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Abstract
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1 Introduction

The construction of integrable systems is a particularly delicate question. This is all the more true for
discrete systems since the latter have only recently attracted the attention of the integrability community.
Thus the various techniques that exist for the study of continuous integrability have not yet been fully
developed in the discrete case. However, progress is fast, thanks to strong analogies between continuous and

discrete systems.

In this paper we intend to study integrable mappings using a combination of methods: derivations based
on matrix transformations and integrability assessment with the help of a discrete integrability detector. In a
series of papers some of us (JMM, GR) [1, 2, 3] derived and studied mappings associated to tranformations of
matrices. The initial motivation of this study stemmed from the fact that these mappings can be interpreted
as discrete symmetries of the Yang-Baxter equations [4, 5, 6, 7]. The class of the tranformations considered
consists in fact of combinations of involutions. Since we are interested only in rational representations, the
resulting mappings are birational i.e. rational in both the forward and the backward evolution. Various
classes of matrix transformations have indeed been studied and the resulting mappings were identified with
respect to their integrability properties [1, 3, 8]. This study of integrability was based on a detailed numerical

study of the iteration combined with the explicit construction of invariants for the integrable cases [1, 3, 8].

From a different standpoint, the remaining authors (BG, AR) have developed, over the past few years, a
method that makes possible the identification of integrable mappings {9]. Based on the study of singularities
of rational mappings, the singularity confinement method requires that, for integrability, any spontaneously
appearing singularity should disappear after a few iterations of the mapping. This method has made possible

the identification of numerous integrable discrete systems.

In this paper, we set out to apply the singularity confinement approach to systems derived by the
matrix transformation method. This is a crucial test for the singularity confinement conjecture and we show
indeed that, in every case, it is possible to successfully distinguish between integrable and non-integrable
systems. In the case of systems the status of which was not clear at the outset, the singularity confinement
was used as a predictor and its prediction was subsequently verified by detailed calculations. Finally, we
devote a section of this paper to an analysis of discrete systems proposed by Falqui and Viallet [10], and

comment on their results relating singularity to integrability.

2 Some birational transformations

In previous papers, we have analyzed birational representations of discrete groups generated by involutions,
having their origin in the theory of exactly solvable vertex (or spin) models in lattice statistical mechanics 4,
5,6, 7, 11, 12]. These involutions correspond respectively to two kinds of transformations on g X ¢ matrices:
the inversion of the ¢ X ¢ matrix and an (involutive) permutation of the entries of the matrix. In {1},

a particular permutation of the entries was analyzed. For this permutation, it has been shown that the



iteration of the associated birational transformations presents some remarkable factorization properties [1].
These factorization properties explain why the “complexity” of these iterations (degree of the successive
iterates) instead of having the exponential growth one would expect, actually has a polynomial growth 1.
It has also been shown that the polynomial factors occurring in these factorizations do satisfy remarkable

non-linear recursion relations and that the latter were actually integrable, yielding algebraic elliptic curves.
Let us consider the ¢ X ¢ matrix:

m; Mz Mi3
R mg; Mgz M23
9= | m3; M3z M3z - (2.1)

We introduce the following transformations: the matrix inverse 1, the homogeneous matrix inverse I and a
transformation ¢ which, in the following, will denote a permutation between two entries of the ¢ X ¢ matrix,
for example t;2_31 which permutes m;2 and ma, specifically studied in [1}, or t12-43 which permutes ;2

and m,s3 [8]:

T:R,— R;! (2.2)

I:R, — R;'-det(R,) (2.3)
q q q

The homogeneous inverse I is a polynomial transformation on each of the entries m;; which associates to
each m;; its corresponding cofactor in the framework of the inversion relation. The two transformations ¢
and T are involutions and the homogeneous inverse verifies I* = (det(R,))?~? - Id, where Zd denotes the
identity transformation. We also introduce the (generically infinite order) transformations K = t-I and
R =t-T. Transformation K is a polynomial transformation on the entries m;;, while K is clearly a rational

transformation on the entries m;;. In fact it is a birational transformation since its inverse is I - £.

2.1 A first set of birational transformations: permutation 2,2 2

Considering ¢ X g matrices, let us first recall the factorization properties for the iteration of the homogeneous
transformation K and recursion relations obtained for permutation ti2-21 which represents one example

among a set of permutations denoted class I in 1, 8.

Let us first consider the successive matrices obtained by iteration of the homogeneous transformation

K on a generic g X ¢ matrix Ry (see (2.1)) and the determinants of these various matrices:
M, = qu, M, = K(Mo), fi = det(Mo) (2.4)

Remarkably, the determinant of matrix M, factorizes enabling us to introduce a homogeneous polynomial
fa:
_ det(Ml)

2.5
7 29
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Again, ff~* also factorizes in all the entries of the matrix K (M), leading to introduce a new “reduced” matrix
M. 2.

K(M,)
M2 = -4 (26)
1
In fact, similar factorization properties are true at any order. Generally, forn > 1 and q > 4, one has!:
K(Myy2) det(Mp42)
Myis = Tr‘;"——;:z ) Jfata = —q:r—s“lt‘;:‘a‘ (2.7)
n nt+l /n+2 n n+l Jn42
and the following relation independent of q:
K(M. M,
( ﬂ+2) — n+3 (2.8)

det(Mny2)  fofatifnt2fnes

From another point of view, transformation K corresponding to this mapping has been shown to yield
elgebraic elliptic curves in CPp_, [1]. In CPys these algebraic elliptic curves can be seen as intersection of

quadrics [3], in a very similar way as for the sixteen vertex model [12].

One imporiant consequence of these factorizations is to introduce the homogeneous polynomials fn.

These polynomials do verify, independently of q, a whole hierarchy of non-linear recursion relations [1] such

as:
faf2is — fnrafip - fn-1f2r2 = friafa (2.9)
f'n.—lfn+3fn+4 - fnfn+1fn+5 fn——2fn+2.fn+3 - fn—lfn.fn+4
or, for instance, among many other:
Frot1f2pafass = fns2fopafne _ frntafaysfnts — freafiiafasr (2.10)

fr2;+2fn+3fn+7 - fnfn+4f72i+5 f:+3fn+4fn+8 - fn+1fn+5f3+6

Let us introduce here variables [1, 8] corresponding to the iteration of the inhomogeneous transformation K:
zn = det(R™(Mo)) - det(K™*(Mp)) (2.11)
The z,,’s also satisfy recursion relations, for instance:

T -1 Tp—1
R1 : ntl = W *Tn—-1 Tntl (212)
Tp Tpl Tntz — 1 Tp—l Tn Tnpr — 1

Relation R; is actually equivalent to:

x -1 T -1
R, : nt2 - n¥l T2 Ty xi+2 (2.13)
Tntl Tn+d — 1 Tn Tniz — 1

These factorizations and recursion relations were shown in [1] to hold true for arbitrary q.

In fact one can consider recursions (2.12) and (2.13) independently of the matrix framework previously

detailed, that is, independently of (2.11). In this case, it can also be shown that both mappings (2.12) and

1Because of factorizations (2.7) one can see that the iteration of the homogeneous transformation K yields a polynomial
growth of the complexity of the calculations : the degree of the determinant of the matrix Mn, as well as the degree of the
polynomials f,’s are quadratic expressions of n (1}
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the same shift s, can actually be deduced by the following transformation which has been called “procedure
> {3}

II: z, — Zp.ZTnts (2.19)

acting on the left and right-hand side of (2.17), the factor :cﬁ%fl‘“:cf,’_,_z... being changed in a different

way [1]. For instance, starting from (2.13), procedure II generates the following new recursion relation:

T4z Tnesz — 1 Tnpl Tngz — 1
Ry : =

= * Tpn Tnt2 Tnts (220)
Zpt1 Tnt2 Tnt3 Tnts — 1 Ty, Tntl Tni2 Tats — 1

This can be shown to be integrable. Let us introduce (homogeneous) variables ¢p,’s as follows:

Tpn = Qn+1/q-n (2.21)

Equation (2.20) reads:

dn+3 = gn+1 - gni4 — In+2 (2.22)
(gn+4 = Gn) Gn+19n+2qn+3 (gn+5 — Gn+1) gn+2 Int3 In+4

which can be “integrated” to get two biquadratic relations [1}:

(pn gn+1 — 1) : (Pn+1 dn — 1) = A Qndnt1 (I‘ +gn + qn+1) (2-23)

where pp = p1, if n is even, and p, = p2, if n is odd, as well as ) and p, are constants of integration.

2.2 Another birational transformation : permutation t13_32

Besides the analysis of permutation ¢13_2) and the corresponding birational transformations?, similar analysis
can be performed on other permutations of two entries [3, 8]. The permutations of two entries with their
associated birational transformations have been classified in [3]. Among these (six) classes of transformations,
one is of particular interest since it clearly exhibits both integrability and “weak” chaos. Let us consider here

the birational transformation associated to the particular permutation: t12-32-

The factorizations corresponding to the iterations of this birational transformation K now read:
det(M) = fapr - (F72 - fat - £153 - Fg) - (P24 fums S0 fict) o S (2.24)
where 8, depends on the truncation, and*:
K(Ma) = Mags - (J1=° - 372 famg) - (F323 - £33 for) - (T8 fido - fami) o S0 (229)

where(n=q—3forn=1(mod4),(,,=0forn=2(mod4),(,.=q—-2forn:=3(mod4)and(n=1for

n = 0 (mod 4). One notes that the following factorization, independent of g, occurs:

K(M‘n) — Mn+1
det(Mn) - fl f2 fnfn+1 (2.26)

3Called class IV in [3, 8].
4From these equations it can be shown that one has an ezponential growth of the calculations: the entries of the
successive matrices Mn's, a8 well as the polynomials fn’s grow like A™ with A o< 1.465571226 - -
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The f,’s do not satisfy simple recursions (like (2.9)) but “pseudo-recursions” where products from f,

all the way down to f, occur [8, 3]. One of these “pseudo-recursions” can be written as follows :

(f‘n+2 —fn-lfn+1) . fn—G fn—IO fn—14 .
(f'n "fn—sfn—-l) S frn-g fa-12 -+

fo (faz1 fns fa-o -*) = (fas1 fno3 fn7 ")
fn—2 (fn—3 fn—‘l' fn-—ll v ) - (fn—l fn-—5 fn—9 o )

Though one does not have recursions on the f,’s but pseudo-recursions such as (2.27), the variables z,’s

(2.27)

previously defined (see (2.11)) remarkably satisfy [8] simple recursions of the form (2.17) independent of ¢:

Tnyz — 1 ZTpey — 1
———————— = I, Tpy3

2.
TnTny2 — 1 (2:28)

Tni2 Tniq — 1
One can actually show (8] that the z,’s, corresponding to permutation t;5_32 through (2.11), do satisfy a
whole hierarchy of recursion relations in the same way it has been proved for permutation #13_5; in [1]. It
has also been shown [8] that a recursion of the form (2.17) (but with some of the ezponents ki, ’s negative)

is actually satisfied for the birational transformations associated with permutation #,5_3;.

We will study another recursion relation, related to (2.28) (which is a a consequence of it):

Tnyg —1 _ Tnt1 =1  Zn Tny2 (2.29)
Tn4l Tnyz — 1 Ty Tngz — 1 Tni1
This recursion relation is actually equivalent to another one, namely:
Tnyz — 1 Tpnty — 1
= * Ty Tnpa (2.30)
Tnil Tni43 — Tni2 In Tn42 — Tnil

These new recursions are not necessarily satisfied by the z,’s, corresponding to permutation ¢;;_3; through
(2.11) : they are only satisfied when the initial matrix in the iteration satisfies a particular condition (see [8]).

We will come back to this point in the following section.

Following [1], one can consider these recursion relations for themselves, without referring to our bira-
tional transformations acting on q X g matrices anymore. Again one can see that some of these recursions

are integrable (for instance (2.30)) while some are (generically) not integrable (for instance (2.28)).

Recursion relation (2.29), or equivalently (2.30), is an integrable one yielding elliptic curves [8], however
one notes that the recursion deduced by a shift of two of (2.29), namely (2.28), is not integrable (it has
however a very regular behaviour corresponding to (very) weak chaos, a situation which has been called

“almost integrable” [3]).

In fact, equation (2.28), though generically not integrable, can be partially integrated [8]. Instead of
the variables z,’s, let us come back to homogeneous variables g,,’s defined as follows:
T, = Int2 (2.31)
gn

From (2.28) bearing on the z,’s, one recovers the “almost integrable”relations studied in section (8) of [3]:

In+3 ~ dn+1 1 _ dn45 —dn43 1 (2.32)
gn+4 —49n  Gn43Gqn+i In+6 — qn+2 Gn45 nt3



3 Singularity confinement analysis of selected examples of map-
pings

In this section, we will analyze mappings obtained from matrix transformation, as explained in section 2,
using the integrability detector developped in [16]. The method is based on the conjecture that the movable
(i.e. initial condition dependent) singularities of an integrable discrete system are confined, i.e. they do not

extend ad infinitum under the iteration of the mapping.

One of the most interesting examples is the simpler mapping of [1], namely (2.32). A numerical study
of this mappings is shown in the (gn, gn+1)-plane (figure 1), and from the observed regularity one would be
tempted to surmise that (2.32) is indeed an integrable recursion relation. One first integration of (2.32) is
staightforward. Noting that the left-hand-side is twice upshifted with respect to the right-hand-side, we can
integrate (2.32) to:

1 1 1

1
_ . = — (3.1)
gnt1 Gn+3 Gnts —Gn An
where ), is a parity dependent parameter: A2, = A and Azn41 = Ao. We rewrite (3.1) as
1
Gni4a t+ An = (qn+ An (32)
In+3 gn+41
Adding g2n+2 to both sides and using the fact that A,42 = A, We can integrate once more to:
An
Gnt+2 +qn t+ = Pn (3.3)

gn41

where p, is also parity dependent: pan = pe and pgnt1 = Po-

So the study of the integrability of (3.1) is reduced to that of (3.3). Clearly the only singularity of
(3.4) occurs when the denominator gn+1 vanishes. So let us assume that, for some n, we have g, finite
and g, = €, where ¢ is a small quantity, (and without loss of generality one can assume that n is odd). The

singularity sequence is then the following (to dominant order):

qn =€

Ae

1R
In+ €

Ini2 = Po
~ Ae
qnt3 = e
e — 220
Inita = —"‘,‘\‘:—‘6
~ Z(Ac - )\o) Ae
In+s = € Ae — 220

gn+6 = Po

We remark that the sequence ¢nya;, Gn+s, In+6 reproduce the initial sequence gn, gn41, In+2 with €
replaced by &€ = (Ae — 2Xo)/Ac - € and )./e replaced by 2(Xe — Xo)/€. Thus the singularity will propagate

8



indefinitely unless its sequence is broken at the Gn+5 level by assuming A, = A,. Indeed, with this assumption

we find:

Ont4 = —€

dn+5 ~ Qn—1
Ao
gn—-1

and thus the singularity is confined: no singular terms appear beyond g¢,,3 and, moreover, the memory

nie R po +

of the initial condition is recovered in gn+6 through g,_;. So our prediction is that (2.32), or equivalently
(3.3), is not integrable, unless for the latter, A, = X,, in which case it can be integrated in terms of elliptic

functions.

Motivated by these results we have systematically considered the iteration of transformation X , for
A1 # Az in the (gn,gn+1)-plane which, for aesthetical reasons, will be given in the (z,,z,4;)-plane . For
a quite large set of initial conditions (satisfying \, # Az ) one gets curves. For initial conditions such that
A1 ~ Ay these curves look similar to the biquadratic equations mentioned in section (2): see figure (1).
However a systematic examination of these orbits shows that, though in some domain of initial conditions
such that A; ~ Ay, one gets most of the time regular curves, one does find (although rarely) very stretched
“bubbles” which correspond to islands of regularity. However with a proper choice of initial values, we can
obtain an orbit which looks like a curve with 16 self intersections. This gives a rough idea of the frontier
between the dominant regular curves and sixteen islands of regularity: see figure (2a) and (2b). Actually if
one iterates K¢ instead of K the orbits are regular curves inside a single one of the 16 islands. One does
not jump from one island to another one, but rather one can restrict oneself to one of these island, and
then the whole situation reproduces “self-similarly”, K being replaced by K16, A very carefull and drastic
magnification of the space between the islands shows that one has a situation similar to the one of the
hyperbolic-versus-elliptic points encountered in the Hénon-Heiles mapping [17, 18, 19, 20, 21). Figure (3) is
an illustration of this elliptic-versus-hyperbolic situation. Regularity largely dominates for initial conditions
such that A; ~ Ay (in the sense of a measure on the initial conditions), and the chaos corresponding to
the hyperbolic points needs an extremely careful numerical study (we have called such mappings “almost
integrable [3]). However one can actually find initial conditions where chaos clearly occurs. Figure (2b)

provides an example of well established chaos.

A large family of mappings has been studied in [3], where the recursion relations obtained have been
classified with respect to their integrable character. One of the simplest integrable cases obtained is the

mapping R,. Solving for z,,, we obtain:

Tppy = Tn—1Tnyy (xn Tnt+1 — 1) +1—-z,4 (3 4)
nt Tn-1Znzi,,  (Tn—1)

5 At this point it is important to make the following comment: since they are generated by involutior’l\s, all our birational
transformations are such that X and K1 are conjugated ( K=tT=tRK"1 -t). When transformation K (or more precisely
§74 2 can be reduced to a mapping on only two variables this means that one has some area preserving properties and one can
recover the features of two-dimensional dynamics (elliptic versus hyperbolic points, Arnold’s diffusion ... [18, 19, 20, 21}).
This explains, to some extend, the regularities one encounters here with permutation 1232, even when the mapping is
not integrable.



A singularity of z,,2 appears when one of the z’s in the denominator vanishes or when £,=1. Let us start
with the first case and assume that z,., and z, are regular while z,4, vanishes, i.e. ,,; ~ e. We obtain
the following singularity pattern:
Tppr =€
Tono o 2
n+2 &2

Tpnyg = -1+ 0(6)

[}
N

Tppq &N —

n+4 a

Tpps R 1

n+5 ~ P
where a depends on z,, zn41. Moreover we find that (as € — 0) Tp42Zntqa = 1, Tpy1 Zngs = —1,
and indeed, z,46 = 1/, Tpy7 = —1/Tn-1. Thus the singularity is confined and, as we see, its effect

on the iteration is indeed particularly simple. The second type of singularity may appear when (z, — 1)
vanishes. So let us assume that z,_; and z,_; are finite and that z, = 1. First we compute z,,, with
this assumption (using the downshifted form of (3.4)) and we find z,41 = 1/z,.,. Using these values we
obtain Z,y2 =1/Zn_2 and thus no singularity develops despite the vanishing of the (z, — 1) factor in the

denominator.

Thus, both the most obvious singularity patterns of (3.4) lead to confined singularities. Before con-
cluding on the integrability of this mapping, we must investigate the possibility of existence of more in-
tricate singularity patterns. One such pattern could have been described by the set of values (f,0,0) for
(Zn~1,Tn,Tn41), where f stands for a finite value. However, such a pattern is impossible since, after a zero
value (preceded by finite values), we can only have oo. The same holds for a pattern (£,0,1). The pattern
(f,1,0) is equally impossible since after a value 1 preceded by a finite value f the only possible value is 1/f.
The only possibility that cannot be rejected offhand is pattern (f,1,1) but the same argument tells us that
one can only have f = 1. That means that, in fact, we are blocked on the constant solution z,, = 1 for all
n. This singularity is not confined but it is not movable either, so this is not incompatible with integrability
. Now we can indeed state that (3.4) has only confined movable singularities. From our conjecture, it must

be integrable, and this is in fact the case.

Another integrable mapping is R4 which can be solved to:

14+ Zny2Zn43  (TnZnt1 Tng2 (1 + Tny3) = 1 = Tn — T Tnga)
Tn Tn41T049Th 43 * (Tnt1 Tnyz — 1)

Tn4q = (3.5)

As in the previous case, a singularity may develop when any of the z,, in the denominator vanishes or when
Tn41Zatz = 1. The latter situation, in analogy to z, = 1 for (3.4) above, is a case where the singularity
in fact never develops. Indeed, computing z,43 based on the assumption that *,.1, Tn, Tni1, Tnye are

regular with Z,41Zn42 =1, we find z,43 = 1/2,, and iterating z,44 = 1/2,-1 and so on.

Let us now turn to the study of a singularity where z,,, £p41, £n42 are regular and z,+3 vanishes. We
find the following sequence:

Tn+3 =€

10



a
Tnig & 63

Tnts = =14+ be+ O(e?)

2

Tnig X Ce€

1
Tnir & ——
»t a?clc¢

where a, b apd ¢ have complicated €Xpressions in terms of Tns Tniy and z,,,,. Iterating further, we obtain
finite valyes for Zni8, Tpnyg, Zn+10, Tny11 and we also find that Trtk Tnypy; # 1 (in this range) and
thus the singula.rity is confined, Special singularity Sequences may appear, in particular whenever the initia]
conditions are sych that a2¢. (ac+b) =1 » but also these ones are confined. Thys (3.5) has only confined

singularities in agreement with jtg integrable character,

Our Jast example will be chosen among the non-integrable mappings. We have considered the recursion

relation R;:
z — TnZTpy Trniyg - (z'n+1 Znt3 ~1) +1 — Tnis (3 6)
n+4 = .
Zn 1’n+1-73,2,+2-’3,2,+3 (Tnyy — 1)

where a, b and ¢ depend on the initia] conditions, Conversely, We may introduce a, b and ¢ as free pa-
fameters and ask for the conditions for the backward iteration to lead to finite Znts (we find ¢ # 0
Of Tny722 4Tnig # 1) and finite Int2; Tniry 2o (we find o2 . (c+1) =1 o T 6T, , TZ s Tnyo -

(Tngr 22 +8%nt9~1) #1). It s then easier to Postulate the singularity Sequence z,,q, . .. Znt1o (the latter

1

Tntiz ~ ;2‘

Tnt13 ~ €
Tniiq ﬁnite

1
Tnyps ~ —
n4 p

11



i.e. the same sequence as for Tnye, ... Zns10 (up to the precise coefficients). Thus, the basic singular pattern

propagates itself and the singularity is not confined, as was expected, given the non-integrable character of
(3.7).

From all these examples we see that there is a perfect agreement between the singularity confinement
conjecture predictions and the integrable (or not) character, analytically and/or numerically established, of

the systems under consideration.
4 Comparison with the approach of Falqui and Viallet

In a recent publication [10], Falqui and Viallet have addressed the problem of the relation between the
singularities of birational mappings in the projective 2-plane and their integrable (or not) character. The
birational transformations they consider are, in close analogy to ours, realizations of Coxeter groups, gen-
erated by involutions. We will concentrate here in the part of their work in direct relation to the present
one, namely the case where the group is generated by just two involutions I, J. Here J is the Hadamard
inverse, {z] — [1/z], and I is related to J through some collineation matrix C: I = C~1*JC. The method of
Falqui and Viallet is based on the examination of the set of points that “blow up” under the action of some
operator of the group (i.e. (IJ)*, (IJ)"I, J (IJ)y* or (JI)™), called the singular locus of the transformation.
Given a point in the projective 2-plane we will say that it “blows up” if its iteration under some operator
of the group leads to an indeterminate (0,0,0). If this happens for an infinity of distinct points (infinite
singular locus) then Falqui and Viallet consider this as an indication of non-integrability and in fact with
some technical precautions, they cast their result in the form of a theorem. The precise setting is crucial to

the proof:

- projective two-plane

- to have properly singular birational transformations 8.

Does this mean that when the singular locus is finite the mapping should be integrable? Not necessarily
so, as can be seen from the examples they offer. The example in their paragraph 6.3 is based on the

collineation matrix:

1 2 1
C= 1 0 -1
1 -2 1

The singular points of the transformation are the singular points P; of the Hadamard inversion J ([1,0,0],

[0,1,0], [0,0,1]) and the singular points Q; of the involution I ([1,1,1], [1,0,-1], [1,-1,1]).

8This properly singular requirement is automatically fulfilled in their examples, since their birational transformations are
generated by two involutions, one involution being precisely the Hadamard inverse J and the other one being intertwined
to the Hadamard inverse by a collineation.
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The singular locus is given by the diagram below:

I J

a®]
~N
[e)
[ 3]

Py Q;
This mapping is integrable and possesses the invariant:

y? —z2
y(z ~ 2)

Putting z = uy and z = vy we can write it simply as:

, v—1u , u—v
S . S . S A
uv +u2 -2’ uv +v?2 -2

The example of their paragraph 6.6 is based on the collineation matrix:

2 0 2
C= 1 1 -1
-1 1 1

Putting z = uy and z = vy we can write it as:

;L 8(u +v) . 8(u +v)

T ouv—-5u?+3v¥+1" T 2uv+3ul-5vi41

The singular locus is:

Py

In this case, the mapping does not possess any invariant.

13
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How can one understand those results in terms of our approach of singularity confinement? First let
us apply our method of analysis to the mapping {4.2) above. A singularity appears whenever the Jacobian
of (u/,v') with respect to v and v vanishes. This happens for u+v=0, u~v-1=0 and u—v+1=0.
If w+uv =0 then ' = v = 0 and this remains true for all the subsequent steps. This singularity is not
confined. To check that it is indeed a movable singularity we ask how one can have v’ + v’ = 0 without
having first u+v = 0. This is precisely the case when u —v = +1, which gives u' = —v' = *2 and indeed
u" = v" = 0. Moreover the lines © — v = £1 have preimages which are regular all the way: this is a typical
case of a non confined movable singularity. Thus our prediction is that mapping (4.2) is not integrable, in
agreement with the absence of invariant and the exponential growth of the calculations noted by Falqui and
Viallet [10] (even though the singularity locus is finite).

Let us now turn to (4.1). The analysis looks superficially similar to the one of (4.2). The Jacobian
vanishes for © — v = 0 and u + v = £2. The singularity for u —v =0 gives «' = v’ = 0and this remains
true for subsequent iterations. Such a singularity would not be confined but the only way to have u' = v
for finite u,v that do not already satisfy u =v at the previous step is to have u+v = £2. This does indeed
lead to %’ = v' but the common value is £1 leading to an indeterminate form 0/0 for »”, v” rather than
the value 0. In fact, u” and v" have finite values and depend on the initial conditions. This is a typical
confined movable singularity: one degree of freedom was apparently lost over one single iteration step at the
point (x1,=1). Still, before concluding on the integrability of this mapping, one must consider all possible
singularities, including those where a denominator vanishes. This can happen whenever u(u+v) =2 (or
v{u+v)=2). In this case u’ (resp v’ ) diverges while v/ (resp v’ ) remains finite. At the next step we find
u” =0 (resp v" = 0 ) and everything remains finite thereafter. This is again a confined singularity. (The
case where both denominators vanish corresponds to v = v = %1 already studied). Finally let us consider
the singularity in the “backwards” iteraticn when @' = v’ = a with a # (0,£1). We find that both u,v
diverge with a finite sum and all the previous preimages also diverge with a vanishing sum. So the singularity
pattern is the following: we start from (oo, —o0) go through (a,a) and then get blocked on (0,0). This
is again a nonmovable singularity (or if the emergence of a degree of freedom (a,a) that was previously
absent and subsequently vanishes is considered as a singularity, the latter is movable and confined). So this

mapping passes the singularity confinement test, as expected, given its integrable character.

In the light of our results, we can now present our interpretation of the approach of Falqui and Vial-

let [10]. A singular diagram of the type
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corresponds to confined singularities. Indeed, since the point P blows up under J, this means that we have
a one dimensional manifold (for simplicity we shall call it a “line”) that reduces to P under the action of J.
Thus one degree of freedom is lost: a singularity appears. Next the action of I brings us back to P, which,
at the following step blows up under J and thus we recover the lost degree of freedom: the singularity is
confined. The presence of longer “arms” leading to a one-step singular loop as in the case of their paragraph
6.2 of Falqui and Viallet [10] just means that it can take more steps to confine the singularity since one may
“enter” at the beginning of the arm and “exit” only after some wandering about, but still the singularity is

always confined.

On the other hand a singular diagram of the type:

I

J

indicates a priori a non-confined singularity. Indeed, a “line” shrinks down, under J, to the point P and the
action of I transforms P into Q. Then we have to apply J. Since @ blows up under I, not J, the action of
7 does not lead to a recovery of the lost degree of freedom but rather sends us back to the point P and so
on. Thus, at this point, we are stuck on this singularity, which is not confined. We can now understand why
mapping (4.2) is not integrable. The fact that the singular loop is connected to other nonsingular points
does not change anything to this reasoning: this just means that there are several “entry points” to one

singular loop.

The case of the singular loop of mapping (4.1) is more subtle: there is indeed a non-confined singularity
but it is not a movable one. The only way to reach the line L that “blows down” to P was to be on L
at the previous step, because I(L) = L. (This was not the case in the preceding example: the singularity
there was indeed movable). But then at the preceding step, where we have to use J, we again blow down
to P and thereafter we alternate between P and Q. So we did not lose any degree of freedom: a “gpurious”
degree of freedom appears for two steps (in fact two half-steps) then disappears again. If one considers that
the singularity is precisely the appearance of this spurious degree of freedom (rather than the loss of one, as
usual) then we are indeed in the presence of a movable and confined singularity. This singularity is precisely

the one found by our method: ... — (00, —00) — (a,a) = (0,0) — ...

The main difference between our approach and that of Falqui and Viallet [10] lies in the fact that in
applying the singularity confinement criterion we distinguish between movable and non-movable singularities.
Only the non-confined movable singularities are incompatible with integrability. Since Falqui and Viallet

only examine the iteration where a “line” blows down to a point, but never look “backwards” to see where
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this line comes from, they cannot distinguish between movable and non-movable singularities. A movable
singularity is one where the “line” that blows down to a point, leads, when iterated backwards, to an infinite
set of other “lines”. The non-movable case corresponds to a line that, upon backwards iteration, leads to only
a finite number of lines and then blows down to a point. It is thus crucial to know what are the preimages

of every singular point.

Although in a general setting the application of the singularity confinement criterion must be carried
along the lines we explained above, it may turn out that, in the restricted setting of Falqui and Viallet, the
examination of the singular locus may suffice to give a necessary criterion for integrability (though not a
sufficient one, as their example 6.6 shows). In principle, even an infinite singular locus may be compatible
with integrability from the point of view of the singularity confinement. In the case of their example 6.3
above, the singularity was the apppearance of a spurious degree of freedom for some iterations preceded
and followed by two fixed points between which the mapping alternates. In analogy to this case, we can
imagine a situation where an infinity of (distinct) points exists before the appearance of some additional
degree of freedom and that the latter disappears after some iterations leading again to an infinity of distinct
points. From the point of view of Falqui and Viallet this is an infinite singular locus (and they would
predict nonintegrability), while from our viewpoint the singularity is a confined movable one {compatible
with integrability). However we have not been able to construct a mapping with this behaviour within the
setting of Falqui and Viallet. This is an indication that, in this restricted setting, this situation may never

occur and thus the finiteness of a singular locus would indeed be a necessary condition for integrability.

5 Conclusion

Various examples of birational transformations, originating from vertex or spin edge models, have been ana-
lyzed using the singularity confinement method. The singularity confinement method confirms the integrable
character of transformations K corresponding to t;2_3;. A particular care has been devoted to the analysis
of the iteration of K corresponding to ;332 where both regularity and weak chaos occur. Again this method
provides results concerning the integrable (or not) character of these birational transformations in complete
agreement with the results obtained by systematic search of algebraic invariants for the action of the group.
The encoding of the integrable (or not) character of a birational transformation by a graph of the singularity
locus is a tempting idea at first sight: still the last section of this paper shows that such a graph, though

giving precious indication on the very nature of the transformation, is not sufficient for such an encoding.

Acknowledgement: We thank C.M. Viallet for many animated discussions.
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6 Figure captions

Figure 1: Orbit of an iteration of K in the (zn,

Tn+1)-plane close to the A; = ), integrability condition,

Figure 2a: A set of ten orbits corres

ponding to the iteration X in the
regular concentric orbits nine “

(Tn,Zppy )-plane: one sees between
regular”

islands and, at the frontier, a Separatrix with 16 bubbles,

Figure 3: Ap illustration of the elliptic-

versus-
between islands of regularity.

hyperbolic points situations op a set of orbits in g region
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