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ABSTRACT

In the paper the non-linear realization approach based on Cartan forms
and the inverse Higgs effect is extended to the general N = I supergravity.
Thus all N = ] supergravities are reformulated as generalized o -models
analogously to the simplest case of the minimal Einstein N = I supergravity
treated in [1]. This gives new geometrical insights into the supergravitation
theories which together with possible implications of the proposed formulation
are briefly discussed in the last section of the paper.
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1 INTRODUCTION

It was shown in [1] that the minimal Einstein N=1 supergravity can be consistently reformu-
lated as a non-linear o —model describing a spontaneous breaking of its infinite-dimensional
gauge supergroup down to the rigid N=1 Poincaré supergroup. More precisely it was shown
that the minimal Einstein N=1 supergravity can be derived by means of simultaneous non-
linear realizations of its two complex finite-dimensional gauge subgroups. They generate
via their closure the whole infinite-dimensional gauge supergroup of the theory and their
intersection contains the rigid N=1 Poincaré supergroup which is chosen as a stability group
of the vacuum . It appeared that the only independent Goldstone superfield accompanying
the above mentioned spontaneous breaking of the symmetry is an axial-vector superfield
H“"‘(x,ﬁ, é) identified with the prepotential of the considered supergravity. All the other
Goldstone superfields can be expressed in terms of H*# and its derivatives by imposing
appropriate covariant constraints on the corresponding Cartan superforms, i.e. by applying
the so-called inverse Higgs effect [2]. This non-linear realization technique based on Cartan
forms and exploiting the inverse Higgs effect gave new geometrical insights into the mini-
mal Einstein supergravity and indicated profound relations with topological fields theories,
(super)p—branes etc.

In this paper we shall extend the non-linear realization approach to the general N=1
supergravity. In other words, we shall reformulate the N=1 supergravity as a generalised
o—model analogously to the simplest case of the minimal Einstein N=1 supergravity treated
in [1].

Thus, in Section 2, first the gauge supergroup of the N=1 supergravity will be speci-
fied and then it will be shown how this supergroup can be represented as a closure of its
two appropriate finite-dimensional subgroups. The non-linear realization of these finite-
dimensional subgroups and eliminations of various Goldstone superfields by the inverse
Higgs effect will be treated in Section 3 and 4. Finally, in Section 5, the derived results
for non-minimal Einstein N=1 supergravities with different values of the Siegel-Gates pa-

rameter n will be compared with those treated in the literature and the main conclusions
summarized.

2 GAUGE SUPERGROUP OF N=1 NON-MINIMAL
EINSTEIN SUPERGRAVITY AND ITS STRUCTURE

The N=1 non-minimal Einstein supergravity (further N=1 supergravity) can be formulated
on a (4 + 4)-dimensional complex superspace

CH* = {(«f*,68,62)} = {(z%', 0%, oR)}, (2.1)
(with (242,69, 8%) and (c%,6%,6%) = (24*,02,63)" being its left— and right-handed
parametrizations) or, more precisely, on a (4 + 4)-dimensional real, physical superspace
R%* that forms a hypersurface in C*/%:

R = {(a#%,6°,5%); %% = Re(a?), 0% = 62, B = L)}, (2:2)

the shape of which is determined by the folloving superfunctions



H*4(z,0,0) = Im(mi’.‘),
H*(z,6,0) = ¢%— 0;, (2.3)
and I—{‘.‘(x,(), 8) = ¢L
(For details see [3,4,5] and for our notation the Appendix).

The N=1 supergravity is a theory invariant with respect to an infinite-parameter com-
plex gauge supergroup acting on C*/* and leaving its subspace

CHAICOI = ¢ = (217, 67)) = {(a},0R) = (1", 61)) (24)

invariant. The infinitesimal action of the gauge supergroup on C*/* is given by

szt = M(zr,6r),
592 = M(zL,0L), (2.5)
6¢Z = éu(IL‘L,eL, ¢L)
with A#%, \* and §* being arbitrary superfunction parameters satisfying the constraint
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(2.6)

Here n is the Gates-Siegel parameter [6] which is complex in general and fulfills the
condition |[3n + 1| # |n + 1| unless n = 0. Following [6] we shall consider n to be real
and different from 0,00. For any particular value of n we obtain a different subgroup of
the gauge supergroup (defined by (2.5)) leaving (2.6) invariant and thus one of the non-
minimal Einstein supergravities. Actually (2.6) expresses infinitesimally a correlation of
the transformations of supervolumes in C#/* and C*/2. For n = —1 we obtain the N=1
minimal Einstein supergravity studied in detail in [1}.

It can be proved analogously to [5] that the superalgebra A of infinite-dimensional
gauge supergroup G which is determined by (2.5) and (2.6) with fixed n, can be
expressed as a closure of its two finite-dimensional subalgebras A; and Aj;. The
superalgebras A; and Ay correspond to the appropriate subgroups Gy and G respectively
of supergroup G and are specified as follows.

First let us specify A — the superalgebra corresponding to the biggest common subgroup
Go of G and G;. The generators of superalgebra Ag are of the form:

Py, = _iau[n Qu = _ia;n
F‘L_E = —igﬂ, . o ora = —10"0u4, (27)
RO‘%B = —i(2§* 045 + a6°‘6°’¢ 9;),
= —i(6%95 — a6°‘¢> :5;), Fgﬂ. = —i(¢a0; + ¢504),
where a = '21(';%1%’ n is the Gates-Siegel parameter [6] and O4q = 53—0;, Os = 3—‘3—5 and

Oy = 53;; Superalgebra Ag contains generators of the Lorentz group, namely



-A/Iaﬁ = R(aﬁ)-l'T(Otﬁ) and N‘[dﬁ = R’(aﬁ) +Fgﬁ’ (28)

where X (,5) = Xop + Xgo and R(qp), R(a[?) are determined by the decomposition

ad 1 (& a pl& & plo oL

The superalgebra A; contains, in addition to the generators from Ag, the generators

I2% = —iz§%9,, (2.10)

whereas the superalgebra Ay the generators

I(ar'x = "7:028010': )

1 .
Fi = —~16%9;,

Fiy= —16%(¢sds + ¢50s), Ff

Al |

—i(6%0, + 2a6,,6°0;),
= —i0($a0s + 630a), (2.11)
= —i6%9,,.

The non-zero binary relations of superalgebra Ag are of the form

{den Qu} = _i‘sgPo:o'n
[T%, Qul = i6;Qg,

L

o=

[T, F, ?] = —iaé3F, 2, 1
[RG%B,F;E] = iaagagF;'f,

; YY) i8S pad . sas& pYY
[R"“Z‘m,R &;]—— z(éﬂééR T 6555}2 ﬁﬁ)’

(RS ., Pys] = 16968 Py

i Pl = 050 Bp
[Fs Fp 2] = i(eapFy * +egFa®)s
[T%, Q%1 = —i65Q%;, (2.12)

(7%, 7] = —i(63T5 — 65T),
(RS ., QU] = i8565Q%,

0 0y s, . 0 0 0
[FéB,F%] = Z(GdéFg:y + 666Fd‘v + fawFﬁg + eﬁ;de$).

The remaining non-zero binary relations of superalgebra Ay are given by

[I5%, Pyl = i6565Q.,
[15%,T5) = —isp12%,

{Ig"",Q;ﬁ} = —ié;R"“"m - iﬁgégT"u,
(126, R% .} = i6365 12" (2.13)

and those of superalgebra Ay can be written in the form

[Kas, @u] = 2i€,,Q%4,
(Kos, TH] = 160 K aas
~1

{Gu, F, 7} = 2iae,o FO,
[FO,T%) = iad) FO + i6S F,
[FO, R7° .| = —iabf 85 Fog,

L - cocd ok
[Fl.f,R %ﬁ] = —zaégééF‘f,
[G#’Taﬁ] = i€,8€77 Gy,

1 . o
(F},Qu) = —2ie.aFOS,

N U
{Fd- 7F;1 } = l(fdi;FB +€ﬁ'ﬂFd)’

[Kocr RP.) = —i6265 K,
{GLH Ql/} = —QiGVQTCL,
{Gu,Qost = —i55{\’aa,
[FOE(,Q#-] = iégF,;?a
[Fo,fl, Fgﬁ] = —i(EdﬁFoﬁ-a + GB;LFOo'?)v
1 1
[FZ,T%] =i(a+ 1)65F7,
) 1 1
(F ,Ff-j[;] = —i(eap g +e5, FE ),
1
7 # o _isHTO
{Fh5Qu) = —ilFgy,
T U e g O
(2}, T%] = i F2 7,



[F2 2 FO] = i(eysFE " + e FEY + e FLY 4, PR (2.14)
&6 480 T \TasT gy B8+ &y &Y 36 By ad )

3 -1 . L 1

[Fopr Qul = 2icw L5, [Fy0 Fi ¥] = desuF + ey, FE,

1 0.1 = i(e. . F1 .. Fl ..l Lol
[G;“ FOI:L"‘] = —i(ll + 1)6::}73, [FO:’FZ(;] — %G“Q(GdﬁFg + EﬁﬁFE),

1 1, -
[Ff:;’ F»‘fé J= -3¢ (fasFé;, + fﬁaéFé:, + fd»',ng + %’:,Fig)’

1

1 J Y's 4 1 =y _ T

[Fop T3l = 65 FL, (G F2[] = —isL FL.

3 NON-LINEAR REALIZATION OF G

3.1 Non-linear realization of Gy

In what follows we shall not need the generators of Ap in the explicit coordinate realization
(2.7). They will be regarded as abstract and subjected to relations (2.12).

Each element gg of supergroup G can be parametrized in the following way convenient
for constructing our non-linear realization of Gy:

s(1aB fap .
go = goe' " Mort" M), (3.1)
Here R :
. g . L2 . o i~ BB paa . a  faf
gC,) = ez:cﬁ“PLm-, ' Qu eté"Fp 2 etqﬂ‘ana e ad R 856 e't°ﬁTﬂ etf ﬁFgé’ (32)
and the group parameters T, f A , t5 and f# are restricted by a condition that g} should not

contain any generator of the Lorentz group (2.8), 1. e. by the condition

1 1 1 =
—plaB) 4 Z4(aB) 4 Zx(aB) _ FlaB) _
T+ Qt + ar f 0, (3.3)
in which r(*8) and 7(e8) = (1'(‘5’/3.))‘F are defined by the decomposition
0 . 1 o . ﬂ- . _ ﬁ .
r 00 = Z(r( é;é) + 55%(&) + af.jr(a) +8656°r). (3.4)

The transformation properties of the group parameters mﬁ‘.‘, 6+, ot qz‘é‘, rafﬁ, taﬁ, feB
with respect to Gy follow from the group multiplication law

"n_1

9090 = g(I)”) g67g(’)’7g(’)” € G07 (35)

in which element gg given by (3.2) is multiplied by a fixed element g5 and both ¢g) and the
resulting element g¢’ are expressed in parametrization (3.1). .

Now we shall introduce Cartan 1-forms w2 wpt, wé“, wq""f‘, w, a%ﬁ, w, f and wfo'ﬁ,
which are left-invariant w.r.t. Gy following the general routine [1,7,8, 9], i.e. as projections

of g(’)—ldg(’) into the complete set of the corresponding generators

. P § .
gy Mgl = i P+ g Qu + W FL 7 + w25 Q4 + (3.6)

ad

BB poa .8 . &B o
+ w7 Ratzmq-zwt T°‘ﬁ+zwf F&ﬁ"
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Their explicit expressions can be found more easily by using the formulae

. . 1 -_— e"iAdzZ
—1zZ 3 127
d = — .
e e Al (dz2) (3.7)
and . ' _
_MZdJ?/Y zzZ _ —zAdzz (de) (3 8)

where the action of operator Ad, on an arbitrary element Y of the superalgebra (containing
the element 2Z7) is defined by

Ad.z(Y) = [22,Y].

We obtain

W = (€))L (dzHt — ghdee),

wy’ = (et)u"dﬁ“,

wq;it — earadaae_ataa(e—f())ﬁcbdéub’

Wl = ()55, g, (3.9)
v, B = (6"656262 ("), -""’(e*r od') %

X (8§85 = 066 T dr
wh = —(8065 - (¢ )f(w’) Jt5°67 - 651,7) 7 dt,,
w0 = (8567~ (P0)% (0 )(F s 4 £ eyp8]) 7 dp

Here we have used the abbreviations

1
() = thu"taﬁ...tw”,

n

It

ry v 1 ad,. BB vy
(e = E Tuh ekt Tud (3.10)
' L e 3 o
and (ef())“d} = E Hf(” )edbf(ﬁ")ea.’g oo U

n

The expressions (6% g’ K:" 5““““6263)‘1, (65t — t#62)7" and
(f(5¢'7)€- -6"7 + fG9) w,,&ﬁ) ~1 denote matrices inverse to the matrices
(63857 — 7 26260), (62 — t546%) and (e, 67 + FO9e;;62), respectively.

Let as note that the Cartan forms w, cfff, wy 5 and wf fin (3.9) contain the Cartan forms
corresponding to the Lorentz transformations, which transform inhomogeneously w.r.t. Gy.

Their homogeneously transforming combinations are

L @ 1 (a
19 8)e T ¥ By (3.11)
1, e (& 3.12
4% ﬁ)+“’ 8) (3.12)
1, (ee CO LR

and 4 w, B)o + wt ) (4UJT QB)) + (wf 5)) . (313)



In what follows the left-invariant Cartan 1-forms (3.9) will be used to eliminate some
Goldstone superfields associated with various group generators. More precisely, the group
parameters associated with P## = I( P+ PE*) = 1(Pp* + P;*) will be identified with the
"bosonic” coordinates z## of the real superspace R*/* defined in (2.2), while the parame-
ters related to %(Pi‘“ — P#*) will be identified with the Goldstone superfield H*#(z,8,9).
Moreover, the group parameters 84 = 6% and 64 = 8% = (%)% will be interpreted as the
Grassmannian coordinates of superspace R*/*. (It is worth mentioning that z¢%, 6* and ¢*
transform w.r.t. Go in the same way as w.r.t. representation (2.7) ). The remaining group
parameters ¢*, qu, rafﬁ, t2 and f%# will be identified with the corresponding Goldstone
superfields ¢#(z,6,8), ¢%%(z,9,9), rafﬁ(x, 9,8), t(z,0,8) and f5(z,0,8) on R*/*, so that
their transformation properties w.r.t. supergroup G will be the same as the corresponding
group parameters. It will be shown in Section 4, that the superfields can be expressed in
terms of H*#, H*, H* by exploiting the inverse Higgs effect and thus eliminated from the
theory. However, before doing that let us first specify transformation properties of Cartan

forms (3.9) with respect to Gy and to Gy and then enumerate from them those, which are
simultaneously invariant w.r.t. both G; and Gyj.

3.2 Non-linear realization of Gy
Any element g; of supergroup Gy can be parametrized in the following form:

[ # [oa i(1°5Map+I_‘3‘BMéB)’

gr=gp e ‘as’s e (3.14)

with g¢ defined in (3.2). Since generators Iﬁ‘é‘ together with the Lorentz generators Mg,
M, form a subalgebra of Ay, it is possible to realize them on the coordinates i L

and the Goldstone superfields ¢#, qﬁ‘"", r B8 taﬁ and f"""’ via transformations which follow

ad ?
from the group law in parametrization (3.14):

. ¥ . C TR _% . 5 il _ﬁé Ro& |
9196 - (ezx'Z“PL uis ez&'“Qp e'¢' F, e‘qlzaQZé e aa BB % (315)
) c 1B .. . Y.
X e’t"’ﬂTQﬁ ezfm Fg‘é) ¢ Vasll® e’("aﬁMaﬂ‘H'aﬂMaB),
(3.16)

where gy € G and g is defined in (3.2).
Thus we can easily see that the coordinates and the Goldstone superfields transform
w.r.t. infinitesimal transformations i- .9 in the following way:

ao” M4
sz = 0
§9* = —z§iik,
8 = 0 (3.17)
bgx = @iy,
. . 1 1 . . - .
s B8 = B8 _§tgh[§(ragﬁag’5§-rsff’agag)]x

7



L sy 5) I; 5 4@ 1_4) )
X[‘S(p(vp'i_*(-"—g(w + & (+4(‘7+8 P

1 1 5 6
s = 18- §tgh[§(ta75§ — t°87)] <8p()p 4 (3 T 5P (‘)Yp> )

. 1 1 5. . .. 5 .. 1
59 = gt + 1o (Lo + 7+ 5020 )
where
ﬁﬁ — -r ,Bﬁ B cb b KEKR KK ww
AN (Cut W COM A 0 S I (1 S o P
and 77 E(@ﬂf@ﬁ—ﬁ&)(%”—pwmww

Except for zi‘.‘ , 8 and @* these are in fact non-linear transformations because of the
comutators [Iﬁd,T%] = —iégl;"d and [Igd,Rﬁi,.y] = ié,‘jé,‘i’]ﬁﬂ. .

Cartan forms (3.9) are transforming according to the adjoint representation of I}, Mqgs
and Md;é’ i.e.

6‘-%‘;‘1 - l'() uu_*_l/()wz;zu’

bwg = —io, x‘za‘H'()weuy

bog' = Ped,

S =Vﬁﬁwuﬁqf—@)ﬁ: (3.18)
b, B = it B G, 2P T, B -G, B - T, 2P,

Sw, f = 'ﬁ#wq“é‘ + l'(v)wt : l'l(l) Wi 5

5wfdﬁ = -*-l-'g;‘u.zjfY +l’£yﬁ)wfm.

3.3 Non-linear realization of Gy;

Any element g7 of the supergroup G can be parametrized in the form

inal'JFOQ ikcxd]{ .

. PR .
. . F #VF2 uFl .
grr=4gp e boe as gighGu gio” i ep ap ew“ 6361(105‘\{05 luﬁMdB),

(3.19)
11
where g is defined in (3.2). Since the generators Fo‘f‘, Kos, Gy, Ff, on_(;, Fa?['i’ Mg and

1\/[613 form a subalgebra of Ajj, their realization and transformational properties can be
obtained analogously as in the previous case, i.e. from the group multiplication law

N . .
o ) R Lo .. BB paa  fOBEO .
g1 - (ewzuh wi 0 Qu LT GiaiQ, (e R (it TS Fzﬂ) -



. Y : LT —2 ' BB B8 IQ/S
- <etx'Z“PL B e:G”“Q“ 6145' Fp zq’ﬁaQ“ ir Raa 85 ¢ i’ ) T°‘ f

aa e aa

) X (3.20)

ag

DU SR S _aa
X (6"" LEL M Kaa gig™Gy o hE) iieFY ) e )Ci(llaﬁMaﬁ'“'aﬁMdb).

From here we obtain the transformatlon propertles of coordinates %% 9% and #* and of
the Goldstone superﬁelds P, q o‘d‘ aa , t? and fe &8 with respect to infinitisimal transfor-

mations n* , koS g o

I

6:1:}7:"
0e* =
5" =
6qff‘"‘ =
ér_ PP

adk

6tP =

§F57 =
where

gah

i

and Tf

pﬂ. and s%7. They are of the form

G2y

—§% g+

0RO 430 4 g2l
2€,,0" koS 4 2q°’deug6’ﬁ v

thh[ (rad 6067 — r_PAs153)) (3.21)

s (1 6 1z s{l.8 1.
’:6 (Z Ty ~ —6(’7) + & (ZTH - '2_£‘V)J ’

1 1 1.
8 _ 1 B8 _,8 6y _ L1z
= StehlS(16f — 1, 6")1( 2 25(7),

11 S NS
—Ztgh[g(f("”’e,;séz + [0 es80)]e (ZT(Q - 562) ;

((e"f”)f(e"f")gﬁ - 5—'75?) (@pr)f,se + ‘5ésf(”")€mb> (0°p° + 675%%),

. . _1
= ((e7)(e) S - 6968) ™ (6517 — g71.m 2¢,.,6" g*.
¥ o 3 Y& w w'§

The corresponding transformation properties of the Cartan forms (3.9) are given by

I
bw

, ai
6“"7 I

bw Bﬁ

T oo

dw, o

bw a8

= —2€aug w, +l’() ta——l'(

= l’(u + ll( w ur

v) $L v)¥rp
= +l’£‘)‘w9,
= w -|-l’£‘)‘w—
= +2€Wk"’°"w5"+l'g; f’°+1'g:)‘ w0~ 1 e, (3.22)
(B B8 (4 83
= +I,‘(y) W, aa +l,~,) r aa llz(::; w, 2744 1,07) T oy ?

y
)tv’

= 4+ /#ﬁwo -f—l’() +l/() f



4 ELIMINATION OF SUPERFLUOUS GOLDSTONE
SUPERFIELDS

4.1 Covariant elimination of Goldstone superfields associated with Ag

Now we shall express all Goldstone superfields introduced in the previous section in terms
of those defined in (2.3) by imposing appropriate constraints invariant under G on the
corresponding Cartan superforms (the inverse Higgs effect). Thus we shall eliminate all the
Goldstone superfields (except H**(z,8,0), H*(z,0,60) and H%(z,0,0)) from the theory.
Further, we shall use superfield H% = ¢% — 8% instead of ¢°.

Denoting the real and imaginary part of Cartan form wz‘z"” by w, 2% and w ;}""‘ respectively,
the complex conjugate of w,* by &%, the covariant projection of Cartan form wy onto wy
by symbol -:}—;’1 and using the explicit expressions of the Cartan forms given in (3.9) we can
figure out aﬂyinvariants with respect to both G; and Gy;. We can find that there are four
invariants w.r.t. Gg, which are simultaneously invariant with respect to Gy and Gj; namely

ad adk & ad
“H “H “uoo,q Jav
w TR ] _ g _ L —
P) w§ Wy Wy

They will be used to eliminate Goldstone superfields qu , ﬁﬁ’ t5 and f“ﬁ from the theory.

First we eliminate superfield qu‘"(:z:, 8,8) by putting —f— = 0. We introduce the symbols
0 . 9
AH®%* and Az®“, the covariant differentials, by the formulee

AH® = dH* - (q“"d()“-}—qﬁd‘d@"‘), (4.1)

Al‘ad

dzs — 5(qu°‘d0“ ~ @%df*). (4.2)

Then the Cartan forms

. 1 . .
wi® = Z(wx‘;“ ~@g7) and (4.3)
. 1 . .
w Y = —é(wz“zo‘ + &7 (4.4)
can be written as
a&  _ qoad A BB 4 pod A BB
wg® = ABﬁAH +BﬁﬁAz , (4.5)
ad  _  ak A BB ad A B0
w, = CﬁﬁAH +DﬁﬁAx , (4.6)

where A, B, C a D are matrices. In the neigbourhood of r ﬁﬁ = 0 the matrices A and D
are regular (~ 1) and B and C close to zero. We can, therefore write

wE® = ASSAH® 4 B3EAL =
= (A-BD~ 1C)“°‘AHM+(BD 1)% PP,

10




from which it follows that ZH; = 0 if and only if éﬁgi = 0. However,

we we
: dH*S OHo®  _sQHS
AH® = dzfP 6° -
T 5207 +d ETE + d6P 558

1 . —
- 5; (440" + g3ods) =

QH& QH% ) 0H"
= Aﬁ5+[ (+ ¢2° + qu>— ]d0”+

088 9288 oor
1 OH® 55 . o QH*% -
v 3 (-Gm ) -

so that

oA g (3 (Lo i) - ),
UJ@ 8zﬁﬁ 60“
with E being a regular matrix.

Thus, putting

wgs
W A - 0,
6
we obtain .
: DH*\ "1 9HPP
(s 404 — 2 6 or —- .
T ( 5% 1 9260 ) o+

By complex conjugation we obtain

“i g
niy ’
. Y GLAN): 2
O [s 1
I <5ﬂ6 +Zaxﬁﬂ> 6%
Denoting
0 1 .. 0
Vi = gen "% oo
o 1 5 0
and V;, = 5?0—#—-*- qzqa ool

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

where ¢ and § are assumed to be functions of H¥% and of its derivatives according to (4.9)

and (4.11), we can rewrite

¢e% = —2iV,H** and §3* = —2iV,H*,

(4.13)

so that Goldstone superfield qu"" is expressed in terms of derivatives of superfield H“é’(a:, g, 9).

11



Now we eliminate superfields r_ f s , fd’é and t.°. For that purpose we shall use

&
YH_ - o, (4.14)
Iniy
w g .
2 = i} (4.15)
[

and the fact that superfields 7, f and ¢ fulfill (3.3). Notice that u—}_’—fé—z- in (4.15) was not taken

[}
to be equal to zero but to a proper Lorentz-invariant constant matrix in order to be in
harmony with the right flat—superspace limit:

A B
H® = -0°0%, H* =0, H*=0 (4.16)

and consequently qud = —iéﬁgd.

Since superfields rafb, f‘5‘[3 and ¢ have 16 +3 + 4 components which are restricted by
3+ 4+ 16 conditions from (3.3), (4.14) and (4.15), they can be completely eliminated from
the theory.

5 INVARIANT ACTION

Now we are going to construct a Lagrange density invariant w.r.t both G; and Gy;. First,

. . . W™ . . . . .. . . .
it seems that projection —H can be such a suitable invariant, since it is obviously invariant
w,

wr.t. Grr (cw. (3.22)) and it is invariant w.r.t. G due to (4.8) and (4.10). Moreover

aa

EHFE = 0 because of (4.8), (4.10) and (4.15). This can be easily seen by taking into account

[ . .
the following facts. All superfields can be transformed by e****FLui e’H“Q“g(',—l to zero in
any point of superspace R*4. Then expression (4.15) takes the form

ad

B _ _isass. (5.1)

Thus, comparing the expression obtained by substituting formulae (4.9) into (5.1) with that
obtained by its complex conjugation, we get

oHo: _ 9PHAE OH _ 9 HP8

565 —i—— ——— = 2(§56% : = §965. 5.2
20505 ~ o) agrage ~ Ao T 0255 oEiges Ol (5:2)
From here we see that %ZI;: = 0 and consequently
wlf‘é‘
- =0 (5.3)
wxﬁﬁ

Q.E.D. Then (5.3) together with (4.8) and (4.10) gives w % = 0.

12



Since there are no invariants w.r.t both Gy and G containing at most a second deriva-
tive, the invariant action can only be constructed via integrating over an invariant super-
volume made of invariant forms w_ % and w," instead of noninvariant expressions dz*% and
dg*. In fact, as follows from (3.18), Cartan forms w,** and w,* are not mvarlant w.r.t.

transformations e “'%° laa, but since these transformations are triangular, i.e. w,*% — w %%,

wpt — wy + i’Zdwz"a thelr superdeterminant is equal to 1 and therefore they need not be
considered.

Writing the action in the form

I= / E d*0d%*0d*z, (5.4)
the Lagrange density E is given by
E = BerEjj = det[E5S + EZ%(E™ o Egd(E*)gE;ﬁ] (5.5)

x  det™}(E4)det™(EY),
where EIJ\Y[ is defined via the decomposition

wF' = (%, w, &) = dsEN; + d0“EY + dP*EY . (5.6)

It is not difficult but rather tedious to express Ef‘v,, in terms of H*¢, H# and H* . Thus
using (3.9) and definitions (4.1), (4.2), we finally get

w, = Re ((er)gg> AxPP — Im ((er)g;) AHPP = (5.7)

Re (@)35) - 1 (55) s

It is consistent with (5.6), since Az = dz¥ 4 ...df + ...df. Expressing (4.15) in terms
of superfields we get

Az = E"“"Az'”

laqad_ ) aqad e ad o
~ 5500+ agﬁ = —i(e7), 55 ()7 () . (5.8)
Denoting

wi aHac'x
Aﬁﬁ = (% 6 azﬁﬁ' ),

Aok — e
A% = (Azhyt (5.9)

od S 10q3* . Og5® ad ad , ad

and using the fact that
1 .
(V5V} = 5(V68 )01~ 5(V353)01 = i (V3. VAl ™) 05, (5:10)

13



we can write
v Lg“ A""[Vﬁ, Vg]H"”
From here it follows that

(a5255) = (as5231)"

Expression (5.8) yields

e)gs = (N5(ENS(LTI(A l)f‘sA“

Thus we obtain

Re((e)55) = ()5(DSL™NH(A™E =

5§ 88
= (er ,‘:,g(A_l g’;,
; OH<
ryad _ ayr—1 —1 56
(@05 = (5O s
. . 8H56
= (Moo A=Y
= —(eN)35(4 55 5,50
and consequently
ad Ty aHﬁﬁ
Ecé = Re((e )cé Im((e) )a e
OH 9H®
— ad ¥ —
- (6 )ﬁ (A ) (676 Oz &g Ozet )_
- (er);g(A )55‘4;;‘466 (6 )aaA§6

Denoting ¢ = €"aa, 7 = ¢! and A = det(Af,f) we get
detEgg = |ol|Al.

Finally, using (3.9), we can write w,” and Cug‘l in the following way:

{l

w,” A6 E¥ + dz®*E*, = d6* (') *,
of = dB°E} + dz°OE”, = dP ()
so that

El = (")}, detEf =1, Ef=(e"), detE*=7.

v

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
(5.19)

(5.20)

Since Ef, =0 = Egd due to (5.18) and (5.19), the Lagrange density E (5.5) is of the form

E = BerE§ = det(E5)det ™! (E£)det ™} (E£) = o] |Allr| 2.

(5.21)

Now we are going to express E respectively p and 7 in terms of He& HA, H* and their

derivatives.
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For that purpose first consider the determinant of both sides of equation (5.8). We
obtain

L= detng = o Yr|%. (5.22)
Expressing (4.14) in terms of superfields r,¢, f we get

r PPt

]Vfg = e_a( ph PP)(ef()),.Yd(ef)[.;/ (523)
where we have used the abreviation

10H% 5 OH®

& = go N - . &
M§ =63+ V40 25em 0+ 5 T (5.24)
Taking the determinant of (5.23)
— & _ . —2a_2a-= _ n+1
M= detMB =0 “*r"*F, a= —_2(3n ) (5.25)

we can find ¢ and 7 from (5.22) and (5.25). Substituting them to (5.21) we finally obtain
Lagrange density E in the form

E = |A||L|"|M|~CD), (5.26)

where n is the ordinary Gates-Siegel parameter {6].

5.1 The case n = —

w =

Let us discuss now a particular case of supergravity for which n = —%, i.e. the N=1 minimal

Einstein supergravity. In this case Lagrange density E is of the form

E = |A||L|"3 (5.27)

thus independent of superfields H* and H~,

It is easy to show that the Lagrangian arising from (5.27) is equivalent to that derived
in [1], the density of which can be written as

BerEI% M= 2_%(detéIN)_%(detf‘IN)_%(detAIN)%(detA]N)%. (5.28)
Here all quantities from [1] are denoted by index IN. ) ) .
Taking into account that ACI‘:, 55 = Agg, VIN« = VO,,IVIN & = —Va, é‘;}% 65 =
= & 17aé ~ad S ok _ 1jod
Vin g'VIN gH** = 'ngpé and "IN 86 = ViIn gV N ﬂch = §ng, we find that
BerEN o = 273|A||L|"3 = 275 E. (5.29)
Q.E.D.
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5.2 The general case

Now we are going to compare the Lagrange density (5.26) with that in [6]. For that purpose
we expand E up to O(H 2} in the neigbourhood of the flat superspace defined in (4.16), i.e,
Hod = god 16>6%, H* and H". Let us denote G°‘°‘ = [Vﬁ,Vp]H“‘ A- 15‘,‘3L;’; 6365 5
D, = 89“+ igi mand D, = 80“-}—'(9“ (det(1+ A))" =1+ nTrA —

2Tr(A%)+ %(TIA)2 + O(A3) with A being a matrlx we can expand E in the following way
E = |A|LMMmCY =

aa
= |de t(éﬁéa aaljgﬁ )|(n+1)|det(5;’67 G'W)I |det(5“+V Hp‘ (3n+1) _
— 1 n+1 aHad 8flﬁﬁ 1 Gao’: Gﬁﬁ Gaa n? Gao’zGﬁB
- 5 9g86 9go5 | [N T MCas T 50 T 5 Gaalgy) X
X [1 Al et A 3": 1(v¢ﬁi‘vgﬁb + VY, H*V, HY)+
2 . _ . 2 _.
4 %(vﬁﬁﬂvbﬂu + VL HAY,HY) + w"—m—qu“VﬁH"] + OB =
n+16‘f7°d(9flﬁb ﬁﬁ ’I‘L2 . ﬁﬁ
_ _ , ag _ D ad 4 I cadoBB _ 30
Lt 55,58 fzor T "0ad ~ 50aalps T 5 CGailyy (5-30)
_ 3t 1(\7 o 4+ v+ S, BEV B+ v, HEY ) +
. 2 —
+ ————(3" ; 1) (V. HAV HY + V, HFY, HY) + @Bnt 17 I D V. H*V H -
- @Ggg(v#m + VL HF) + O(HP).
Then by using the identities
V,H* = D,H"+ O(H?), (5.31)
V,H* = D,H"+O(H?), (5.32)
Haoz
V. HY = % —D,H* + O(H?®) + div, (5.33)
. aHaa
Vit = i —D,H* + O(H?) + div, (5.34)
- 8HC¥C¥ 8Hﬂﬁ 3
oy = - di 5.35
Go 925 5908 T O(H?) + div, (5.35)
ok 5 A8 o g 788
OH®ZOH™" _ OHTTOHT | 4, (5.36)
9zBB Oz 0z §pB8
DL',I_{‘.‘D,;E{’ = —D[‘I—{’:'Dgffi' + div, : (5.37)
D,H*D,H* = —D,H*D,H" + div, (5.38)
we obtain
3n+ 1004 9HLS 56 zw 3n+1 8H°‘°‘
= _ RghBGas ad D, H* — D H*
E 3 9z0% gghh 3GaaGEs+ G 3Gg 5 gged | )+
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(3n + 1)?

+ (3n+ 1)(3n — 1)(D,H*D,H" + D,H*D, H") + D,H*D,H" -
- f@‘;ﬁcgg(vum + V. H*) +0(H?) = (5.39)
= (GMG"" +3G25GS%) + (3n + l)n{%[ -G + g(DuH“ + Dy H™)? +
%[%f:: ~ LD B~ DLANPY + O(H?) (5.40)

This expansion is equivalent (up to a scaling factor of the superfields) to expression (4.7)
introduced by Siegel and Gates in [6].

5.3 Conclusion

In the paper the N = 1 supergravity is consistently reformulated as a simultaneous non-
linear realization of two complex finite-dimensional supergroups G and Gy generating via
their closure the whole infinite-dimensional N = 1 supergravity gauge group. Thus, the
N = 1 supergravity is found to be a kind of the non-linear o-model describing a partial
spontaneous breaking of the underlying infinite-dimensional supersymmetry down to the
rigid N = 1 supersymmetry. This kind of reformulation of N = 1 supergravity has several
advantages.

First of all the nonlinear realization approach allows an algorithmic construction of
N = 1 supergravity based on the universal method of Cartan forms augmented with the
inverse Higgs phenomena. The only independent Goldstone superfields actualy needed to
accomplish the above mentioned supersymmetry breaking appear to be axial vector su-
perfield H*#(z,0,8) and spinor superfields H*(z,0,0) and H%(z,0,d) identified with the
N = 1 supergravity prepotentials. They contain the fields mediating interactions. The
other Goldstone superfields are expressed in terms of H## H* and H* and their deriva-
tives. It is worth mentioning that the inverse-Higgs-effect constraints presented here are
purely algebraic, in contradistinction to the standart N = 1 supergravity constraints that
are reduced to certain differential equations (vanishing of some components of the torsion),
solutions of which are the prepotentials. In the present formulation these differential equa-
tions appear to be a consequence of the Maurer-Cartan structure equations for the complex
finite-dimensional supergroups Gy and Gyj.

Second many object and relations introduced ”by hand” or postulated in the Ogievetsky-
Sokatchev approach [3,4] acquire a clear group-theoretical meaning. For instance, the ob-
jects F and F playing the crucial role in the Ogievetsky-Sokatchev formulation turn out to
be related to the Goldstone superfield associated with the spontaneously broken generator
Dy of Gpy introduced in {1].

Third the complex geometry of N = 1 supergravity reappears here very clearly. Primar-
ily, it manifests that one deals with the complex supergroups Gy and Gy in a holomorphic
parametrization (cf. the N = 1 super Young-Mills theory which can be interpreted as a
realization of complex extension of local internal symmetry [11]). The C*/* coordinates
z L“, 8%, &% naturally arise as the parameters of the relevant complex coset spaces. The
constramts arising from the inverse Higgs effect in the present formulation can also be in-
terpreted as a kind of covariant chirality conditions (i.e. in the case n = —} as the absence
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of the df projections in the corresponding Cartan forms).

Let us also mention that the Paper deals with a treatement of the inverse Higgs phe-
nomena for elimination of some Goldstone and gauge superfields which is quite general and
universal. Finaly we hope that this formulation of supergravity theories alows to answer the
question whether N = 1 supergravity can be reproduced as an effective "low-energy” limit
of some higher dimensjona] superfield supersymmetric theories (by analogy with condensa-
tion of super-p-branes in field theory) or the related question of existence of theories with
a lineary realized V = 1 supergravity group as well as to obtain the geometric prepotential
formulations of supergravities with N > 3 which are unknown at present.

Appendix: N otation, conventions and identities

In the paper the following notations and conventions are used:

m,n,...€{0,1,2,3}, a,d,ﬁ,ﬁ',...e{l,2},

Imn = diag(+, -, —, —), 6°¢° = _ghge 0468 = —pRgs

(e_d)+ =6,, 68 = eﬁaga, 86 = eﬁ.déd,

P = _eab gﬁd =_——e‘é‘ﬁ., = ¢, = 2 = —€j5 =1,
0% = 64, 6? = 9,8%, oo =03,

(6°6°)* = gPge _ .

(0m)as = (1,8)as, (0m )PP = P2P(1, 5)o = (1, -5)5,

where & are the Pauli matrices

{01 (0 = g (10
01-10902_i0 ,3—01’

=2 (om) ™, B o Lo aar s,

Consequently g—i;—g = (am)ad‘%(ak)adnk"%fc—': = Hom)* ™ (o) )ug = 6363’. (aB) denotes

symetrization over indices a, 3, ie. X(ap) = Xag + Xpo and X(g) = e°’7X(ﬂ,ﬂ).
The Poincaré algebra is formed by the generators Muop = Mpo, M ag = My, and Py
satisfying the relations

[Mdﬁ"M»ﬁ] = iEﬁ'ﬁM&'x +i€o',:7ﬁ'15ﬁ* +i€d$M—9ﬁ' +i€ﬁ'gM:y5,,
[A/[ag, M.yg] = iEa,yMaa + ifa.yMgg + icagM.,g + iq@sM,ya,
[Map, Ppy] = 166y Pay + i€aqy Pps,
[Mdﬁ" Pyl = ifg',-,Pvd + iEér‘meg,

others = 0.
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