedicated training with R = 1.5 jets. The mass-decorrelated version is used in this anal-

ysis. This adapted version of the DeepAK8 algorithm will be referred to as “DeepAK15”

hereafter.

Due to the multi-class nature of the DeepAK15 algorithm (see Section 5.1 for all the

output classes), a number of options exist for how to use it for identifying charm quark

pairs. The most obvious one is,

score(H → cc) + score(Z → cc), (8.3)

which considers H → cc and Z → cc as signal and all the other classes as background,

including not only jets from QCD radiation, but also e.g., jets from hadronic decays

of top quarks, W bosons and Z bosons (except for Z → cc). This definition provides

better sensitivity in the 1-lepton channel where tt events constitute a large fraction of the

background, due to its explicit suppression of jets arising from real hadronic top quarks

or W bosons. Another option is,

score(H → cc) + score(Z → cc)
score(H → cc) + score(Z → cc) + score(H → bb) + score(Z → bb) + score(QCD)

,

(8.4)

which considers only jets from QCD radiation and from b quark pairs (H → bb and

Z → bb) as background and “renormalizes” the scores to reflect that. This definition

does not attempt to suppress jets from top quarks or W bosons explicitly but rejects jets
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from b quark pairs. Similarly, a third way is,

score(H → cc) + score(Z → cc)
score(H → cc) + score(Z → cc) + score(QCD)

, (8.5)

which essentially considers only jets from QCD radiation as background, and ignores the

outputs for other classes. Overall, the definition in eq. (8.5) results in the best sensitivity,

especially in the 2-lepton channel where the background is predominantly Z+jets with

little contribution from tt . The definition in eq. (8.3) performs much worse in the 2-

lepton channel, as the suppression of top and W comes at the cost of signal efficiency,

especially the W → cq decay which is very similar to the Z(H) → cc decay. On the other

hand, the definition in eq. (8.4) provides a much better suppression of background jets

arising from b-quark pairs, especially the largely irreducible H → bb background, but

hurts the Z(H) → cc efficiency due to the similarity between b and c quarks. In the end,

since light-flavor jets constitute a much larger fraction of the background, a much tighter

selection against b-quark pairs does not result in better overall sensitivity. Therefore,

the cc-tagging discriminant as defined in eq. (8.5) is used throughout this analysis.

The performance of DeepAK15 for identifying a pair of c quarks using the cc-tagging

discriminant defined in eq. (8.5) is displayed in Figure 8.3 in terms of receiver operating

characteristic (ROC) curves, for large-R jets with pT > 200GeV and mSD > 50GeV.

Figure 8.3 (left) shows the efficiency of identifying a c quark pair from the Higgs decay

and the misidentification rate for jets stemming from QCD radiation in the V+jets

process. Three working points are defined with 1%, 2.5% and 5% misidentification rates,

and the corresponding efficiencies for identifying a c quark pair are ≃ 23%, ≃ 35%, and

≃ 46%. Another important aspect is the misidentification of jets arising from a pair of

b quarks as the signal. The corresponding ROC curve is displayed in Figure 8.3 (right).

For the three working points defined above, the corresponding misidentification rates for
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Figure 8.3: The performance of DeepAK15 for identifying a cc pair using the
cc-tagging discriminant defined in eq. (8.5) in terms of receiver operating charac-
teristic (ROC) curves, for large-R jets with pT > 200GeV and mSD > 50GeV. Left:
the efficiency of correctly identifying a pair of c quarks from Higgs decay vs the effi-
ciency of misidentifying jets from the V+jets process; Right: the efficiency of correctly
identifying a pair of c quarks from Higgs decay vs the efficiency of misidentifying a
pair of b quarks from Higgs decay.

Category cc-tagging discriminant
High purity (HP) > 0.91

Medium purity (MP) (0.83, 0.91]

Low purity (LP) (0.72, 0.83]

Table 8.2: Definition of the three mutually exclusive categories based on the
cc-tagging discriminant.

H → bb are ≃ 9%, ≃ 17%, and ≃ 27%. To improve the sensitivity of this analysis,

three mutually exclusive categories are defined based on the three working points, and

the requirements on the cc-tagging discriminant are listed in Table 8.2.

The DeepAK15 cc-tagging discriminant is calibrated using data and simulated sam-

ples. Ideally, a sample with a high purity of H → cc events should be used to measure

the efficiency of the DeepAK15 cc-tagging discriminant and correct for the difference

between data and simulated samples. However, such a high purity H → cc sample is im-

possible to obtain with the current LHC data. Therefore, an alternative sample enriched
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in jets arising from gluon splitting to cc is used. In addition, we require the presence

of at least one secondary vertex in each of the two subjets of the large-R jet, to make

the selected g → cc jets better resemble the signal jets, and also to enhance the overall

purity of the g → cc jets in this sample. Using a template fit method, pT-dependent

simulation-to-data scale factors are extracted from this sample. The typical values of the

scale factors range from 0.85 to 1.3, with a relative uncertainty of about 15–20%. These

scale factors are applied only to the simulated VH(H → cc) (and VZ(Z → cc)) events

as will be explained later in Section 8.5.

8.4 Event Selection

A typical VH signal event has a clear signature of a vector boson (W or Z) recoiling

against a Higgs boson, with little additional activity in the event. In this analysis, we

exploit the leptonic decays of the vector boson, i.e., W → ℓν, Z → ℓℓ or Z → νν, where ℓ

is an electron or muon. By selecting events with one or more charged leptons, or with high

missing transverse momentum originating from the neutrinos, the large QCD multijet

background can be effectively suppressed. Three analysis channels, the 2-lepton channel,

the 1-lepton channel, and the 0-lepton channel are defined in this analysis based on the

number of identified charged leptons. The characteristics of the signal and background

processes, as well as the detailed event selection criteria, are described separately for each

channel in Sections 8.4.1 to 8.4.3. The event selection criteria are summarized in Table

8.4 in Section 8.4.4.

8.4.1 The 2-Lepton Channel

The 2-lepton channel targets ZH events with the Z boson decaying into a pair of

electrons or muons. Events are selected with at least two electrons or muons passing the
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loose lepton selection criteria described in Section 8.2.1. The leptons are further required

to be isolated, with a relative PF isolation below 0.25 (0.15) for muons (electrons). The pT

of the leptons are required to be above 20 GeV such that the trigger becomes fully efficient.

The two leptons leading in pT are required to be compatible with a Z boson decay, i.e.,

they must have opposite electric charges and the same flavor (i.e., both are muons or

electrons), and the invariant mass of the lepton pair, m(ℓℓ), must be compatible with the

mass of the Z boson, with 75 < m(ℓℓ) < 105GeV. The Z boson is then reconstructed

from these two leptons, with the four-momentum of the Z boson computed by summing

up the four-momenta of the two leptons.

Since this analysis targets the boosted regime of the VH production, only events with

pT(Z) > 200GeV are selected. The H → cc candidate is reconstructed from the large-R

jets passing the requirements described in Section 8.2.2. At pT(Z) > 200GeV, there

are typically zero or only one large-R jets in each signal or background event. Only in

very rare cases does an event have two or more large-R jets. The leading large-R jet

is chosen as the Higgs boson candidate (Hcand) in the event. Events with no large-R

jets are discarded. In VH signal events, the vector boson and the Higgs boson are

typically back-to-back. Therefore, we require the difference in azimuthal angle between

the reconstructed vector boson and the Higgs candidate, ∆ϕ(V,H), to be above 2.5

radians. To avoid double-counting, small-R jets are removed from the event if they

overlap with Hcand, i.e., satisfying ∆R(small-R jet,Hcand) < 1.5. The number of small-R

jets, denoted as Nj, is required to be less than 3 in the 2-lepton channel.

After the baseline selection, the dominant background process is Z+jets, with a small

contribution from diboson production. The tt contribution is highly suppressed due to

the requirement of pT(Z) > 200GeV. The VH(H → bb) process is a very small but

largely irreducible background.

To better distinguish the VH signal from the main backgrounds, a kinematic BDT
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Figure 8.4: Comparison of the kinematic BDT input variables between the VH signal
and the background samples in the 2-lepton channel. The VH signal is normalized
to the sum of all backgrounds. The definitions of the variables can be found in Table
8.3. For min∆η(Z, j) and min∆η(Hcand, j) variables on the bottom row, only events
with at least one additional small-R jet are shown in the plots.
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is developed. The kinematic BDT is designed using only the kinematic information of

the event, i.e., no intrinsic properties of the Hcand, like the flavor content, the mass, etc.,

of the large-R jet are included in the BDT. The goal is to design a BDT that improves

the separation between VH signal and the main backgrounds (Z+jets in the 2-lepton

channel), while remaining largely independent of the cc-tagging discriminant and the

mass of the Hcand. This is achieved by selecting only input variables that are not highly

correlated with the intrinsic properties of Hcand for the training of the BDT. The input

variables used in the kinematic BDT for the 2-lepton channel are defined in Table 8.3,

and the distribution of these variables in the VH signal and in the backgrounds after

the baseline selection (but without any requirement on the cc-tagging discriminant) are

shown in Figure 8.4.

The kinematic BDT is trained with the XGBoost [192] package. To avoid any poten-

tial bias from overfitting the training dataset, dedicated samples are used in the training

of the BDT. For the signal process, we use the VH(H → bb) signal sample instead of the

VH(H → cc) signal sample, and use only events with even event numbers in the training,

while keeping events with odd event numbers for the main analysis. As the BDT is de-

signed to be insensitive to the flavor content of the Hcand, training with the VH(H → bb)

signal sample results in no loss of performance. For the background process, only the

main background, i.e., Z+jets in the case of the 2-lepton channel is used, and we use

an alternative Z+jets sample (generated at LO QCD accuracy) for the training. In this

way, the events used in the training of the BDT are completely orthogonal to the events

used in the main analysis, thereby avoiding any potential bias from overfitting.

Figure 8.5 shows the distribution of the kinematic BDT after the baseline selection

for the VH signal and the backgrounds. A good separation is observed. A cut at 0.5

is applied on the output of the kinematic BDT to categorize events, with events having

high BDT outputs (above 0.5) entering the signal region, while the other events enter
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Figure 8.5: Comparison of the kinematic BDT output distribution between the VH
signal and the background samples in the 2-lepton channel. The VH signal is normal-
ized to the sum of all backgrounds.

the control region. We do not use the detailed shape of the BDT output in the analysis

in order to be robust against the details in the modeling of the event kinematics in the

simulated samples.
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Figure 8.6: Comparison of the kinematic BDT output distribution before and after
the requirement on the cc-tagging discriminant.

Figure 8.6 shows the distributions of the kinematic BDT for the VH(H → cc) signal

and the V+jets background before and after selections on the cc-tagging discriminant.

The shapes of the BDT are very similar, confirming that the kinematic BDT is indeed
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Figure 8.7: Comparison of the cc-tagging discriminant (left) and the soft-drop mass
shapes (right) between events with high (>0.5) BDT outputs and low (<0.5) BDT
outputs for the Z+jets sample in the 2-lepton channel.

independent of the cc-tagging discriminant. This is also verified in Figure 8.7, which

shows that the distribution of the cc-tagging discriminant and the soft-drop mass of the

Hcand are largely invariant with respect to the selection on the kinematic BDT.
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Figure 8.8: Comparison of the cc-tagging discriminant between the VH(H → cc)
signal and the backgrounds for events with high kinematic BDT output scores.

After the selection based on the kinematic BDT, events are required to pass the cc-

tagging requirement. The distribution of the cc-tagging discriminant is shown in Figure

8.8 for signal and background events in the high BDT region. The cc-tagging discriminant
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Figure 8.9: Comparison of the soft-drop mass of the Hcand between the VH(H → cc)
signal and the backgrounds for events with high kinematic BDT output scores for the
HP (left), MP (middle) and LP (right) categories in the 2-lepton channel. Top: with
backgrounds stacked and the VH(H → cc) and VH(H → bb) processes normalized
to the sum of all backgrounds; Bottom: shape comparison between the VH(H → cc)
signal and the various background processes, where the error bars correspond to the
uncertainties due to limited size of the simulated samples.
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shows powerful separation power between H → cc signal and Z+jets background, even

after the selection on the BDT. Events are categorized into three cc-tagging categories

as defined in Section 8.3. Figure 8.9 displays the distribution of the soft-drop mass

of the Hcand for events with high kinematic BDT output scores and passing the cc-

tagging requirement for the three categories. Since both the kinematic BDT and the

cc-tagging discriminant are designed to be independent of the mass of the large-R jet,

the VH(H → cc) signal process and the various background processes show distinct mass

spectra, therefore enabling us to extract the VH(H → cc) signal by fitting the soft-drop

mass of the Hcand.

8.4.2 The 1-Lepton Channel

The 1-lepton channel targets WH events where the W bosons decay leptonically.

Events are selected with exactly one electron or muon passing the loose lepton definition

described in Section 8.2.1. The selected lepton is required to pass a tighter identification

and isolation criteria to reject non-prompt leptons from the QCD multijet background

more effectively. The pT of the muon (electron) is required to be above 25 (30) GeV

to ensure that the single-lepton trigger is almost 100% efficient. The W boson pT is

reconstructed as the vector sum of the charged lepton momentum and p⃗miss
T . The event

configuration is required to be compatible with the leptonic decay of a high-pT W boson,

with the azimuthal separation between p⃗miss
T and the charged lepton ∆ϕ(p⃗miss

T , ℓ) < 1.5.

The Hcand is reconstructed from the large-R jets in the same way as in the 2-lepton

channel. Small-R jets overlapping with Hcand are again removed from the events. The

number of small-R jets after removing the overlaps is required to be less than 2 in the

1-lepton channel to suppress the contribution from the tt process.

As is done in the 2-lepton channel, a kinematic BDT is also developed for the 1-
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Figure 8.10: Comparison of the kinematic BDT input variables between the VH signal
and the background samples in the 1-lepton channel. The VH signal is normalized
to the sum of all backgrounds. The definitions of the variables can be found in Table
8.3. For min∆η(ℓ, j) and min∆η(Hcand, j) variables on the bottom row, only events
with at least one additional small-R jet are shown in the plots.
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lepton channel to reject the main backgrounds, which are W+jets and tt . The same

design philosophy of being independent of the intrinsic properties of Hcand is followed,

as well as the same training strategy of using fully orthogonal samples in the training of

the BDT. The input variables used in the kinematic BDT for the 1-lepton channel are

defined in Table 8.3, and the distributions of these variables in the VH signal and in the

backgrounds are shown in Figure 8.10.
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Figure 8.11: Comparison of the kinematic BDT output distribution between the VH
signal and the background samples in the 1-lepton channel. The VH signal is normal-
ized to the sum of all backgrounds.

Figure 8.11 shows the distribution of the kinematic BDT after the baseline selection

for the VH signal and the backgrounds. A good separation is observed. A cut at 0.5

is applied on the output of the kinematic BDT to categorize events, with events having

high BDT outputs (above 0.5) entering the signal region, while the other events enter

the control region.

As in the case of the 2-lepton channel, we also compare the shapes of the kinematic

BDT before and after selections on the cc-tagging discriminant as shown in Figure 8.12

to check that the kinematic BDT is indeed independent of the cc-tagging discriminant.

This is also verified in Figure 8.13, which shows that the distribution of the cc-tagging

discriminant and the soft-drop mass of the Hcand is largely unchanged with respect to
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Figure 8.12: Comparison of the kinematic BDT output distribution before and after
the requirement on the cc-tagging discriminant.
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Figure 8.13: Comparison of the cc-tagging discriminant (left) and the soft-drop mass
shapes (right) between events with high (>0.5) BDT outputs and low (<0.5) BDT
outputs for W+jets (top) and tt (bottom) in the 1-lepton channel.

140



Analysis Method Chapter 8

the selection on the kinematic BDT.
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Figure 8.14: Comparison of the cc-tagging discriminant between the VH(H → cc)
signal and the backgrounds for events with high kinematic BDT output scores.

After the selection based on the kinematic BDT, events are required to pass the cc-

tagging requirement. The distribution of the cc-tagging discriminant is shown in Figure

8.14 for signal and background events in the high BDT region. The cc-tagging discrimi-

nant shows powerful separation power between H → cc signal and W+jets background

which is dominated by light flavor jets. After applying the selection on the cc-tagging

discriminant, the W+jets background is highly suppressed and becomes smaller than

the tt background. Figure 8.15 displays the distribution of the soft-drop mass of the

Hcand for events with high BDT scores and passing the cc-tagging requirements for the

three cc-tagging categories. Again, since both the kinematic BDT and the cc-tagging

discriminant are designed to be independent of the large-R jet mass, the VH(H → cc)

signal process and the various background processes show distinct mass spectra.

8.4.3 The 0-Lepton Channel

The 0-lepton channel targets mainly ZH events with the Z boson decaying into a

pair of neutrinos, giving rise to large pmiss
T . WH events in which the W boson decays

141



Analysis Method Chapter 8

60 80 100 120 140 160 180 200
) [GeV]

cand
(HSDM

0

200

400

600

800

1000

1200

E
ve

nt
s

VZ(cc)
VV(other)
Single Top
tt

Z(ll)+jets
W+udsg
W+b/bb
W+c
W+cc
VH(cc)
VH(bb)
Bkg. Uncertainty

60 80 100 120 140 160 180 200
) [GeV]

cand
(HSDM

0

200

400

600

800

1000

1200

1400
E

ve
nt

s
VZ(cc)
VV(other)
Single Top
tt

Z(ll)+jets
W+udsg
W+b/bb
W+c
W+cc
VH(cc)
VH(bb)
Bkg. Uncertainty

60 80 100 120 140 160 180 200
) [GeV]

cand
(HSDM

0

200

400

600

800

1000

1200

1400

1600

1800

E
ve

nt
s

VZ(cc)
VV(other)
Single Top
tt

Z(ll)+jets
W+udsg
W+b/bb
W+c
W+cc
VH(cc)
VH(bb)
Bkg. Uncertainty

60 80 100 120 140 160 180 200
) [GeV]

cand
(HSDM

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 (
to

 1
.)

 E
ve

nt
s

VZ(cc) 

VV(other) 

 tt

W+udsg 

W+b/bb 

W+c 

W+cc 

VH(bb) 

VH(cc) 

60 80 100 120 140 160 180 200
) [GeV]

cand
(HSDM

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 (
to

 1
.)

 E
ve

nt
s

VZ(cc) 

VV(other) 

 tt

W+udsg 

W+b/bb 

W+c 

W+cc 

VH(bb) 

VH(cc) 

60 80 100 120 140 160 180 200
) [GeV]

cand
(HSDM

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 (
to

 1
.)

 E
ve

nt
s

VZ(cc) 

VV(other) 

 tt

W+udsg 

W+b/bb 

W+c 

W+cc 

VH(bb) 

VH(cc) 

Figure 8.15: Comparison of the soft-drop mass of the Hcand between the VH(H → cc)
signal and the backgrounds for events with high kinematic BDT output scores for the
HP (left), MP (middle) and LP (right) categories in the 1-lepton channel. Top: with
backgrounds stacked and the VH(H → cc) and VH(H → bb) processes normalized
to the sum of all backgrounds; Bottom: shape comparison between the VH(H → cc)
signal and the various background processes, where the error bars correspond to the
uncertainties due to limited size of the simulated samples.
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leptonically can also enter this channel when the charged lepton fails to be identified.

For the 0-lepton channel, events are selected with no electrons or muons passing the

loose lepton definition described in Section 8.2.1. The p⃗miss
T corresponds to the transverse

momentum of the vector boson in this channel.

The Hcand is reconstructed in the same way as in the 1- and 2-lepton channels. Small-R

jets overlapping with Hcand are removed from the events. The number of small-R jets

after removing the overlaps is required to be less than 2 to suppress the contribution

from the tt process, same as in the 1-lepton channel.

Similar to the 1- and 2-lepton channels, a kinematic BDT is developed following the

same approach to reject the main backgrounds (Z+jets, W+jets and tt) for the 0-lepton

channel. The input variables used in the kinematic BDT are defined in Table 8.3, and

the distribution of these variables in the VH signal and in the backgrounds are shown in

Figure 8.16.

Figure 8.17 shows the distribution of the kinematic BDT after the baseline selection

for the VH signal and the backgrounds. The separation power of the kinematic BDT is

a bit weaker in the 0-lepton channel than in the 1- and 2-lepton channels, as only the

kinematic information of the vector boson in the transverse plane is reconstructed. A cut

at 0.5 is applied on the output of the kinematic BDT to categorize events, with events

having high BDT outputs (above 0.5) entering the signal region, while the other events

entering the control region.

Figure 8.18 shows the distributions of the kinematic BDT for the VH(H → cc)

signal and different background processes before and after selections on the cc-tagging

discriminant. The shapes of the BDT are largely unaffected by the selection on the

cc-tagging discriminant, confirming that the kinematic BDT is indeed independent of

the intrinsic properties (e.g., the flavor content) of the jet. Such independence is also

demonstrated in Figure 8.19 by comparing the distribution of the cc-tagging discriminant
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Figure 8.16: Comparison of the kinematic BDT input variables between the VH signal
and the background samples in the 0-lepton channel. The VH signal is normalized to
the sum of all backgrounds. The definitions of the variables can be found in Table 8.3.
For the min∆ϕ(V, j) and min∆η(Hcand, j) variables on the bottom row, only events
with at least one additional small-R jet are shown in the plots.
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Figure 8.17: Comparison of the kinematic BDT output distribution between the VH
signal and the background samples in the 0-lepton channel. The VH signal is normal-
ized to the sum of all backgrounds.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Kinematic BDT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N
or

m
al

iz
ed

 (
to

 1
.)

 E
ve

nt
s

ZH(cc) Inclusive

ZH(cc) HP

ZH(cc) MP

ZH(cc) LP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Kinematic BDT

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 (
to

 1
.)

 E
ve

nt
s

)+jets InclusiveννZ(

)+jets HPννZ(

)+jets MPννZ(

)+jets LPννZ(

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Kinematic BDT

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 (
to

 1
.)

 E
ve

nt
s

W+jets Inclusive

W+jets HP

W+jets MP

W+jets LP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Kinematic BDT

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 (
to

 1
.)

 E
ve

nt
s

 Inclusivett

 HPtt

 MPtt

 LPtt

Figure 8.18: Comparison of the kinematic BDT output distribution before and after
the requirement on the cc-tagging discriminant.
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Figure 8.19: Comparison of the cc-tagging discriminant (left) and the soft-drop mass
shapes (right) between events with high (>0.5) BDT outputs and low (<0.5) BDT
outputs for Z+jets (top), W+jets (middle) and tt (bottom) in the 0-lepton channel.
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and the soft-drop mass of the Hcand between events with high and low BDT outputs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
cc-tagging discriminant

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

E
ve

nt
s

VZ(cc)
VV(other)
Single top
tt

W+udsg
W+b/bb
W+c
W+cc
Z+udsg
Z+b/bb
Z+c
Z+cc
VH(cc)
VH(bb)
Bkg. Uncertainty

Figure 8.20: Comparison of the cc-tagging discriminant between the VH(H → cc)
signal and the backgrounds for events with high kinematic BDT output scores.

After the selection based on the kinematic BDT, events are required to pass the cc-

tagging requirement. The distribution of the cc-tagging discriminant is shown in Figure

8.20 for signal and background events in the high BDT region. The cc-tagging discrimi-

nant shows powerful separation power between H → cc signal and V+jets background.

After applying selection criteria on the cc-tagging discriminant, the V+light flavor com-

ponents are highly suppressed, leaving mostly V+heavy flavor components, as well as tt

events, as the main backgrounds. Figure 8.21 displays the distribution of the soft-drop

mass of the Hcand for events with high kinematic BDT output scores and satisfying the

cc-tagging requirement for the three cc-tagging categories. Again, the VH(H → cc)

signal process and the various background processes show distinct mass shapes.

8.4.4 Summary of the Event Selection

Table 8.3 summarizes kinematic variables used as inputs to the kinematic BDT for

the three channels. The full event selections for all three channels are summarized in

Table 8.4. Table 8.5 provides a summary of the expected background and signal events
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Figure 8.21: Comparison of the soft-drop mass of the Hcand between the VH(H → cc)
signal and the backgrounds for events with high kinematic BDT output scores for the
HP (left), MP (middle) and LP (right) categories in the 0-lepton channel. Top: with
backgrounds stacked and the VH(H → cc) and VH(H → bb) processes normalized
to the sum of all backgrounds; Bottom: shape comparison between the VH(H → cc)
signal and the various background processes, where the error bars correspond to the
uncertainties due to limited size of the simulated samples.
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Variable Description 0-lepton 1-lepton 2-lepton
pT(V) vector boson transverse momentum ✓ ✓ ✓
pT(Hcand) Hcand transverse momentum ✓ ✓ ✓
|η(Hcand)| absolute value of the Hcand pseudorapidity ✓
∆ϕ(V,H) azimuthal angle between vector boson and Hcand ✓ ✓ ✓
pmiss
T missing transverse momentum ✓
∆η(Hcand, ℓ) difference in pseudorapidity between Hcand and the lepton ✓
∆η(Hcand,V) difference in pseudorapidity between Hcand and vector boson ✓
∆η(Hcand, j) min. difference in pseudorapidity between Hcand and small-R jets ✓ ✓ ✓
∆η(ℓ, j) min. difference in pseudorapidity between the lepton and small-R jets ✓
∆η(V, j) min. difference in pseudorapidity between vector boson and small-R jets ✓
∆ϕ(p⃗miss

T , j) azimuthal angle between p⃗miss
T and closest small-R jet ✓

∆ϕ(p⃗miss
T , ℓ) azimuthal angle between p⃗miss

T and lepton ✓
mT transverse mass of lepton p⃗T + p⃗miss

T ✓
Nj number of small-R jets ✓ ✓ ✓

Table 8.3: Variables used in the training of the kinematic BDT.

in the signal regions of each channel, obtained directly from the simulated samples.

8.5 Background Estimation and Signal Extraction

Dedicated control regions enriched in different backgrounds are defined to study the

agreement between data and simulation and aid the background estimation in each chan-

nel. Two types of control regions are defined in this analysis, as illustrated in Figure 8.22:

the low-BDT control region is defined by selecting events with kinematic BDT outputs

below 0.5, which is enriched in the V+jets background; the high-Nj control region is de-

fined by inverting the selection on the number of small-R jets, which leads to a high-purity

tt sample. Note that the latter is not used for the 2-lepton channel, as the background

is dominated by Z+jets, while the contribution from tt is negligible. In both types of

control regions, events are required to satisfy the same cc-tagging discriminant criteria

as in the signal regions for each cc-tagging category in order to probe events with a

flavor composition similar to that in the signal regions. As a result, the efficiency of

the cc-tagging discriminant can be estimated directly from the data using the control

regions, and no additional corrections are needed.
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Variable 0-lepton 1-lepton 2-lepton
pT(V) >200 >200 >200
m(ℓℓ) — — [75, 105]

pT
ℓ — (> 25, > 30) >20

pT(Hcand) >200 >200 >200
mSD(Hcand) [50, 200] [50, 200] [50, 200]

∆ϕ(V,H) >2.5 >2.5 >2.5
Nj <2 <2 <3
Naℓ =0 =0 —
pmiss
T >200 — —
∆ϕ(p⃗miss

T , j) >0.5 — —
∆ϕ(p⃗miss

T , p⃗miss
T (trk)) <0.5 — —

∆ϕ(p⃗miss
T , ℓ) — <1.5 —

Lepton isolation — <0.06 (< 0.25, < 0.15)

Kinematic BDT >0.5 >0.5 >0.5
cc-tagging discriminant

High purity (HP) > 0.91 > 0.91 > 0.91

Medium purity (MP) (0.83, 0.91] (0.83, 0.91] (0.83, 0.91]

Low purity (MP) (0.72, 0.83] (0.72, 0.83] (0.72, 0.83]

Table 8.4: Event selection criteria for the signal region. Entries marked with “—”
indicate that the variable is not used in the given channel. The values listed for
kinematic variables are in units of GeV, and for angles in units of radians. Where
selection differs between lepton flavors, the selection is listed as (muon, electron).

The VH(H → cc) signal is extracted via a binned maximum likelihood fit on the

mSD shape of the Hcand. As shown in Figures 8.9, 8.15 and 8.21, the mSD of Hcand pro-

vides excellent separation between the VH(H → cc) signal and the various background

processes. Therefore, it is a powerful fit variable for extracting the rates of different

processes. The mSD shapes for signal and backgrounds are obtained directly from sim-

ulation, as the modeling of mSD in simulation was validated in various control regions,

and good agreements between data and simulation were observed. A total of 15 bins

for the range of mSD ∈ [50, 200]GeV are used in the fit, with a bin width of 10 GeV

corresponding roughly to the mSD resolution.

The low-BDT and the high-Nj control regions are included together with the signal
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Figure 8.22: Illustration of the setup of the signal region and control regions.

regions in the maximum likelihood fit. This is to correct for any difference between

data and simulation in the production rate of the V+jets and tt processes in the phase

space selected by this analysis. A parameter that scales the overall normalization of

a background process is assigned to each of W+jets, Z+jets and tt processes in each

cc-tagging category and is allowed to float freely in the fit. The same parameter scales

the background rate in the control regions and the signal regions in the same way. With

this approach, any potential difference in the cc-tagging efficiency between data and

simulation is also taken into account, as the same selection on the cc-tagging discriminant

is applied across all signal and control regions for each cc-tagging category. Different

parameters are defined for the three cc-tagging categories, as the difference in cc-tagging

Process High purity Medium purity Low purity
0-lepton 1-lepton 2-lepton 0-lepton 1-lepton 2-lepton 0-lepton 1-lepton 2-lepton

V+jets 621.9 778.7 120.2 1011.3 1199.4 180.9 1622.4 1976.5 293.9
tt 277.8 1191.1 0.6 294.7 1328.8 0.8 346.5 1636.1 0.9
Single top 41.5 346.3 0.1 47.8 359.8 0.2 54.4 428.0 0.5
VZ(Z → cc) 32.7 19.6 5.8 21.6 11.2 3.4 20.0 11.8 3.6
VV(other) 96.0 122.0 13.4 109.8 141.7 16.8 144.8 181.8 21.4
VH(H → bb) 4.3 5.0 1.2 4.8 6.4 1.7 5.2 6.6 1.6
Total background 1074.2 2462.7 141.4 1490.0 3047.3 203.7 2193.4 4240.9 321.8
VH(H → cc) 0.8 1.0 0.2 0.5 0.6 0.1 0.5 0.6 0.1

Table 8.5: Expected background and signal events in the signal regions of each channel,
predicted directly from simulated samples.
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efficiency between data and simulation is likely to vary between the three different cc-

tagging categories. The parameters are defined separately for each channel, with the

exception that the same scale factor is assumed for W+jets process in the 0-lepton

and the 1-lepton channel. As the selection criteria are very similar between the two

channels and the difference is only whether the charged lepton from the W boson decay

is identified or not, using the same scale factor does not introduce any bias but can

significantly improve the precision of the W+jets background estimation in the 0-lepton

channel. The background normalization scale factors, determined from the simultaneous

fit of the signal and the control regions, are summarized in Table 8.6.

Category Channel W+jets Z+jets tt

High purity
0-lepton 1.10± 0.09 1.23± 0.13 1.11± 0.06

1-lepton 1.10± 0.09 — 0.99± 0.04

2-lepton — 1.06± 0.11 —

Medium purity
0-lepton 1.17± 0.08 1.25± 0.10 1.12± 0.06

1-lepton 1.17± 0.08 — 0.99± 0.04

2-lepton — 1.21± 0.09 —

Low purity
0-lepton 1.23± 0.07 1.45± 0.10 1.02± 0.06

1-lepton 1.23± 0.07 — 0.99± 0.04

2-lepton — 1.24± 0.10 —

Table 8.6: Background normalization scale factors determined from the simultaneous
fit of the signal and the control regions.

8.6 Systematic Uncertainties

In this section, various categories of systematic uncertainties that affect the analysis

are discussed, and the full list of systematic uncertainties is summarized in Table 8.7.

Jet energy scale: uncertainties from the jet energy scale are assessed by varying the

energy scale up and down for each jet within one standard deviation. This is done
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individually for each of the 26 sources of uncertainties prescribed in Ref. [42].

The effect of the jet energy scale uncertainties is treated as correlated between the

small-R jets and the large-R jets by varying the energy scales of the small-R jets

and the subjets of the large-R jets simultaneously. The effects of the variation are

also propagated to pmiss
T .

Jet energy resolution: uncertainties from the jet energy resolution are assessed by

varying the simulation-to-data scale factors within their uncertainties when cor-

recting the resolution of the jets in simulation. A single source of uncertainty is

considered, including both the statistical and systematic uncertainties of the mea-

sured resolution scale factors. The effects of the jet energy resolution uncertainties

are treated as correlated between the small-R jets and the large-R jets. The effects

of the variation are also propagated to pmiss
T .

pmiss
T unclustered energy: uncertainty in pmiss

T related to the energy scale of the unclus-

tered particles is evaluated based on the energy resolution of each type of particle

as prescribed in detail in Ref. [45].

Lepton efficiency: the efficiency of the muon and electron trigger, reconstruction, iden-

tification, and isolation requirements are determined in data using the standard

tag-and-probe technique with Z bosons. Simulation-to-data scale factors are ap-

plied to correct the efficiency in simulation. Uncertainties in the measured scale

factors are evaluated from the statistical uncertainties of the measurement and the

differences in the measured efficiency using alternative samples and selections, and

are propagated to the analysis.

pmiss
T trigger efficiency: the efficiency of the pmiss

T triggers affects the expected yields

of signals and of background processes that are predicted directly from simulated
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samples in the 0-lepton channel. The trigger efficiency is measured in data, and an

uncertainty of 2% is estimated.

Pileup reweighting: effects due to the uncertainty in the distribution of the number

of pileup interactions are evaluated by varying the cross section used to predict the

number of pileup interactions in simulation by 4.6% from its nominal value.

Top-pT reweighting: a discrepancy in the top quark pT spectrum in tt events was

observed in the measurement of differential cross sections for top quark pair pro-

duction [181]. To mitigate this discrepancy, tt events are reweighted to correct

for the known difference. Uncertainty due to this reweighting is assessed by com-

paring the difference in the tt yields and shapes before and after applying the

reweighting. The top-pT reweighting not only affects the shape of the top quark

pT distribution, but also has a moderate (∼ 10%) effect on the overall yields in the

high-pT phase space selected by this analysis. Since the normalization of the tt

process will be determined via the simultaneous fit of the signal and control regions

(using free-floating rate parameters), we keep only the shape-changing effect of this

uncertainty, while the rate-changing effect is factored out by rescaling the tt yields

in the up and down variations to preserve the overall tt yields after the baseline

selection.

pT(V) reweighting: NLO EW correction parametrized in pT(V) is applied to the

V+jets samples. Uncertainty on this NLO EW correction is estimated conser-

vatively by comparing the shape difference with and without the correction, for

W+jets and Z+jets processes separately. The overall yields are normalized after

the baseline selection to factor out the moderate (∼ 10%) effect on the normal-

ization, as the normalizations of the V+jets processes are determined from the fit.

The uncertainties for W+jets and Z+jets processes are treated as uncorrelated.
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Parton distribution function (PDF): effects of the uncertainty in the PDF is as-

sessed by reweighting each event according to the 100 replicas of the NNPDF3.0

set, and then taking the standard deviation of the 100 variations, following the

prescription in [193]. Only effects on the shape are considered, i.e., the weights are

rescaled to preserve the cross section of each process. The uncertainty is treated

as uncorrelated for different processes.

Renormalization and factorization scales: uncertainties due to the renormalization

scale, µR, and the factorization scale, µF , are assessed by varying the scales inde-

pendently by a factor of 0.5 or 2. The effects of such variations are implemented as

weights in the event generators. Only effects on the shape are considered, i.e., the

weights are rescaled to preserve the cross section of each process. The uncertainty

is treated as uncorrelated for different processes.

Size of simulated samples: uncertainties due to the limited size of the simulated sam-

ples are taken into account via the Barlow-Beeston method [194].

Uncertainty on the normalization of the backgrounds: the limited number of ob-

served events in the signal and control regions leads to uncertainty in the normal-

izations of the V+jets and tt processes, as they are constrained by the observed

data. The uncertainty is taken into account in the fit.

Cross section of the single top and diboson processes: the single top and the di-

boson backgrounds are predicted directly from simulation. An uncertainty of 15%

is assigned for the single top process based on the cross section measurements

[195, 196]. For the diboson process, an uncertainty of 10% is estimated based on

the cross section measurements [197, 198, 199].

Luminosity: a 2.5% uncertainty is assigned on the integrated luminosity measured by
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the CMS collaboration for the 2016 data-taking period [200].

Efficiency of cc-tagging with DeepAK15: efficiency of tagging a cc pair with the

DeepAK15 algorithm is measured in data, and simulation-to-data scale factors

are applied to the VH(H → cc) and the VZ(Z → cc) processes. Efficiency of

misidentifying a bb pair as a cc pair is also measured in data, and scale factors are

applied to the VH(H → bb) and the VZ(Z → bb) processes. Uncertainty on the

measured scale factors are taken into account in the analysis.

Uncertainties on the VH cross sections: uncertainties in the VH production cross

section due to uncertainty of the PDF and the choice of the renormalization and

factorization scales are evaluated in [15] and are taken into account in this analysis.

pT(V) distribution of the VH processes: the simulated VH samples used in this

analysis are generated at NLO QCD accuracy. Higher-order NLO EW and NNLO

QCD corrections, parametrized in pT(V), are used to reweight the simulated sam-

ples. Uncertainties due to this reweighting are taken into account.
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Source Type 0-lepton 1-lepton 2-lepton
Size of simulated samples shape ✓ ✓ ✓
Jet energy scale shape ✓ ✓ ✓
Jet energy resolution shape ✓ ✓ ✓
Unclustered energy of pmiss

T shape ✓ ✓
cc identification efficiency shape ✓ ✓ ✓
Lepton efficiency shape ✓ ✓
Pileup reweighting shape ✓ ✓ ✓
top-pT reweighting shape ✓ ✓ ✓
pT(V) reweighting shape ✓ ✓ ✓
PDF shape ✓ ✓ ✓
Renormalization and factorization scales shape ✓ ✓ ✓
VH: pT(V) NLO EW correction shape ✓ ✓ ✓
Luminosity rate 2.5% 2.5% 2.5%
MET trigger efficiency rate 2%
Single top cross section rate 15% 15% 15%
Diboson cross section rate 10% 10% 10%
VH: cross section (PDF) rate ✓ ✓ ✓
VH: cross section (scale) rate ✓ ✓ ✓

Table 8.7: Summary of the systematic uncertainties for each channel. The uncer-
tainties are implemented in two ways in the fit: a “rate” uncertainty affects only the
overall yields of a process but does not alter the relative shapes of the fit variable,
while a “shape” uncertainty can modify both the overall yields and the shapes of the
fit variable for a process.
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Results

To extract the VH(H → cc) signal, a binned maximum likelihood fit is performed on

the mSD distribution of the Hcand, with the signal and the control regions fitted to the

data simultaneously, as described in Section 8.5. The parameter of interest is the signal

strength µ, which is defined as the ratio of the measured signal yield to the SM prediction.

Figure 9.1 to 9.3 show the expected mSD distributions of the VH(H → cc) signal and

the background processes in the signal regions after the fit, as well as the observed mSD

distributions in data. The corresponding plots for the control regions are shown in Figure

9.4 to 9.8. Overall, good agreement is observed between the predicted background and the

observed data within uncertainties. The signal strength of VH(H → cc) is determined

to be µVH(H→cc ) = 21+26
−24 in the fit. The post-fit expected yields for the background and

signal processes and the observation in data for the signal regions are summarized in

Table 9.1.

The systematic uncertainties discussed in Section 8.6 are taken into account in the

fit via nuisance parameters, which allow for variations in the shape and normalization of

the mSD distributions during the fit. Figure 9.9 shows the post-fit values of the nuisance

parameters and their impacts on the VH(H → cc) signal strength. Only the first 60
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Figure 9.1: Post-fit mSD distributions in the signal regions for the HP (left), MP
(middle) and LP (right) categories of the 2-lepton channel. Top: Z → µµ; Bottom:
Z → ee.

Process High purity Medium purity Low purity
0-lepton 1-lepton 2-lepton 0-lepton 1-lepton 2-lepton 0-lepton 1-lepton 2-lepton

V+jets 777.8 860.6 126.6 1285.1 1431.9 228.5 2322.1 2470.8 363.0
tt 295.4 1073.3 0.7 309.0 1203.0 0.7 335.2 1488.4 0.7
Single top 36.7 312.2 0.1 44.4 323.8 0.2 50.0 389.8 0.3
VZ(Z → cc) 31.6 18.3 5.3 21.2 10.4 2.9 20.0 10.2 2.9
VV(other) 95.8 123.2 12.6 112.6 139.9 16.2 147.1 178.7 21.1
VH(H → bb) 4.2 4.9 1.1 4.8 6.3 1.6 5.0 6.5 1.5
Total background 1241.3 2392.4 146.4 1777.0 3115.3 250.0 2879.5 4544.4 389.6
VH(H → cc) (SM) 16.5 (0.8) 20.7 (1.0) 4.5 (0.2) 9.7 (0.5) 12.1 (0.6) 2.5 (0.1) 9.9 (0.5) 11.8 (0.5) 2.5 (0.1)
Data 1329 2401 150 1833 3163 263 2959 4577 408

Table 9.1: Post-fit expected yields of background and signal processes and the obser-
vation in data in the signal regions of each channel. The VH(H → cc) signal yields
are scaled by the best-fit signal strength, µVH(H→cc ) = 21+26

−24. The SM expected
VH(H → cc) signal yields are indicated in the parenthesis.
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Figure 9.2: Post-fit mSD distributions in the signal regions for the HP (left), MP
(middle) and LP (right) categories of the 1-lepton channel. Top: W → µν; Bottom:
W → eν.
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Figure 9.3: Post-fit mSD distributions in the signal regions for the HP (left), MP
(middle) and LP (right) categories of the 0-lepton channel.

160



Results Chapter 9

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0

5

10

15

20

25

E
ve

nt
s

 (13 TeV)-135.9 fb

CMS
Preliminary

Observed bb)→VH(H

cc)→VZ(Z VV(other)

Single Top tt

Z+jets =21µcc), →VH(H

 100×cc) →VH(H S+B Uncertainty

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0.5

1

1.5ex
p

/N
ob

s
N

Merged-jet
)µµ2L (

High purity
Low-BDT CR

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0

5

10

15

20

25

30

35

E
ve

nt
s

 (13 TeV)-135.9 fb

CMS
Preliminary

Observed bb)→VH(H

cc)→VZ(Z VV(other)

Single Top tt

Z+jets =21µcc), →VH(H

 100×cc) →VH(H S+B Uncertainty

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0.5

1

1.5ex
p

/N
ob

s
N

Merged-jet
)µµ2L (

Medium purity
Low-BDT CR

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0

10

20

30

40

50

E
ve

nt
s

 (13 TeV)-135.9 fb

CMS
Preliminary

Observed bb)→VH(H

cc)→VZ(Z VV(other)

Single Top tt

Z+jets =21µcc), →VH(H

 100×cc) →VH(H S+B Uncertainty

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0.5

1

1.5ex
p

/N
ob

s
N

Merged-jet
)µµ2L (

Low purity
Low-BDT CR

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0

2

4

6

8

10

12

14

16

E
ve

nt
s

 (13 TeV)-135.9 fb

CMS
Preliminary

Observed bb)→VH(H

cc)→VZ(Z VV(other)

Single Top tt

Z+jets =21µcc), →VH(H

 100×cc) →VH(H S+B Uncertainty

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0.5

1

1.5ex
p

/N
ob

s
N

Merged-jet
2L (ee)
High purity
Low-BDT CR

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0

5

10

15

20

25E
ve

nt
s

 (13 TeV)-135.9 fb

CMS
Preliminary

Observed bb)→VH(H

cc)→VZ(Z VV(other)

Single Top tt

Z+jets =21µcc), →VH(H

 100×cc) →VH(H S+B Uncertainty

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0.5

1

1.5ex
p

/N
ob

s
N

Merged-jet
2L (ee)
Medium purity
Low-BDT CR

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0

5

10

15

20

25

30

35

40
E

ve
nt

s
 (13 TeV)-135.9 fb

CMS
Preliminary

Observed bb)→VH(H

cc)→VZ(Z VV(other)

Single Top tt

Z+jets =21µcc), →VH(H

 100×cc) →VH(H S+B Uncertainty

60 80 100 120 140 160 180 200

Higgs candidate mass [GeV]

0.5

1

1.5ex
p

/N
ob

s
N

Merged-jet
2L (ee)
Low purity
Low-BDT CR

Figure 9.4: Post-fit mSD distributions in the low-BDT control regions for the HP
(left), MP (middle) and LP (right) categories of the 2-lepton channel. Top: Z → µµ;
Bottom: Z → ee.
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Figure 9.5: Post-fit mSD distributions in the low-BDT control regions for the HP
(left), MP (middle) and LP (right) categories of the 1-lepton channel. Top: W → µν;
Bottom: W → eν.
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Figure 9.6: Post-fit mSD distributions in the low-BDT control regions for HP (left),
MP (middle) and LP (right) categories of the 0-lepton channel.
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Figure 9.7: Post-fit mSD distributions in the high-Nj control regions for the HP (left),
MP (middle) and LP (right) categories of the 1-lepton channel. Top: W → µν;
Bottom: W → eν.
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Figure 9.8: Post-fit mSD distributions in the high-Nj control regions for the HP (left),
MP (middle) and LP (right) categories of the 0-lepton channel.
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Figure 9.9: Post-fit values of the nuisance parameters and their impacts on the ex-
tracted VH(H → cc) signal strength for the first 60 nuisance parameters with the
highest impact on the signal strength. The pulls of the nuisance parameters (black
markers with error bars) are computed as the differences between the best-fit values
θ̂ and the pre-fit values θ0, and then divided by the pre-fit uncertainties ∆θ. The
impact ∆r̂ for each nuisance parameter is computed as the difference between the
best-fit signal strength value of the nominal fit, r̂, and the best-fit value obtained
when the nuisance parameter under scrutiny is fixed to its best-fit value plus/minus
its post-fit uncertainty.
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nuisance parameters with the highest impacts on the VH(H → cc) signal strength are

shown. The best-fit values of the nuisance parameters are typically within 1 standard

deviation of the pre-fit values. The nuisance parameter related to the pT(V) reweighting

(“CMS_vhcc_zptEWKWeight”) is pulled by around 2 standard deviations though, due to

some residual mismodelling of the event kinematics in the simulated V+jets samples. As

shown in the right panel of Figure 9.9, uncertainties associated with the background nor-

malizations obtained from the control regions, the limited sizes of the simulated samples,

and the efficiency of the DeepAK15 cc-tagging discriminant have the largest impacts on

the extracted signal strength.

The full procedure of this analysis is validated by measuring the cross section of VZ

production with subsequent Z → cc decay. The VZ(Z → cc) process is similar to the

VH(H → cc) process and has a much higher cross section, therefore providing a good test

bed of the analysis strategy. The event selection criteria, including the baseline selection,

the kinematic BDT, and the three categories based on the cc-tagging discriminant, as well

as the signal extraction procedure, are the same in the nominal VH(H → cc) analysis.

The only difference is that the VZ(Z → cc) process is treated as the signal instead of

the VH(H → cc) process, while the VH(H → cc) process is considered as a background

and fixed to its SM prediction. The best-fit signal strength for VZ(Z → cc) is found

to be µVZ(Z→cc ) = 0.69+0.89
−0.75, consistent with the SM expectation (µVZ(Z→cc ) = 1) within

uncertainty. The observed (expected) significance for the VZ(Z → cc) process is 0.9

(1.3) standard deviations.

As no statistically significant excess is observed above the predicted background in the

search of the SM VH(H → cc) production, an upper limit (UL) on the signal strength

µVH(H→cc ) at 95% confidence level (CL) is extracted based on a modified frequentist

approach using the CLs criterion [201, 202] under the asymptotic approximation for the

test statistic [203, 204]. The observed (expected) UL on µVH(H→cc ) is found to be 71
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(49+24
−15) at 95% CL. The results for each channel and their combination are shown in

Table 9.2.

0-lepton 1-lepton 2-lepton Combined
Expected UL 81+39

−24 88+43
−27 90+48

−29 49+24
−15

Observed UL 74 120 76 71

Table 9.2: Observed (expected) UL at 95% CL on the signal strength µVH(H→cc ).
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Conclusions and Outlook

In this thesis, a search for the standard model Higgs boson decaying to charm quarks

with the CMS experiment is presented. The search targets the Higgs boson produced

in association with a W or Z boson, whose leptonic decays provide a clear signature for

suppressing the multijet background as well as for event triggering. The search is designed

for a phase space where the Higgs boson is produced with a fairly high Lorentz boost

(pT > 200GeV). The dominant background to this search, such as W+jets and Z+jets, is

more suppressed at higher pT. A novel approach for the reconstruction and identification

of the boosted H → cc candidates is developed for this search. With a high boost, the

two quarks from the Higgs decay become collimated and can be contained in a single

large-radius jet. Therefore, a collection of large-radius jets, formed by clustering the

particle-flow candidates using the anti-kT algorithm with a distance parameter R = 1.5,

is used to reconstruct both quarks from the Higgs decay as one jet. The large distance

parameter is carefully chosen to ensure that a good fraction of the boosted H → cc

candidate can be reconstructed in this way. This approach not only has the benefit of

exploiting the high-momentum phase space which has a higher signal purity, but can

also potentially improves the identification of the H → cc decay since the correlations
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between the two charm quark showers can be better exploited now that they are clustered

into the same jet.

A major challenge of this analysis is the identification of the charm quark pair from the

Higgs boson decay. While the charm hadrons from the fragmentation and hadronization

of the charm quarks can give rise to displaced tracks and secondary vertices, similar

to bottom quarks, these signatures are not as distinct as that of the bottom quarks.

Therefore, the identification of charm quarks is more subtle. In this search, an advanced

deep learning–based algorithm is adopted for this task. This algorithm is a tailored

version of the DeepAK8 algorithm, which features the use of all particle-flow candidates

and reconstructed secondary vertices associated with a large-radius jet as inputs. The

direct use of the full set of low-level information of a jet, together with customized

neural network architecture, results in state-of-the-art performance for charm quark pair

identification.

This advanced H → cc reconstruction and identification method has led to highly

competitive results. Using proton-proton collision data collected in the 2016 run of the

LHC that correspond to an integrated luminosity of 35.9 fb−1, an observed (expected)

upper limit on the VH production cross section times the H → cc branching fraction

of 71 (49) times the SM expectation is obtained at 95% confidence level, significantly

surpassing previous experimental limits. Combined with the CMS search using two

resolved jets to reconstruct the H → cc decay, an observed (expected) upper limit of 70

(37) times the SM is obtained, providing the world’s most stringent limit to date on the

Higgs coupling to charm quarks obtained from direct searches.

The identification of the hadronically decaying boosted particles (top quarks, W, Z

and Higgs bosons) itself is also an important topic at the LHC. On the one hand, it is a

powerful tool for many searches for heavy (TeV-scale) exotic resonances, as these reso-

nances can possibly be produced directly at the LHC and then decay to highly boosted
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SM particles. On the other hand, it can also be exploited to probe the SM in the high-

momentum phase space, a territory that cannot be fully explored without such tech-

niques. In this thesis, the development and evaluation of a deep learning–based boosted

jet tagging algorithm, DeepAK8, is discussed in detail. The DeepAK8 algorithm is de-

signed as a versatile multi-class classifier for the identification of boosted top quarks, W,

Z and Higgs bosons via large-radius (R = 0.8) jets. It aims at exploiting the substructure

information (such as energy distribution patterns, energy correlations between particles)

and the flavor information (such as the presence of displaced tracks, secondary vertices,

which are characteristics of heavy-flavor quark fragmentation) simultaneously. While jet

substructure–based observables have been extensively used for boosted jet tagging, the

flavor information has not been so widely used yet, but it is actually very powerful for

identifying particle decays involving heavy flavor quarks, such as the top quark (whose

decay always gives rise to a bottom quark), or Z or Higgs bosons decaying to bb or cc .

The two aspects typically do not fully factorize; thus, a multivariate approach is needed

to maximize the performance.

The rise of machine learning, particularly deep learning, in recent years, has clearly

boosted the development of new and more powerful jet tagging techniques. In the

DeepAK8 algorithm, a customized deep neural network is developed to access and process

the constituents of a jet directly for jet tagging. A significant performance improvement

compared to traditional approaches based on jet-level observables has been observed. A

dedicated version of DeepAK8 whose outputs are largely independently of the jet mass

is also developed, allowing this high-performance algorithm to be used by analyses that

tolerate no or very little change in the background mass distribution. The performance of

the DeepAK8 algorithm has been validated in data, and in general, good agreement has

been observed. The development of the DeepAK8 algorithm has demonstrated that, with

a good understanding of the underlying physics and a careful design and validation pro-
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cess, advances in machine learning techniques are likely to bring significant improvements

to particle physics experiments.

A more recent development for jet tagging is also presented in this thesis. A jet is

treated as a “particle cloud”, i.e., an unordered set of particles with “coordinates” in the

(η, ϕ) space and other properties such as momentum, charge, etc. This jet representation

is inspired by the “point cloud” concept in computer vision, which refers to a set of points

in space, typically measured by a 3D scanner, to represent the external surfaces of objects

around the 3D scanner. A key feature of both point clouds or particle clouds is that the

elements, i.e., points or particles, in the cloud are intrinsically unordered. Based on the

particle cloud representation of jets, ParticleNet, a new graph neural network architecture

is developed to process the particles in a manifestly permutation-invariant way and per-

form jet tagging. Benchmarked on two open simulation datasets, the ParticleNet model

achieves significant improvement in performance, reducing the misidentification rate by

almost a factor of two compared to the neural network architecture used in DeepAK8.

Despite the impressive progress in machine learning–based boosted jet tagging tech-

niques, several challenges remain. One major challenge is related to the discrepancy be-

tween data and simulation, mainly in the modeling of parton showering and hadronization

in the event generators. Particularly, gluons are less well modeled compared to quarks in

general in current event generators. Such discrepancies pose serious challenges to many

analyses for the estimation of background contributions, as well as for the determination

of the signal efficiency. Possible ways to cope with this challenge include, e.g., systematic

improvement of the event generators, development of new ML-based algorithms that are

insensitive to such discrepancy, or more clever methods for background estimation and

tagging efficiency calibration. Another challenge is the development of mass-decorrelated

tagging algorithms. Forcing the classifier outputs to be independent of one of the most

powerful variables, the jet mass, tends to affect the performance adversely, leading to
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highly volatile training. While the current mass-decorrelated version of DeepAK8 shows

overall excellent performance and mass decorrelation, there is still much room for future

improvements. New ideas based on both ML techniques and theoretical considerations

are likely to be crucial for this.

With a current upper limit of about 70 times the SM expectation, there is obviously

a long way ahead until the Higgs coupling to charm quarks can actually be measured.

Improvements in the charm pair identification techniques, the background estimation

and signal extraction strategy, and the exploitation of other Higgs production channels

such as the vector boson fusion (VBF) or the associated production with a top quark pair

(ttH), are all likely to contribute significantly to an improved result. Upgrades on the

detector, particularly improvements in the tracking system, or the addition of a timing

detector, are likely to bring a substantial improvement to the charm quark identification

performance as well. So far, only a small amount of data corresponding to an integrated

luminosity of 35.9 fb−1 has been explored. This is only about one-quarter of the available

data collected in Run 2 of the LHC, and around 1% of the total data expected to be

collected across the whole life of the LHC. Clearly, the charming journey has just started.

Huilin Qu

Geneva, Switzerland, September 2019
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