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A search in the high momentum regime for new resonances, produced in association

with a jet, decaying into a pair of bottom quarks is presented using an integrated luminosity

of 80.5 fb−1 of proton-proton collisions at center-of-mass energy
√
s = 13 TeV recorded

by the ATLAS detector at the Large Hadron Collider. The search was performed for low

mass resonances, including the Standard Model Higgs boson and leptophobic Z ′ dark matter

mediators, in the mass range of 100 GeV to 200 GeV. For the Standard Model Higgs boson,

the observed signal strength is µH = 5.8 ± 3.1 (stat.) ± 1.9 (syst.) ± 1.7 (th.), which is

consistent with the background-only hypothesis at 1.6 standard deviations. No evidence of a

significant excess of events beyond the expected background is found and competitive limits

on leptophobic Z ′ boson axial-vector couplings to Standard Model quarks with democratic

couplings to all quark generations are set for the mass range considered. The dominant

background in this analysis is irreducible multijet events from QCD interactions, which I

modeled using a parametric function that was robust to fitting bias and spurious signals.
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Preface

The following is a summary of useful concepts in high energy particle physics.

0.1. Units

0.1.1. Natural Units

The nature of high energy physics is to give descriptions of the phenomena and interac-

tions that occur at energies that result in speeds that are close to the speed of light over very

short time and distance scales. Given this, it becomes readily apparent that the International

System of Units (SI) of measurement is somewhat cumbersome to use in calculations, and

a much more useful system of units would be consistent with the scale of the phenomena.

When measuring the speed of a relativistic particle it is more convenient to compare to the

speed of light (such that c = 1) than to the number of meters per second. Similarly, when

measuring the momentum of a particle it is generally more useful to know the amount of

its energy in the form of momentum compared to the amount in the form of its mass, re-

sulting in expressing momentum in terms of energy. This system of units is called “Natural

Units,” and builds its measurements in terms of speed, angular momentum, and energy. It

is used extensively (if not almost exclusively) throughout high energy physics. Quantities

encountered routinely in high energy physics are given in Natural Units in Table 0.1.
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Table 0.1: Common quantities in particle physics given in both natural units and SI units.

Quantity Natural Units Natural Units (dimensionful) SI Units

Speed 1 c 3.0× 108 m/s

Angular Momentum 1 h̄ 1034 m2 kg/s

Energy GeV GeV 1.6× 10−10 J

Momentum GeV GeV/c 1× 10−19 kgm/s

Mass GeV GeV/c2 1.8× 10−27 kg

Time 1/GeV h̄/GeV 6.6−25 s

Length 1/GeV h̄c/GeV 2× 10−16 m

Electric Charge 1 e/
√
4παem 5.3× 10−19 C

Magnetic Field (GeV)2 (GeV)2 /h̄c2 5× 1016 T

0.1.2. Units of Cross Section

The “cross section” is the effective cross-sectional area of the event space for an given in-

teraction to occur, and so has units of area. It is commonly used though in the context of the

fraction of the total event space that a particular process contributes (the dimensionful event

space solid angle), and so is not a reflection of the physical size of an interaction. For exam-

ple, in high energy physics cross section can describe the production of a particle through

a particular process, such as Higgs production through gluon-gluon fusion. A particularly

clear analogy for cross section1 comes from theoretical physicist Rudolf Peierls [1]:

For example, if I throw a ball at a glass window one square foot in area, there may

be one chance in ten that the window will break, and nine chances in ten that the

ball will just bounce. In the physicists’ language, this particular window, for a

ball thrown in this particular way, has a “disintegration [inelastic] cross-section”

of 1/10 square foot and an “elastic cross-section” of 9/10 square foot.
1Made known to me by Stephen Sekula.
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For the cross sections that are common in particle physics the units of “barns” is generally

more convenient to work in, as further discussed in Section 0.1.3. A barn is defined as

1 barn = 10−28 m2 = 10−24 cm2, (0.1)

which is roughly the cross sectional area of a uranium nucleus [2, 3].

0.1.3. Units of Luminosity

Tightly related to cross section is a crucial quantity of interest in high energy physics: the

luminosity (both instantaneous and integrated) delivered by the particle accelerator. The

instantaneous luminosity, L , can be defined as the number of particles incident per unit

area per unit time (generally taken to be seconds),

L =
number of particles
unit area · second

. (0.2)

In accelerator physics, the unit area is generally chosen to be cm2, giving instantaneous

luminosities units of cm−2 · s−1,

[L ] = cm−2 · s−1.

However, experimental particle physicists prefer to use units of inverse barns (per second)

for (instantaneous) luminosities.

The context in which luminosity appears as being useful is in the form of an equation

like

Nevents = σprocess ·
∫

L dt (0.3)

where:
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• Nevents is the number of events of a particular process that will be produced at the

collider. This is what ends up exiting the collision process.

• σprocess is the cross section of the particular process to occur per interaction of collid-

ing particles. At the Large Hadron Collider (LHC) this would be the cross section

per proton-proton interaction. This is a function of the fundamental physics that is

available at the energy ranges being probed, and so is also a function of the collider’s

center of mass energy,
√
s. When written in an equation as such it is assumed that the

cross section is also including the relevant branching ratios for the final state particles.

That is, σ
(
pp→ H → bb̄

)
= σ (pp→ H) · BR

(
H → bb̄

)
.

• L ≡
∫

L dt is the total luminosity integrated over time (the integrated luminosity) [4].

This is what is delivered by the particle accelerator.

Table 0.2: Instantaneous luminosities at the LHC.

Description Units of cm−2 · s−1

LHC Design Luminosity [5] 1034

2017 ATLAS Trigger Menu Maximum [6] 2.0× 1034

2017 Plan [7] 1.7× 1034

2017 Peak [8] 2.09× 1034

2018 Peak [9] 2.1× 1034

Table 0.3: Integrated luminosity measurements in barns−1.

Units Units of cm−2 Units of fb−1

barn−1 1024 10−15

mb−1 1027 10−12

µb−1 1030 10−9

nb−1 1033 10−6

pb−1 1036 10−3

fb−1 1039 100

ab−1 1042 103
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0.2. Coordinates

The LHC coordinate system, seen in Figure 0.1, is a rectangular coordinate system defined

relative to the LHC ring and the LHC beamline. At any point, the positive x direction is

defined as the direction that points radially inward to the center of the LHC ring. The

positive y direction is then defined as pointing upwards — radially outward from the center

of the Earth — leaving the positive z direction pointing along the beamline.

x

y

z

P

LHC
ATLAS

φθ

Figure 0.1: The LHC coordinate system as seen from the ATLAS detector.

While the LHC coordinate system is Cartesian, the preferred coordinate system for de-

scribing LHC events is not. As the ATLAS detector is arranged cylindrically around the

beamline of the LHC — such that most of its detector components are transverse to the

beamline — the coordinate system that is used to describe events in ATLAS is characterized

by a particle’s transverse momentum, pseudorapidity, and azimuthal angle: (pT , η, φ). The

polar angle, θ, is defined as the angle relative to the beam axis, and the azimuthal angle, φ,

is measured around the beam axis.

5



Pseudorapidity is then defined as

η = − ln

(
tan

θ

2

)
(0.4)

to be a good approximation in the high energy regime of the rapidity of a particle — a

measurement of the velocity of a particle longitudinal to the beam axis,

y =
1

2
ln

(
E + pz
E − pz

)
. (0.5)

As the beam axis is defined as ẑ, such that pz = |p| cos θ, then it is seen that in the relativistic

limit, |p| � m, the rapidity reduces to the pseudorapidity

y (|p| � m) ≈ 1

2
ln

(
p+ p cos θ

p− p cos θ

)
≈ 1

2
ln

(
2 cos2 θ

2

2 sin2 θ
2

)

≈ − ln

(
tan

θ

2

)
= η.

It is clear that the rapidity and the pseudorapidity are not Lorentz invariants. However, for

a Lorentz boost — a Lorentz transformation without any rotations — of speed β along the

beam axis, ẑ, E ′

p′z

 =

 γ −γβ

−γβ γ


E
pz

 ,
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it is seen2 that the rapidity for a particle under the boost is the sum of the original rapidity

and a constant of the boost

y′ =
1

2
ln

(
E ′ + p′z
E ′ − p′z

)
=

1

2
ln

(
E − βpz + pz − βE

E − βpz − pz + βE

)
=

1

2
ln

(
E + pz
E − pz

)
+

1

2
ln

(
1− β

1 + β

)
= y − tanh−1 β .

Thus, the difference in rapidities between two particles is seen to be independent of the boost

and so is a Lorentz invariant. Defining the distance metric3 for two particles in (η, φ) space

as

∆R =

√
(∆η)2 + (∆φ)2 (0.6)

it is seen that ∆R is by construction invariant to boosts along the beam axis. As a result,

translations in η of particles correspond to boosts of the particles along the beamline.

For experiments at high energy colliders, the pseudorapidity offers a distinct advantage

in the high energy limit as it only requires angular information while giving an excellent

approximation to the rapidity. Measuring both the energy and the full momentum for highly

relativistic particles can be quite difficult, and as the differences between the rapidity and the

pseudorapidity can quickly become very small, pseudorapidity is the favored measurement

for experimental results. Values of the pseudorapidity for values of the polar angle are

summarized in Table 0.4 and are plotted along with the form of Equation 0.5 in Figure 0.2.

2Glossing over some algebra and hyperbolic trigonometric identities.
3∆R is an angular distance in (η, φ) space, and can be thought of as a solid angle.
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Table 0.4: Polar angles relative to the LHC beam axis, θ, and their corresponding
pseudorapiditities, η.

Polar angle (θ) Pseudorapidity (η)

π
2

0
π
4

0.88137
π
8

1.61489
π
16

2.31779
π
32

3.01335

0π/8π/43π/8π/2

θ

0

1

2

3

4

5

η

η = − ln(tan θ/2)

η(θ) for θ ∈ {π/2, π/4, π/8, π/16, π/32}
ATLAS tracking fiducial region coverage

Figure 0.2: Pseudorapidity, η = − ln
(
tan θ

2

)
, as a function of the polar angle, θ. The

example markers are the points given in Table 0.4. The blue shaded region indicates the
polar angle coverage up to η = 2.5, which is the end of the fiducial region coverage by the
ATLAS inner detector tracking.
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0.3. Statistics

Robust predictive modeling and statistical inference are crucial for successful analyses in

particle physics. This section will be a very brief tour of these concepts and some of their

applications, which will be necessary to understand the analysis that was performed.

0.3.1. Likelihood Ratio

0.3.1.1. Wilk’s Theorem

In brief, Wilk’s theorem [10] states that for two functions in a nested family of functions,

f (x |θa) and f (x |θb), with the number of parameters a < b, in the limit of large sample

size the likelihood ratio test statistic,4

tθ = −2 log
L (θa)

L (θb)
, (0.7)

is asymptotically distributed as a χ2 random variable with d = b− a degrees of freedom,

lim
samples→∞

tθ ∼ χ2
d. (0.8)

This asymptotic approximation to the empirical distribution of the test statistic allows for

efficient computation of a p -value (that approximates the p -value under the empirical dis-

tribution).

The one-sided (one-tailed) p -value — given the null hypothesis that tθ is χ2
d distributed

— is then the value of the complementary cumulative distribution function (CCDF) of the
4As likelihoods are not p.d.f.s and so not required to be normalized, it is seen that L (θ) = f (θ|x).
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χ2
d distribution evaluated at the observed tθ,

p-value = CCDFχ2
d
(x = tθ) . (0.9)

That is to say, the p -value is the probability, given tθ ∼ χ2
d, to observe a tθ value greater

than or equal to that which was observed.

0.3.1.2. Profile Likelihood Ratio

The maximum likelihood estimator (MLE) θ̂ is the value of the parameter θ that max-

imizes the likelihood function given the observed data. So for parameter of interest µ and

nuisance parameters θ, the maximum likelihood estimators are µ̂ and θ̂. Likewise, the con-

ditional maximum likelihood estimator ˆ̂
θ is the value of the parameter θ that maximizes the

likelihood for a given value of another parameter µ. So for a specific value of the parameter

of interest µ, the conditional maximum likelihood estimator for nuisance parameters θ is ˆ̂
θ.

As ˆ̂
θ is a function of the given µ then it is seen that the likelihood function’s dependence

on the nuisance parameters θ can be “profiled” vs. µ and removed. Given this, the profile

likelihood ratio,

λ (µ) =
L
(
µ,

ˆ̂
θ
)

L
(
µ̂, θ̂

) , (0.10)

can be constructed and used as a test statistic to indicate the compatibility of a possible

value µ with the MLE µ̂ — a function of the observed data. Given that the negative log

likelihood is usually what is actually calculated — for numerical reasons — the test statistic

that is generally used from the profile likelihood ratio is

qµ = −2 lnλ (µ) = 2
(
lnL

(
µ̂, θ̂

)
− lnL

(
µ,

ˆ̂
θ
))

, (0.11)
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as it is seen by Wilk’s theorem, Equation 0.8, to be distributed according to a χ2 distribution

with one degree of freedom. This results in a p -value for qµ of

p =

∞∫
qµ

fχ2 (t|1) dt . (0.12)

0.3.2. Intervals and limits

In addition to point estimates that determine an estimator, θ̂, of a parameter θ, interval

estimates give statistical precision to the measured value. A common example of such an

interval estimate is the set of points bounded by the point estimate and the estimated

standard deviation:
[
θ̂ − σθ̂, θ̂ + σθ̂

]
. The following is a short discussion of the construction,

interpretation, and use of these intervals in the frequentist and Bayesian paradigms.

0.3.2.1. Frequentist Confidence Intervals

In the frequentist paradigm, a 1 − α confidence level (CL) confidence interval (CI) is

an interval estimate that covers the true value of the parameter, θ, 1 − α of the time it is

constructed. So the 95% confidence level confidence interval covers the true value 95% of

the time it is constructed. The method for constructing confidence intervals is called the

“Neyman Construction” [11], and results from inverting hypothesis tests. This confidence

interval construction can be described as a random variable that is the set of parameter

points, {θ}, where the null hypothesis of each parameter point θ is accepted, p (t > kα|θ) < α,

CI1−α = {θ | p (t > kα|θ) < α} . (0.13)
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By construction, a hypothesis test of size α should accept the null hypothesis, given that

the null is true, (1− α) of the time [12].

It is very important to take care in interpreting the meaning of the confidence interval,

as it is often misunderstood and misused in analysis. The confidence interval is constructed

from the observed data5 and so is a random variable and reflects information regarding the

constructed estimator — not the true parameter. The confidence interval does not give the

interval in which there is a 1 − α probability of finding the true parameter value. This is

manifestly Bayesian and in fact is the interpretation of a Bayesian credible interval. Keeping

the definition of frequentist probability tightly in mind, the confidence interval should be

interpreted as an interval of parameter values that 1−α of the times is constructed contains

the true parameter value. Given this, in the frequentist paradigm one is unable to make

any statement on the probability that the true parameter value is contained in any specific

confidence interval beyond the tautology that the true parameter is either contained in it or

it is not. Any misuse of this result is not from a failing of the paradigm, but a misplaced

desire of the analyst to have different questions answered than were asked.

In terms of computing a confidence interval, from observations that are governed by θ a

test statistic, t, that is an estimator of θ is constructed. For each value of the parameter to

be tested, there exists an interval [t1, t2] such that the probability of t ∈ [t1, t2] is

p (t1 < t < t2|θ) =
t2∫

t1

f (t| θ) dt = 1− α . (0.14)

This interval represents a constant line segment in the (t, θ) parameter space plane at the

given value of θ. By repeating this procedure for every value of θ to be tested, a band of line

segments — a “confidence belt” — is created that is bound between the curves θ (t1) and

θ (t2), as shown in the example in Figure 0.3. Then, for any given observed value of the test
5The data are a random variable in the frequentist paradigm.
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statistic, t′, a boundary at t = t′ can be drawn in the plane that intersects the confidence

belt at the points (t′, θ2) and (t′, θ1). This resulting range of parameter values [θ1, θ2] is the

confidence interval [12, 13].

−2 −1 0 1 2 3

test statistic t

−2

−1

0

1

2

p
a
ra
m
te
r
v
a
lu
e
θ

Figure 0.3: Example sketch of the construction of a confidence belt showing an observation
in red intersecting the belt and the corresponding confidence interval as the parameter
values bounded between the two blue dashed lines.

The conditions of coverage from Equation 0.14 do not uniquely specify t1 and t2, which

allows for analysis specific choices to be made. If central intervals are chosen, then the

probabilities excluded below t1 and t2 are both α/2. In the event that only an upper (or

lower) limit is of interest, as is common in searches for new physics where no excess has been

observed, then the probability excluded below t1 (or above t2) is zero. Alternatively, if the

test statistic used is the profile likelihood ratio test statistic,

qθ = −2 lnλ (θ) = −2 ln
L
(
θ,

ˆ̂
φ
)

L
(
θ̂, φ̂
) ,

profiling determines the allowed range [qθ,1, qθ,2]. It is seen from Equation 0.11 and Equa-

tion 0.12 that for an observed qθ, qobs, to satisfy Equation 0.13 the resulting confidence belt
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are the values qθ < qobs, and the resulting confidence interval the range of θ that enforce

this. Using such a test statistic results in the Feldman-Cousins confidence intervals [14].

As the confidence interval can be a difficult concept to describe, a simple illustrative ex-

ample follows. Consider n observations x = {x1, · · · , xn} that are drawn from a Normal dis-

tribution with unknown mean θ and width σθ. This results in a sample mean θ̂ and standard

deviation σθ̂. To construct a 95% confidence level central confidence interval for θ, the test

statistic t =
(
θ̂ − θ

)
/σθ̂ can be used such that p (t1 < t < t2|θ) = 0.95, where t1 and t2 are

respectively the 2.5th percentile and 97.5th percentile6 of the Student’s t-distribution for n−1

degrees of freedom, mean µ = θ̂ and standard deviation σ = σθ̂. Transforming the Student’s

t-distribution by t′ =
(
t− θ̂

)
/σθ̂ to have µ = 0, σ = 1 simplifies to p (−d < t′ < d|θ) = 0.95.

Transforming to parameter space, p
(
θ̂ − d σθ̂ < θ < θ̂ + d σθ̂

)
= 0.95, this gives a confidence

interval of
[
θ̂ − d σθ̂, θ̂ + d σθ̂

]
. Confidence intervals following this example construction are

simulated and shown in Figure 0.4.

0 20 40 60 80 100

measurement number

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

m
e
a
s
u
r
e
m
e
n
t
v
a
lu
e

true value θ

Figure 0.4: An example of 100 point estimates and associated 95% confidence level
confidence intervals of parameter value θ. Each measurement is the result of the same
number of samples from a Normal distribution. Confidence intervals that do not include
the true value θ (dashed blue line) are colored red.

6t1 = CDF−1 (α/2) and t2 = CDF−1 (1− α/2).
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0.3.2.2. Bayesian Credible Intervals

In the Bayesian paradigm, a 1 − α credibility level (CL) credible interval (CI)7 is an

interval estimate where there is a 1−α probability of containing the true parameter value —

which is a random variable. As a result, it is simply the interval of the posterior predictive

distribution [θ1, θ2] that when integrated over gives a probability of 1− α,

p (θ1 < θ < θ2|x) =
θ2∫

θ1

p (θ|x) dθ = 1− α . (0.15)

As in the frequentist paradigm, there are different ways to select the credible interval

range. One can choose the shortest interval,8 the interval where probabilities excluded below

θ1 and above θ2 are both α/2 (this interval includes the median), the interval centered at

the mean of the posterior (if the mean exists), or the intervals corresponding to upper (or

lower) limits which reduce Equation 0.15 to the CDF (or CCDF) of θ.

As a final word on interval estimates, it is worth remembering that the frequentist and

Bayesian paradigms address different questions and so make different statements with their

intervals.

• Frequentist: When a confidence interval is constructed on future data, the constructed

interval will contain the true parameter value with a probability (frequency) of 1− α.

• Bayesian: Given the observed data, there is a 1−α probability that the true parameter

value is contained by the constructed credible interval.

7CL and CI are used for abbreviations for both the frequentist and Bayesian intervals. It will be made
clear to the reader from context which paradigm is being considered.

8For a unimodal distribution this interval is known as the highest posterior density interval (HPD).
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0.4. Open Source Tools

This thesis and the researched described in it were made possible only through use of

open source software. The analysis was written in the open source languages C++ and Python

and made extensive use of the ROOT data analysis framework [15]. Similarly, parts of the

analysis were conducted in Python and leveraged the SciPy ecosystem [16], most notably

the NumPy [17, 18] and matplotlib [19] libraries. The thesis itself was written in LATEX 2ε,

built using latexmk and Make, and versioned with Git. The Pandas [20] library was also

used and the code was formatted with Black [21]. Scientific research is built upon the open

source community and tools, and this work would not have been made possible without it.

16



Chapter 1

Introduction

The discovery of a Higgs-like boson [22–26] at CERN in 2012 by the ATLAS and CMS

collaborations [27, 28] was a major triumph for both theoretical and experimental particle

physics. However, the properties of the new particle remain to be fully verified and the

agreement of the predictions of the physics of the Higgs field by the Standard Model (SM)

with observations of Nature require further testing. One important property is the coupling

strength of the Higgs boson to bottom quarks
(
H → bb̄

)
— this interaction was only ex-

perimentally observed in 2018 through associated production with a vector boson [29, 30].

Additionally, there exist models of particle dark matter [31] which include massive mediators

between dark matter and Standard Model particles. Such dark matter mediators (DMM)

with couplings to Standard Model quarks would have the same decay signature to pairs of

bottom quarks as the Higgs. This thesis presents a search for high-momentum, low-mass

resonances, including the Higgs, in the mass range of 100 GeV to 200 GeV decaying to pairs

of b-quarks with an associated jet
(
j +X → bb̄

)
. The goals of the search are to make a

direct measurement of the couplings of Higgs to bottom quarks and to search for evidence

of exotic resonances with couplings to Standard Model quarks. The thesis proceeds in the

following manner.

Chapter 2 introduces the field theories of the Standard Model, describes the physics of

the Higgs field, and motivates the search for couplings of the Higgs to b-quarks and the search

for exotic low-mass resonances. Chapter 3 introduces CERN’s Large Hadron Collider and

Chapter 4 describes the ATLAS experiment. Chapter 5 gives an overview of the techniques

used by the ATLAS collaboration to reconstruct the signature of particles in the ATLAS
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detector for good quality data. Chapter 6 is devoted to the application of the previous

chapters in a search for high-momentum, low-mass resonances with a bb̄ final state. The

results of this analysis are presented in Chapter 7. Finally, Chapter 8 provides a summary

of the state of measurements of Higgs couplings to heavy flavor quarks and the search for

low-mass exotic resonances given the results of the search, as well as an outlook to physics

in Run 3 of the LHC.

My major contributions to the presented analysis are focused in the modeling of the

irreducible multijet events from QCD processes — the dominant background of the analysis.

I developed parametric functions that were able to robustly model the data across all analysis

selection regions. I performed tests to rigorously stress the model stability in the presence

of injected signals and its performance with spurious signals. I additionally quantified the

biases associated with each model, informing the choice of additional modeling systematic

uncertainties.
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Chapter 2

The Standard Model and Extensions

2.1. The Standard Model

The Standard Model of particle physics is the collection of Quantum Field Theories (QFT)

that describes the interactions of elementary matter with three of the four1 known forces

of Nature: the electromagnetic force, the weak nuclear force, and the strong nuclear force.

These theories collectively form a symmetry group2 of SU(3)C ⊗ SU(2)L ⊗ U(1)Y that ele-

gantly encode all of these interactions in a Lagrangian formalism compactly enough that they

can be fully written on a single blackboard (or even further condensed down to fit on the side

of a coffee mug) while giving predictions of Nature that agree fantastically with experiment

for processes across 15 orders of magnitude in cross section, as seen in Figure 2.1. Though

known to be an incomplete model, it has proven to be a successful guide and predictive tool

for more than half a century.

The quanta of the quantum fields of the Standard Model are the particles of matter and

the mediators of the fundamental forces of Nature, shown in Figure 2.2. The spin-1/2 fermion

fields result in the three “generations” of the six quarks and six leptons, which compose all

matter in the Universe. The leptons are divided into the electrically charged leptons — the

electron (e), muon (µ), and tau (τ) — and their electrically neutral neutrino counterparts —

“flavor” eigenstates of νe, νµ, and ντ . The quarks have fractional electric charge, with the up

(u), charm (c), and top (t) quarks having +2/3 elementary charge, and the down (d), strange
1Gravity is noticeably absent, as at the time of writing there is no working quantum theory of gravitation.
2SU(n) is the special unitary group of degree n which is the Lie group of n × n unitary matrices with

determinant of 1. As the group is non-Abelian the gauge symmetries that belong to these groups are known
as “non-Abelian gauge symmetries.”
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Figure 2.1: Summary of several Standard Model total and fiducial production cross section
measurements using LHC proton-proton collisions, corrected for leptonic branching
fractions, compared to the corresponding theoretical expectations. All theoretical
expectations were calculated at NLO or higher. The dark-color uncertainty bar represents
the statistical uncertainty. The lighter-color uncertainty bar represents the full uncertainty,
including systematics and luminosity uncertainties. The data/theory ratio, luminosity used
and reference for each measurement are also shown. Uncertainties for the theoretical
predictions are quoted from the original ATLAS papers. They were not always evaluated
using the same prescriptions for PDFs and scales. The Wγ and Zγ theoretical
cross-sections have non-perturbative corrections applied to the NNLO fixed order
calculations [32]. Not all measurements are yet statistically significant [33].
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(s), and bottom (b) quarks having −1/3, as well as all of them carrying a “color” charge that

allows them to participate in strong nuclear interactions. They do not exist as free particles

by themselves, but always in bound configurations of either two or three quarks, respectively

known as “mesons” and “baryons” (e.g., pions and protons, respectively). In addition to

the matter particles are the five vector gauge bosons that are mediators of fundamental

forces of Nature. The photon (γ) is the mediator of the electromagnetic force and interacts

with all particles that carry electrical charge (i.e. the quarks, charged leptons, and charged

vector bosons). The weak nuclear force that governs nuclear interactions, such as beta

decay, is mediated by the W+, W−, and Z massive weak vector bosons. The electrically

charged W bosons mediate charged flavor changing interactions between the quarks and the

leptons (e.g., c → d + W+ and e− → ν̄e + W−), and the Z boson mediates electrically

neutral flavor changing interactions (e.g., e+e− → Z → µ+µ− and charged lepton scattering

from neutrinos). The eight3 massless gluons mediate the strong nuclear force and so have

couplings with all particles that have color charge: the quarks and the gluons themselves.

The coupling strength of the gluons varies with distance between color charged particles

— being extremely strong at close ranges and then sharply dropping of at the distance of

confinement (approximately the radius of the proton). Finally, the Higgs boson imparts

mass to particles that it couples to, with stronger coupling strengths manifesting as larger

masses. This process — which has been come to be known as the “Higgs mechanism” —

gives rise to the non-zero mass of the W± and Z through a processes called “electroweak

symmetry breaking” and will be discussed more throughly in Section 2.5.

The following discussion of the theories that compose the Standard Model is my summary

of many post-lecture conversations with former SMU professor Kent Hornbostel and readings

of [35].

3As a result of the SU(3) symmetry.
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2.2. Quantum Field Theories

Quantum Field Theory is the mathematical framework for modern particle physics cal-

culations. QFT naturally incorporates quantum theory with special relativity to give a rel-

ativistic description of the interaction of quantum fields through their quantized excitations

(particles). All possible physical interactions of these fields are encoded in the terms of the

Lagrangian density, L , which is a scalar and so (crucially) Lorentz invariant — physics fun-

damentally works the same regardless of reference frame. Given the ubiquity of the use of the

Lagrangian density in calculations it will be interchangeably referred to as the “Lagrangian”

henceforth, with hopefully minimal confusion. Additionally, the Lagrangian density must be

locally gauge invariant; meaning that it is invariant under certain Lie group transformations.

Local gauge invariance is an expression that representations of the Lagrangian density that

result in the same physical interactions must be equivalently valid. A local gauge symmetry

is distinct from a global gauge symmetry, as would arise in Noether’s theorem, in that a

local gauge symmetry results in a gauge invariance for the spacetime point of consideration,

but is not guaranteed to be valid in all cases. That is, a global gauge symmetry is in some

sense a special case of a local gauge symmetry, where the symmetry applies for all points.

As an example, consider the Dirac Lagrangian

LDirac = ψ̄ (iγµ∂µ −m)ψ. (2.1)

If a global gauge transformation of a phase shift is applied,

ψ → e−iθψ, ψ̄ → ψ̄ eiθ,

then it is readily seen that the Lagrangian has remained invariant

L → ψ̄ (iγµ∂µ −m)ψ.
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However, if a local gauge transformation of a phase shift dependent on the field’s spacetime

is applied

ψ → e−iθ(x)ψ, ψ̄ → ψ̄ eiθ(x),

then for the Lagrangian

L → ψ̄ (iγµ∂µ −m)ψ + ψ̄ γµ (∂µθ)ψ

to preserve the definition of the four-gradient under such a local transformation requires the

addition of a gauge field Aµ(x) to form the covariant4 derivative,

Dµ ≡ ∂µ − iqAµ(x),

with local gauge transformation

Aµ → Aµ −
1

q
∂µθ,

such that

θ(x) = qΛ(x),

resulting in the nice covariant form

L → ψ̄ (iγµDµ −m)ψ = ψ̄
(
i /D −m

)
ψ.

Given the implications of local gauge invariance, the gauge may be arbitrarily chosen to

simplify calculations with no less of generality.

Two examples of highly successful QFTs are Quantum Electrodynamics (QED) and

Quantum Chromodynamics (QCD), which are briefly discussed here.

4“Covariant” in that it transforms with the gauge fields so that the derivative remains unchanged.
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2.2.1. Quantum Electrodynamics (QED)

The Glashow-Weinberg-Salam theory of electromagnetic interactions [36–38] defines elec-

tromagnetic interactions of matter in the Standard Model. The Lagrangian density for QED

— which describes the interactions of a spin-1/2 field with the electromagnetic field — pos-

sesses a global U(1) symmetry, manifest through the conservation of electric charge, and is

given by

LQED = −1

4
FµνF

µν + ψ̄
(
i /D −m

)
ψ (2.2)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor. In the QED La-

grangian, the kinetic term −1
4
FµνF

µν describes the behavior of the electromagnetic field —

which along with the Euler-Lagrange equations result in Maxwell’s equations — and the

term ψ̄
(
i /D −m

)
ψ gives the interactions of the electromagnetic field with charged particles.

2.2.2. Quantum Chromodynamics (QCD)

QCD is the gauge field theory that describes the interactions of quarks and gluons gov-

erned by the strong nuclear force, and characterized by a SU(3) symmetry. The QCD

Lagrangian density is

LQCD = −1

4
Ga

µνG
µν
a +

∑
f

iψ̄fDµγ
µψf , (2.3)

for the f families of quarks, ψf . The Lagrangian is written without the color index for

readability, but, as both the quarks and gluons carry a color charge, then the quark fields ψ

are column vectors with color index α and the gluon fields Ga
µ are matrices with color indices

α and β. The kinetic term −1
4
Ga

µνG
µν
a describes the self interactions of the gluon fields Ga

µ

given the gluon field strength tensor Ga
µν = ∂µG

a
ν − gsf

abcGb
µG

c
ν for strong coupling constant

gs and SU(3) structure constants fabc. The term
∑

f iψ̄fDµγ
µψf with covariant derivative

Dµ = ∂µ − igsG
a
µT

a,
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where T a are the generators of the SU(3) symmetry group, is the kinetic term for the quarks

and describes the interactions between quarks and gluons. All terms in the Lagrangian

density that involve quarks and gluons are color singlets, which promotes the idea of “color

confinement.” In Nature this color confinement is seen empirically by the observation of

quarks only in bound states with other quarks that are colorless — i.e., free quarks have

never been directly observed. These bound states of quarks are known as “hadrons.” Half-

integer spin hadrons formed from an even number of quarks are known as “mesons,” and

integer spin hadrons formed from an odd number of quarks are known as “baryons.” In strong

interactions at hadron colliders there is enough energy to break individual quarks and gluons

out of their hadronic forms, however these free partons then immediately “hadronize” by

forming bound states with other quarks, even if that requires sacrificing some of their energy

to pull another quark from the vacuum. This process of hadronization, and subsequent

decays, creates a shower of hadrons and leptons that is collectively referred to as a “jet”

and will be discussed more in Section 5.4. Jets play an important role in understanding the

physics of QCD, and the observation of three jet systems is the best experimental evidence

of the existence of gluons [39–42].

QCD is a deeply rich theory that deserves much attention (c.f. [43]), but for the purposes

of this thesis it will only be introduced here to motivate a more complete picture of the QFTs

that build the Standard Model.

2.3. Spontaneous Symmetry Breaking

Spontaneous symmetry breaking is the process by which a physical system that has a

symmetry does not express that symmetry for perturbations around the ground state of the

system. It is worth noting, given the somewhat confusing nature of the use of “breaking,”

that the symmetry of the Lagrangian is not destroyed under symmetry breaking, but rather

is not manifest given the ground state into which the system has been perturbed. A classical

example of spontaneous symmetry breaking is that of a pen being balanced upright on

26



its tip on a table. In the unstable equilibrium state of the pen being balanced (the high

energy/excited state configuration) the pen possesses a U(1) symmetry of rotation about its

axis. If the pen is perturbed from this state by a small vibration it will fall into its ground

state onto the surface of the table and will lie along some direction “breaking” the symmetry

that was exhibited by the previous state. Another example is that of Heisenberg’s model of

the ferromagnet, which has Hamiltonian of H = −
∑

i 6=j Jij si · sj across neighboring atoms.

This Hamiltonian also possesses a rotational symmetry above the Curie temperature —

rotating all the spins by some amount leaves the total spin of the system invariant. However,

below the Curie temperature a non-zero magnetization will arise along a particular direction

which will cause all spins to become aligned parallel to it, breaking the symmetry.

A final illustrative toy model, that will prove useful in the context of the Higgs mechanism,

is that of a massive complex scalar field

φ =
1√
2
(φ1 + iφ2) ,

with Lagrangian density

L = ∂µφ
†∂µφ+m2φ†φ− λ

4

(
φ†φ
)2

composed of the kinetic term, ∂µφ†∂µφ, and the potential V (φ) = −m2φ†φ+ λ
4

(
φ†φ
)2. The

potential is zero at φ = 0, but has its minima occur at

φ†φ =
1

2

(
φ2
1 − φ2

2

)
=

2m2

λ
≡ 1

2
v2

with magnitude

|φ| = 1√
2
v =

√
2v

λ1/2
.
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It is seen that this potential possesses a U(1) symmetry, such that it is invariant under

φ → e−iθφ, resulting in an infinite number of possible minima. Rewriting the fields using

polar coordinates in field space,

φ(x) =
1√
2
ρ (x) e−iθ(x)/v,

and choosing the arbitrary ground state — breaking the symmetry — of ρ = v and θ = 0

then allows for the redefinition of the fields as

φ(x) =
1√
2
(v + h (x)) e−iθ(x)/v,

where h and θ become the normal modes. Perturbations about the minima result in massive

radial h modes and massless rotational θ modes. These radial modes result in a massive

particle, and the rotational modes result in massless particles known as Nambu-Goldstone

bosons [44, 45].

2.4. Electroweak Symmetry and Interactions

The electroweak interactions are encoded in the symmetry group SU(2)L⊗U(1)Y , where

SU(2) is the symmetry of weak-isospin and Y is weak-hypercharge. The gauge group requires

all left-handed spinors to be doublets, and the right-handed spinors to be singlets. Consid-

ering only the first generation of quarks and leptons, this can be written for the leptons

as

ψe 1 (x) =

νe
e−


L

, ψe 2 (x) = νeR, ψe 3 (x) = e−R ,
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and for the quarks as

ψu 1 (x) =

u
d


L

, ψu 2 (x) = uR, ψu 3 (x) = dR .

The “free” Lagrangian density (the kinetic term) is then

L =
3∑

j=1

i ψ̄e j (x) /∂ ψe j (x) + i ψ̄u j (x) /∂ ψu j (x) ,

which should be invariant under local gauge transformations of the symmetry group,

ψe 1 (x) → eiy1β(x) UL (x)ψe 1 (x) , UL (x) = exp

(
i
τ i

2
αi(x)

)
ψe 2 (x) → eiy2β(x) ψe 2 (x)

ψe 3 (x) → eiy3β(x) ψe 3 (x)

The generators of SU(2) are the Pauli spin matrices,

τ 0 =

1 0

0 1

 , τ 1 =

0 1

1 0

 , τ 2 =

0 −i

i 0

 , τ 3 =

1 0

0 −1

 ,

and the resulting four degrees of freedom (three from SU(2) and one from U(1)) manifest as

the gauge bosons of the weak vector fields W k
µ (x):

Bµ (x) = W 0
µ (x) τ

0, W µ (x) = W i
µ (x)

τ i

2
.
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As a result, the covariant derivative is

Dµψ1(x) = (∂µ − ig1 y1Bµ(x)− ig2W µ(x))ψ1(x) (2.4)

Dµψ2(x) = (∂µ − ig1 y2Bµ(x))ψ2(x)

Dµψ3(x) = (∂µ − ig1 y3Bµ(x))ψ3(x)

for weak hypercharge yi coupling g1 and weak isospin coupling g2, this gives the requirements

for the local transformations of the vector gauge fields,

Bµ(x) → Bµ(x) +
1

g1
∂µβ(x), W µ(x) → UL(x)W µ(x)U

†
L(x)−

i

g2
(∂µUL(x))U

†
L(x)

The kinetic term of the electroweak vector gauge field Lagrangian density is then seen to be

Lkinetic = −1

4
BµνB

µν − 1

2
Tr (W µνW

µν) = −1

4
BµνB

µν − 1

4
W i

µνW
µν
i .

It is seen that the SU(2)L⊗U(1)Y gauge symmetry forbids a mass term for the vector fields,

and fermion masses are also forbidden as the term would mix the left and right handed fields

which have different transformation properties — which would explicitly break the gauge

symmetry.

2.4.1. Electroweak Interactions

Given the covariant derivative, Equation 2.4, and resulting Lagrangian density for the

fermions,

L =
3∑

j=1

i ψ̄e j (x) /Dψe j (x) + i ψ̄u j (x) /Dψu j (x) ,
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it is seen that there are interactions between the fermions and the vector gauge fields (drop-

ping fermion index for compactness),

L ⊂ g2ψ̄1γ
µW µψ1 + g1Bµ

3∑
j=1

yjψ̄jγ
µ ψj .

The first term, which contains the SU(2)L matrix

W µ = W i
µ(x)

τ i

2
=

1√
2


√
2W 3

µ W †
µ

Wµ −
√
2W 3

µ

 ,

gives rise to the charged current interactions of the charged W boson fields

Wµ =
1√
2

(
W 1

µ + iW 2
µ

)
, W †

µ =
1√
2

(
W 1

µ − iW 2
µ

)
with the left-handed quarks and charged leptons, seen in Figure 2.3c and Figure 2.3d. Like-

wise, through mixing of the neutral W 3
µ and Bµ fields,

Aµ

Zµ

 =

 cos θW sin θW

− sin θW cos θW


Bµ

W 3
µ

 ,

with Weinberg mixing angle

sin θW =
g1√
g21 + g22

, cos θW =
g2√
g21 + g22

,

the mass eigenstates of the Z boson and photon arise

Zµ = W 3
µ cos θW −Bµ sin θW =

1√
g21 + g22

(
g2W

3
µ − g1Bµ

)
Aµ = W 3

µ sin θW +Bµ cos θW =
1√

g21 + g22

(
g1W

3
µ + g2Bµ

)
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which mediate the neutral current interactions with the fermions, seen in Figure 2.3b and

Figure 2.3a.

γ

f± f±

(a) The vertex for
interactions of an
electrically charged
particle and a photon.

Z

f f

(b) The vertex for
neutral current
interactions of an
fermion and a Z
boson.

W±

q q′

(c) The vertex for
charged current
interactions of quarks
with a W boson.

W±

`± ν`

(d) The vertex for
charged current
interactions of a
charged lepton and
neutrino with a W
boson.

Figure 2.3: The Feynman diagrams for allowed QED and electroweak interactions in the
Standard Model.

2.5. Electroweak Symmetry Breaking

To break the electroweak symmetry and provide masses to the weak vector bosons, con-

sider the discussion given in Section 2.3 and a complex scalar doublet (introduced by, among

others [26, 46], Brout and Englert [25], and Higgs [22, 23])

φ =

φ+

φ0

 =
1√
2

φ1 + iφ2

φ3 + iφ4

 (2.5)

with Lagrangian density

LHiggs = (Dµφ)
†Dµφ− µ2φ†φ− λ

(
φ†φ
)2 (2.6)

that is invariant under local SU(2)L ⊗ U(1)Y transformations. The Higgs potential

V (φ) = µ2φ†φ+ λ
(
φ†φ
)2
, (2.7)
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shown in Figure 2.4, is chosen such that µ2 < 0 and λ > 0 to provide stable minima. As

before in Section 2.3 with the case of the toy model of the massive complex scalar field, once

a ground state has been arbitrarily chosen this spontaneously breaks the SU(2)L ⊗ U(1)Y

symmetry to the subgroup U(1)QED. This time, the four fields of the complex scalar doublet

are reparameterized into

φ(x) =
1√
2

 0

v + h(x)

 exp

(
i
τ i

2
θi(x)

)

which gives the real scalar field h(x), corresponding to radial perturbations of the minima,

and three5 Nambu-Goldstone fields θi(x) with rotational symmetry — their values have

become gauge choices. Exploiting this gauge freedom, and choosing the unitary gauge θi(x) =

0, results in kinetic term
(

where g =
√
g21 + g22

)

L ⊂ 1

2
∂µh∂

µh+ (v + h)2
(
g2

4
W †

µW
µ +

g2

8 cos2 θW
Z†

µZ
µ

)

where the W± and Z bosons have absorbed the Nambu-Goldstone bosons as polarizations

and respectively acquired masses of

mW =
1

2
vg, mZ =

mW

cos θW
=

vg

2 cos θW
.

Through self-coupling the scalar field — the Higgs field — also acquires a mass term of

mh =
√
−2µ2 =

√
2λv.

5There is much beauty in electroweak symmetry breaking, but the simple, insightful choice of the doublet
to give as many Nambu-Goldstone bosons as vector gauge fields is marvelous.
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In the Standard Model v, g1, g2 are free parameters to be measured by experiment, and

so the masses of the bosons are not directly predicted. However, the value6 of v has been

calculated independently [47] to be approximately 246 GeV. It is also noted that in further

interactions the quarks and charged leptons acquire a mass term from Yukawa couplings [48],

ci, with the Higgs field

LYukawa = − 1√
2
(v + h)

(
c1d̄d+ c2ūu+ c3ēe

)
= −

(
1 +

h

v

)(
mdd̄d+muūu+meēe

)
.

The neutrinos notably do not participate in this interaction, and their observed non-zero

mass [49] is unexplained through electroweak symmetry breaking in the Standard Model

and is currently unresolved.

2.6. The Higgs Boson

The massive Higgs boson produced though the “Higgs mechanism” approach to elec-

troweak symmetry breaking is a particle of great interest, as the interactions of the Higgs

field with all other elementary particle fields generates their mass. As a result, through these

couplings the Higgs boson can be produced through a large number of interactions. As this

thesis is focused on experimental efforts at CERN’s LHC, the production mechanisms of in-

terest will be the leading ones in a hadron collider with center-of-mass energy
√
s = 13 TeV.

In order of decreasing cross section, those production modes are: gluon-gluon fusion (ggF),

vector boson fusion (VBF), vector boson-associated production or “Higgsstrahlung” (VH),

and associated production with tt̄ (tt̄H) and bb̄ (bb̄H), seen in Figure 2.5. The predicted

cross section for these production modes are given in Table 2.1 and plotted with theory

uncertainties in Figure 2.6.
6Often referred to as the “weak scale” or the “vacuum expectation value.”
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V
(φ

)

φ

Figure 2.4: Sketch of the Higgs potential’s “wine bottle” shape. The trough (the bottom of
the eponymous wine bottle) contains the infinite choices of minima at the vacuum
expectation value, v, that can be selected upon spontaneously breaking the
SU(2)L ⊗ U(1)Y symmetry to the subgroup U(1)QED.

Table 2.1: The SM Higgs boson production cross sections in units of pb for mH = 125 GeV
in pp collisions as a function of the center-of-mass energy,

√
s, at the LHC. The predictions

for the ggF channel include the latest N3LO results leading to reduced theoretical
uncertainties by a factor around 2 compared to the N2LO results [50, 51].

√
s (TeV) ggF VBF WH ZH tt̄H bb̄H Total (pb)

13 48.6+5%
−5% 3.78+2%

−2% 1.37+2%
−2% 0.88+5%

−5% 0.50+9%
−13% 0.49+20%

−24% 55.59

14 54.7+5%
−5% 4.28+2%

−2% 1.51+2%
−2% 0.99+5%

−5% 0.60+9%
−13% 0.55+20%

−24% 62.65
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(a) Feynman diagram for Higgs production
through gluon-gluon fusion.
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q′
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(b) Feynman diagram for Higgs production
through vector boson fusion.

V

H

q̄

q

V ∗

(c) Feynman diagram for Higgs production
through vector boson associated production
(Higgsstrahlung).

g

g

t, b

t̄, b̄

H

(d) Feynman diagram for Higgs production
through associated production with heavy
quarks (tt̄ and bb̄).

Figure 2.5: The leading production modes at the LHC for Higgs bosons.
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Figure 2.6: The Standard Model Higgs boson production cross sections as a function of the
center-of-mass energy,

√
s, for pp collisions. The VBF process is indicated as qqH. The

theoretical uncertainties are indicated as bands [50].

The SM Higgs has couplings to all the massive vector gauge fields and charged fermions,

and so can decay into all such particles. At leading order the Higgs will decay primarily

to a pair of b-quarks (bb̄), a pair of weak vector bosons with one of them being off-shell

(V V ∗), a pair of gluons (gg), a pair of tau leptons (τ+τ−), or a pair of photons (γγ).

The decays to massless gauge bosons (gluons and photons) are facilitated through loops of

massive particles. The Feynman diagrams for these decays are shown in Figure 2.7, listed

in descending (observed) branching ratio in Table 2.2, and plotted with theory uncertainties

in Figure 2.8. As the Higgs Yukawa couplings are proportional to the mass of the decay

products, it is seen that the Higgs primarily decays to bb̄ as mH < 2mt. However, as hadron

colliders mostly produce multijet events7 from QCD processes, identifying jets coming from

resonant H → bb̄ events is quite challenging.

Through the combination of results from the ATLAS and CMS experiment collabora-

tions using approximately 5 fb−1 of LHC Run 1 data [52], experimental measurements of
7Discovery machines are a messy business.
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the Standard Model Higgs production cross-sections and decay modes have been made, as

seen in Figure 2.9, Figure 2.10, and Figure 2.11. It is seen that given the uncertainties on

the measurements there is generally good agreement between the predictions of the Stan-

dard Model and experimental measurements, with all best fit values within two standard

deviations of the SM predictions.

Table 2.2: The branching ratios and the relative uncertainty for a Standard Model Higgs
boson with mH = 125 GeV [50].

Decay Channel Branching Ratio Relative Uncertainty

H → bb̄ 5.84× 10−1 +3.2%
−3.3%

H → W+W− 2.14× 10−1 +4.3%
−4.2%

H → τ+τ− 6.27× 10−2 +5.7%
−5.7%

H → ZZ 2.62× 10−2 +4.3%
−4.1%

H → γγ 2.27× 10−3 +5.0%
−4.9%

H → Zγ 1.53× 10−3 +9.0%
−8.9%

H → µ+µ− 2.18× 10−4 +6.0%
−5.9%
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(a) Feynman diagram for Higgs decay to bb̄.

W±

W∓∗

H

(b) Feynman diagram for Higgs decay to
WW ∗.
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g

H

(c) Feynman diagram for Higgs decay to gg.
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H

(d) Feynman diagram for Higgs decay to τ+τ−.

Z

Z∗

H

(e) Feynman diagram for Higgs decay to ZZ∗.

γ

γ

H
W

(f) Feynman diagram for Higgs decay to γγ.

Figure 2.7: The leading decay channels of the Higgs boson.
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Figure 2.8: The branching ratios for the main decays of the Standard Model Higgs boson
near mH = 125 GeV. The theoretical uncertainties are indicated as bands [50].
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Figure 2.9: Best fit results for the production signal strengths for the Standard Model
Higgs boson for the combination of ATLAS and CMS data. Also shown are the results
from each experiment. The uncertainty bars indicate the 1σ (thick lines) and 2σ (thin
lines) intervals. The measurements of the global signal strength µ are also shown [52].
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Figure 2.10: Best fit results for the decay signal strengths for the Standard Model Higgs
boson for the combination of ATLAS and CMS data. Also shown are the results from each
experiment. The uncertainty bars indicate the 1σ (thick lines) and 2σ (thin lines)
intervals [52].
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Figure 2.11: Best fit values of σi ·Bf for each specific channel i→ H → f , as obtained
from the generic parameterization with 23 parameters for the combination of ATLAS and
CMS measurements. The uncertainty bars indicate the 1σ intervals. The fit results are
normalized to the SM predictions for the various parameters and the shaded bands indicate
the theoretical uncertainties in these predictions. Only 20 parameters are shown because
some are either not measured with a meaningful precision, in the case of the H → ZZ
decay channel for the WH, ZH, and ttH production processes, or not measured at all and
therefore fixed to their corresponding SM predictions, in the case of the H → bb̄ decay
mode for the ggF and VBF production processes [52].
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2.7. Extensions to the Standard Model

From astronomical observations of the rotation speeds of galaxies [53,54], precision mea-

surements of the cosmic microwave background [55, 56], and gravitational lensing measure-

ments [57–59], there is evidence that in addition to the normal matter of the Standard Model

in the Universe there exists “dark matter” (DM) that constitutes approximately 26.8% of

the energy density of the Universe. Dark matter is so far seen to interact with normal

matter only through gravitation. As it does not interact with normal matter through the

electroweak or strong nuclear force, any interactions with normal matter are outside of the

Standard Model.

To incorporate a model of particle dark matter there are a number of existing extensions

of the Standard Model. Among these are frameworks of simplified dark matter models [60–63]

where new particles mediate the interactions of dark matter, χ, with the Standard Model

particles. Among these are models for a single neutral vector mediator particle: a Z ′.

One simple extension of the Standard Model is a vector or axial-vector simplified model

through an additional U(1) gauge symmetry which gives dark matter particles a charge of

this symmetry group [64], and results in either a vector (Z ′
V ) or axial-vector (Z ′

A) boson

mediator. This model introduces five new parameters: the mass of the mediator, mZ′ , the

mass of the Dirac fermion dark matter particle, mχ, the flavor-universal coupling of the Z ′

to SM quarks, gq, the coupling of the Z ′ to all lepton flavors, g`, and the coupling of the

Z ′ to dark matter, gχ. The resulting interactions of the Z ′ mediator and the particles are

shown in Figure 2.12.

Models with non-zero values of g` only slightly increase the mediator width, but further

unnecessarily restrict the model space [64]. To simplify the model and the analysis done

in this thesis, only leptophobic (g` = 0) Z ′ models are then considered. This model then
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Z ′

(a) Feynman diagram of the interactions of the
Z ′ mediator with Standard Model fermions.

q̄

q

χ̄

χ

Z ′

(b) Feynman diagram of the interactions of the
Z ′ mediator with dark matter.

Figure 2.12: Feynman diagrams of the interactions of the Z ′ mediator with both Standard
Model fermions and dark matter.

introduces the additional term to the Lagrangian density for a vector model of

Lvector = gq
∑
q

Z ′
µq̄γ

µq + gχZ
′
µχ̄γ

µχ

and for an axial-vector model

Laxial-vector = gq
∑
q

Z ′
µq̄γ

µγ5q + gχZ
′
µχ̄γ

µγ5χ

where q and χ are respectively the Dirac spinors for the SM quark and dark matter fields

and gq is democratic with respect to all quark flavors.

In t-channel processes that occur in scattering of dark matter off atomic nuclei, seen in

Figure 2.13, the spin-independent interaction cross section of the vector mediator model is

enhanced by A2, where A is the number of nucleons in the nucleus, as the result of spin

coherence effects [60, 65, 66]. These processes are relevant in dark matter direct detection

experiments such as LUX [67] and XENON100 [68], where the dark matter candidate con-

sidered is a weakly interacting massive particle (WIMP) model with a Z ′ mediator. For
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these experiments, the spin enhancement in the spin-independent model provides a limit

more than 104 stronger than the spin-dependent model limits, as seen for an example model

with gq = 0.25, g` = 0, and gχ = 1 in Figure 2.14. Similar results hold for the leptophilic

models [60]. Collider experiment searches exploit the s-channel process — where there is no

large spin dependence — and as a result do not give competitive limits for vector mediator

models, as seen in Figure 2.14a. There is no large difference in collider detection sensitiv-

ity between vector and axial-vector mediator models, as seen in Figure 2.15. However, for

axial-vector models with 2mχ > mZ′ there are unconstrained regions for low Z ′
A masses. As

a result, this thesis analysis considers an exotic signal search for only a low mass axial-vector

leptophobic Z ′ model in the high momentum regime to both further simplify the analysis

and exploit similar analysis techniques developed for high momentum fully-hadronic decays

of the Higgs boson.

χ χ

q q

Z ′

Figure 2.13: Feynman diagram of the t-channel scattering of dark matter, χ, off Standard
Model quarks, q, through exchange of a Z ′ mediator.
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Figure 2.14: Comparison of inferred LHC experiment limits with the constraints from
direct detection experiments on the WIMP–nucleon scattering cross section in the context
of Z ′ simplified model with gq = 0.25, g` = 0, and gχ = 1. LHC limits are shown at 95% CL
and direct detection limits at 90% CL. The comparison is valid solely in the context of this
model, assuming a mediator width fixed by the dark matter mass and the coupling values
given. LHC searches and direct detection experiments exclude the shaded areas.
Exclusions of smaller scattering cross sections do not imply that larger scattering cross
sections are also excluded [60].
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Figure 2.15: Regions in the (mediator-mass, DM-mass) plane excluded at 95% CL by
visible and invisible searches for leptophobic Z ′ mediator simplified models. The exclusions
are computed for gq = 0.25, g` = 0, and gχ = 1. Dashed curves labeled “thermal relic”
correspond to combinations of DM and mediator mass values that are consistent with a
DM density of Ωh2 = 0.12 and a standard thermal history [69], for dimensionless Hubble
parameter h. The dotted line indicates the kinematic threshold where the mediator can
decay on-shell into DM. Excluded regions that are in tension with the perturbative unitary
considerations of [62] are indicated by shading in the upper left corner [60].
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Chapter 3

The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) at CERN is the world’s most powerful superconducting

hadron accelerator and collider. It sits in the 26.7 km tunnel originally housing CERN’s Large

Electron Position Collider (LEP) passing roughly 100 m beneath the borders of Switzerland

and France. The LHC tunnels form an octagon with rounded corners consisting of eight arcs

and eight straight sections that connect eight Interaction Points (IP) where the beam paths

can be made to cross for collisions. Four of those collision points are located at caverns that

contain the main four experiments of the LHC: ATLAS [70] at Point 1, CMS [71] at Point

5, LHCb [72] at Point 8, and ALICE [73] at Point 2. The other four interaction points are

left intentionally unused for collisions and beam crossings are forgone to prevent unnecessary

disruption of the beams [74].

3.1. Design

The LHC was designed to collide beams of protons at high energy with very high lumi-

nosity. Its design center-of-mass energy is 14 TeV and its design maximum instantaneous

luminosity1 is 1034 cm−2s−1 [5,74]. Given the extreme beam intensity required to reach such

luminosities proton-anti-proton collisions (as was used successfully at Fermilab’s Tevatron)

are not feasible given the technical difficulties in capturing anti-protons of desired momen-

tum in sufficient numbers [75]. Instead, two counter-circulating beams of protons are used.

This imposes the requirement of opposite magnetic dipole fields in the rings.
1In the more familiar units of barns used by particle physicists, 1034 cm−2s−1 = 10 nb−1s−1 =

0.036 fb−1hr−1.
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The proton beams are guided along the LHC by a complex system of superconducting

magnets. The system consists of 1,232 8.3 T dipole magnets responsible for bending the beam

and 392 7.5 T main quadrupole magnets dedicated to focusing the beam. These are com-

plemented by many insertion quadrupole magnets to help suppress beam dispersion [76,77].

The high magnetic fields require huge currents, with the main dipole magnets designed for a

nominal current of 11, 600 A. To deliver this much current while also staying superconduct-

ing the magnets are submerged in a liquid helium bath at 1.9 K in a vacuum-sealed inner

vessel, as seen in Figure 3.1. The magnetic coils that carry this current are assembled at

CERN from copper stabilized NbTi Rutherford cables, as shown for similar cables in [78].

Figure 3.1: The cross-section of an LHC dipole magnet with cold mass and vacuum
chamber [79].

3.2. Accelerator

The LHC is the last step for protons in a sequence of accelerators, as shown in Figure 3.2,

that increase the energy of the beams. The protons start from a single bottle of Hydrogen

gas2 at the site for the Linac2 linear accelerator. The Hydrogen gas passes through an area of
2This is the same bottle that has been used since the very start of LHC operations, and given that the

LHC can be refilled hundreds of thousands of times from one ml of Hydrogen, a typical industrial bottle of
Hydrogen would last for over a billion years of LHC operations.
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very high electrical field which ionizes the gas allowing for the electrons to be diverted away

and for the protons to continue. The protons then enter Linac2, the first accelerator of the

LHC injector chain, where they are accelerated to an energy of 50 MeV. The proton beam is

then split and injected into the four Proton Synchrotron Booster rings where the beams are

accelerated to 1.4 GeV before recombination and injection into the Proton Synchrotron (PS)

where the beam is further accelerated to 25 GeV and forms a bunch train with 25 ns spacing

— radio frequency (RF) harmonics with bunches of protons surfing the RF wave troughs.

In the penultimate stage of the injector chain, the beam is injected into the Super Proton

Synchrotron where it reaches an energy of 450 GeV. Finally, the protons are injected into

the LHC and split into two countercirculating beams. Once the beams are circulating in the

LHC they are further accelerated while keeping the 25 ns spacing. They achieve their final

energy of 6.5 TeV by RF accelerator systems at Point 4 [74, 80]. The beams can circulate

stably in the LHC for many hours and so only need to be refilled if the beam is dumped.

3.3. Collider

The circulating proton beams in the LHC cross paths at the four experimental interaction

points where the main LHC experiments are located. The collisions of the proton beams in

the experiments have a resulting center-of-mass energy of
√
s = 13 TeV and, as shown by

Equation 0.3, the number of events generated per second for a particular process is governed

by the machine (instantaneous) luminosity, L , which for a beam shape that is Gaussian in

profile is

L =
N2

b nbfrev γr
4πεnβ∗ F (3.1)

where Nb is the number of particles per bunch, nb is the number of bunches per beam, frev is

the revolution frequency, γr is the relativistic Lorentz factor of the beam, εn is the normalized

transverse beam emittance (area in position-momentum phase space), β∗ is the beta function3

3The amplitude function is dependent on the bunch cross section, σ, and the transverse beam emittance,
ε, β = πσ2/ε [82]. The beams are squeezed as they approach the interaction point, decreasing the amplitude
such that β∗ is a smaller value of β than at other points.
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Figure 3.2: Sketch of the CERN accelerator complex. The LHC (dark grey ring) is the last
ring in a complex chain of particle accelerators, where smaller machines are used in a chain
to help boost particles to their final energies and provide beams to a whole set of smaller
experiments [81]. The LHC proton injector chain is the indicated by the paths marked
with light grey arrows.
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(or “amplitude function”) at the collision point, and F is the geometric luminosity reduction

factor due to the crossing angle at the interaction point:

F =

(
1 +

(
θc σz
2σ∗

))−1/2

,

where θc is the full crossing angle at the interaction point, σz is the RMS bunch length, and

σ∗ is the transverse RMS beam size at the interaction point [74]. Nominal design values for

these quantities are given in Table 3.1, which additionally shows the incredibly successfully

results of the LHC operations and accelerator teams’ operation of the LHC in Run II. From

Equation 0.3 and Equation 3.1 it is seen that to obtain the high number of hard collisions to

have sensitivity to new physics both high beam energies and high luminosities are required.

As can be seen from Equation 3.1, one approach to increasing the luminosity in the future

for the High-Luminosity LHC (HL-LHC) is to decrease β∗ through the use of more powerful

quadrupole focusing magnets. However, to mitigate the resulting long range beam-beam

effects requires a larger crossing angle of the beams, which decreases the geometric factor

and the effective beam-beam cross section. This can be compensated for with crab cavities,

which are RF cavities operated in a transverse dipole mode that “crab” (or pinch) the beams

and rotate them to restore effective head-on collisions [83, 84].

As the luminosity of the LHC increases so does the cross section for proton-proton in-

teraction. As a result, at higher luminosities there are multiple interactions per proton

bunch crossing. These additional interactions that occur with the primary event are known

as “pile-up”. “In-time” pile-up are additional interactions that occur in the same bunch

crossing as the primary event, and “out-of-time” pile-up are the result of interactions from

bunch crossings outside of the one in which the primary event being considered occurred in.

The distribution of pile-up, µ, for the data-taking years of the thesis analysis and the time

averaged pile-up, 〈µ〉, per year is shown in Figure 3.3. It is seen that for a given year the

pile-up can change drastically. The pile-up per bunch crossing is Poisson distributed, and
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as the number of protons decreases over the duration of a LHC beam fill the Poisson mean

does as well. Pile-up is an important quantity at the LHC and its effect on both analyses

and hardware systems must be carefully considered. As part of my work in the ATLAS b-jet

trigger working group I carried out performance studies of the 2017 b-jet triggers in high

pile-up environments. This work is discussed in Appendix A.3.

Table 3.1: Nominal design values of LHC operations parameters at ATLAS for 25 ns bunch
crossing spacing [74, 84]. Design and ATLAS recorded values of the machine luminosity are
also given for LHC Run II operations [9].

Parameter Symbol LHC Run II Value

LHC circumference 26, 659 m

LHC design beam energy 7 TeV
LHC beam energy in Run II 6.5 TeV
Number of protons per bunch Nb 1.15× 1011

Number of proton bunches per beam nb 2, 808

Revolution frequency frev 11.245 kHz

Lorentz factor (design) γr 7462.69

Lorentz factor at
√
s = 13 TeV 6929.64

Normalized transverse beam emittance εn 3.75 µm

Collision point beta function β∗ 0.55 m

Full crossing angle θc 285 µrad

RMS bunch length σz 7.55× 10−2 m

Transverse RMS beam size σ∗ 16.6 µm

Peak design machine luminosity at 14 TeV L 10 nb−1s−1

Peak design machine luminosity at 13 TeV 9 nb−1s−1

Peak ATLAS recorded machine luminosity 21 nb−1s−1
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Figure 3.3: The luminosity-weighted distribution of the mean number of interactions per
crossing for the 2015, 2016, and 2017 pp collision data at 13 TeV center-of-mass energy. All
data recorded by ATLAS during stable beams is shown, and the integrated luminosity and
the mean value, 〈µ〉, are shown. The mean number of interactions per crossing corresponds
to the mean of the Poisson distribution of the number of interactions per crossing
calculated for each bunch. It is calculated from the instantaneous per bunch luminosity as
µ = Lbunch × σinel/fr where Lbunch is the per bunch instantaneous luminosity, σinel is the
inelastic cross section which is taken to be 80 mb for 13 TeV collisions, and fr is the LHC
revolution frequency. The luminosity shown represents the preliminary 13 TeV luminosity
calibration released in February 2018, based on van-der-Meer beam-separation scans in
2017 [85].
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Chapter 4

The ATLAS Experiment

4.1. Overview

The ATLAS Experiment [70] is one of the four main LHC experiments with the ATLAS

detector, seen in Figure 4.1, located in the experiment cavern at Point 1 of the LHC roughly

100 m underground. The ATLAS detector, henceforth also referred to as just “ATLAS,” is

a general purpose, high luminosity particle physics detector designed to be able to search for

as many types of interesting physics events as possible. ATLAS is the largest of the LHC

experiments with dimensions of 44 m in length and 25 m in height.

Figure 4.1: Model of human particle physicists with ATLAS detector shown for scale [86].
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4.2. Geometry

The ATLAS detector is cylindrical in design and forward-backward symmetrical with

respect to the center of the detector. The inner detector is surrounded by a 2 T supercon-

ducting solenoid magnet and provides excellent tracking coverage in |η| < 2.5. The inner

detector is further bracketed at each end by end-cap toroid magnets and the entire barrel of

the detector out through the calorimeters is enclosed in a toroid magnet system. These two

toroid systems are both constructed such that they exhibit an eight-fold azimuthal symme-

try. As a result, almost all of ATLAS also exhibits this eight-fold axial symmetry, with the

noted exception of the support structures on the bottom that support the detector off the

ground. The detectors subsystems, described in the following sections, are radially concentric

and cover different pseudorapidity ranges, with the liquid-argon (LAr) forward calorimeters

extending the coverage out to |η| = 4.9.

4.3. Tracking in the Inner Detector

Located at the heart of ATLAS and inside of the 2 T solenoidal magnetic field, the In-

ner Detector (ID) subsystem, seen in Figure 4.2, provides precision tracking through the

combined performance of successive layers of pixel detectors, silicon Semiconductor Tracker

(SCT), and the straw tube Transition Radiation Tracker (TRT) and provides excellent cov-

erage up to |η| < 2.5. To maximize the effective detector area, the pixels and SCT in the

barrel region are arranged in concentric cylinders, as seen in Figure 4.3. The pixel layers are

closest to the beamline and consist of roughly 80.4 million identical pixel sensors forming

three cylindrical layers in the barrel and three consecutive disks at each end-cap. Each of the

pixels is of area1 20, 000 µm2 with resolution of 10 µm (R-φ)×115 µm (z). The Insertable B-

layer (IBL) [87] — installed in May 2014 — adds an additional fourth pixel layer at a smaller

radius of 3.3 cm between a new smaller radius beam-pipe and the existing pixel detector.

The IBL pixel layer contains 12 million pixels of typical size 50 µm (R-φ)× 250 µm (z) [88].
150 µm in the R-φ direction by 400 µm in the z direction.
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This fine pixel cell size, and charge sharing between adjacent pixel cells — given the reverse

biased p+-n junction architecture — give excellent spatial resolution in R-φ along with the

strong magnetic field bending particles along φ̂ causing them to spiral through the pixel de-

tector [70,89]. Charged particle hits in the pixel detector are paramount for robust tracking

and identifying and reconstructing the primary and secondary vertices necessary for physics

object reconstruction (i.e., jets) and flavor tagging.

Figure 4.2: Cut-away view of the ATLAS inner detector showing the pixel detector,
Semiconductor Tracker, and Transition Radiation Tracker [90].

Figure 4.3: Cut-away view of the ATLAS pixel detector in the inner detector [91]. The
pixel sensors form three cylindrical layers in the barrel and three consecutive disks at each
end-cap. The IBL is not shown.

The SCT surrounds the pixel detector in the barrel with four layers of stereo strips with

small angle coverage (40 mrad), shown in Figure 4.4, to measure hits in the silicon in bothR-φ
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and z. In the end-cap region, the SCT strips run radially in nine disks in each end-cap (for 18

disk in total). In total, the SCT has roughly 6.3 million readout channels and results in track

resolutions of 17 µm (R-φ)× 580 µm (z) in the barrel region and 17 µm (R-φ)× 580 µm (R)

in the end-cap region.

The TRT further extends the ID R-φ information up to |η| = 2.0 by providing a large

number of track interactions with its approximately 351, 000 4 mm straw tubes. In the

barrel region, the TRT straw tubes are parallel to the beam axis, shown in Figure 4.4, and

extend for 144 cm on either side of η = 0. In the end-cap region, 37 cm TRT straws are

radially arranged with respect to the beamline in wheels, shown in Figure 4.2. Combined

with the precision tracking from the pixel detectors and SCT, the tracking information that

the TRT gives at larger radii contributes to high precision tracking of charged particles in

both R-φ and z, and the large number of hits in the TRT significantly improve momentum

measurements.

Figure 4.4: The sensors and structural elements traversed by a charged track of 10 GeV pT
in the barrel inner detector (|η| = 0.3). The track traverses successively the beryllium
beam-pipe, the insertable B-layer (not shown), the three cylindrical silicon-pixel layers
with individual sensor elements of 50× 400 µm2, the four cylindrical double layers (one
axial and one with a stereo angle of 40 mrad) of barrel SCT sensors of pitch 80 µm, and
approximately 36 axial straws of 4 mm diameter contained in the barrel TRT modules
within their support structure [70].
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4.4. Calorimeter System

The ATLAS calorimeter system, shown in Figure 4.5, provides excellent energy depo-

sition measurements for particles with coverage up to |η| < 4.9 with different calorimetry

subsystems for various physics processes. In the pseudorapidity range of the inner detector

(|η| < 2.5) the high granularity electromagnetic (EM) liquid argon calorimeter system pro-

vides measurement of electrons and photons. The more coarse resolution of the hadronic

calorimeter systems provides measurements for jet reconstruction and missing transverse

momentum, Emiss
T , in conjunction with the large pseudorapidity coverage. These calorime-

ter designs are both “sampling calorimeters,” where the “active” materials that provide

the signals are different from the “absorber” materials that reduce the particle energy and

cause showering. The calorimeter subsystems are also designed to be sufficiently thick as to

contain the electromagnetic and hadronic showers that originate inside them, and to limit

punch-through to the muon systems.

Figure 4.5: Cut-away view of the ATLAS calorimeter system [92].
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4.4.1. Electromagnetic Calorimeter

The electromagnetic calorimeter system, shown in Figure 4.6, consists of lead-liquid argon

detectors with a characteristically unique “accordion” lead absorber plate design that allows

for continuous coverage in φ with folding angles of the accordion “waves” that vary with the

radius to keep the LAr gap constant, as shown in Figure 4.7. Liquid argon (LAr) is the active

detector material for the EM calorimeters as it has a linear behavior, very stable response

over time, and is intrinsically radiation-hard. In the barrel region the LAr EM calorimeter is

split into symmetric half-barrels, and in the end-caps the LAr EM calorimeter exists as two

coaxial wheels, respectively covering the regions of 1.375 < |η| < 2.5 and 2.5 < |η| < 3.2.

Figure 4.6: Cut-away view of the ATLAS electromagnetic liquid argon calorimeter
system [92].

4.4.2. Hadronic Calorimeter

The hadronic calorimeter system is composed of the tile calorimeters in the barrel region,

and the LAr Hadronic End-cap Calorimeter (HEC) and LAr Forward Calorimeter (FCal)

in the end-cap region. The tile sampling calorimeter resides outside the EM calorimeter
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Figure 4.7: Sketch of a barrel module where the different layers are clearly visible with the
ganging of electrodes in φ. The granularity in η and φ of the cells of each of the three
layers and of the trigger towers is also shown [70].

system and provides coverage out to |η| < 1.7 and radial coverage from 2.28 m out to

4.25 m. The tile calorimeter absorber material is steel and uses scintillating tiles as the

active material, which are read out using wavelength shifting fibers into photomultiplier

tubes. The HEC exists as two wheels in each end-cap behind the end-cap EM calorimeter,

extending the coverage in the end-caps out to |η| < 3.2. The copper absorber plates of

the HEC are interleaved with 8.5 mm spacers of LAr providing active material. The FCal

extends coverage from 3.1 < |η| < 4.9 and is composed of three modules in each end-cap: a

copper module optimized for electromagnetic measurements, and then two made of tungsten

for hadronic interaction measurements. The modules are a metal matrix with regularly

spaced longitudinal channels consisting of tubes with a concentric rod and LAr filling the

gap between them.

For calorimetry systems the energy resolution improves as the energy of the particle, E

increases, generally as 1/
√
E. More specifically, the energy resolution, σ (E), of a calorimeter
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is given as the quadrature sum2

σ (E)

E
=

a√
E

⊕ b

E
⊕ c , (4.1)

where a is the “stochastic term” for intrinsic shower fluctuations, b is the “noise term,” and c

is the “constant” term [93]. It is seen from Equation 4.1 that at lower energies the stochastic

term is more important and at higher energies the constant term affects the energy resolution

more. The ATLAS calorimeters are designed to have excellent energy resolution, which is

clearly seen from the observed energy resolution for the ATLAS LAr EM calorimeter barrel

region in testbeam experiments [94, 95]

σ (E)

E
=

10%√
E

⊕ 200 MeV
E

⊕ 0.2% .

For the hadronic calorimeters the stochastic term is required to be under 50% and the

constant term under 3% [94].

4.5. Muon Spectrometer

The ATLAS Muon Spectrometer (MS), shown in Figure 4.8, is arranged as the exterior

detector subsystem to provide coverage for muons deflected from the air-core toroid magnets.

As muons are minimum ionizing particles3 , as seen in Figure 4.9, they pass through the inner

detector and calorimeter systems while being radially deflected by the solenoid magnetic field

before entering the toroidal magnetic field and getting deflected along ẑ. Given the resulting

trajectories, in the barrel region muon tracks are measured by three cylindrical layers of

Monitored Drift Tubes (MDT), shown in Figure 4.10 and Figure 4.11, and in the end-caps

region three planes of MDT wheels before escaping the detector altogether — hence the name

spectrometer. For most of the η range the MDTs perform most of the precision measurements
2That is, a⊕ b =

√
a2 + b2.

3The mass stopping power for muons in the typical energy ranges at the LHC is less than 4 MeV cm2/g.
To put this in context, a 1 GeV muon can punch through roughly 1 m of iron before stopping [96].
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of the tracks, though from 2 < |η| < 2.7 higher granularity Cathode Strip Chambers (CSC)

provide tracking to withstand the intense rate and radiation [70].

Figure 4.8: Cut-away view of the ATLAS muon system [70].

The trigger system for the muon system provides coverage out to |η| < 2.4 and the

Resistive Plate Chamber (RPC) and Thin Gap Chamber (TGC) trigger chambers uniquely

provide bunch-crossing identification, well-defined pT thresholds, and measurements of the

muon track coordinate in the orthogonal direction of the precision-tracking chambers [70].

4.6. Trigger and Data Acquisition

The ATLAS Trigger and Data Acquisition (TDAQ) systems, shown in Figure 4.12, func-

tion collectively at two different levels: the L1 trigger and the High-Level Trigger (HLT).

Collectively, the trigger system is responsible for reducing the approximately 1 GHz event

rate from the 25 ns bunch crossings4 — which is not possible to write out and save in real

time — to a much more manageable 1 kHz that can be written to storage [101]. With

raw event sizes of approximately 1.6 Mbytes this still results in data generation of over a

Gigabyte per second.

4Often reported as the equivalent 40 MHz bunch crossing rate.
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Figure 4.10: Mechanical structure of a MDT chamber. Three spacer bars connected by
longitudinal beams form an aluminium space frame, carrying two multi-layers of three or
four drift tube layers. Four optical alignment rays, two parallel and two diagonal, allow for
monitoring of the internal geometry of the chamber. RO and HV designate the location of
the readout electronics and high voltage supplies, respectively [70].

Figure 4.11: Trajectories of muons with momenta of 4 GeV and 20 GeV in the bending
plane of the barrel muon spectrometer. In general, the tracks cross 2× 4 inner, 2× 3
middle, and 2× 3 outer layers of MDT tubes. The cyan and dark blue areas in each MDT
layer illustrate the granularity of the mezzanine cards [70].
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4.6.1. Level-1 Trigger (L1)

The Level-1 trigger (L1) is a hardware trigger system responsible for taking data coming

from the ATLAS calorimeter and muon systems and identifying Regions of Interest (RoI),

shown in Figure 4.13, for cluster trigger candidates and further decision making within 2.5 µs

after the bunch-crossing associated with the event [70]. The L1Calo trigger algorithms search

for high transverse momentum electrons, photons, jets, hadronically decaying τ -leptons, and

large Emiss
T signatures. It does this by identifying RoIs in a sliding 4 × 4 window of trigger

tower clusters in the calorimeters and using information from six elements formed from the

sum of transverse energy in trigger tower groups [102]:

1. Four trigger tower regions (the sums shown in Figure 4.13) that measure the ET of

EM showers.

2. A hadronic core (the red box in Figure 4.13) from the four hadronic towers centered

behind the EM clusters whose sum is used for isolation in the hadronic calorimeter.

3. Four hadronic clusters summed over the EM and hadronic calorimeters that measure

the ET of hadronic showers.

4. An EM isolation ring formed from the twelve EM towers surrounding the EM core

whose sum is used for isolation checks in the EM calorimeter.

5. A hadronic isolation ring formed from the twelve hadronic towers behind the EM

isolation ring whose sum is used for isolation checks in the hadronic calorimeter.

6. A 2× 2 tower cluster RoI centered in the algorithm window and summed over the EM

cluster region and hadronic core used to identify candidate RoIs.
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From these six elements algorithms then make decisions on the order of nanoseconds

to classify the window as containing an EM cluster trigger candidate or a hadronic cluster

trigger candidate5 to be given to the Central Trigger for L1 trigger decision making.
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! !

!

!

Electromagnetic
isolation ring

Hadronic inner core
and isolation ring

Electromagnetic
calorimeter

Hadronic
calorimeter

Trigger towers ("# × "$ = 0.1 × 0.1)
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Figure 4.13: Schematic view of the trigger towers in a RoI window used as input to the
L1Calo trigger algorithms [101].

Simultaneously in L1, the L1Muon trigger uses trigger chambers in the barrel and end-

cap regions of the muon spectrometer. Information from events with large transverse energy

are then sent to the L1 topological processor (L1Topo) in the Central Trigger for a trigger

decision. The Central Trigger Processor (CTP) applies a trigger “menu” of collections of

trigger selections and events that pass these selections are sent to subdetector-specific elec-

tronics for processing and data acquisition for possible readout. Additionally, the L1 trigger

defines and sends information on RoIs to the HLT for more detailed decision making.

4.6.2. High-Level Trigger (HLT)

After the L1 trigger acceptance, events sent to the HLT are processed using higher granu-

larity calorimeter information, tracking information from the ID, and precision measurements
5It is worth reflecting here that given the stringent requirements that the L1 trigger must meet that the

fantastically complex objects that are hadronic jets start off as a L1 trigger tower square.

67



from the muon spectrometer — all of which are not available at L1. The reconstruction and

processing in the HLT can utilize both information from the RoIs passed from L1 as well

as information received from the full detector subsystems. Aspects of these processes are

elaborated on in Appendix A.
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Chapter 5

Event Reconstruction

After physics interactions are detected inside of ATLAS, are accepted by the trigger

system, and are read out to disk they exist as raw detector level information and need to

be reconstructed into detector-based representations of physical particles (physics objects)

for analysis. Low latency versions of reconstruction are done at the trigger level to make

acceptance decisions. However, the full event reconstruction is done “offline” later with more

current detector models and with computationally expensive algorithms with the luxury of

time to trade for great accuracy. This also allows for reprocessing of data in the future with

improved algorithms and models. This chapter gives a high level overview of the physics

objects that ATLAS defines and the methods used to make them.

5.1. Tracks

One of the most common physics objects is charged tracks, as seen in Figure 5.1, rep-

resenting charged particles passing through the subsystems of the ID, as discussed in Sec-

tion 4.3, and MS. These tracks are reconstructed from hits in these subsystems by using the

hit coordinates as inputs to fitting algorithms that generally apply χ2 fitting techniques and

Kalman filters to find the track that has the highest likelihood for the observed hits [103–107].

5.2. Electrons and Photons

Reconstruction of electrons begins with the signals arriving from the ECAL cells after

they have been reshaped and sampled [109]. These signals are then converted to energy

deposit clusters using hardware calibrations, where the ECAL is divided into a grid of towers

of size ∆η × ∆φ = 0.075 × 0.175 in the barrel and ∆η × ∆φ = 0.125 × 0.125 in the end-
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Figure 5.1: Cartoon of comparison of the ideal charged track (black) in ATLAS from four
hits in the pixel layers and four hits in the strip detectors to a possible reconstructed
charged track (red) that accounts for all of the hits except for one hit in the pixel
detector [108].
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caps to perform sliding-window scans [110] to find local maxima to use as seeds for these

clusters [109]. Well-reconstructed tracks from the ID are then matched to the calorimeter

clusters. The matching of tracks is used to infer if the cluster deposits are from prompt1

electrons, electrons from photon conversion, or an unconverted photon [109, 111]. If there

is no ID track matched to the cluster, the cluster is selected as an unconverted photon.

The fine granularity in η of the silicon strip detectors is sufficient to provide event-by-event

discrimination between single-photon showers and two overlapping showers originating from

the decays of neutral hadrons (mostly π0 and η mesons) in the fiducial region |η| < 1.37 and

1.52 < |η| < 2.37 [112]. If the cluster is matched to a pair of oppositely charged ID tracks

that are collinear from the primary vertex and additionally have signatures in the TRT

that are consistent with electrons then the clusters are identified as a converted photon. In

all other cases where there are matched ID tracks to calorimeter clusters, the clusters are

identified as electrons.

In addition, electron candidates have additional quality and isolation identification per-

formed. There are three levels of electron quality “working points”: Loose, Medium, and

Tight. These working points are effectively minimum values of a multivariate likelihood ra-

tio based discriminate which an analyst can then “cut” on to make acceptance decisions.

Isolation criteria are determined using a track-based isolation variable, pvarcone30T , and a

calorimeter-based isolation variable, Etopcone20
T . The isolation criteria compare the scalar sum

of the transverse momentum in a cone around the electron candidate track of size ∆R < 0.2

for Etopcone20
T and ∆R < 0.3 for pvarcone30T and the transverse momentum of the electron candi-

date. This provides an effective discriminant between prompt electron candidates and other

electron candidates.
1Prompt decays are where a particle originates from the primary interaction. Prompt decays are distin-

guished from non-prompt by their decay time. An example of a prompt electron would be those originating
from Z → e+e−, while a non-prompt electron would be an electron that originated from photon conversion
from a radiated photon.
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Electrons are also calibrated to data using the well known and characterized resonant

decays of J/Ψ → e+e−, Z → e+e−, and Z → `+`−γ. This calibration is done to derive

data-driven scale factors that can be applied to ensure uniformity in the detector response

across different subsystems and regions and to establish systematic uncertainties that can

cover discrepancies between simulation and data.

5.3. Muons

Reconstruction of muons uses tracks from both the ID and the MS [113]. The tracks

from the ID are reconstructed in the same manner as other charged particles, and the recon-

struction algorithms in the MS look for hit patterns in each muon chamber to create unique

chamber track segments. Four muon candidate types are defined based on the combination

of subdetectors used in the reconstruction. Combined (CB) muons are constructed from

combined, global refits of the ID and MS tracks by adding or removing tracks from the MS

to improve the quality of the fit. Segment-tagged (ST) muons are constructed by identifying

tracks in the ID as muon tracks if there is a track in the MDT or CSC. ST muon candidates

are primarily low pT muons that do not traverse the entire MS. Calorimeter-tagged (CT)

muons are constructed from ID tracks and an ECAL deposit consistent with a minimum

ionizing particle. Extrapolated (ME) muons are constructed from MS tracks in at least two

layers that point back to the primary vertex. ME muon candidates are used to extend the

acceptance of muon reconstruction outside the ID in the region of 2.5 < |η| < 2.7 where

there is no ID coverage. With regards to priority when there is overlap of muons of various

categories, more information is preferred and so the (decreasing) priority ordering is CB, ST,

CT. If there is overlap with ME muons additional track quality information is required to

resolve priority.

Like electrons, muon quality working points are established, and four are used in ATLAS.

For the loose working point all muon types are used. This is useful for analyses where it is

beneficial to maximize reconstruction efficiency above other concerns, such as H → 4`. The
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medium working point CB and ME tracks are used where there are at least three CB track

hits and three ME layers. The tight working point is designed to maximize muon purity

and only used CB muons which have hits in at least two layers of the MS and also satisfy the

medium working point requirements. Finally, the high-pT working point requires CB muons

passing the medium selection with at least three hits in the MS. This working point is designed

to maximize the momentum resolution for muon tracks with pT > 100 GeV. Additionally,

there are muon isolation requirements. These isolation requirements use the track-based

isolation variable, pvarcone30T , and a calorimeter-based isolation variable, Etopcone20
T , described

in Section 5.2. Muons are also further calibrated to data using J/Ψ → µ+µ− to cover the

low pT spectrum and Z → µ+µ− for the high pT spectrum, as shown in Figure 5.2.
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combined uncertainty is the sum in quadrature of the individual contributions [113].
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5.4. Jets

As particles that carry QCD color charge do not exist by themselves in isolation, but

combine with other colored particles to form colorless composite hadrons, it is not possible to

directly observe quarks or gluons in ATLAS. Instead, this process of hadronization, and sub-

sequent decays and rehadronization, creates a shower of both charged and neutral particles

that hit the detector, creating charged tracks and energy deposits. These hadronic showers

are stochastic, and there is no way to give a full descriptive definition of them, though there

is very impressive recent work on operational definitions [114–116]. Instead, clustering algo-

rithms are used to create collections of tracks and energy deposits, known as “jets,” based

off of the criteria of interest in the algorithm. In a similar manner to how QCD’s depth and

richness as a theory requires proper treatment outside the scope of this thesis, jet physics is

complex and deep enough to rightly be its own intense physics program at the LHC. This

section will only attempt to give an executive summary of the jet physics and techniques

that are pertinent to my thesis analysis — however for an exceedingly thorough overview

see [117].

Of the jet clustering algorithms that are common in high energy physics [118, 119] the

most widely used are the kt, Cambridge/Aachen, and anti-kt algorithms [120, 121]. These

algorithms are all similar in their approaches with variations on the features they emphasize.

The approach is to iteratively apply the following for all objects in the considered RoI:

1. Compute the pairwise distance dij between objects i and j where

dij = min
(
k2pti , k

2p
tj

) ∆2
ij

R2

and ∆2
ij = (yi − yj)

2+(φi − φj)
2 for transverse momentum kt, rapidity y, and azimuthal

angle φ, and parameters of choice R, which governs the size of the jet (though it is
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not a hard cutoff limit), and p, which governs the relative power of the energy versus

geometrical (∆ij) scales [120].

2. Compute the distance diB between the object i and the beamline B where diB = k2pti .

3. Determine the smallest distance out of the set of distances dij and diB, dmin ∈ {{dij} , {diB}}.

4. If the minimum distance is between the object i and the beamline, dmin ∈ {diB}, label

this object a jet and remove it.

5. If the minimum distance is between object i and j, dmin ∈ {dij}, group these two

objects into a new object k which is added to the object collection, and remove objects

i and j.

The above is repeated until there are no more remaining objects, at which point all objects

have been assigned to a jet. It is seen that the choice of free parameter p then defines

which algorithm is used, and what information the jet clustering algorithm prioritizes. The

choice of p = 1 corresponds to the kt algorithm [122], which is seen to cluster softer — less

energetic — objects together into progressively harder — more energetic — objects, as seen

in Figure 5.3a. Working under the assumption that generally the hardest objects will be

towards the center of the shower of particles, this can be seen as an “outside-in” clustering

which will result in irregularly shaped (probably not very cone-like) jets. Choosing p = 0

corresponds to the Cambridge/Aachen jet algorithm [123], which reduces the distance dij to

only include the angular information, ∆ij. This means that softer splittings of the shower

will be clustered into harder branches, which will again produce irregular shaped jets, as

seen in Figure 5.3b. Choosing p = −1 corresponds to the anti-kt algorithm [120], where the

hardest objects are clustered together first and then subsequently softer objects are added.

The anti-kt algorithm produces relatively regular cone shaped jets that are focused around

a hard core, as seen in Figure 5.3c. A typical choice of jet algorithm in ATLAS is the anti-kt

algorithm with size parameter of R = 0.4.
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(a) The sample parton-level
event clustered with the kt jet
algorithm.

(b) The sample parton-level
event clustered with the
Cambridge/Aachen jet
algorithm.

(c) The sample parton-level
event clustered with the
anti-kt jet algorithm.

Figure 5.3: A sample parton-level event (generated with Herwig), together with many
random soft “ghosts,” clustered with the kt, Cambridge/Aachen, and anti-kt jet algorithms,
illustrating the “active” catchment areas of the resulting hard jets. For kt and
Cambridge/Aachen the detailed shapes are in part determined by the specific set of ghosts
used, and change when the ghosts are modified [120].

5.4.1. Large Radius Jets

For analyses that are dealing with very high momentum resonances, the resulting decay

products can become highly collimated and be reconstructed as a single jet with a large radius

parameter, R, (a “large-R” jet) typically set to R = 1.0 [124,125], as seen in Figure 5.4. For

my thesis analysis large-R jets were used, where the large-R jets were reconstructed from

topological clusters in the calorimeters using the anti-kt algorithm with radius parameter of

R = 1.0 and were trimmed [126] to improve mass resolution and reduce dependence on pile-

up. The trimming is done by reclustering the large-R jet constituents using the kt algorithm

with a radius parameter of R = 0.2 into subjets, and then removing any subjet that has pT

less than 5% of the large-R parent jet’s energy.

5.4.2. Variable Radius Track Jets

In recent years there have been dedicated efforts to improve jet algorithm techniques,

especially in the high momentum regime. As part of these efforts, variable radius (VR)

jets [129,130] were introduced where the radius parameter, R, decreases as a function of the
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Figure 5.4: The calorimeter clusters corresponding to a large-R jet and its subjets in a
simulated Z ′ → tt̄ decay with mZ′ = 1.75 TeV. One of the top quarks decays hadronically,
and the resulting clusters are matched to the top-quark decay products as well as the
additional radiation. Jet constituents are shown as black dots [127, 128].

jet pT ,

Reff (pT ) =
ρ

pT
,

where the dimensionful constant ρ determines how fast the effective jet size decreases with

the transverse momentum of the jet. The choice of ρ should be proportional to the mass

of the resonance, and so should correctly reproduce the size of jets as long as ρ . 2pT .

Additional parameters Rmin and Rmax are used to impose lower and upper cut-offs on the

jet size,

Reff (pT ) = max

[
min

(
ρ

pT
, Rmax

)
, Rmin

]
.

For my thesis analysis variable radius track jets [131] were used with ρ = 30 GeV, Rmin =

0.02, and Rmax = 0.4, which in simulation gives the highest truth subjet double b-labelling

efficiency for high pT Higgs bosons [130], as seen in Figure 5.5. It is seen from Figure 5.6,

Figure 5.7, and Figure 5.8 that VR track jets are able to describe the topology of H → bb̄
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events across high pT spectrum much more accurately than fixed radius R = 0.2 track jets,

making their use an excellent choice for the analysis.
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Figure 5.5: Efficiency of subjet double b-labelling at the truth level of a Higgs jet as a
function of the Higgs jet pT . The efficiency for R = 0.2 track jets is also included in all of
the plots. The uncertainty bars include statistical uncertainties only [130].
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Figure 5.6: Distributions of the ∆R between leading subjets and matched truth b-hadrons
for low Higgs jet pT of 250 GeV < pT < 400 GeV and high Higgs jet pT of
800 GeV < pT < 1000 GeV. The uncertainty bars include statistical uncertainties only. All
algorithms have been normalized to an area corresponding to the fraction of signal jets
which contain a leading subjet [130].
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Figure 5.7: Distributions of the ∆R between subleading subjets and matched truth
b-hadrons for low Higgs jet pT of 250 GeV < pT < 400 GeV and high Higgs jet pT of
800 GeV < pT < 1000 GeV. The uncertainty bars include statistical uncertainties only. All
algorithms have been normalized to an area corresponding to the fraction of signal jets
which contain a leading subjet [130].
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5.5. Flavor Tagging

Flavor tagging of jets is the process of determining a “flavor” label — light, charm (c),

or bottom (b) — to characterize the type of hadrons in the hadronic shower that resulted

in the jet. Flavor tagging is vital in precision measurements in the top quark sector2, in

the search for the Higgs boson as well as new phenomena decaying to bb̄ states, and, of

particular importance to this thesis analysis, the suppression of background processes that

contain predominantly light-flavor jets [134]. Of particular great interest in flavor tagging is

b-tagging (labeling of jets containing b-hadrons — b-jets), as b-hadrons are often produced

in decays of heavy resonances that could be indicative of interesting new physics. b-hadrons

have a number of unique properties that distinguish them, as seen in Figure 5.10. Notable

among them is their long lifetime, discussed in Appendix B, of approximately 1.5 ps which

gives a characteristic length scale of cτ ∼ 0.45 mm. This is a significant enough flight distance

of the b-hadron before it decays, that this subsequent hadron shower and jet is viewed as

having a secondary vertex (SV) displaced from the original jet vertex. The beam pipe that

was installed with the IBL in 2014 is mostly made of 0.8-mm-thick beryllium with an inner

radius of 23.5 mm and outer radius of 24.3 mm [135]. Given the characteristic length scale of

b-hadrons most3 decay inside of the beam pipe. This secondary vertex is still detectable as

the vertex resolution in ATLAS for 5 to 10 associated tracks — typical of a SV in a b-jet [136]

— is approximately 65 µm in r-φ by 110 µm in z [137,138], as seen in Figure 5.9. B mesons

also have a mass of approximately 5 GeV. Collectively, these properties can be exploited by

b-tagging algorithms to discriminate b-jets from light or charm jets [136, 139–141].

It is seen from Figure 5.12 that the transverse and longitudinal impact parameters —

respectively, d0 and z0 — of b-jets tend to be positive, while c-jets and light-jets tend to have

more impact parameters distributed more symmetrically around 0. As a result, these impact
2Noting that the top quark has a branching fraction of B (t → Wb) = 0.96+0.068

−0.066 (stat.)
+0.064
−0.052 (syst.) [132,

133].
3A typical B meson (m = 5 GeV, τ = 1.5 ps) would require pT & 280 GeV to decay outside the beam

pipe.
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Figure 5.9: The primary vertex resolution (with the reconstruction resolution corrected by
the appropriate scale-factor) as a function of the average number of tracks in the two
vertices used in the Split-Vertex method for low-µ data compared to Monte Carlo
simulation (Pythia8). This measurement uses a subset of a low-µ dataset corresponding
to an integrated luminosity of 216.9 µb−1 [138].

Figure 5.10: Cartoon of a typical b-jet containing a b-hadron decay vertex (blue )
displaced from the primary pp vertex (red ), and a c-hadron decay vertex (orange )
further displaced and often close to the b-hadron flight axis. Tracks from secondary (blue)
and tertiary (orange) vertices have large impact parameters (green) with respect to the
primary pp vertex [142].
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parameters can be used as inputs to discriminating algorithms. For the data taking periods

of my thesis analysis the main b-tagging algorithm used in ATLAS was the MV2c10 Boosted

Decision Tree (BDT) based algorithm.4 A BDT is a machine learning algorithm that uses

the weighted score of an ensemble of decision trees (flows of orthogonal selection criteria) to

give a discriminant score. The ensemble is iteratively constructed to emphasize areas of poor

performance in previous iterations. In addition to the quantities of the jet itself, MV2c10 uses

the output of other lower level b-tagging algorithms as inputs, as seen in Figure 5.11. These

include the likelihood ratio based two-dimensional and three-dimensional impact parameter

algorithms, IP2D and IP3D. The IP2D and IP3D algorithms assume that the track IPs are

uncorrelated. The output of IP3D is shown in Figure 5.13 for the 2017 and 2018 data taking

optimization of using a training sample of 50% tt̄ and 50% Z ′ → qq̄ for q ∈ {light, c, b}

to cover a large pT range of jets. The 2016 optimization used a training sample of 50%

tt̄ and 50% Z ′ → tt̄. In the 2017 data taking a Recurrent Neural Network (RNN) impact

parameter tagger (RNNIP) [143] was added as well, that exploits the correlations between

the impact parameters between the tracks, as b-jets tend to have multiple highly significant

IP tracks, while this is not the case for light flavor jets, as seen in Figure 5.14. There are

additional displaced secondary vertex finding algorithms (SV1), and Kalman filter algorithms

(JetFitter) that exploit that roughly 90% of b-jets contain a c-jet and so follow this decay

chain. Additionally a Soft Muon Tagger is also added in the 2017 data taking based on

the reconstruction of muons from the semileptonic decay of b-hadrons and c-hadrons. The

MV2c10 BDT combines all these inputs and then gives a discriminant score indicative of how

b-jet-like or how un-b-jet-like the inputs are given its training, as seen in Figure 5.15. The

MV2c10 BDT is trained using tt̄ for the 2016 optimization, and a hybrid sample of tt̄ and

a dedicated high mass sample of Z ′ decaying to jets, with nominal mass of m = 4 TeV,

to cover a wide pT spectrum for the 2017 optimization, as seen in Figure 5.16 [136]. The
4MV2c10 is named to reflect that it is a multivariate algorithm with the fraction of c-jets in the training

sample at roughly 10%. In reality the c-jet fraction is 7% and the light-jet fraction is 93% to give a good
balance between light-jet and c-jet rejection.
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performance of the BDT is calibrated in data using jets that contain a muon, indicative of

the semileptonic decay of a b-hadron, and a correction scale factor is derived [141].

Jet Collection

Track Perigee
Coordinates

Secondary Vertex
Finder

IP2D, IP3D

RNNIP

Decay Chain
Reconstruction

Muon Parameters

High Level Tagger
(MV2)

Figure 5.11: Inputs to the high level b-tagging algorithm MV2c10 for data taking in 2017
and 2018 [144]. The RNNIP was added in 2017; for the 2015 and 2016 data taking
JetFitter was used instead.
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Figure 5.12: Data-Monte Carlo comparisons of the transverse and longitudinal impact
parameter significance values for IP3D selected tracks in the leading jet of a Z → µµ+ jets
dominated sample [136].
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Figure 5.13: Data-Monte Carlo comparison of the log-likelihood ratio used to discriminate
the b-jet from the light-flavor jet hypotheses in the IP3D b-tagging algorithm using a
tt̄-dominated eµ sample and a Z → µ+µ− + jets-dominated sample [136].
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Figure 5.14: The distribution of the d0 significance for the leading d0 significance track and
subleading d0 significance track in b-jets and light jets. The distributions were produced
with 700 thousand b-jets and 1 million light jets, and each distribution is normalized to
unity [143].
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Figure 5.15: The performance of the MV2c10 BDT b-tagging algorithm for the 2016
optimization in simulated tt̄ events. The performance was evaluated on tt̄ events simulated
using Powheg interfaced to Pythia6 [141].
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Figure 5.16: Distribution of the jet transverse momentum of the 2017 Z ′ sample compared
to that of tt̄ events for light-flavor and b-jets [136].
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5.6. Taus

Tau leptons also produced in collisions in ATLAS, however, given their short lifetime

they will decay into other SM particles before entering the detector subsystems and are re-

constructed as other physics objects. When taus decay they decay to hadrons approximately

64% of the time [145], and to other leptons 36% of the time. The leptonic decays are recon-

structed as muons or electrons, and the hadronic decay modes, usually to pions, they are

reconstructed as multi-pronged jets matched with tracks in the ID. As hadronic decays of

the tau also have a displaced secondary vertex they can be a source of fakes for b-jets.

5.7. Missing Transverse Momentum

Missing transverse momentum, Emiss
T — or “MET” — is the imbalance of momentum

in the transverse plane of the event. Any event that has neutrinos produced in it, such as

events with W → `ν` processes, will have Emiss
T as neutrinos pass through ATLAS without

interaction, escaping detection. However, in events without neutrinos if other physics objects

are not properly reconstructed there will still be some Emiss
T in the event due to acceptance

and efficiency effects.

In closing, given the fully hadronic signature of the analysis signature in the high mo-

mentum regime, that will be described in Chapter 6, and the use of b-tagging it is seen

that the proper reconstruction of large-R jets with b-tagged VR subjets is going to be of

great importance. Additionally, well reconstructed muons will play an important role in the

establishment of a tt̄ control region.
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Chapter 6

Search for boosted low mass resonances in the bb̄ final state

This chapter describes the analysis that was performed for a search for high momentum

(“boosted”) low mass resonances, X, decaying to bb̄ with an additional jet using 80.5 fb−1 of
√
s = 13 TeV data from the ATLAS detector. In addition to the overview and description

of the analysis the chapter will also focus on my contributions to modeling the irreducible

multijet continuum background — the dominant background of the analysis.

Extensive analyses searching for dijet resonances have been performed by ATLAS and

CMS in Run 2 of the LHC [146–148], though the focus of these analyses were high mass

resonances above 1 TeV, where the search sensitivity and range is largely dictated by the

LHC center-of-mass energy. This leaves the sub-TeV mass range as a possible landscape for

new resonances with small couplings to SM particles, such as Z ′ bosons as seen in Figure 6.1

and Figure 6.2. Probing low mass regions imposes its own set of challenges, as low mass

resonances can produce lower energy final states, which in the high event rate environment of

the LHC can be difficult to distinguish and trigger on as most proton-proton collisions at the

LHC are soft interactions that result in many low momentum jets.1 In particular for dijet

analyses, this introduces an enormous multijet background produced by QCD interactions,

as seen in Figure 6.3. Requiring that the transverse momentum of these resonances is

very large (highly boosted) offers a path forward to both triggering on the interesting signal

events and also reducing the multijet background which exponentially falls off with increasing

momentum. To achieve this highly boosted state, the resonance can recoil off a high energy

jet or photon [149] that is produced through initial state radiation (ISR) or another similar
1This is reflected in the large cross section for jets and di-jet events shown in Figure 2.1.
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process, as shown at the leading order in Feynman diagrams in Figure 6.4 for signal models

of a leptophobic Z ′ and the Higgs boson at the LHC. For this thesis analysis only the jet

ISR is considered to simplify the trigger. For highly boosted systems, where the resonance’s

pT is greater than twice its mass, the angular separation between the jets coming from the

resonance’s decay is reduced enough such that the dijets can be reconstructed with a single

anti-kt jet with R = 1.0 — a “large-R” jet — as shown in Figure 6.5. If the leptophobic Z ′

has Higgs-like couplings2 to SM quarks, then it should have preferential decays of Z ′ → bb̄.

By applying b-tagging to the signal large-R jet and requiring the presence of two b-tagged

sub-jets the performance of the analysis can be improved. Even in the circumstances where

the Z ′ has democratic (independent of quark generation) couplings to the SM quarks the

application of b-tagging is still preferred, as it significantly reduces the dominant multijet

background, which is predominantly light-flavor events [150], as shown in Table 6.1 and

Table 6.2, and the flavor composition of the surviving multijet background in the signal

region is mostly heavy flavor, as seen in Figure 6.6.

In addition to the search for Z ′ → bb̄, a measurement of boosted H → bb̄ is performed as

well. At high enough energies — pT,H & 500 GeV — the production of Higgs bosons through

gluon-gluon fusion begins to be sensitive to the heavy fermion loop [151]. If there are new

resonances that run in the loop they contribute to the coupling strength of the effective

gluon-gluon-Higgs interaction and would give an anomalous coupling compared to the SM

predicted value. In the effective field theory models of [151–153] the effect of the anomalous

couplings is very significant and could affect the production cross section of high-pT Higgs

through gluon-gluon fusion by more than 50% for pT,H > 500 GeV.

This chapter will cover the signal models and datasets in Section 6.1. The pT require-

ments to have a fully efficient large-R jet trigger across the 2015, 2016, and 2017 datasets

are discussed in Section 6.2. The construction of the signal region and supporting validation
2Where the coupling strength is proportional to the mass of the decay products, g ∝ m.
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regions is covered in Section 6.3 and the effects of the resonant and non-resonant SM back-

grounds in Section 6.4. Section 6.5 is devoted to my parametric modeling of the irreducible

multijet background. Section 6.6 covers the effect of the leading systematic uncertainties on

the analysis, and the results of the analysis are covered in Chapter 7.
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Figure 6.1: Dijet search contours for 95% CL upper limits on the coupling gq as a function
of the resonance mass mZ′

A
for the leptophobic axial-vector Z ′

A model. The expected limits
from each search are indicated by dotted lines. The TLA dijet analysis has two parts,
employing different datasets with different selections in the rapidity difference y∗ as
indicated. The yellow contour shows the results of the dijet search using 20.3 fb−1 of 8 TeV
data. Coupling values above the solid lines are excluded, as long as the signals are narrow
enough to be detected using these searches. The TLA dijet search with |y∗| < 0.6 is
sensitive up to Γ/mZ′ = 7%, the TLA dijet with |y∗| < 0.3 and dijet + ISR searches are
sensitive up to Γ/mZ′ = 10%, and the dijet and dibjet searches are sensitive up to
Γ/mZ′ = 15%. The dijet angular analysis is sensitive up to Γ/mZ′ = 50%. No limitation in
sensitivity arises from large width resonances in the tt̄ resonance analysis. Benchmark
width lines are indicated in the canvas. The Γ/mZ′ = 50% lies beyond the canvas
borders [60].
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Figure 6.2: Limits on the universal coupling g′q between a leptophobic Z ′ boson and
quarks [147] from CMS dijet analyses. The expected limits are shown in dashed lines, and
the corresponding observed limits are shown in solid lines. The hashed areas show the
direction of the excluded area from the observed limits. The grey dashed lines show the g′q
values at fixed values of ΓZ′/MZ′ . Most of the analyses, with the exception of Dijet χ and
Broad Dijet, assume that the intrinsic width is negligible compared to the experimental
resolution, and hence are valid for ΓZ′/MZ′ . 10%. The tt̄ resonance analysis is valid for
ΓZ′/MZ′ . 5%, the Broad Dijet analysis is valid for ΓZ′/MZ′ . 30%, and the Dijet χ
analysis is valid for ΓZ′/MZ′ . 100% [154].

6.1. Data and Simulation

The analysis was done using 80.5 fb−1 of data from ATLAS datasets collected in 2015,

2016, and 2017. From the data quality monitoring, ATLAS produces XML files called “Good

Run Lists” (GRLs) that are lists of all events in the data that have met the data quality

criteria, ensuring high quality data for analysis. The analysis uses three GRLs — one for

each year of data taking — corresponding to annual luminosities of 3.2 fb−1, 33.0 fb−1, and

44.3 fb−1.
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Model for the Higgs boson. Uncertainties for the theoretical predictions are quoted from
the original ATLAS papers. They were not always evaluated using the same prescriptions
for PDFs and scales. The Wγ and Zγ theoretical cross sections have non-perturbative
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measurements are statistically significant yet [33].
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Table 6.1: The cutflow of the different analysis regions using simulated background events
and data. The QCD multijet contribution is scaled by 0.74 to match data.

Cut QCD multijet W + jets Z + jets tt̄ Total Data

Trigger 385385408 1419912 629320 1624282 389193728 159567488

Jet Cleaning 385195264 1418308 628717 1623173 389000192 159354608

Lead large-R jet pT > 480 GeV 77069624 427349 182546 427728 78151368 77183760

Sublead large-R jet pT > 250 GeV 69628144 403870 172806 354653 70596512 71117008

At least one signal candidate jet 61771844 385898 165464 340425 62699272 64152952

Signal candidate jet pT > 480 GeV 52034768 348965 148796 288012 52851096 53996920

0 loose b-tagged VR subjets (CRQCD) 29435344 219353 84389 110905 29863870 29883336

2 tight b-tagged VR subjets (Signal Region) 400020 1506 6173 10553 419087 484551

Table 6.2: The relative cutflow, with respect to the number of events passing the trigger, of
the different analysis regions using simulated background events and data. The QCD
multijet contribution is scaled by 0.74 to match data.

Cut QCD multijet W + jets Z + jets tt̄ Data

Trigger 1.000 1.000 1.000 1.000 1.000

Jet Cleaning 1.000 0.999 0.999 0.999 0.999

Lead large-R jet pT > 480 GeV 0.200 0.301 0.290 0.263 0.484

Sublead large-R jet pT > 250 GeV 0.181 0.284 0.275 0.218 0.446

At least one signal candidate jet 0.160 0.272 0.263 0.210 0.402

Signal candidate jet pT > 480 GeV 0.099 0.208 0.198 0.159 0.248

0 loose b-tagged VR subjets (CRQCD) 0.076 0.154 0.134 0.068 0.187

2 tight b-tagged VR subjets (Signal Region) 0.001 0.001 0.010 0.006 0.003
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6.1.1. Simulated Signals

As both Higgs and Z ′ are signals of the analysis two signal simulations were used: a

SM Higgs boson decaying to bb̄ and a leptophobic Z ′ with democratic axial couplings to

all quarks of mass less than mZ′/2. As the mass of the SM Higgs is known the analysis

is optimized for the Higgs signal, while the production of Z ′ simulation samples allows for

searching a broad range of mass hypotheses.

The Higgs events were simulated with the three main production mechanisms at the LHC,

seen in Figure 2.5: gluon-gluon fusion, vector boson fusion, and Higgsstrahlung (associated

W/Z production). These production modes respectively contribute to 50%, 30%, and 20% of

the total number of simulated signal events produced before any selection was applied. The

ggF plus jet signal events are generated using the HJ+MiNLO [156] prescription with finite

top quark mass using Powheg-Box 2 [157] and the NNPDF30 NNLO parton distribution

function [158] and then showered using Pythia 8.212 [159] with the AZNLO tune and

the CTEQ6L1 [160] parton distribution function. The decay of the resulting b-hadrons

is performed with EvtGen [161]. Similarly, with the exception of HJ+MiNLO, the VBF

Higgs events are generated in the same manner. Likewise, the Higgsstrahlung events are

generated using Pythia 8.212 with the AZNLO tune and the CTEQ6L1 parton distribution

function, with the decay of b-hadrons done with EvtGen. As Pythia does not include

gg → ZH the cross section is corrected to the LHC Higgs cross section working group

recommendation [162].

The samples of Z ′ decaying to two quarks and produced with an associated jet were

generated using a simplified dark matter MadGraph5_aMC@NLO model [64] and the

NNPDF30 LO parton distribution function. The events are showered using Pythia 8 with

the A14 tune and the NNPDF23 LO parton distribution function [163] and the decay of

b-hadrons is done with EvtGen. To ensure a sufficiently large number of Z ′ events at high

pT all events are required to have an anti-kT R = 0.6 truth jet with pT > 350 GeV before the
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detector simulation. To enhance the truth jet filter efficiency MadGraph5_aMC@NLO is

configured to save only simulated events that contain a patron with pT > 100 GeV. Separate

orthogonal samples for decays to light quarks (Z ′ → qq̄) and b-quarks
(
Z ′ → bb̄

)
are also

produced to create datasets that are enhanced in Z ′ → bb̄ events. As the search range of

the analysis is between 100 GeV and 200 GeV signal samples are generated for the mass

hypotheses of mZ′ ∈ {100, 125, 150, 175, 200, 250} GeV to create events across the range of

masses that might be used in studies or fits. The simplified model defines an absolute axial

coupling to SM quak-antiquark paris, gq, that is assumed to be democratic. The signal events

are simulated with gq = 0.25 corresponding to a rough estimate of the analysis sensitivity.

However, this choice does not have a significant effect on the kinematics of the reconstructed

event as the natural width of the Z ′ is smaller than the typical large-R jet mass resolution

in the pT and mass range of interest (i.e., about 10% of the jet mass). The total decay width

of the Z ′ is given as

ΓZ′ = ΓSM + ΓDM

=
∑

q∈(mq<mZ′/2)

3mZ′g2q
12π

(
1− (2mq)

2

m2
Z′

)3/2

+


3mZ′g2DM

12π

(
1− (2mDM )2

m2
Z′

)3/2
, mDM < mZ′/2

0, otherwise,

though the presence of the dark matter particle, χ, in the simplified model is integrated out

by setting a very large mass of mχ = 10 TeV and then gDM = 1, reducing the effective width

in the simulation to

ΓZ′ (mZ′ , gq) =
∑

q∈(mq<mZ′/2)

3mZ′g2q
12π

(
1− (2mq)

2

m2
Z′

)3/2

.
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As the cross section is proportional to g2q , the cross section at other values of gq can be

determined from scaling the cross section used in the simulation,

σg′q = σgq

(
g′q
gq

)2

. (6.1)

6.1.2. Simulated Backgrounds

The major backgrounds for the analysis are non-resonant multijet processes and resonant

V +jets and tt̄, as seen in Figure 6.7. Simulation of the expected Standard Model backgrounds

is used in the development of modeling the non-resonant background processes and are

used to model the resonant background processes. Dijet events from QCD interactions are

simulated using Pythia 8.186 with the A14 tune and the NNPDF23 LO PDF and the

decay of b-hadrons is done with EvtGen. To achieve a constant statistical uncertainty over

the large energy range weighted events are generated with a flat jet pT spectrum and split

into multiple samples before reconstruction using an anti-kt R = 0.6 jet algorithm run on

the final-state truth particles.

The hadronically decaying W and Z events, with a maximum of four additional partons

at leading order, were generated using Sherpa 2.1.1 [164] with the CTO parton distribution

function and were separated into multiple orthogonal samples based on the pT of the vector

boson. Leptonically decaying W and Z events are also produced with a maximum of two

additional partons at leading order and a maximum of four at NLO. These are used to

correct the cross section of the hadronic sample by applying a multiplicative factor to scale

the hadronic cross section to the leptonic sample cross section. These “k-factors” are 1.28 for

the W+jets and 1.37 for the Z+jets [149]. Alternate hadronic decay samples of W+jets and

Z+jets were generated using Herwig++ 2.7.1 [165]. However, unlike the Sherpa samples,
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(a) Simulation of the non-resonant multijet
background in the signal region.
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(b) Simulation of the resonant V + jets and tt̄
backgrounds in the signal region. Simulation
of the Higgs boson signal is shown for
comparison.

Figure 6.7: Simulation of the non-resonant and resonant backgrounds in the signal region
for an integrated luminosity of 80.5 fb−1.

only one additional parton is included in the matrix element. The UEEE-4 underlying event

tune [166] was used with the CTEQ6L1 parton distribution function.

The simulated tt̄ events were generated at tree-level using Powheg-Box 2 and the

NNPDF30 NLO parton distribution function. The hadronization was performed using

Pythia 8.230 with the A14 tune and the NNPDF23 parton distribution function and the

decay of b-hadrons is performed using EvtGen. The events are separated into categories

based on whether both tops decayed hadronically, if only one of decayed hadronically, and if

both tops decayed leptonically. An additional set of tt̄ events was generated using Sherpa

2.2.1 using the NNPDF30 parton distribution function, where independent samples were

generated for the three decay categories. This sample was used to cross-check the main tt̄

samples generated with Powheg-Box 2 + Pythia 8.

6.2. Large-R Jet Trigger

The trigger used in the analysis is a large-R jet trigger. However, as the amount of pile-

up increased over the course of LHC Run 2, as seen in Figure 3.3, different large-R trigger
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algorithms were used to maintain low offline thresholds for data recording. This requires that

a different trigger algorithm be used for the 2015, 2016, and 2017 data. All triggers require

the presence of a large-R jet reconstructed in the HLT with variations of ungroomed (a10)

and large-R jets trimmed (a10t) with the same settings as offline large-R jets. The 2015

trigger requires an ungroomed large-R jet with pT > 360 GeV, while in 2016 the threshold

is 420 GeV. The 2017 trigger requires a trimmed online jet with a threshold of 460 GeV.

As shown in Table 6.3, the chosen triggers become fully efficient at different pT thresholds

for offline large-R jets. As they are all fully efficient for pT > 480 GeV and in an effort to

simplify the analysis strategy a trimmed offline jet with pT > 480 GeV is required for triggers

across all years.

Table 6.3: Summary of the large-R jet triggers used in the analysis for the data taking
periods of 2015, 2016, and 2017 and the offline pT thresholds at which they become fully
efficient. The recorded integrated luminosity with each trigger is additionally shown.

Year Trigger Name Offline pT Threshold (GeV) Luminosity
(
fb−1

)
2015 HLT_j360_a10_lcw_sub_L1J100 410 3.2

2016 HLT_j420_a10_lcw_L1J100 450 33.0

2017 HLT_j460_a10t_lcw_jes_L1J100 480 44.3

6.3. Signal Event Selection

All simulation and data are preprocessed to require events with at least two large-R

jets with pT > 200 GeV before calibration. Jets are further selected after calibration to be

trimmed large-R jets with pT > 250 GeV and |η| < 2. Events are further preselected by

requiring the leading pT large-R jet to satisfy pT > 480 GeV and the sub-leading pT large-R

jet to have pT > 250 GeV, which ensures that all events meet the trigger requirements. To

select the signal jet candidate — the large-R jet assumed to contain the decay products

of the Z ′ or the Higgs boson — the following criteria must be met. The large-R jet must

be sufficiently boosted with pT > 2mJ , and it must contain at least two variable radius

track-jets each with pT > 10 GeV. To help prevent contamination of gluon splitting to heavy
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flavor quarks, an additional requirement is made that the distance between the two leading

pT VR track-jet axes is greater than the radius of the smaller of the two VR track-jet (the

leading pT VR track-jet), ∆RV R/minRV R > 1. The highest pT large-R jet that passes all of

these requirements is then taken to be the signal candidate, and the next highest pT large-R

jet is taken to be the associated jet. Additionally, any events with muons with pT > 40 GeV

opposite the signal candidate, ∆φ > 2π/3, are removed to ensure that the signal candidate

events are orthogonal to a tt̄ control region that will be constructed from these muon events.

The signal candidate selection process is summarized visually in Figure 6.8.

Trigger
1 large-R jet

pT > 480 GeV

Pre-selection
≥ 2 large-R jets

pT > 250 GeV, |η| < 2

Signal Candidate
Boosted

≥ 2 VR track jets
∆RV R/minRV R > 1

Surviving leading
pT large-R jet
pT > 480 GeV

ISR
Leading pT large-R

jet remaining in event

large-R jet labeling

Figure 6.8: Diagram of the signal candidate event selection process and the labeling scheme
of the large-R jets in the signal candidate event.

Once the signal candidate jet is chosen, events are further classified based on how many

of the leading pT VR track-jets in the signal candidate large-R jet pass b-tagging criteria. A

“loose” b-tagging working point is established at 85% b-tagging efficiency, and a “tight” b-
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tagging working point is established at 77% b-tagging efficiency.3 The 77% efficiency working

point is selected to optimize signal significance. Signal candidate events with zero loose b-

tagged track-jets define a control region for non-resonant background estimation studies

(CRQCD). Events with exactly two tight b-tagged track-jets form the signal region (SR).

The efficiencies and yields of the resonant backgrounds and the signal processes under

the event selection criteria in the 0-tag control region and the signal region are given in

Table 6.4, where the efficiency in each region is defined as the fraction of events that pass

the leading large-R jet pT > 480 GeV event selection requirement. The composition of the

vector boson, tt̄, and H → bb̄ resonant components in the 0-tag control region and signal

region are shown in Table 6.5. As expected, in the CRQCD the W + jets contribution is

dominant for the vector boson component and in the signal region is primarily from Z+jets.

The tt̄ contribution is roughly equivalent in both the CRQCD and the SR with approximately

60% resulting from hadronic decays. In both regions the dominant component of H → bb̄

is from gluon-gluon fusion production. In the signal region gluon-gluon fusion contributes

53%, followed by VBF production at 25%, and Higgsstrahlung at 22%.

6.4. Backgrounds

6.4.1. V + jets

As this analysis is looking for resonances on the tails of the V + jets and tt̄ mass distribu-

tions it is important to ensure that the Monte Carlo based templates don’t have statistical

fluctuations that could hide possible signals. To avoid this, parametric shapes are fitted

to the MC-based templates ensuring that the tails are well modeled without fluctuations.

For the V + jets and signal templates the sum of three Gaussians plus a constant term are
3The b-tagging efficiencies are determined through applying the b-tagging algorithm to offline-

reconstructed jets from an unbiased sample of Monte Carlo simulated tt̄ events, where jets are labeled
according to their hadron content.
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Table 6.4: The efficiencies and yields in the 0-tag control region (CRQCD) and signal region
(SR) for the non-QCD background, the Higgs boson, and Z ′ signals and data. The yields
in the CRQCD are given for the luminosity used for the background estimate of the
non-resonant dijet process. The efficiencies are relative to the leading large-R jet
pT > 480 GeV requirement.

Process CRQCD Eff. (%) CRQCD Yield in 1.4 fb−1 SR Eff. (%) SR Yield in 80.5 fb−1

W → qq̄ + jets 51.3 3810 0.4 1500

Z → qq̄ + jets 46.2 1470 3.4 6200

tt̄ 25.9 1929 2.5 10550

H → bb̄ 24.3 5 17.9 216

ggF 23.6 2 19.4 115

VBF 15.8 1 20.7 53

WH 32.4 1 12.0 26

ZH 30.5 1 15.8 21

Z ′ (m = 100 GeV) 43.9 1530 4.1 8200

Z ′ (m = 125 GeV) 43.6 1440 3.8 7300

Z ′ (m = 150 GeV) 43.5 1360 3.7 6700

Z ′ (m = 175 GeV) 42.8 1240 3.3 5550

Z ′ (m = 200 GeV) 41.8 1127 3.2 4910

Data 38.7 519710 0.6 484600
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Table 6.5: The fractional composition of the different resonant contributions in the 0-tag
control region (CRQCD) and the signal region (SR). The fraction is evaluated using the
given contribution type as the total.

Process CRQCD Fraction SR Fraction

V + jets
Z + jets 0.28 0.80

W + jets 0.72 0.20

tt̄

Hadronic 0.58 0.63

Semi-leptonic 0.38 0.34

Dileptonic 0.04 0.03

H → bb̄

ggF 0.50 0.53

VBF 0.17 0.25

WH 0.21 0.12

ZH 0.12 0.10

fitted to the templates, and for the tt̄ a double-sided Crystal Ball function [167] is used. All

systematic variation histograms are also fitted with the same functional choices.

6.4.2. tt̄

As seen in Table 6.4, boosted tt̄ events are a significant background in the signal region.

However, current generation MC generators are not able to predict the tt̄ cross section well

in the boosted regime [168]. To correct the tt̄ yield accordingly in the SR a k-factor is applied

to the normalization. This k-factor is obtained from fitting the normalization of the tt̄ MC

template to a tt̄ enriched control region of the data (CRtt̄). The resulting k-factor is applied

to the tt̄ MC template normalization in the signal region, with the k-factor’s uncertainty

used as a Gaussian prior on the normalization.
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The tt̄ enriched control region uses the same selections for the signal candidate large-R

jet in terms of the corresponding pT cuts. Three regions are defined by requiring zero, one,

or two b-tags in the two leading pT track-jets of the signal candidate, though the region with

one b-tagged track-jet is taken as the CRtt̄, given that it exploits the single b-quark in a

top quark decay. The other regions are used to validate the extrapolation of the k-factor

into the CRQCD and SR topologies. The sample further requires the muon from the semi-

leptonic decay of the second top quark to be in the opposite hemisphere of the signal jet.

This is implemented by applying a cut of ∆φ (muon, signal jet) > 2π/3, which significantly

reduces the QCD and V + jets contribution to the signal region, reducing the tt̄ contribution

by roughly a factor of three.4 To further reduce contamination from multijet events, a cut

of pT > 40 GeV is applied to muon to veto softer muons resulting from multijet events.

Finally, at least one tight b-tagged track-jet is required to be within ∆R (jet,muon) < 1.5 to

reduce contamination from V (→ `` ) + jets and V V events. The CRtt̄ selection criteria are

summarized visually in Figure 6.9.

µ only
semi-leptonic tt̄

Signal jet:
at least 1 tight b-tag

VR track-jet

muon:
pT > 40 GeV

∆φ (µ, signal) > 2π/3

large-R jet:
1 loose b-tagged

VR track-jet
∆R (µ, jet) < 1.5

Opposite hemisphere

Figure 6.9: Diagram of the CRtt̄ selection criteria.

The tt̄ MC template is fit to the data in the CRtt̄ over the mass range of 70 GeV to

230 GeV and the uncertainty on the fit is determined from running the Bayesian Analysis

Toolkit [169] with large-R jet energy scale and jet energy resolution variations as nuisance

parameters, which will be described in Section 6.6. This results in a k-factor of 0.84± 0.11,

which is then used to constrain the tt̄ contribution in the final fit to the signal region data.
4This is to be expected as the leptonic decay modes of the W have roughly uniform branching fractions,

BR (W → µ νµ) /BR (W → ` ν`) ' 1/3.

105



6.5. Modeling of the Multijet Background

The dominant background contribution in the SR is the non-resonant multijet process.

Its estimation through MC is not reliable due to the statistical precision and the underlying

accuracy of the event generation. A data-driven estimate is therefore employed by fitting

the signal candidate large-R jet mass distribution, mJ , in the SR with a parametric function

and by validating the procedure using the data in the CRQCD. This data-driven approach

is further motivated by the fact that the shape of the CRQCD and the SR is very similar

over the mass range of the fit, 70 GeV to 230 GeV, as seen in Figure 6.10. The fit range

extends beyond the 100 GeV to 200 GeV mass search range to provide additional points to

help stabilize the fit. As approximately 1.2 fb−1 of data in the CRQCD gives a similar yield

as is expected from the full 80.5 fb−1 dataset in the SR, I performed the fitting study in

approximately 60 slices of 1.2 fb−1 CRQCD data.
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Figure 6.10: The expected shape of the multijet background in the signal region and the
CRQCD normalized to the same event count between 70 GeV < mJ < 230 GeV.
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6.5.1. Models Tested

To find a parametric function that fits the multijet background well, I investigated a

selection of families of functions. I considered multiple models, many of which proved in-

tractable in fitting, but two families of models performed well across the CRQCD data slices.

The functional forms of the families are the “polynomial exponential” — taken to be the

nominal model for the studies —

fn (x|θ) = θ0 exp

(
n∑

i=1

θi x
i

)
, x =

mJ − 150 GeV
80 GeV

, (6.2)

and the alternative model, the Formal Laurent series,

fn (x|θ) = a
n∑

i=0

θi
xi+1

, a = 105, x =
mJ + 90 GeV

160 GeV
, (6.3)

The parameterization of the polynomial exponential function maps the independent variable

to x ∈ [−1, 1] for the fit range of [70, 230] GeV, and the parameterization of the Formal

Laurent series maps the independent variable to x ∈ [1, 2] over the same range. This repa-

rameterization is done, as I observed that it improved the numerical stability of the fit. The

scaling factor, a, for the Formal Laurent is not a free parameter; it is empirically chosen

to keep the scale of the parameters at O(1). The Formal Laurent series serves as a cross

check for the polynomial exponential function models. To focus only on the QCD part of

the spectrum, the MC templates for the W + jets, Z + jets, and tt̄ (scaled by their cross

section times the luminosity of each slice and any relevant k-factors) are subtracted from the

data. This is done to decouple the study from any possible bias introduced by the fitting

procedure.
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6.5.1.1. Likelihood ratio test

Using Wilk’s theorem, as described in Section 0.3.1.1, the p -value for a likelihood ratio

test statistic,

tθ = −2 ln
L (θa)

L (θb)
,

for models f (x |θa) and f (x |θb) can be computed efficiently. If the p -value is below a given

threshold, α, the difference in the fits of the two models is considered statistically significant

and the model with a greater number of parameters is favored. Likewise, if the p -value is

above the threshold, the difference is considered not to be statistically significant and the

model with fewer number of parameters is favored. The comparison is done for iteratively

higher numbers of parameters until the result of the test shows that an additional parameter

no longer significantly improves the fit. The choice of threshold is in general arbitrary and

specific to the circumstances of the fit being performed. In the particular circumstances of

the studies performed the changes in the p -value are quite abrupt, so it is reasonable to

require a p -value threshold of α = 0.1.

6.5.1.2. F -test

The F -test [170] is another statistical test that can be used to determine the minimum

number of model parameters to describe the shape of a distribution from the χ2 of the

model’s fit. The F -test statistic can be defined as

F =
χ2
1/ν1
χ2
0/ν0

, (6.4)

where χ2
0 is the smaller χ2 of the two fitted models being compared, and νi are the degrees of

freedom for each fit. The F -test statistic is distributed according to the F -distribution, and so

the one-sided (one-tailed) p -value of this test statistic is then the value of the complementary
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cumulative distribution function of the F -distribution evaluated at the observed F ,

p-value (Fobs) = CCDF (x = Fobs) = 1− I

(
ν1Fobs

ν0 + ν1Fobs
;
ν1
2
,
ν0
2

)
(6.5)

where I is the regularized incomplete beta function.

6.5.2. Model Selection

For models of the same family that exhibited good reduced χ2 values during fitting, the

likelihood ratio test and F -test were performed to select the favored model. Figure 6.11

shows the results of the two statistical test being applied to the polynomial exponential

family of functions, demonstrating that the 5 parameter model is favored as the minimum

number of parameters to model the background distribution well. Table 6.6 summarizes the

results of the statistical tests.

To check this result, I repeated the two statistical tests for the polynomial exponential

family of functions for all CRQCD data slices. The relative frequencies of the observed p -

values for the tests are iteratively summed, as seen in Figure 6.12, producing an empirical

cumulative distribution function (CDF) for the test p -values. It is seen that for the a priori

threshold of α = 0.1 that in a large majority of the cases the likelihood ratio test favors a 5

parameter model (CDF4v.5 (0.1) > 0.9) while in most cases the F -test favors a 4 parameter

model (CDF4v.5 (0.1) < 0.2). Given this contention and that the likelihood ratio test is the

more powerful5 of the two tests given the Neyman-Pearson lemma [171], in addition to the

very strong favoring of the 5 parameter model in the likelihood ratio test, the 5 parameter

model is conservatively chosen to model the shape of the QCD background distribution.

Figure 6.13 shows the result of the fit in the original data slice with the selected 5 parameter

QCD model.
5It is actually the most powerful test for a given significance value α.
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Table 6.6: The observed p -value for the likelihood ratio test and F -test for comparing the
polynomial exponential model with different number of parameters.

Parameters in compared models likelihood ratio test p -value F -test p -value

4 v. 5 0.0001 0.0748

5 v. 6 0.3355 0.4867
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Figure 6.11: The results of the likelihood ratio test and F -test of comparing the
polynomial exponential fit models to CRQCD data minus resonant Monte Carlo templates.
Given the p -values of the likelihood ratio test and F -test are p < (α = 0.1) in the
comparison between the 4 and 5 parameter models the 5 parameter model is selected as
giving a statistically significant improvement to the fit. Given the large p -values observed
between the 5 and 6 parameter model, p > 0.1, the addition of a 6th parameter to the
model does not contribute to a significant improvement in the fit. As a result, the 5
parameter model is favored.
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Figure 6.12: Empirical cumulative distribution function for the observed p -values for the
polynomial exponential model. The threshold value of α = 0.1 is indicated by a vertical
line. The likelihood ratio test favors a 5 parameter model while the F -test favors a 4
parameter model.
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Figure 6.13: The fit of the 5 parameter polynomial exponential model to a 1.2 fb−1 slice of
the CRQCD data with the resonant Monte Carlo templates subtracted. The fit exhibits
both a low reduced χ2 value and a high p -value for the χ2 indicating a good fit. The
distribution of the weighted residuals of the fit with a Normal distribution fitted to it.
Though with low statistics at only 32 entries given the mass binning of 5 GeV, the
residuals appear to be Normally distributed, which again indicates a good fit.
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After fixing the number of parameters of the chosen function, the fit performance is

validated in the CRQCD data slices. The different CRQCD data slices are fit with the QCD

model plus the templates for the W+jets, Z+jets, and tt̄ contributions (scaled by their cross

section times the luminosity of each slice and any relevant k-factors). The normalizations

of the resonant background MC templates are fixed so that only the performance of the

QCD model is evaluated in the fit. From the fit results across all of the CRQCD slices it

is observed that the χ2/ndf from the individual fits follow a χ2 distribution, within the

statistical precision given by the different data slices.

6.5.3. Spurious Signal Tests

In order to gauge how sensitive the choice of multijet model is to statistical fluctuations

faking a possible signal, spurious signal tests were performed. This is done by injecting no

signal but including a signal template in the fit model and seeing if a non-zero signal strength

for the signal will be fit, following the resonant MC template subtraction procedure described

in Section 6.5.1. If the model is able to fit nonexistent signals in a statistically significant

way, given the results from the CRQCD fits, a systematic uncertainty will be introduced to

cover the resulting bias. If no statistically significant signal is found, no extra uncertainty is

needed. This spurious signal test is performed for the signals used in the analysis: Z, Higgs,

Z ′.

The distribution of the ratio of the fit signal strength to the uncertainty on the fit signal

strength, µfit/σµfit is checked in the different CRQCD slices for the different signal hypotheses.

For each signal hypothesis, a histogram containing the ratio, µfit/σµ fit, is made. The means

and RMS are summarized in Table 6.7. From Table 6.7, no statistically significant deviation

is observed (means of µfit/σµ fit are < 1), and given the statistical precision of the test (RMS)

the deviations seem to be compatible with 0. It’s also observed that no trend is present in

the data, i.e., the deviations do not seem to be dependent on the signal hypothesis mass.
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Given these results, no extra systematic uncertainty due to the modeling’s sensitivity to

spurious signals from statistical fluctuations is required.

Table 6.7: Summary of spurious signal tests in CRQCD slices for different signal hypotheses.

Signal Hypothesis µfit/σµ fit Mean µfit/σµfit RMS

Z −0.50 0.82

Higgs 0.36 0.77

Z ′ (m = 100 GeV) −0.42 0.65

Z ′ (m = 125 GeV) 0.38 0.71

Z ′ (m = 150 GeV) 0.02 0.80

Z ′ (m = 175 GeV) −0.38 0.70

Z ′ (m = 200 GeV) 0.32 0.87

6.5.4. Signal Injection Tests

Given the choice of parametric model for the QCD multijet background a bias in the

fit signal strengths of any signals can be introduced. To determine the effect of this bias, I

performed signal injection tests using a full model comprised of a parameterized QCD model

and signal Monte Carlo templates scaled to the full luminosity. The signal templates used are

a V + jets template constructed from summing the contributions of the W+jets Monte Carlo

template and the Z + jets Monte Carlo template with respective k-factors of kW = 1.28 and

kZ = 1.38 applied [149] and a Z ′ signal Monte Carlo template for a given mass hypothesis

of mZ′ ∈ {100, 125, 150, 175, 200} GeV. The V + jets template and the Z ′ template both

contribute one free parameter to the model which represents their respective signal strengths.

The tt̄ Monte Carlo template is not included as it has a Gaussian constraint applied to it

to be near the mean of the values determined from the tt̄ control region studies discussed

in Section 6.4.2, and so is not floated in full model fit. The full model is Poisson sampled

to construct a pseudo-experiment. The model parameters used to construct the model for

the Poisson sampling are found by fitting the parameterized QCD model to the data with
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the resonant MC templates subtracted, and the signal templates have their signal strength

parameters set to be µV and µZ′ , respectively the value of the signal strength injected.

The pseudo-experiment generated from the full model is then fit with only the param-

eterized QCD model. The fit parameters from that fit are then used to initialize the QCD

parameters for a fit of the fit model (i.e., the QCD model + V + jets or the full model) to the

pseudo-experiment. After the fit to the pseudo-experiment with the fit model is performed

the pull for the signal strengths for the injected signals (i.e., V + jets or V + jets and the Z ′)

is calculated, where the pull is defined as

pull =
µfit − µinjected

σµ fit
. (6.6)

This process of generating a pseudo-experiment, fitting with the fit model, and then cal-

culating the pull for the signal components is repeated for 10, 000 trials. If the gradient

minimizer does not converge during the fit then the trial is discarded. For the QCD multijet

models used in the analysis all trials converged. The pulls for each pseudo-experiment are

then histogrammed and a Normal distribution is fit to the histogram. If the fit is unbiased,

then one should expect the pulls to be Normally distributed with a mean of 0 and width of

1,

pulls ∼ N (µ = 0, σ = 1) .

The deviation of the fit Normal distribution’s mean from 0 is then an indicator of the bias

of the pull given the choice of QCD model. The number of trials was chosen to be 10, 000

as for an unbiased fit that gives a uncertainty on the distribution mean of

σµ̂ =
σ√

N trials

∣∣∣∣
σ=1,N trials=10,000

= 0.01.
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6.5.4.1. 1D Tests To check the effects of the fit of the V + jets in the presence of

an exotic signal, signal injection tests were performed with a fit model comprised of the

parameterized QCD model + V + jets signal template. For these tests the V + jets template

was injected with a signal strength of µV = 1, and the Z ′ template with signal strength of

µZ′ = µ ∈ {0, 0.2, 0.5, 0.8, 1, 2, 3, 4, 5}.

To check the effect of shape differences between generator choice on the bias the signal

injection tests were performed with the components of the toy from the V + jets sampled

from a Monte Carlo template generated with Sherpa while the V + jets template that

was used in the fit model was generated with Herwig with the same normalization as

the Sherpa template. Figure 6.14 shows the pull distributions for all Z ′ mass hypothe-

ses of mZ′ ∈ {100, 125, 150, 175, 200} GeV and all injected signal strengths of µZ′ = µ ∈

{0, 0.2, 0.5, 0.8, 1, 2, 3, 4, 5} with µV = 1. The pulls means show large deviations from 0

indicating a strong bias when trying to fit the toys drawn from Sherpa templates with

a Herwig template component in the fit model. This shows that there is a substantial

difference in shape between the Sherpa templates and the Herwig templates, providing

motivation for a systematic uncertainty associated with the generator choice for the W +jets

and Z + jets templates.

Given the statistical precision of the Monte Carlo templates, scaling them to correspond

to the observed luminosity results in statistical fluctuations in the tails of the templates

to become enlarged into apparent features. This is not desirable, as these features are not

physical, and so the Monte Carlo templates were smoothed for use in fitting by model-

ing them with functional forms fit to data. To check the bias associated with fits using

models that contain smoothed Monte Carlo templates generated from Sherpa, the signal

injection tests were performed again. Figure 6.15 shows the pull distributions for all Z ′

mass hypotheses of mZ′ ∈ {100, 125, 150, 175, 200} GeV and all injected signal strengths of

µZ′ = µ ∈ {0, 0.2, 0.5, 0.8, 1, 2, 3, 4, 5} with µV = 1. As the pull means are contained within a
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Figure 6.14: The distribution of the pull mean for fit signal strengths vs. the injected Z ′

signal strength µZ′ for µZ′ = µ ∈ {0, 0.2, 0.5, 0.8, 1, 2, 3, 4, 5} with µV = 1 using a full fit
model with a V + jets Monte Carlo template generated using Herwig and with a Z ′ mass
hypothesis mZ′ for mZ′ ∈ {100, 125, 150, 175, 200} GeV. The lightly shaded rectangular
region encloses the extrema of the pull means and their statistical uncertainties, showing
large biases. The dashed straight lines are meant only as visual guides, and are not to be
treated as linear interpolations between signal strengths.
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±3% window of the statistical uncertainties of the fit signal strength, then for a QCD model

of a 5 parameter polynomial exponential the fit bias is small enough that an additional

systematic uncertainty for the choice of QCD model parameterization is unnecessary.

To check the bias for a signal model of a Higgs boson the signal injection tests with

smoothed Sherpa Monte Carlo templates were run again, but with a smoothed Higgs tem-

plate for a signal model instead of a Z ′. Figure 6.16 shows the pull distributions for injected

signal strengths of the Higgs of µH = µ ∈ {0, 0.2, 0.5, 0.8, 1, 2, 3, 4, 5} with µV = 1. The pull

means being well contained within a [−3,+2]% window of the statistical uncertainties of the

fit signal strength gives additional evidence that for a QCD model of a 5 parameter polyno-

mial exponential the fit bias is small enough that an additional systematic uncertainty for

the choice of QCD model parameterization is unnecessary, regardless of signal model chosen.
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Figure 6.15: The distribution of the pull mean for fit signal strengths vs. the injected Z ′

signal strength µZ′ for µZ′ = µ ∈ {0, 0.2, 0.5, 0.8, 1, 2, 3, 4, 5} with µV = 1 using a full fit
model with smoothed Monte Carlo templates generated using Sherpa and with a Z ′ mass
hypothesis mZ′ for mZ′ ∈ {100, 125, 150, 175, 200} GeV. The lightly shaded rectangular
region encloses the extrema of the pull means and their statistical uncertainties, showing
that the range of bias on the pulls are within a few percent of the statistical uncertainties
on the fit signal strengths. The dashed straight lines are meant only as visual guides, and
are not to be treated as linear interpolations between signal strengths.
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Figure 6.16: The distribution of the pull mean for fit signal strengths vs. the injected Higgs
signal strength µH for µH = µ ∈ {0, 0.2, 0.5, 0.8, 1, 2, 3, 4, 5} with µV = 1 using a full fit
model with smoothed Monte Carlo templates generated using Sherpa for the V + jets and
Higgs. The lightly shaded rectangular region encloses the extrema of the pull means and
their statistical uncertainties, showing that the range of bias on the pulls are within a few
percent of the statistical uncertainties on the fit signal strengths. The dashed straight lines
are meant only as visual guides, and are not to be treated as linear interpolations between
signal strengths.
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6.5.4.2. 2D Tests

To check the effects of the interaction of the V + jets and Z ′ signal templates being

fit together the signal injection tests were performed with a fit model comprised of the

parameterized QCD model + V + jets signal template + the Z ′ signal template. Figure 6.17

shows the pull distributions for an example of a Z ′ mass hypothesis of mZ′ = 100 GeV and

injected signal strengths of µV = µZ′ = µ = 1. The procedure is then repeated for injected

signal strengths µ ∈ {0, 0.2, 0.5, 0.8, 1, 2, 3, 4, 5} for each Z ′ mass hypothesis. Figure 6.18

shows the pull distributions for all Z ′ mass hypotheses of mZ′ ∈ {100, 125, 150, 175, 200} GeV

and all injected signal strengths of µV = µZ′ = µ ∈ {0, 0.2, 0.5, 0.8, 1, 2, 3, 4, 5}. As the pull

means are contained within a [−5,+3]% window of the statistical uncertainties of the fit

signal strength, then for a QCD model of a 5 parameter polynomial exponential the fit

bias is small enough that an additional systematic uncertainty for the choice of QCD model

parameterization is unnecessary.
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−4 −2 0 2 4
Z ′ pull

0

100

200

300

400

Co
un

t /
 0
.1

N entries = 10000
μ= −0.004±0.009
σ=0.993±0.009

(b) The pull distributions for the fit signal
strengths for Z ′ using a full model with a Z ′

mass hypothesis of mZ′ = 100 GeV and
injected signal strengths of µV = µZ′ = µ = 1.

Figure 6.17: The pull distributions for the fit signal strengths using a full model with a Z ′

mass hypothesis of mZ′ = 100 GeV and injected signal strengths of µV = µZ′ = µ = 1. A
Gaussian is fit to the pull distributions with the best fit results for the Gaussian’s mean
and standard deviation shown on the plot with their respective uncertainties.
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Figure 6.18: The distribution of the pull mean for fit signal strengths vs. the injected
signal strength µ for µ ∈ {0, 0.2, 0.5, 0.8, 1, 2, 3, 4, 5} using a full model with a Z ′ mass
hypothesis mZ′ for mZ′ ∈ {100, 125, 150, 175, 200} GeV. The lightly shaded rectangular
region encloses the extrema of the pull means and their statistical uncertainties, showing
that the range of bias on the pulls are within a few percent of the statistical uncertainties
on the fit signal strengths. The dashed straight lines are meant only as visual guides, and
are not to be treated as linear interpolations between signal strengths.
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6.5.4.3. Alternate QCD Model

The alternative function choice, the Formal Laurent series Equation 6.3, is also tested.

Figure 6.19 shows the results of the two statistical test being applied to the Formal Laurent

series family of functions. Given the p -values of the likelihood ratio test and F -test are

p < (α = 0.1) in the comparison between the 3 and 4 parameter models the 4 parameter

model is selected as giving a statistically significant improvement to the fit. Given the

large p -values observed between the 5 and 6 parameter model, p > 0.1, the addition of a 6th

parameter to the model does not contribute to a significant improvement in the fit. However,

when comparing the 4 and 5 parameter models it is seen that there is contention between

the likelihood ratio test and F -test, as summarized in Table 6.8. To attempt to resolve the

contention, the two statistical tests for the Formal Laurent series family of functions are

repeated for all CRQCD data slices. The relative frequencies of the observed p -values for

the tests are iteratively summed, as seen in Figure 6.20, producing an empirical cumulative

distribution function for the test p -values. It is seen that for the a priori threshold of α = 0.1

that in a non-negligible fraction of the cases the likelihood ratio test favors a 5 parameter

model (CDF4v.5 (0.1) > 0.4) while in all cases the F -test favors a 4 parameter model. As

the contention remains, the 5 parameter model is conservatively chosen to model the shape

of the QCD background distribution. Figure 6.21 shows the result of the fit in the original

data slice with the selected 5 parameter QCD model. As in Section 6.5.2, the CRQCD slices

were fit with contributions for V + jets and tt̄ fixed to their SM normalizations times the

appropriate k-factors. The χ2/ndf distribution from the data slices fits is consistent with

the expected distribution. Given the Formal Laurent series also robustly models the multijet

continuum distribution it is used to evaluate a systematic uncertainty from model choice, as

described in Section 6.6.
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Figure 6.19: The results of the likelihood ratio test and F -test comparing the Formal
Laurent fit models to CRQCD data minus resonant Monte Carlo templates.

Table 6.8: The observed p -values for the likelihood ratio test and F -test for comparing the
Formal Laurent model with different number of parameters.

Parameters in compared models likelihood ratio test p -value F -test p -value

3 v. 4 < 0.0001 0.0001

4 v. 5 0.0598 0.3500

5 v. 6 1 0.5393
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Figure 6.20: Empirical cumulative distribution function for the observed p -values for the
Formal Laurent series. The threshold value of α = 0.1 is indicated by a vertical line. The
likelihood ratio test favors a 5 parameter model while the F -test favors a 4 parameter
model.
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Figure 6.21: The fit of the 5 parameter Formal Laurent model to a 1.2 fb−1 slice of the
CRQCD data with the resonant Monte Carlo templates subtracted. The fit exhibits both a
low reduced χ2 value and a high p -value for the χ2 indicating a good fit. The distribution
of the weighted residuals of the fit with a Normal distribution fitted to it. Though with low
statistics at only 32 entries given the mass binning of 5 GeV, the residuals appear to be
Normally distributed, which again indicates a good fit.
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6.6. Systematic Uncertainties

The following section is a short discussion of sources of systematic uncertainty (“sys-

tematics”) in the analysis that could result in biases. These uncertainties can be related

to experimental calibrations or procedures and to MC modeling of signal and background

processes. These uncertainties contribute both to the uncertainties in the overall yield (“nor-

malization”) and the differential shape of the distribution in the large-R jet mass observable

(“shape”) that is used in the statistical procedure for the search.

Systematic uncertainties associated with the multijet background are estimated with

pseudoexperiments. Poisson toys are sampled from the QCD component of the fit in the

SR containing all components of the full model (QCD, V + jets, tt̄, and the exotic or Higgs

boson signal components) and no nuisance parameters. The toys are then fit with the nominal

QCD parametric model (the polynomial exponential) and the alternative model (the Formal

Laurent series). These two sets of fits to the toys provide a measure of the statistical

uncertainty on the multijet parameterization from the spread of the fit parameters and of

the systematic uncertainty from the choice of fitting function from the difference between

the two fitted shapes.

Uncertainties related to the large-R jet energy and mass calibrations [124] and the cali-

bration of the MV2c10 b-tagging algorithm [141], which affects different jet flavors differently,

affect all of the MC templates. The large-R jet energy and mass calibration uncertainties

affect both the shape and the normalization of the MC templates, so their impact on the

analysis is determined by varying the jet energy and jet mass within their uncertainties and

propagating those variations through the analysis. The effect of the jet energy resolution

uncertainty is tested as well, but was found to be negligible. The effect of uncertainties on

the calibration of the MV2c10 algorithm are independent of the large-R jet mass in both the

signal and background simulation, and so only affect the signal normalization.
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Additional shape uncertainties related to modeling generator choice are applied to the

V + jets and tt̄ MC templates. To determine the systematic, the large-R jet mass shapes

are generated from two different MC generators and compared. For V + jets, the nominal

shape, generated using Sherpa 2.1.1, is compared to an alternate shape, generated using

Herwrig++ 2.7. For the tt̄, the nominal Powheg-Box 2 shape is compared to the

alternate Sherpa 2.2.1 shape.

The tt̄ normalization in the signal region is constrained in the fit by the k-factor obtained

from the CRtt̄. The tt̄ k-factor has an uncertainty of approximately 13% of its point estimate

value, and this uncertainty is used as a systematic on the tt̄ normalization.

Following a methodology similar to [172], the uncertainty on the integrated luminosity

is 2.1%. This systematic is then applied to all processed modeled using MC simulation.

Theoretical systematic uncertainties are added for the normalizations of the V + jets

and Higgs components to the fit in the signal region. The theory uncertainties on the

V + jets result from the impact of higher order electroweak and QCD corrections to the

differential cross sections for the W + jets and Z + jets [173]. The theory uncertainties

for the Higgs boson production are dominated by the uncertainty on gluon-gluon fusion

production, which is taken to be 30%, as this is consistent with the cross section uncertainty

calculated with the MiNLO procedure including effects from the top-mass for Higgs boson

production with pT > 400 GeV. This same 30% uncertainty is applied to the other Higgs

production mechanisms at high pT , which results in the total theory uncertainty on the Higgs

cross section to be 30%.

The impact of a systematic uncertainty is defined as the difference in quadrature between

the uncertainty in µ computed when all other uncertainties are considered and when they are

fixed to their pre-fit values. The total systematic uncertainty is then defined as the difference

in quadrature between the total uncertainty in µ and the total statistical uncertainty [155].

125



The systematic uncertainties and their impacts on the measurement of the signal strengths

are summarized in Table 6.9. It is seen that the jet mass resolution is a large systematic for

all the signals. Given that the ATLAS detector is designed for excellent energy resolution, as

compared to mass resolution, this systematic will not diminish much. However, as there are

efforts to bring particle flow (“pflow”) [174] into large-R jets in ATLAS then future versions

of this analysis might be able to improve upon this systematic given the additional use of

tracking information to improve mass resolution. The theory systematic for the Higgs is

large at 30%; however, as noted at the start of this chapter, for some models for anomalous

couplings in Higgs production the effect size at high pT would be greater than 30% [152,153],

and so this analysis could have sensitivity to such models despite the systematic’s size.

Table 6.9: Summary of the impact (
√
∆σ2/µ) of the main systematic uncertainties on the

uncertainty, σ, on the measurement of the signal strength, µ, for the V + jets, Higgs boson
and Z ′ signals [155].

Source Type V + jets Higgs Z ′ (100 GeV) Z ′ (175 GeV)

Jet energy and mass scale Norm. & Shape 15% 14% 23% 18%

Jet mass resolution Norm. & Shape 20% 17% 30% 20%

V + jets modeling Shape 9% 4% 4% < 1%

tt̄ modeling Shape < 1% 1% < 1% 11%

b-tagging (b) Normalization 11% 12% 11% 15%

b-tagging (c) Normalization 3% 1% 3% 5%

b-tagging (l) Normalization 4% 1% 4% 7%

tt̄ k-factor Normalization 2% 3% 2% 58%

Luminosity Normalization 2% 2% 2% 3%

Alternate QCD function Norm. & Shape 4% 4% 3% 17%

W/Z and QCD (Theory) Normalization 14%

Higgs (Theory) Normalization 30%
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Chapter 7

Results

To search for and quantify the significance of the production of signals (V,H,Z ′), and to

set limits in the absence of observation, a Bayesian method is used to calculate a posterior

likelihood as a function of number of signal events for the signal hypotheses under consid-

eration [175]. In this method, a final conditional probability of the parameters of interest

given the observed data (the “posterior”) is built by integrating over the nuisance parameters

(“marginalization”) with a Markov Chain Monte Carlo (MCMC) procedure. The posterior

distribution is used to gauge the fitted signal statistical significance and to set 95% credibility

level (CL)1 upper limits on the cross section times acceptance times efficiency.

7.1. Measurement of Standard Model Signals

To measure the Standard Model signals a model comprised of the Standard Model V+jets,

H → bb̄, and tt̄ signal templates along with the QCD multijet model is fit to the data. The

normalization of the tt̄ component of the model is constrained with the scale factor obtained

in the dedicated tt̄ Control Region. This fit simultaneously extracts the signal strengths of

the V + jets and H → bb̄ process, µV and µH respectively, which are unconstrained. The

comparison of the model post marginalization of the nuisance parameters to the data is seen

in Figure 7.1.

1As discussed in Section 0.3.2, credibility levels for Bayesian credible intervals are different from confidence
levels for frequentist confidence intervals.
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Figure 7.1: The top panel shows the post-fit plot of the SM Higgs boson, V + jets, tt̄ and
QCD model with the observed data. The middle panel shows the post-fit model and the
data with the QCD and tt̄ components of the model subtracted, highlighting the large
resonance from V + jets. The bottom panel shows the post-fit model and the data with the
QCD, V + jets, and tt̄ components of the model subtracted, highlighting a small excess of
events near 125 GeV [155].
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7.1.1. Observation of boosted V → bb̄

The observed signal strength for the V + jets process is

µV = 1.5± 0.22 (stat.)+0.29
−0.25 (syst.)± 0.18 (th.) ,

corresponding to an observed significance of 5σ with an expected significance of 4.8σ. This

constitutes the first direct observation of boosted vector bosons decaying to bottom quark

pairs in ATLAS for a center-of-mass energy of
√
s = 13 TeV following the lower momentum

Run-I measurement of high transverse momentum Z → bb̄ [176]. From the results of simu-

lation, seen in Table 6.1, the expected composition of the V + jets excess is approximately

24% W + jets and approximately 76% Z + jets.

7.1.2. Measurement of boosted H → bb̄

For the H → bb̄ process, the observed signal strength is

µH = 5.8± 3.1 (stat.)± 1.9 (syst.)± 1.7 (th.) ,

which given the uncertainties is consistent with the background-only hypothesis at 1.6σ with

an expected sensitivity of 0.28σ. This constitutes a measurement of boosted Higgs decaying

to bottom quark pairs, though not a direct observation.

The combined posterior distributions of µV and µH is seen in Figure 7.2, showing the

agreement between the best-fit values of the model and the Standard Model prediction of

µV = µH = 1. Given their respective uncertainties, the µV best-fit value is compatible with

the SM prediction at 1.32σ, and the µH best-fit value is compatible at 1.2σ.
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Figure 7.2: Combined posterior distributions of µH and µV from the signal region fit. It is
seen that the best-fit values for the signal processes lie within the 2σ interval of the
Standard Model prediction [155].
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7.2. Limits on Z ′ production

Following the measurement of the Standard Model signals, a search for exotic signals

in the large-R jet mass distribution is performed. The first step in the search is to apply

the BumpHunter search procedure [177, 178]. Given that the effect of the Higgs boson

with a SM strength is smaller than the expected uncertainty on the Z ′ limit the SM Higgs

template is excluded from the model, and only the V + jets and tt̄ templates are considered

along with the QCD parametric model. With this model, a fit to the data is performed

with the full set of systematic uncertainties resulting in the best-fit values for the model

nuisance parameters used in the analysis. With these post-fit shapes, the BumpHunter

goodness-of-fit algorithm scans the mass range looking for significant deviations from the

background-only model. For the given model, the largest deviation from the background is

found in the large-R jet mass interval of [115, 130] GeV, as seen in Figure 7.6. This deviation

has a BumpHunter global p -value of 0.54, indicating that background-only model is quite

consistent with the data.

The BumpHunter test statistic, described in detail in [178], is calculated for the given

model and for pseudo-data sampled from the background only hypothesis (the null hypoth-

esis, H0) for various widths of fit windows. The BumpHunter p -value is then calculated

from the most discrepant test statistic from all the window width choices in a treatment that

creates a hypertest — a union of multiple hypothesis tests — allowing for accounting of the

“trial factor” [179] in the calculation resulting in a global p -value, making the result quite

robust. For each bin the significance of the deviation between the model and the data is also

calculated. The significance for each bin is defined as the z-score for the observed Poisson

p -value [180], and given the integral form of the relationship between a Normal p -value, p,

and the z-score, z,

p =

∫ ∞

z

1√
2π

e−t2/2 dt = 1− CDF (z) =
1

2

(
1− erf

(
z√
2

))
,
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shown in Figure 7.3, it is seen the z-score can be described numerically2 as

z-score =
√
2 erf−1 (1− 2p) .
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Figure 7.3: Plot of 1
2

(
1− erf

(
z/
√
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))

, which describes the corresponding p -value for a
given z-score.

In the absence of excesses in the data that could correspond to new physics, 95% cred-

ibility level upper limits, competitive with other published ATLAS limits [60] as seen in

Figure 6.1, are set on signals from dark matter mediators with democratic decays to quarks

for masses between 100 GeV and 200 GeV. These limits are shown in terms of cross section

times branching ratio, acceptance and efficiency in Figure 7.4, and in terms of the gq param-

eter3 that controls the coupling of the DMM to quarks that determines the cross section in

Figure 7.5. From these limits, an exotic dark matter mediator Z ′ with gq = 0.25 is excluded

for mZ′ < 200 GeV at the 95% CL. As in seen in Figure 7.5, the smallest coupling to quarks
2The error function does not have a closed form solution.
3The limits on gq are determined from the limits on σ × ε×A×BR which used signal events simulated

with gq = 0.25, meaning that as σ (Z ′ → qq̄) ∝ g2q that gq = 0.25
√
σ/σgq=0.25 .
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excluded at the 95% CL is gq = 0.124 for a mass hypothesis of mZ′ = 105 GeV. The limits

become less restrictive at higher masses as the systematic uncertainty on the tt̄ scale factor

becomes dominant and greatly affects the total uncertainty, as seen in Table 6.9.
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Figure 7.4: The 95% credibility level upper limit on the cross section times acceptance
times branching ratio times efficiency obtained from the invariant mass distribution for the
Z ′ dark matter mediator model [155].
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Z ′ dark matter mediator model [155].
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Figure 7.6: The reconstructed mass distribution mJ with the event reconstruction and
selection as described in the text. The solid red line depicts the background prediction,
consisting of the non-resonant dijet, V + jets, and tt̄ processes. The vertical blue lines
indicate the most discrepant interval identified by the BumpHunter algorithm between
115 GeV and 130 GeV. Without including systematic uncertainties, the probability that
fluctuations of the background model would produce an excess at least as significant as the
one observed in the data anywhere in the distribution, the BumpHunter probability, is
0.54. The bottom panel shows the bin-by-bin significances [180] of the differences between
the data and the fit, considering only statistical fluctuations [155].
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Chapter 8

Conclusions

A search in the high momentum regime for new low mass resonances, produced in asso-

ciation with a jet, decaying into a pair of bottom quarks is presented with a focus on my

direct contributions to the analysis. A short discussion of the results of the analysis and

their implications follows.

A search for boosted H → bb̄ + jet was performed using an integrated 80.5 fb−1 of

proton-proton collisions recorded at ATLAS with a center-of-mass energy of
√
s = 13 TeV.

Given this data, a measurement of the signal strength of the SM Higgs decaying to bb̄ of

µH = 5.8± 3.1 (stat.)± 1.9 (syst.)± 1.7 (th.) was able to be extracted, corresponding to an

measurement that, given uncertainties, is consistent with a background-only hypothesis at

1.6 standard deviations given the expected sensitivity of 0.28σ. CMS performed a similar

analysis in 2017 [181] with 35.9 fb−1 of data and observed a signal strength for H → bb̄ of

µH = 2.3± 1.5 (stat.)+1.0
−0.4 (syst.), which is consistent with this analysis’ observation within 2

standard deviations. This is the first time this analysis has been performed in ATLAS, and

so it is an important advancement of using boosted jet techniques and exploring the usage

of new techniques such as variable radius jets.

As this analysis was novel in ATLAS, it has not been fully optimized. Given the major

systematic uncertainties in Section 6.6, it is clear that improvements to the jet mass resolu-

tion would significantly improve the analysis. As the ATLAS calorimeter system is designed

to give excellent energy resolution over mass resolution, it will be interesting to see how im-

provements in jet technologies can improve the analysis. There is active work in ATLAS to

build particle flow into large-R jets, which with the addition of tracks from the ID pointing
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into the calorimeter would improve the mass resolution of the analysis. Additionally, the use

of new substructure based triggers can improve the signal event selection.

In both the ATLAS and CMS searches of this analysis, a signal strength greater than

the Standard Model expectation for the Higgs boson at mH = 125 GeV has been observed.

Neither of these excesses is significant, given their uncertainties. However, looking towards

the future as both experiments take more data, if the observed signal strength holds at the

luminosity weighted mean,

〈µ〉 =
∑
i

fi µi ±

(∑
i

(fiσi)
2

)1/2

= 4.72+2.83
−2.82, fi =

Li∑
i

Li

, i ∈ {ATLAS,CMS}

then the significance of the observed deviation from the Standard Model expected value of

µH,SM = 1 would grow given the proportional decrease1 in the statistical uncertainty, as

shown in Table 8.1. Table 8.1 assumes no improvements to the systematic or theoretical

uncertainties, and highlights the integrated luminosities at
√
s = 13 TeV that the ATLAS

analysis will have available at the end of Run 2 of the LHC, the end of Run 3, and the
√
s =

13 TeV equivalent luminosity2 at
√
s = 14 TeV. It is seen that even with great increases in

luminosity the analysis will be limited by the systematic and theoretical uncertainties. This

further motivates the importance of optimizing the analysis and exploring new techniques,

in addition to closely watching the improvements of the theoretical community.

In addition to the measurement of boosted H → bb̄, a search for low mass leptophobic

dark matter mediator Z ′ with democratic vector-axial couplings to the Standard Model

quarks was performed using the same dataset. No significant excess of events is observed in

the data, resulting in limits competitive in ATLAS being set for exotic dark matter mediator

Z ′ models that exclude at the 95% credibility level mediator models with gq = 0.25 below
1Scaling the statistical uncertainty component of the total uncertainty on the signal strength with in-

creasing luminosity by (L/L0)
−1/2.

2Given a roughly 10% increase in the Higgs production cross section at
√
s = 14 TeV.
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Table 8.1: Values of the observed signal significance and uncertainty on the observed signal
strength for increasing integrated luminosity. Both the statistical uncertainty and the total
uncertainty are shown. The signal significance is given for both the total uncertainty and
for the case of only statistical uncertainty. Improvements are assumed for only the
statistical uncertainty component of the total uncertainty of the analysis.

L
(
fb−1

)
Stat. Uncertainty Total Uncertainty µ Significance Stat. Only Sig. Note

140 at
√
s = 13 TeV ±1.41 +2.19

−2.26 1.64σ 2.63σ Full Run 2 dataset
440 at

√
s = 13 TeV ±0.80 +1.96

−1.94 1.92σ 4.66σ 300 fb−1 in Run 3
3000 at

√
s = 14 TeV ±0.29 +1.81

−1.79 2.08σ 12.77σ 3300 fb−1 at 13 TeV

masses of mZ′ < 200 GeV, as seen in Figure 6.1 and Figure 8.1. This analysis is not the

first form of di-jet analysis in ATLAS to set limits on low mass Z ′, however it sets the most

restrictive limits in ATLAS for the low mass search range of 100 GeV < mZ′ < 170 GeV,

where [149] has better limits above 170 GeV as that analysis does not have tt̄ as a major

background. CMS has more restrictive limits for a generic leptophobic Z ′ resonance in

77.0 fb−1 of data [182], as seen in Figure 6.2 and Figure 8.2. Though the results of the two

analyses are similar, as the expected uncertainties largely overlap3 in the search range of

100 GeV to 200 GeV and between 100 GeV and around 130 GeV the limits are comparable.

Given these results, this thesis analysis is an important contribution to the exotic physics jets

and dark matter program in ATLAS and helps to give a comprehensive view of dark matter

mediator limits in Run 2 of the LHC, which when combined with other ATLAS results [60]

will extend exclusion limits for an axial-vector leptophobic Z ′ mediator for couplings to

quarks of gq = 0.2 to the range of mass hypotheses of 100 GeV < mZ′ < 210 GeV.

This thesis analysis has been a successful step forward in bringing burgeoning techniques

and new ideas to bear in exploring the wealth of data ATLAS collected in Run 2. Equipped

with this analysis as a tool for inference of Nature, it is with great excitement that I join the

particle physics community in preparing for boosted searches of new physics in the upcoming

Run 3 of the LHC.

3This is, however, a comparison of credible intervals to confidence intervals, which should be done more
carefully given their differing interpretations.
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Figure 8.1: Observed and expected limits at the 95% confidence level on the coupling gq
from the leptophobic axial-vector Z ′ model for the combination of the ISR jet and ISR γ
channels of Z ′ → qq̄ + ISR [149].
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Figure 8.2: CMS upper limits at the 95% confidence level on the coupling g′q as a function
of resonance mass for a leptophobic Z ′ resonance that only couples to quarks. For masses
between 50 GeV and 220 GeV the limits correspond to a Z ′ resonance reconstructed in
AK8 jets using 77.0 fb−1 of statistically combined data from 2016 and 2017. The excess in
the observed limit over the expected limit near 120 GeV is a remnant of the analysis of the
data collected in 2016. For masses above 220 GeV up to 450 GeV the results correspond to
a Z ′ resonance reconstructed in CA15 jets using 41.1 fb−1 of data collected in 2017 [182].
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Appendix A

b-jet Triggers

A.1. Parsing Trigger Chains

Trigger algorithms (known as “chains” as they are a series of criteria and algorithm

decisions) are complex series of logic. Their naming conventions are not readily clear to

the uninitiated, so the following is a very brief summary of how to parse the grammar

of b-jet triggers (for more detail c.f. [183]). An example chain name in COMA [184, 185],

HLT_j55_gsc75_bmv2c1040_split_3j55_gsc75_boffperf_split, is decomposed below.

• HLT: HLT trigger chain prefix to distinguish from L1 items.

• nj55: Requires at least n jets with pT > 55 GeV.

• split: superROI configuration being used for 2-step track reconstruction and primary

vertex finding.

• gsc75: Apply Global Sequential Corrections (GSC) to jets passing first pT threshold

and require jets with GSC pT > 75 GeV.

– GSC requires track reconstruction to be run, but as b-tagging requires tracking

there is no extra cost in b-jet trigger chains.

• boffperf: The b-tagging algorithm (MV2c10) is run over the jets but no selection is

applied on the output.

• bmv2c1040: Requires passing the MV2c10 b-tagging algorithm at the 40% selection

efficiency working point.
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The result is that the trigger chain name should be parsed to read “at least 4 jets with

GSC pT > 75 GeV and track reconstruction and primary vertex finding done using Super-

RoI configuration to have had MV2c10 b-tagging algorithm run over them, and at least 1 of

them to have passed the MV2c10 b-tagging algorithm at the 40% selection efficiency working

point.”

A.2. Super-RoIs

The purpose of the b-jet trigger to provide effective b-jet identification and light-jet and

c-jet rejection in the HLT to maximize the number of interesting physics events containing

heavy flavor physics. This still needs to be done quickly, but given that b-tagging is being

performed on each jet candidate that passes other selection criteria tracking must also be

performed. As a result, the b-jet triggers are the leading consumers of CPU out of all triggers

in the ATLAS trigger menu. In Run 2 to address this issue a new CPU and time saving

measure was introduced [186]. Instead of running the track matching algorithms in each RoI

that existed for the event, even if there was substantial overlap between the RoIs, all RoIs —

regardless of if they have topologically overlap — are merged into a single “Super-RoI,” as

seen in Figure 1.1. Once the Super-RoI has been created, fast tracking is run in the Super-

RoI to find a primary vertex. Once a primary vertex has been found, precision tracking

is then run in each of the original RoIs, but with the tracks constrained by the Super-RoI

primary vertex.

A.3. b-jet Trigger Efficiency in High Pile-up

As the LHC moves into Run 3 the energy and luminosity will increase, causing there

to be higher pile-up, as discussed in Section 3.3. To characterize the performance of the

2017 b-jet trigger chains in these future environments I performed a study of the b-jet trigger

efficiency in high pile-up environments using high purity di-lepton tt̄ events in the 2017 data-

set to provide a sample enriched with b-jets. The results, seen in Figure 1.2 and Figure 1.3,
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Figure 1.1: Cartoon of the all RoI (no-split) configuration (left) vs. the Super-RoI (split)
configuration (right) configuration for tracking run by the b-jet trigger. The gird represents
η-φ space. The Super-RoI may not be topologically connected but counts as a single
object [186].

show that the b-jet triggers compared to the offline b-tagging algorithm MV2c10 at the 70%

efficiency operating point have a high and flat efficiency for pile-up, 〈µ〉, out to beyond

〈µ〉 = 60. Likewise, the number of jets that pass the online b-tagging requirement remains

proportionally low given the different efficiency operating points. Beyond 〈µ〉 = 60 there

starts to be some degradation for the lower online efficiency operating points, though the

statistical uncertainty also begins to increase. The plots to not extend out to 〈µ〉 = 70 as

there was insufficient number of events to have reasonable statistical uncertainties given the

dataset used. Similar results were obtained when the study was repeated using 2018 triggers

and data [187].
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Figure 1.2: The b-jet trigger efficiency with respect to the offline b-tagging algorithm
(MV2c10) at the 70% efficiency operating point for various online efficiency operating points
vs. the mean number of interactions per crossing. The relative b-jet trigger efficiency is
measured in high purity di-lepton tt̄ events collected in the 2017 data-set using dedicated
single-lepton+jets triggers, which are unbiased with respect to the online b-tagging. The
online operating points were defined to have roughly the quoted efficiency for b-jets in an
unbiased sample of Monte Carlo simulated tt̄ events. The uncertainty bars shown only
represent statistical uncertainties [188].

144



10 20 30 40 50 60 70

Mean Number of Interactions per Crossing

2−10

1−10

1

F
ra

c
ti
o
n
 o

f 
J
e
ts

 P
a
s
s
in

g
 O

n
lin

e
 b

t
a
g
g
in

g

Online 77%

Online 70%

Online 60%

Online 50%

Online 40%

ATLAS Preliminary
 = 13 TeVs

Data 2017
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ET > 55 GeV that pass the online b-tagging algorithm (MV2c10) at various online efficiency
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b-tagging. The online operating points were defined to have roughly the quoted efficiency
for b-jets in an unbiased sample of Monte Carlo simulated tt̄ events. The uncertainty bars
shown only represent statistical uncertainties [188].
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Appendix B

b-hadron Lifetimes

b-hadrons (hadronically bound states containing at least one b-flavor quark) have what

are viewed as long lived lifetimes before they decay. Using the charged B meson, B−, as an

example, with quark content of B− = |ū b〉, a decay mediated by the strong force is forbidden

by electrical charge conservation. Thus, the decay must proceed through a flavor-changing

charged current mediated by a W boson. Thus, some possible decays are

ū b︸︷︷︸
B−

→ uū︸︷︷︸
π0

(
W− →

)
`−ν̄`, ū b︸︷︷︸

B−

→ uū︸︷︷︸
π0

(
W− →

)
ūd︸︷︷︸
π−

,

ū b︸︷︷︸
B−

→ cū︸︷︷︸
D0

(
W− →

)
`−ν̄`, ū b︸︷︷︸

B−

→ cū︸︷︷︸
D0

(
W− →

)
ūd︸︷︷︸
π−

.

As the b-decay is cross generational, it is “Cabibbo suppressed” further increasing the life-

time [189]. Cabibbo suppression is also relevant in the decays of kaons and charged D-

mesons.

With the introduction of the “strangness” quantum number, it was observed that the

decay rates of particles with nonzero strangness were different then non-strange particles.

Cabibbo suggested [190] that these decays were also mediated by weak interactions but that

the participating states (weak eigenstates) were mixtures of the mass eigenstates,

|d′〉 = α |d〉+ β |s〉 ,
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such that through normalization, 〈d′ | d′〉 = 1, and absorbing phases, one free parameter

remains. The choices of

α = cos θC , β = sin θC ,

are made and θC — the free parameter — is empirically determined from fits to data to

be θC ≈ 0.23 rad ≈ 13.15◦. With Glashow, Iliopoulos, and Maiani’s (GIM) introduction of

a fourth quark, c, [191] the Cabibbo-GIM scheme established the “Cabibbo-rotated” weak

eigenstates

|d′〉 = cos θC |d〉+ sin θC |s〉 , |s′〉 = − sin θC |d〉+ cos θC |s〉

which comprised the flavor doublets

u
d′

 ,

 c

s′


that the W bosons couple to in the same manner as they couple to lepton flavor doublets.

The Cabibbo rotation matrix obviously follows,

d′
s′

 =

 cos θC sin θC

− sin θC cos θC


d
s


With Kobayashi and Maskawa’s generalization of the Cabibbo-GIM scheme to three gener-

ations [192] the CKM transformation matrix was formed,


d′

s′

b′


=


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




d

s

b


.
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Taking the third to first and second generational mixing elements to be small (i.e., in terms of

the generalized Cabibbo angles (θ12, θ23, θ13) θ13 ≈ θ23 ∼ 0), it is seen that the Cabibbo-GIM

mixing matrix is recovered. It is seen from the CKM matrix (whose on-diagonal elements

are close to unity) that cross-generational decays (off-diagonal elements) are “Cabibbo sup-

pressed” while intragenerational decays (on-diagonal elements) are “Cabibbo favored.”

Thus, noting that

β =
|p| c
E

, E = γ mc2,

it is seen that for a hadron with mass m, mean lifetime τ , and 3-momentum |p|, the distance

it travels, x′, in the lab frame, O′, before decaying is,

x′ = v′t′

= (βc) (γτ)

=
|p| c2

E
γτ

=
|p| c2

γ mc2
γτ

=
|p|
m

τ.

It is also seen that the characteristic length scale of the particle, where βγ = 1 and so

p = mc, is equal to cτ . The boost of the particle then acts as a scale factor of this length,

scaling it up and down.
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GLOSSARY

ATLAS General-purpose detector at the LHC. 17, 69

Boosted Decision Tree (BDT) Machine learning algorithm that uses the weighted score
of an ensemble of decision trees (flows of orthogonal selection criteria) to give a dis-
criminant score. The ensemble is iteratively constructed to emphasize areas of poor
performance in previous iterations. 83

Cathode Strip Chamber (CSC) Multi-wire proportional chamber with segmented cath-
ode readout. 62, 72

Dark Matter Mediator (DMM) Massive exotic particle with couplings to both Stan-
dard Model particles and dark matter. 17, 132

High-Level Trigger (HLT) Software based trigger system for ATLAS that uses high gran-
ularity information to make the final accept/reject decision on an event. 62, 100, 142

Inner Detector (ID) Highly sensitive ATLAS subsystem comprised of the pixel detector,
Semiconductor Tracker, and Transition Radiation Tracker that measures the direction,
momentum, and charge of electrically-charged particles. 55, 69, 71, 72

Insertable B-layer (IBL) Additional fourth layer of pixel detectors in the ATLAS Inner
Detector that was installed in 2014. The B-layer is named as such to reflect that the
additional pixel layer will improve tracking information helpful in flavor tagging. 55,
81

Interaction Point (IP) Point along the LHC where the LHC beams can be brought into
crossing for collisions. 47

Large Hadron Collider (LHC) 26.7 km circumference particle accelerator at CERN that
stradles the French-Swiss border. It is the world’s highest energy proton-proton and
proton-heavy-ion collider. 4, 34, 47, 149

Lorentz boost Lorentz transformation without any rotations, such that the reference frame
is “boosted” along a single direction. 6, 7

Lorentz invariant Scalar value quantity that is invariant under a Lorentz transformation,
such as a spacetime interval or the mass of a particle. 6, 7

Markov Chain Monte Carlo (MCMC) Class of Monte Carlo algorithms for sampling
from a probability distribution. 127
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maximum likelihood estimator (MLE) The value of the parameter that maximizes the
likelihood function. 10

Monitored Drift Tube (MDT) Chamber in the ATLAS Muon Spectrometer of six layers
of drift tubes, arranged such that three layers of closely-packed tubes (multilayers) are
mounted on each side of a support structure, designed to measure the curvature of
muon tracks. 61, 64, 72

Muon Spectrometer (MS) ATLAS subsystem comprised of Monitored Drift Tubes and
Cathode Strip Chambers designed to identify tracks and measure the momentum of
muons. 61, 69, 72

Proton Synchrotron (PS) Synchrotron accelerator in the LHC injection chain where the
proton beams form a bunch train with 25 ns spacing. 49

Pseudorapidity (η) High energy approximation of the rapidity that only requires angular
information. 6

Quantum Chromodynamics (QCD) Quantum field theory that describes the strong nu-
clear force and the interactions of particles that carry the QCD color charge — quarks
and gluons. 24, 25, 74

Quantum Electrodynamics (QED) Quantum field theory that describes the electro-
magnetic force and the interactions of particles that are electrically charged by photon
exchange. 24

Quantum Field Theory (QFT) Theoretical framework that combines classical field the-
ory, special relativity, and quantum theory to give powerful calculation techniques for
the interactions of subatomic particles at high energy. 19, 23, 24

Rapidity (y) Measurement of the speed of a particle along a given axis given its energy
and total momentum. 6

Regions of Interest (RoI) Reduced detector volumes that contain signatures of possibly
interesting physics events. 66, 142

Resistive Plate Chamber (RPC) Fast gaseous detectors used in the trigger system for
the Muon Spectrometer consisting of two parallel plates, that serve as an anode and
cathode, made of a very high resistivity plastic material and separated by a gas volume.
62

Scale Factor Number applied as a multiplicative correction factor to distributions. 72

Semiconductor Tracker (SCT) Silicon microstrip tracker in the ATLAS Inner Detector
that surrounds the pixel detector in cylindrical layers and end-cap disks. 55, 56

Standard Model (SM) The collection of quantum field theories that collectively describe
the electromagnetic, weak nuclear, and strong nuclear forces and all their interactions
with matter particles to fantastic accuracy. 17
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Thin Gap Chamber (TGC) Thin multiwire proportional chamber with thick field wires
with an operating gas mixture filling the chamber gap. 62

Transition Radiation Tracker (TRT) Combined tracking and electron identification drift
tube detector in the ATLAS Inner Detector. 55, 57

Trigger and Data Acquisition (TDAQ) The combined system comprised of the Level-1
hardware and HLT software trigger systems along with the subdetector data readout
and buffer systems. 62, 65

151



BIBLIOGRAPHY

[1] R. Rhodes, The Making of the Atomic Bomb: 25th Anniversary Edition. Simon &
Schuster, 2012. https://books.google.com/books?id=2G2TlJOhGI8C. 2

[2] S. Gartenhaus, A. Tubis, D. Cassidy, and R. Bray, “A History of Physics at Purdue: The
War Period (1941-1945).”
http://www.physics.purdue.edu/about/history/war_period.html. Accessed:
2017-09-11. 3

[3] “R.E. Schreiber, private communication to S. Gartenhaus, June 1996.” . 3

[4] W. Herr and B. Muratori, “Concept of luminosity,”. https://cds.cern.ch/record/941318. 4

[5] O. S. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proudlock,
LHC Design Report. CERN Yellow Reports: Monographs. CERN, Geneva, 2004.
https://cds.cern.ch/record/782076. 4, 47

[6] “ATLAS TWiki: Executive Summary of the menu evolution (2017).”
https://twiki.cern.ch/twiki/bin/view/Atlas/L34TriggerMenu2017. Accessed:
2017-09-11. 4

[7] “Indico: Menu Coordination Meeting, September 21st, 2017.”
https://indico.cern.ch/event/666180/. Accessed: 2017-09-21. 4

[8] “ATLAS TWiki: Run 2 Luminosity Public Results, § Luminosity summary plots for
2017 pp data taking: Peak Luminosity per Fill in 2017.”
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2#
Luminosity_summary_plots_for_AN2. Accessed: 2019-05-23. 4

[9] “ATLAS TWiki: Run 2 Luminosity Public Results, § Luminosity summary plots for
2018 pp data taking: Peak Luminosity per Fill in 2018.”
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2#
Luminosity_summary_plots_for_201. Accessed: 2019-05-23. 4, 52

[10] S. S. Wilks, “The Large-Sample Distribution of the Likelihood Ratio for Testing
Composite Hypotheses,” Annals Math. Statist. 9 (1938) no. 1, 60–62. 9

[11] J. Neyman and H. Jeffreys, “Outline of a Theory of Statistical Estimation Based on the
Classical Theory of Probability,” Phil. Trans. Roy. Soc. Lond. A236 (1937) no. 767,
333–380. 11

152

https://books.google.com/books?id=2G2TlJOhGI8C
http://www.physics.purdue.edu/about/history/war_period.html
https://cds.cern.ch/record/941318
https://cds.cern.ch/record/782076
https://twiki.cern.ch/twiki/bin/view/Atlas/L34TriggerMenu2017
https://indico.cern.ch/event/666180/
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2#Luminosity_summary_plots_for_AN2
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2#Luminosity_summary_plots_for_AN2
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2#Luminosity_summary_plots_for_201
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2#Luminosity_summary_plots_for_201
http://dx.doi.org/10.1214/aoms/1177732360
http://dx.doi.org/10.1098/rsta.1937.0005
http://dx.doi.org/10.1098/rsta.1937.0005


[12] K. Cranmer, “Practical Statistics for the LHC,” in Proceedings, 2011 European School of
High-Energy Physics (ESHEP 2011): Cheile Gradistei, Romania, September 7-20,
2011, pp. 267–308. 2015. arXiv:1503.07622 [physics.data-an]. [,247(2015)]. 12,
13

[13] Particle Data Group, “Review of Particle Physics, Chapter 39: Statistics,” Phys. Rev. D
98 (2018) 030001. https://link.aps.org/doi/10.1103/PhysRevD.98.030001. 13

[14] G. J. Feldman and R. D. Cousins, “A Unified approach to the classical statistical
analysis of small signals,” Phys. Rev. D57 (1998) 3873–3889,
arXiv:physics/9711021 [physics.data-an]. 14

[15] R. Brun and F. Rademakers, “ROOT: An object oriented data analysis framework,”
Nucl. Instrum. Meth. A389 (1997) 81–86. See also http://root.cern.ch/. 16

[16] T. Oliphant, “Python for Scientific Computing,” Computing in Science & Engineering 9
(2007) no. 3, 10–20,
https://aip.scitation.org/doi/pdf/10.1109/MCSE.2007.58. 16

[17] T. Oliphant, Guide to NumPy. Trelgol Publishing, 2006.
http://www.tramy.us/numpybook.pdf. 16

[18] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for
Efficient Numerical Computation,” Computing in Science & Engineering 13 (2011)
no. 2, 22–30, https://aip.scitation.org/doi/pdf/10.1109/MCSE.2011.37. 16

[19] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science &
Engineering 9 (2007) no. 3, 90–95,
https://aip.scitation.org/doi/pdf/10.1109/MCSE.2007.55. 16

[20] W. McKinney, “Data Structures for Statistical Computing in Python,” in Proceedings of
the 9th Python in Science Conference, S. van der Walt and J. Millman, eds., pp. 51 –
56. 2010. 16

[21] The Python Software Foundation, “Black: The uncompromising code formatter.”
https://github.com/psf/black, 2018–. [Online; accessed 2019-08-01]. 16

[22] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12
(1964) 132–133. 17, 32

[23] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13
(1964) 508–509. 17, 32

[24] P. W. Higgs, “Spontaneous Symmetry Breakdown without Massless Bosons,” Phys. Rev.
145 (1966) 1156–1163. 17

[25] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,”
Phys. Rev. Lett. 13 (1964) 321–323. 17, 32

[26] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global Conservation Laws and
Massless Particles,” Phys. Rev. Lett. 13 (1964) 585–587. 17, 32

[27] ATLAS Collaboration, “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012)
1, arXiv:1207.7214 [hep-ex]. 17

153

http://dx.doi.org/10.5170/CERN-2015-001.247, 10.5170/CERN-2014-003.267
http://arxiv.org/abs/1503.07622
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevD.57.3873
http://arxiv.org/abs/physics/9711021
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2007.58
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1109/MCSE.2007.58
http://www.tramy.us/numpybook.pdf
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1109/MCSE.2007.55
https://github.com/psf/black
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214


[28] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC,” Phys. Lett. B716 (2012) 30–61, arXiv:1207.7235
[hep-ex]. 17

[29] ATLAS Collaboration, “Observation of H → bb̄ decays and V H production with the
ATLAS detector,” Phys. Lett. B 786 (2018) 59, arXiv:1808.08238 [hep-ex]. 17

[30] CMS Collaboration, “Observation of Higgs boson decay to bottom quarks,” Phys. Rev.
Lett. 121 (2018) no. 12, 121801, arXiv:1808.08242 [hep-ex]. 17

[31] J. Abdallah et al., “Simplified Models for Dark Matter Searches at the LHC,” Phys. Dark
Univ. 9-10 (2015) 8–23, arXiv:1506.03116 [hep-ph]. 17

[32] ATLAS Collaboration, “Measurement of Wγ and Zγ production in proton–proton
collisions at

√
s = 7TeV with the ATLAS detector,” JHEP 09 (2011) 072,

arXiv:1106.1592 [hep-ex]. 20

[33] ATLAS Collaboration, “Summary plots from the ATLAS Standard Model physics
group.” https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/
CombinedSummaryPlots/SM/index.html. Accessed: 2019-06-12. 20, 93

[34] C. Burgard, “TikZ diagram of the Standard Model of physics.”
http://www.texample.net/tikz/examples/model-physics/. Accessed: 2019-06-28. 22

[35] A. Pich, “The Standard model of electroweak interactions,” in 2004 European School of
High-Energy Physics, Sant Feliu de Guixols, Spain, 30 May - 12 June 2004, pp. 1–48.
2005. arXiv:hep-ph/0502010 [hep-ph].
http://doc.cern.ch/yellowrep/2006/2006-003/p1.pdf. 21

[36] S. L. Glashow, “Partial Symmetries of Weak Interactions,” Nucl. Phys. 22 (1961)
579–588. 25

[37] J. Goldstone, A. Salam, and S. Weinberg, “Broken Symmetries,” Phys. Rev. 127 (1962)
965–970. 25

[38] S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19 (1967) 1264–1266. 25

[39] TASSO Collaboration, “Evidence for Planar Events in e+e− Annihilation at
High-Energies,” Phys. Lett. 86B (1979) 243–249. 26

[40] J. R. Ellis and I. Karliner, “Measuring the Spin of the Gluon in e+e− Annihilation,”
Nucl. Phys. B148 (1979) 141–147. 26

[41] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, “Parton Fragmentation and
String Dynamics,” Phys. Rept. 97 (1983) 31–145. 26

[42] TASSO Collaboration, “Evidence for a Spin One Gluon in Three Jet Events,” Phys. Lett.
97B (1980) 453–458. 26

[43] J. Campbell, J. Huston, and F. Krauss, The Black Book of Quantum Chromodynamics.
Oxford University Press, 2017. https://global.oup.com/academic/product/
the-black-book-of-quantum-chromodynamics-9780199652747. 26

[44] Y. Nambu, “Quasiparticles and Gauge Invariance in the Theory of Superconductivity,”
Phys. Rev. 117 (1960) 648–663. [,132(1960)]. 28

154

http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1016/j.physletb.2018.09.013
http://arxiv.org/abs/1808.08238
http://dx.doi.org/10.1103/PhysRevLett.121.121801
http://dx.doi.org/10.1103/PhysRevLett.121.121801
http://arxiv.org/abs/1808.08242
http://dx.doi.org/10.1016/j.dark.2015.08.001
http://dx.doi.org/10.1016/j.dark.2015.08.001
http://arxiv.org/abs/1506.03116
http://dx.doi.org/10.1007/JHEP09(2011)072
http://arxiv.org/abs/1106.1592
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/index.html
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/index.html
http://www.texample.net/tikz/examples/model-physics/
http://arxiv.org/abs/hep-ph/0502010
http://doc.cern.ch/yellowrep/2006/2006-003/p1.pdf
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1016/0370-2693(79)90830-X
http://dx.doi.org/10.1016/0550-3213(79)90019-1
http://dx.doi.org/10.1016/0370-1573(83)90080-7
http://dx.doi.org/10.1016/0370-2693(80)90639-5
http://dx.doi.org/10.1016/0370-2693(80)90639-5
https://global.oup.com/academic/product/the-black-book-of-quantum-chromodynamics-9780199652747
https://global.oup.com/academic/product/the-black-book-of-quantum-chromodynamics-9780199652747
http://dx.doi.org/10.1103/PhysRev.117.648


[45] J. Goldstone, “Field Theories with Superconductor Solutions,” Nuovo Cim. 19 (1961)
154–164. 28

[46] T. W. B. Kibble, “History of electroweak symmetry breaking,” J. Phys. Conf. Ser. 626
(2015) no. 1, 012001, arXiv:1502.06276 [physics.hist-ph]. 32

[47] T. Plehn and M. Rauch, “The quartic higgs coupling at hadron colliders,” Phys. Rev.
D72 (2005) 053008, arXiv:hep-ph/0507321 [hep-ph]. 34

[48] H. Yukawa, “On the Interaction of Elementary Particles I,” Proc. Phys. Math. Soc. Jap.
17 (1935) 48–57. [Prog. Theor. Phys. Suppl.1,1(1935)]. 34

[49] SNO Collaboration, “Measurement of the rate of νe + d→ p+ p+ e− interactions
produced by 8B solar neutrinos at the Sudbury Neutrino Observatory,” Phys. Rev.
Lett. 87 (2001) 071301, arXiv:nucl-ex/0106015 [nucl-ex]. 34

[50] Particle Data Group, “Review of Particle Physics, Chapter 11: Status of Higgs Boson
Physics,” Phys. Rev. D 98 (2018) 030001.
https://link.aps.org/doi/10.1103/PhysRevD.98.030001. 35, 37, 38, 40

[51] LHC Higgs Cross Section Working Group Collaboration, “Handbook of LHC Higgs Cross
Sections: 4. Deciphering the Nature of the Higgs Sector,” arXiv:1610.07922
[hep-ph]. 35

[52] ATLAS and CMS Collaborations, “Measurements of the Higgs boson production and
decay rates and constraints on its couplings at the LHC,” in Proceedings, 3rd Large
Hadron Collider Physics Conference (LHCP 2015): St. Petersburg, Russia, August
31-September 5, 2015, pp. 35–47, CERN. CERN, Geneva, 2016. 37, 40, 41

[53] V. C. Rubin and W. K. Ford, Jr., “Rotation of the Andromeda Nebula from a
Spectroscopic Survey of Emission Regions,” Astrophys. J. 159 (1970) 379–403. 42

[54] K. G. Begeman, A. H. Broeils, and R. H. Sanders, “Extended rotation curves of spiral
galaxies: Dark haloes and modified dynamics,” Mon. Not. Roy. Astron. Soc. 249
(1991) 523. 42

[55] G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R.
Nolta, M. Halpern, R. S. Hill, and N. Odegard, “Nine-year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results,” The
Astrophysical Journal Supplement Series 208 (2013) no. 2, 19, arXiv:1212.5226
[astro-ph.CO]. 42

[56] Planck Collaboration, “Planck 2018 results. I. Overview and the cosmological legacy of
Planck,” arXiv:1807.06205 [astro-ph.CO]. 42

[57] V. Trimble, “Existence and Nature of Dark Matter in the Universe,” Annual Review of
Astronomy and Astrophysics 25 (1987) no. 1, 425–472,
https://doi.org/10.1146/annurev.aa.25.090187.002233.
https://doi.org/10.1146/annurev.aa.25.090187.002233. 42

[58] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and
constraints,” Phys. Rept. 405 (2005) 279–390, arXiv:hep-ph/0404175 [hep-ph]. 42

155

http://dx.doi.org/10.1007/BF02812722
http://dx.doi.org/10.1007/BF02812722
http://dx.doi.org/10.1088/1742-6596/626/1/012001
http://dx.doi.org/10.1088/1742-6596/626/1/012001
http://arxiv.org/abs/1502.06276
http://dx.doi.org/10.1103/PhysRevD.72.053008
http://dx.doi.org/10.1103/PhysRevD.72.053008
http://arxiv.org/abs/hep-ph/0507321
http://dx.doi.org/10.1143/PTPS.1.1
http://dx.doi.org/10.1143/PTPS.1.1
http://dx.doi.org/10.1103/PhysRevLett.87.071301
http://dx.doi.org/10.1103/PhysRevLett.87.071301
http://arxiv.org/abs/nucl-ex/0106015
http://dx.doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
http://arxiv.org/abs/1610.07922
http://arxiv.org/abs/1610.07922
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/1807.06205
http://dx.doi.org/10.1146/annurev.aa.25.090187.002233
http://dx.doi.org/10.1146/annurev.aa.25.090187.002233
http://arxiv.org/abs/https://doi.org/10.1146/annurev.aa.25.090187.002233
https://doi.org/10.1146/annurev.aa.25.090187.002233
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://arxiv.org/abs/hep-ph/0404175


[59] J. L. Feng, “Dark Matter Candidates from Particle Physics and Methods of Detection,”
Ann. Rev. Astron. Astrophys. 48 (2010) 495–545, arXiv:1003.0904 [astro-ph.CO].
42

[60] ATLAS Collaboration, “Constraints on mediator-based dark matter and scalar dark
energy models using

√
s = 13TeV pp collision data collected by the ATLAS

detector,” arXiv:1903.01400 [hep-ex]. 42, 43, 44, 45, 46, 91, 132, 138

[61] T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez, and A. Riotto,
“Complementarity of DM searches in a consistent simplified model: the case of Z ′,”
JHEP 10 (2016) 071, arXiv:1605.06513 [hep-ph]. [Erratum: JHEP01,127(2019)].
42

[62] F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, and S. Vogl, “Implications of unitarity
and gauge invariance for simplified dark matter models,” JHEP 02 (2016) 016,
arXiv:1510.02110 [hep-ph]. 42, 46

[63] A. Alves, A. Berlin, S. Profumo, and F. S. Queiroz, “Dark Matter Complementarity and
the Z ′ Portal,” Phys. Rev. D92 (2015) no. 8, 083004, arXiv:1501.03490 [hep-ph].
42

[64] D. Abercrombie et al., “Dark Matter Benchmark Models for Early LHC Run-2 Searches:
Report of the ATLAS/CMS Dark Matter Forum,” arXiv:1507.00966 [hep-ex]. 42,
96

[65] O. Buchmueller, M. J. Dolan, S. A. Malik, and C. McCabe, “Characterising dark matter
searches at colliders and direct detection experiments: Vector mediators,” JHEP 01
(2015) 037, arXiv:1407.8257 [hep-ph]. 43

[66] M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini, and K. Schmidt-Hoberg,
“Constraining Dark Sectors with Monojets and Dijets,” JHEP 07 (2015) 089,
arXiv:1503.05916 [hep-ph]. 43

[67] LUX Collaboration, “First results from the LUX dark matter experiment at the Sanford
Underground Research Facility,” Phys. Rev. Lett. 112 (2014) 091303,
arXiv:1310.8214 [astro-ph.CO]. 43

[68] XENON100 Collaboration, “Limits on spin-dependent WIMP-nucleon cross sections from
225 live days of XENON100 data,” Phys. Rev. Lett. 111 (2013) no. 2, 021301,
arXiv:1301.6620 [astro-ph.CO]. 43

[69] H. Baer, K.-Y. Choi, J. E. Kim, and L. Roszkowski, “Dark matter production in the
early Universe: beyond the thermal WIMP paradigm,” Phys. Rept. 555 (2015) 1–60,
arXiv:1407.0017 [hep-ph]. 46

[70] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider,”
JINST 3 (2008) S08003. 47, 54, 56, 57, 60, 62, 64, 66

[71] CMS Collaboration, “The CMS experiment at the CERN LHC,” Journal of
Instrumentation 3 (2008) no. 08, S08004.
https://doi.org/10.1088/1748-0221/3/08/S08004. 47

[72] LHCb Collaboration, “The LHCb Detector at the LHC,” Journal of Instrumentation 3
(2008) no. 08, S08005. https://doi.org/10.1088/1748-0221/3/08/S08005. 47

156

http://dx.doi.org/10.1146/annurev-astro-082708-101659
http://arxiv.org/abs/1003.0904
http://arxiv.org/abs/1903.01400
http://dx.doi.org/10.1007/JHEP10(2016)071, 10.1007/JHEP01(2019)127
http://arxiv.org/abs/1605.06513
http://dx.doi.org/10.1007/JHEP02(2016)016
http://arxiv.org/abs/1510.02110
http://dx.doi.org/10.1103/PhysRevD.92.083004
http://arxiv.org/abs/1501.03490
http://arxiv.org/abs/1507.00966
http://dx.doi.org/10.1007/JHEP01(2015)037
http://dx.doi.org/10.1007/JHEP01(2015)037
http://arxiv.org/abs/1407.8257
http://dx.doi.org/10.1007/JHEP07(2015)089
http://arxiv.org/abs/1503.05916
http://dx.doi.org/10.1103/PhysRevLett.112.091303
http://arxiv.org/abs/1310.8214
http://dx.doi.org/10.1103/PhysRevLett.111.021301
http://arxiv.org/abs/1301.6620
http://dx.doi.org/10.1016/j.physrep.2014.10.002
http://arxiv.org/abs/1407.0017
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/s08004
http://dx.doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/3/08/s08005
http://dx.doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1088/1748-0221/3/08/S08005


[73] ALICE Collaboration, “The ALICE experiment at the CERN LHC,” Journal of
Instrumentation 3 (2008) no. 08, S08002.
https://doi.org/10.1088/1748-0221/3/08/S08002. 47

[74] L. Evans and P. Bryant, “LHC Machine,” Journal of Instrumentation 3 (2008) no. 08,
S08001–S08001. https://doi.org/10.1088/1748-0221/3/08/S08001. 47, 49, 51, 52

[75] S. J. Oliveros, D. Summers, L. Cremaldi, J. Acosta, and D. Neuffer, “Exploration of a
High Luminosity 100 TeV Proton Antiproton Collider,” in 82nd Annual Meeting of
the Southeastern Section of the American Physical Society (SESAPS 2015) Mobile,
Alabama, November 18-21, 2015. 2017. arXiv:1704.03891 [physics.acc-ph].
http://lss.fnal.gov/archive/test-fn/1000/fermilab-fn-1029-ad-apc.pdf. 47

[76] L. Rossi, “The LHC Superconducting Magnets,” in Proceedings of the 2003 Particle
Accelerator Conference, vol. 1, pp. 141–145 Vol.1. 2003. 48

[77] L. Rossi, “Superconducting Magnets for the LHC Main Lattice,” IEEE Transactions on
Applied Superconductivity 14 (2004) no. 2, 153–158. 48

[78] CERN, “Fabrication of a superconducting cable for construction of Hi-Lumi Magnet.”
http://dx.doi.org/10.17181/cds.2149039, April, 2016. 48

[79] CERN, “Diagram of an LHC dipole magnet.” https://cds.cern.ch/record/40524, Jun,
1999. 48

[80] D. Boussard and T. P. R. Linnecar, “The LHC Superconducting RF System,” Tech. Rep.
LHC-Project-Report-316. CERN-LHC-Project-Report-316, CERN, Geneva, Dec,
1999. https://cds.cern.ch/record/410377. 49

[81] J. Haffner, “The CERN accelerator complex,”. https://cds.cern.ch/record/1621894.
General Photo. 50

[82] Particle Data Group, “Review of Particle Physics, Chapter 30: Accelerator Physics of
Colliders,” Phys. Rev. D 98 (2018) 030001.
https://link.aps.org/doi/10.1103/PhysRevD.98.030001. 49

[83] Y.-P. Sun, R. Assmann, J. Barranco, R. Tomás, T. Weiler, F. Zimmermann, R. Calaga,
and A. Morita, “Beam dynamics aspects of crab cavities in the CERN Large Hadron
Collider,” Phys. Rev. ST Accel. Beams 12 (2009) 101002.
https://link.aps.org/doi/10.1103/PhysRevSTAB.12.101002. 51

[84] J. Barranco García, R. De Maria, A. Grudiev, R. Tomás García, R. B. Appleby, and
D. R. Brett, “Long term dynamics of the high luminosity Large Hadron Collider with
crab cavities,” Phys. Rev. Accel. Beams 19 (2016) 101003.
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.19.101003. 51, 52

[85] ATLAS Collaboration, “ATLAS Luminosity Public Results for Run 2: 2017 Pileup
Interactions and Data Taking Efficiency.” https://twiki.cern.ch/twiki/bin/view/
AtlasPublic/LuminosityPublicResultsRun2#Pileup_Interactions_and_Data_AN1,
2017. Accessed: 2019-07-05. 53

[86] J. Pequenao, “Computer generated image of the whole ATLAS detector.”
https://cds.cern.ch/record/1095924, Mar, 2008. 54

157

http://dx.doi.org/10.1088/1748-0221/3/08/s08002
http://dx.doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1748-0221/3/08/s08001
http://dx.doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1088/1748-0221/3/08/S08001
http://arxiv.org/abs/1704.03891
http://lss.fnal.gov/archive/test-fn/1000/fermilab-fn-1029-ad-apc.pdf
http://dx.doi.org/10.1109/PAC.2003.1288863
http://dx.doi.org/10.1109/TASC.2004.829031
http://dx.doi.org/10.1109/TASC.2004.829031
http://dx.doi.org/10.17181/cds.2149039
https://cds.cern.ch/record/40524
https://cds.cern.ch/record/410377
https://cds.cern.ch/record/1621894
http://dx.doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevSTAB.12.101002
https://link.aps.org/doi/10.1103/PhysRevSTAB.12.101002
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.101003
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.19.101003
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2#Pileup_Interactions_and_Data_AN1
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2#Pileup_Interactions_and_Data_AN1
https://cds.cern.ch/record/1095924


[87] ATLAS Collaboration, “ATLAS Insertable B-Layer Technical Design Report.”
Atlas-tdr-19, 2010. https://cds.cern.ch/record/1291633. 55

[88] ATLAS Collaboration, “The upgraded Pixel detector and the commissioning of the Inner
Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider,”
PoS EPS-HEP2015 (2015) 261, arXiv:1608.07850 [physics.ins-det]. 55

[89] ATLAS Collaboration, “ATLAS pixel detector electronics and sensors,” JINST 3 (2008)
P07007. 56

[90] J. Pequenao, “Computer generated image of the ATLAS inner detector.”
https://cds.cern.ch/record/1095926, Mar, 2008. 56

[91] J. Pequenao, “Computer generated images of the Pixel, part of the ATLAS inner
detector.” https://cds.cern.ch/record/1095925, Mar, 2008. 56

[92] J. Pequenao, “Computer Generated image of the ATLAS calorimeter.”
https://cds.cern.ch/record/1095927, Mar, 2008. 58, 59

[93] C. W. Fabjan and F. Gianotti, “Calorimetry for Particle Physics,” Rev. Mod. Phys. 75
(2003) no. CERN-EP-2003-075, 1243–1286. 96 p. https://cds.cern.ch/record/692252.
61

[94] N. Ilic, “Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC
operation and plans for a future upgrade,” Journal of Instrumentation 9 (2014)
no. 03, C03049–C03049. https://doi.org/10.1088/1748-0221/9/03/c03049. 61

[95] M. Aleksa and M. Diemoz, “Discussion on the electromagnetic calorimeters of ATLAS
and CMS,” Tech. Rep. ATL-LARG-PROC-2013-002, CERN, Geneva, May, 2013.
https://cds.cern.ch/record/1547314. 61

[96] E. Garutti, “The Physics of Particle Detectors.” http://www.desy.de/~garutti/
LECTURES/ParticleDetectorSS12/L2_Interaction_radiationMatter.pdf, 2012.
Lecture ntoes, Accessed: 2019-06-04. 61

[97] Stopping powers and ranges for protons and alpha particles. ICRU Report. ICRU,
Washington, DC, 1993. https://cds.cern.ch/record/1432916. 63

[98] D. E. Groom, N. V. Mokhov, and S. I. Striganov, “Muon stopping power and range
tables 10MeV to 100TeV,” Atom. Data Nucl. Data Tabl. 78 (2001) 183–356. 63

[99] Particle Data Group, “Review of Particle Physics, Chapter 33: Passage of Particles
Through Matter,” Phys. Rev. D 98 (2018) 030001.
https://link.aps.org/doi/10.1103/PhysRevD.98.030001. 63

[100] W. H. Barkas, W. Birnbaum, and F. M. Smith, “Mass-Ratio Method Applied to the
Measurement of L-Meson Masses and the Energy Balance in Pion Decay,” Phys. Rev.
101 (1956) 778–795. https://link.aps.org/doi/10.1103/PhysRev.101.778. 63

[101] ATLAS Collaboration, “Performance of the ATLAS trigger system in 2015,” Eur. Phys.
J. C 77 (2017) 317, arXiv:1611.09661 [hep-ex]. 62, 65, 67

[102] ATLAS L1Calo Group, “ATLAS Level-1 Calorimeter Trigger Algorithms,” Tech. Rep.
ATL-DAQ-2004-011. CERN-ATL-DAQ-2004-011, CERN, Geneva, Sep, 2004.
https://cds.cern.ch/record/792528. 66

158

https://cds.cern.ch/record/1291633
http://arxiv.org/abs/1608.07850
http://dx.doi.org/10.1088/1748-0221/3/07/P07007
http://dx.doi.org/10.1088/1748-0221/3/07/P07007
https://cds.cern.ch/record/1095926
https://cds.cern.ch/record/1095925
https://cds.cern.ch/record/1095927
http://dx.doi.org/10.1103/RevModPhys.75.1243
http://dx.doi.org/10.1103/RevModPhys.75.1243
https://cds.cern.ch/record/692252
http://dx.doi.org/10.1088/1748-0221/9/03/c03049
http://dx.doi.org/10.1088/1748-0221/9/03/c03049
https://doi.org/10.1088/1748-0221/9/03/c03049
https://cds.cern.ch/record/1547314
http://www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/L2_Interaction_radiationMatter.pdf
http://www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/L2_Interaction_radiationMatter.pdf
https://cds.cern.ch/record/1432916
http://dx.doi.org/10.1006/adnd.2001.0861
http://dx.doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRev.101.778
http://dx.doi.org/10.1103/PhysRev.101.778
https://link.aps.org/doi/10.1103/PhysRev.101.778
http://dx.doi.org/10.1140/epjc/s10052-017-4852-3
http://dx.doi.org/10.1140/epjc/s10052-017-4852-3
http://arxiv.org/abs/1611.09661
https://cds.cern.ch/record/792528


[103] R. Fruhwirth, “Application of Kalman filtering to track and vertex fitting,” Nucl.
Instrum. Meth. A262 (1987) 444–450. 69

[104] R. Frühwirth, A. Strandlie, T. Todorov, and M. Winkler, “Recent results on adaptive
track and multitrack fitting,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 502
(2003) 702–704. Proceedings of the VIII International Workshop on Advanced
Computing and Analysis Techniques in Physics Research. 69

[105] A. Strandlie and J. Zerubia, “Particle tracking with iterated Kalman filters and
smoothers: the PMHT algorithm,” Computer Physics Communications 123 (1999)
77–86. 69

[106] L. Bugge and J. Myrheim, “Tracking and track fitting,” Nuclear Instruments and
Methods 179 (1981) 365–381. 69

[107] A. Salzburger, Track Simulation and Reconstruction in the ATLAS experiment. PhD
thesis, Innsbruck U., 2008. http://physik.uibk.ac.at/hephy/theses/diss_as.pdf. 69

[108] A. Salzburger, “Track Reconstruction in High Energy Physics for the Tracking ML
challenge.” https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:
P58_CODE,P58_FILE:5446,Y, 2017. Hammers & Nails - Machine Learning & HEP
Workshop. 70, 80

[109] ATLAS Collaboration, “Electron and photon energy calibration with the ATLAS
detector using LHC Run 1 data,” Eur. Phys. J. C 74 (2014) 3071, arXiv:1407.5063
[hep-ex]. 69, 71

[110] W. Lampl, S. Laplace, D. Lelas, P. Loch, H. Ma, S. Menke, S. Rajagopalan, D. Rousseau,
S. Snyder, and G. Unal, “Calorimeter Clustering Algorithms: Description and
Performance,” Tech. Rep. ATL-LARG-PUB-2008-002. ATL-COM-LARG-2008-003,
CERN, Geneva, Apr, 2008. https://cds.cern.ch/record/1099735. 71

[111] ATLAS Collaboration, “Electron efficiency measurements with the ATLAS detector
using 2012 LHC proton–proton collision data,” Eur. Phys. J. C 77 (2017) 195,
arXiv:1612.01456 [hep-ex]. 71

[112] ATLAS Collaboration, “Measurement of the photon identification efficiencies with the
ATLAS detector using LHC Run 2 data collected in 2015 and 2016,” Eur. Phys. J. C
79 (2019) 205, arXiv:1810.05087 [hep-ex]. 71

[113] ATLAS Collaboration, “Muon reconstruction performance of the ATLAS detector in
proton–proton collision data at

√
s = 13TeV,” Eur. Phys. J. C 76 (2016) 292,

arXiv:1603.05598 [hep-ex]. 72, 73

[114] E. M. Metodiev and J. Thaler, “On the Topic of Jets: Disentangling Quarks and Gluons
at Colliders,” Phys. Rev. Lett. 120 (2018) no. 24, 241602, arXiv:1802.00008
[hep-ph]. 74

[115] P. T. Komiske, E. M. Metodiev, and J. Thaler, “An operational definition of quark and
gluon jets,” JHEP 11 (2018) 059, arXiv:1809.01140 [hep-ph]. 74

[116] A. J. Larkoski and E. M. Metodiev, “A Theory of Quark vs. Gluon Discrimination,”
arXiv:1906.01639 [hep-ph]. 74

159

http://dx.doi.org/10.1016/0168-9002(87)90887-4
http://dx.doi.org/10.1016/0168-9002(87)90887-4
http://dx.doi.org/10.1016/S0168-9002(03)00549-7
http://dx.doi.org/10.1016/S0168-9002(03)00549-7
http://dx.doi.org/10.1016/S0168-9002(03)00549-7
http://dx.doi.org/10.1016/S0010-4655(99)00258-1
http://dx.doi.org/10.1016/S0010-4655(99)00258-1
http://dx.doi.org/10.1016/0029-554X(81)90063-X
http://dx.doi.org/10.1016/0029-554X(81)90063-X
http://physik.uibk.ac.at/hephy/theses/diss_as.pdf
https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5446,Y
https://erez.weizmann.ac.il/pls/htmldb/f?p=101:58:::NO:RP:P58_CODE,P58_FILE:5446,Y
http://dx.doi.org/10.1140/epjc/s10052-014-3071-4
http://arxiv.org/abs/1407.5063
http://arxiv.org/abs/1407.5063
https://cds.cern.ch/record/1099735
http://dx.doi.org/10.1140/epjc/s10052-017-4756-2
http://arxiv.org/abs/1612.01456
http://dx.doi.org/10.1140/epjc/s10052-019-6650-6
http://dx.doi.org/10.1140/epjc/s10052-019-6650-6
http://arxiv.org/abs/1810.05087
http://dx.doi.org/10.1140/epjc/s10052-016-4120-y
http://arxiv.org/abs/1603.05598
http://dx.doi.org/10.1103/PhysRevLett.120.241602
http://arxiv.org/abs/1802.00008
http://arxiv.org/abs/1802.00008
http://dx.doi.org/10.1007/JHEP11(2018)059
http://arxiv.org/abs/1809.01140
http://arxiv.org/abs/1906.01639


[117] B. Nachman, Investigating the Quantum Properties of Jets and the Search for a
Supersymmetric Top Quark Partner with the ATLAS Detector. PhD thesis, Stanford
U., Phys. Dept., 2016. arXiv:1609.03242 [hep-ex]. 74

[118] G. P. Salam, “Towards Jetography,” Eur. Phys. J. C67 (2010) 637–686,
arXiv:0906.1833 [hep-ph]. 74

[119] G. P. Salam and G. Soyez, “A Practical Seedless Infrared-Safe Cone jet algorithm,”
JHEP 05 (2007) 086, arXiv:0704.0292 [hep-ph]. 74

[120] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm,” JHEP 04
(2008) 063, arXiv:0802.1189 [hep-ph]. 74, 75, 76

[121] G. Soyez, “The SISCone and anti-k(t) jet algorithms,” in Proceedings, 16th International
Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008): London,
UK, April 7-11, 2008, p. 178. 2008. arXiv:0807.0021 [hep-ph]. 74

[122] S. Catani, Y. L. Dokshitzer, M. H. Seymour, and B. R. Webber, “Longitudinally
invariant Kt clustering algorithms for hadron hadron collisions,” Nucl. Phys. B406
(1993) 187–224. 75

[123] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber, “Better jet clustering
algorithms,” JHEP 08 (1997) 001, arXiv:hep-ph/9707323 [hep-ph]. 75

[124] ATLAS Collaboration, “In situ calibration of large-radius jet energy and mass in 13TeV
proton–proton collisions with the ATLAS detector,” Eur. Phys. J. C 79 (2019) 135,
arXiv:1807.09477 [hep-ex]. 76, 124

[125] ATLAS Collaboration, “Search for new phenomena with large jet multiplicities and
missing transverse momentum using large-radius jets and flavour-tagging at ATLAS
in 13TeV pp collisions,” JHEP 12 (2017) 034, arXiv:1708.02794 [hep-ex]. 76

[126] D. Krohn, J. Thaler, and L.-T. Wang, “Jet Trimming,” JHEP 02 (2010) 084,
arXiv:0912.1342 [hep-ph]. 76

[127] ATLAS Collaboration, “Performance of shower deconstruction in ATLAS,” Tech. Rep.
ATLAS-CONF-2014-003, CERN, Geneva, Feb, 2014.
https://cds.cern.ch/record/1648661. 77

[128] ATLAS Collaboration, “The Phase-1 upgrade of the ATLAS first level calorimeter
trigger,” JINST 11 (2016) no. 01, C01018. 77

[129] D. Krohn, J. Thaler, and L.-T. Wang, “Jets with Variable R,” JHEP 06 (2009) 059,
arXiv:0903.0392 [hep-ph]. 76

[130] ATLAS Collaboration, “Variable Radius, Exclusive-kT , and Center-of-Mass Subjet
Reconstruction for Higgs(→ bb̄) Tagging in ATLAS,” Tech. Rep.
ATL-PHYS-PUB-2017-010, CERN, Geneva, Jun, 2017.
https://cds.cern.ch/record/2268678. 76, 77, 78, 79

[131] S. Zenz, “Understanding Jet Structure and Constituents: Track Jets and Jet Shapes at
ATLAS,” 2010.
http://cdsweb.cern.ch/record/1310336/files/ATL-PHYS-PROC-2010-126.pdf. 77

160

http://arxiv.org/abs/1609.03242
http://dx.doi.org/10.1140/epjc/s10052-010-1314-6
http://arxiv.org/abs/0906.1833
http://dx.doi.org/10.1088/1126-6708/2007/05/086
http://arxiv.org/abs/0704.0292
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://dx.doi.org/10.3360/dis.2008.178
http://arxiv.org/abs/0807.0021
http://dx.doi.org/10.1016/0550-3213(93)90166-M
http://dx.doi.org/10.1016/0550-3213(93)90166-M
http://dx.doi.org/10.1088/1126-6708/1997/08/001
http://arxiv.org/abs/hep-ph/9707323
http://dx.doi.org/10.1140/epjc/s10052-019-6632-8
http://arxiv.org/abs/1807.09477
http://dx.doi.org/10.1007/JHEP12(2017)034
http://arxiv.org/abs/1708.02794
http://dx.doi.org/10.1007/JHEP02(2010)084
http://arxiv.org/abs/0912.1342
https://cds.cern.ch/record/1648661
http://dx.doi.org/10.1088/1748-0221/11/01/C01018
http://dx.doi.org/10.1088/1126-6708/2009/06/059
http://arxiv.org/abs/0903.0392
https://cds.cern.ch/record/2268678
http://cdsweb.cern.ch/record/1310336/files/ATL-PHYS-PROC-2010-126.pdf


[132] D0 Collaboration, “Determination of the Width of the Top Quark,” Phys. Rev. Lett. 106
(2011) 022001, arXiv:1009.5686 [hep-ex]. 81

[133] Particle Data Group Collaboration, “Review of Particle Physics,” Phys. Rev. D 98
(2018) 030001. https://link.aps.org/doi/10.1103/PhysRevD.98.030001. 81

[134] ATLAS Collaboration, “Performance of b-jet identification in the ATLAS experiment,”
JINST 11 (2016) P04008, arXiv:1512.01094 [hep-ex]. 81

[135] ATLAS Collaboration, “Study of the material of the ATLAS inner detector for Run 2 of
the LHC,” JINST 12 (2017) P12009, arXiv:1707.02826 [hep-ex]. 81

[136] ATLAS Collaboration, “Optimisation and performance studies of the ATLAS b-tagging
algorithms for the 2017-18 LHC run,” Tech. Rep. ATL-PHYS-PUB-2017-013, CERN,
Geneva, Jul, 2017. https://cds.cern.ch/record/2273281. 81, 83, 85, 86, 87

[137] ATLAS Collaboration, “Tracking and Vertexing with the ATLAS Inner Detector in the
LHC Run-2,” Tech. Rep. ATL-PHYS-PROC-2017-075, CERN, Geneva, Jun, 2017.
https://cds.cern.ch/record/2271033. 81

[138] ATLAS Collaboration, “Vertex Reconstruction Performance of the ATLAS Detector at√
s = 13 TeV,” Tech. Rep. ATL-PHYS-PUB-2015-026, CERN, Geneva, Jul, 2015.

https://cds.cern.ch/record/2037717. 81, 82

[139] ATLAS Collaboration, “Expected performance of the ATLAS b-tagging algorithms in
Run-2,” Tech. Rep. ATL-PHYS-PUB-2015-022, CERN, Geneva, Jul, 2015.
https://cds.cern.ch/record/2037697. 81

[140] ATLAS Collaboration, “Optimisation of the ATLAS b-tagging performance for the 2016
LHC Run,” Tech. Rep. ATL-PHYS-PUB-2016-012, CERN, Geneva, Jun, 2016.
https://cds.cern.ch/record/2160731. 81

[141] ATLAS Collaboration, “Measurements of b-jet tagging efficiency with the ATLAS
detector using tt̄ events at

√
s = 13TeV,” JHEP 08 (2018) 089, arXiv:1805.01845

[hep-ex]. 81, 84, 87, 124

[142] A. Chisholm, “Introduction to Heavy Flavour Jet Tagging with ATLAS,” 2017.
https://indico.cern.ch/event/655628/contributions/2670400/. ATLAS Higgs to bb̄ /
Flavor Tagging Workshop. 82

[143] ATLAS Collaboration, “Identification of Jets Containing b-Hadrons with Recurrent
Neural Networks at the ATLAS Experiment,” Tech. Rep. ATL-PHYS-PUB-2017-003,
CERN, Geneva, Mar, 2017. https://cds.cern.ch/record/2255226. 83, 86

[144] M. Feickert, “Applications of Machine Learning to b-tagging in ATLAS.”
https://indico.cern.ch/event/745718/contributions/3205085/, 2018. Machine
Learning for Jet Physics Workshop. 84

[145] CDF, D0, ATLAS, and CMS Collaborations, “Tau (or no) leptons in top quark decays at
hadron colliders,” in Proceedings, 6th International Workshop on Top Quark Physics
(TOP2013): Durbach, Germany, September 14-19, 2013, pp. 43–50. 2014. 88

161

http://dx.doi.org/10.1103/PhysRevLett.106.022001
http://dx.doi.org/10.1103/PhysRevLett.106.022001
http://arxiv.org/abs/1009.5686
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1088/1748-0221/11/04/P04008
http://arxiv.org/abs/1512.01094
http://dx.doi.org/10.1088/1748-0221/12/12/P12009
http://arxiv.org/abs/1707.02826
https://cds.cern.ch/record/2273281
http://dx.doi.org/10.1007/978-981-13-1316-5_75
http://dx.doi.org/10.1007/978-981-13-1316-5_75
https://cds.cern.ch/record/2271033
https://cds.cern.ch/record/2037717
https://cds.cern.ch/record/2037697
https://cds.cern.ch/record/2160731
http://dx.doi.org/10.1007/JHEP08(2018)089
http://arxiv.org/abs/1805.01845
http://arxiv.org/abs/1805.01845
https://indico.cern.ch/event/655628/contributions/2670400/
https://cds.cern.ch/record/2255226
https://indico.cern.ch/event/745718/contributions/3205085/
http://dx.doi.org/10.3204/DESY-PROC-2014-02/12
http://dx.doi.org/10.3204/DESY-PROC-2014-02/12


[146] ATLAS Collaboration, “Search for new phenomena in dijet events using 37 fb−1 of pp
collision data collected at

√
s = 13TeV with the ATLAS detector,” Phys. Rev. D 96

(2017) 052004, arXiv:1703.09127 [hep-ex]. 89

[147] CMS Collaboration, “Search for dijet resonances in proton–proton collisions at√
s = 13TeV and constraints on dark matter and other models,” Phys. Lett. B 769

(2017) 520, arXiv:1611.03568 [hep-ex]. 89, 92

[148] CMS Collaboration, “Search for new physics in dijet angular distributions using
proton–proton collisions at

√
s = 13TeV and constraints on dark matter and other

models,” Eur. Phys. J. C 78 (2018) 789, arXiv:1803.08030 [hep-ex]. 89

[149] ATLAS Collaboration, “Search for light resonances decaying to boosted quark pairs and
produced in association with a photon or a jet in proton–proton collisions at√
s = 13TeV with the ATLAS detector,” Phys. Lett. B 788 (2019) 316,

arXiv:1801.08769 [hep-ex]. 89, 98, 113, 138, 139

[150] ATLAS Collaboration, “Measurement of the flavour composition of dijet events in pp
collisions at

√
s = 7TeV with the ATLAS detector,” Eur. Phys. J. C 73 (2013) 2301,

arXiv:1210.0441 [hep-ex]. 90

[151] M. Schlaffer, M. Spannowsky, M. Takeuchi, A. Weiler, and C. Wymant, “Boosted Higgs
Shapes,” Eur. Phys. J. C74 (2014) no. 10, 3120, arXiv:1405.4295 [hep-ph]. 90

[152] C. Grojean, E. Salvioni, M. Schlaffer, and A. Weiler, “Very boosted Higgs in gluon
fusion,” JHEP 05 (2014) 022, arXiv:1312.3317 [hep-ph]. 90, 126

[153] S. Dawson, I. M. Lewis, and M. Zeng, “Usefulness of effective field theory for boosted
Higgs production,” Phys. Rev. D91 (2015) 074012, arXiv:1501.04103 [hep-ph].
90, 126

[154] CMS Collaboration, “CMS TWiki: CMS Exotica Summary plots for 13 TeV data.”
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#EPS_
HEP_2019. Accessed: 2019-07-23. 92

[155] ATLAS Collaboration, “Search for boosted resonances decaying to two b-quarks and
produced in association with a jet at

√
s = 13TeV with the ATLAS detector,”.

https://cds.cern.ch/record/2649081. 94, 125, 126, 128, 130, 133, 134, 135

[156] K. Hamilton, P. Nason, and G. Zanderighi, “Finite quark-mass effects in the NNLOPS
POWHEG+MiNLO Higgs generator,” JHEP 05 (2015) 140, arXiv:1501.04637
[hep-ph]. 96

[157] J. M. Campbell, R. K. Ellis, R. Frederix, P. Nason, C. Oleari, and C. Williams, “NLO
Higgs Boson Production Plus One and Two Jets Using the POWHEG BOX,
MadGraph4 and MCFM,” JHEP 07 (2012) 092, arXiv:1202.5475 [hep-ph]. 96

[158] K. Hamilton, P. Nason, C. Oleari, and G. Zanderighi, “Merging H/W/Z + 0 and 1 jet at
NLO with no merging scale: a path to parton shower + NNLO matching,” JHEP 05
(2013) 082, arXiv:1212.4504 [hep-ph]. 96

[159] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna,
S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An Introduction to PYTHIA 8.2,”
Comput. Phys. Commun. 191 (2015) 159–177, arXiv:1410.3012 [hep-ph]. 96

162

http://dx.doi.org/10.1103/PhysRevD.96.052004
http://dx.doi.org/10.1103/PhysRevD.96.052004
http://arxiv.org/abs/1703.09127
http://dx.doi.org/10.1016/j.physletb.2017.02.012
http://dx.doi.org/10.1016/j.physletb.2017.02.012
http://arxiv.org/abs/1611.03568
http://dx.doi.org/10.1140/epjc/s10052-018-6242-x
http://arxiv.org/abs/1803.08030
http://dx.doi.org/10.1016/j.physletb.2018.09.062
http://arxiv.org/abs/1801.08769
http://dx.doi.org/10.1140/epjc/s10052-013-2301-5
http://arxiv.org/abs/1210.0441
http://dx.doi.org/10.1140/epjc/s10052-014-3120-z
http://arxiv.org/abs/1405.4295
http://dx.doi.org/10.1007/JHEP05(2014)022
http://arxiv.org/abs/1312.3317
http://dx.doi.org/10.1103/PhysRevD.91.074012
http://arxiv.org/abs/1501.04103
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#EPS_HEP_2019
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#EPS_HEP_2019
https://cds.cern.ch/record/2649081
http://dx.doi.org/10.1007/JHEP05(2015)140
http://arxiv.org/abs/1501.04637
http://arxiv.org/abs/1501.04637
http://dx.doi.org/10.1007/JHEP07(2012)092
http://arxiv.org/abs/1202.5475
http://dx.doi.org/10.1007/JHEP05(2013)082
http://dx.doi.org/10.1007/JHEP05(2013)082
http://arxiv.org/abs/1212.4504
http://dx.doi.org/10.1016/j.cpc.2015.01.024
http://arxiv.org/abs/1410.3012


[160] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky, and W. K. Tung, “New
generation of parton distributions with uncertainties from global QCD analysis,”
JHEP 07 (2002) 012, arXiv:hep-ph/0201195 [hep-ph]. 96

[161] D. J. Lange, “The EvtGen particle decay simulation package,” Nucl. Instrum. Meth.
A462 (2001) 152–155. 96

[162] B. Mellado Garcia, P. Musella, M. Grazzini, and R. Harlander, “CERN Report 4: Part I
Standard Model Predictions,”. https://cds.cern.ch/record/2150771. 96

[163] S. Carrazza, S. Forte, and J. Rojo, “Parton Distributions and Event Generators,” in
Proceedings, 43rd International Symposium on Multiparticle Dynamics (ISMD 13),
pp. 89–96. 2013. arXiv:1311.5887 [hep-ph]. 96

[164] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, and
J. Winter, “Event generation with SHERPA 1.1,” JHEP 02 (2009) 007,
arXiv:0811.4622 [hep-ph]. 98

[165] M. Bahr et al., “Herwig++ Physics and Manual,” Eur. Phys. J. C58 (2008) 639–707,
arXiv:0803.0883 [hep-ph]. 98

[166] A. Buckley and H. Schulz, “Tuning of MC generator MPI models,” Adv. Ser. Direct.
High Energy Phys. 29 (2018) 281–301, arXiv:1806.11182 [hep-ph]. 99

[167] J. E. Gaiser, Charmonium Spectroscopy From Radiative Decays of the J/ψ and ψ′. PhD
thesis, SLAC, 1982. http://inspirehep.net/record/183554. 104

[168] ATLAS Collaboration, “Improvements in tt̄ modelling using NLO+PS Monte Carlo
generators for Run2,” Tech. Rep. ATL-PHYS-PUB-2018-009, CERN, Geneva, Jul,
2018. https://cds.cern.ch/record/2630327. 104

[169] F. Beaujean, A. Caldwell, D. Kollar, and K. Kroninger, “BAT: The Bayesian Analysis
Toolkit,” J. Phys. Conf. Ser. 331 (2011) 072040. 105

[170] G. Snecdecor and W. Cochran, Statistical Methods. No. v. 276 in Statistical Methods.
Wiley, 1991. 108

[171] J. Neyman and E. S. Pearson, “On the Problem of the Most Efficient Tests of Statistical
Hypotheses,” Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character 231 (1933) 289–337.
http://www.jstor.org/stable/91247. 109

[172] ATLAS Collaboration, “Improved luminosity determination in pp collisions at√
s = 7TeV using the ATLAS detector at the LHC,” Eur. Phys. J. C 73 (2013) 2518,

arXiv:1302.4393 [hep-ex]. 125

[173] J. M. Lindert et al., “Precise predictions for V+ jets dark matter backgrounds,” Eur.
Phys. J. C77 (2017) no. 12, 829, arXiv:1705.04664 [hep-ph]. 125

[174] ATLAS Collaboration, “Jet reconstruction and performance using particle flow with the
ATLAS Detector,” Eur. Phys. J. C 77 (2017) 466, arXiv:1703.10485 [hep-ex].
126

163

http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://arxiv.org/abs/hep-ph/0201195
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
https://cds.cern.ch/record/2150771
http://arxiv.org/abs/1311.5887
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://arxiv.org/abs/0811.4622
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/0803.0883
http://dx.doi.org/10.1142/9789813227767_0013
http://dx.doi.org/10.1142/9789813227767_0013
http://arxiv.org/abs/1806.11182
http://inspirehep.net/record/183554
https://cds.cern.ch/record/2630327
http://dx.doi.org/10.1088/1742-6596/331/7/072040
http://www.jstor.org/stable/91247
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://arxiv.org/abs/1302.4393
http://dx.doi.org/10.1140/epjc/s10052-017-5389-1
http://dx.doi.org/10.1140/epjc/s10052-017-5389-1
http://arxiv.org/abs/1705.04664
http://dx.doi.org/10.1140/epjc/s10052-017-5031-2
http://arxiv.org/abs/1703.10485


[175] ATLAS Collaboration, “A search for new physics in dijet mass and angular distributions
in pp collisions at

√
s = 7 TeV measured with the ATLAS detector,” New J. Phys. 13

(2011) 053044, arXiv:1103.3864 [hep-ex]. 127

[176] ATLAS Collaboration, “Measurement of the cross section of high transverse momentum
Z → bb̄ production in proton–proton collisions at

√
s = 8TeV with the ATLAS

Detector,” Phys. Lett. B 738 (2014) 25, arXiv:1404.7042 [hep-ex]. 129

[177] CDF Collaboration, “Global Search for New Physics with 2.0 fb−1 at CDF,” Phys. Rev.
D79 (2009) 011101, arXiv:0809.3781 [hep-ex]. 131

[178] G. Choudalakis, “On hypothesis testing, trials factor, hypertests and the BumpHunter,”
arXiv:1101.0390 [physics.data-an]. 131

[179] E. Gross and O. Vitells, “Trial factors for the look elsewhere effect in high energy
physics,” Eur. Phys. J. C70 (2010) 525–530, arXiv:1005.1891
[physics.data-an]. 131

[180] G. Choudalakis and D. Casadei, “Plotting the differences between data and expectation,”
Eur. Phys. J. 127 (2012) no. 2, 25, arXiv:1111.2062 [physics.data-an].
https://doi.org/10.1140/epjp/i2012-12025-y. 131, 135

[181] CMS Collaboration, “Inclusive search for a highly boosted Higgs boson decaying to a
bottom quark-antiquark pair,” Phys. Rev. Lett. 120 (2018) no. 7, 071802,
arXiv:1709.05543 [hep-ex]. 136

[182] CMS Collaboration, “Search for low mass vector resonances decaying into
quark-antiquark pairs with 77.0 fb−1 of proton-proton collisions at

√
s = 13 TeV,”.

https://cds.cern.ch/record/2674921. 138, 140

[183] M. Feickert, “ATLAS b-jet Trigger Menus in 2017 with respect to 2016.”
https://indico.cern.ch/event/631313/contributions/2695714/, 2017. ATLAS Joint
Flavour Tagging and H → bb̄ Workshop 2017. 141

[184] “ATLAS TWiki: ConditionsMetadata.”
https://twiki.cern.ch/twiki/bin/view/AtlasComputing/ConditionsMetadata.
Accessed: 2017-09-07. 141

[185] “COMA Chain Report.” https://atlas-tagservices.cern.ch/tagservices/RunBrowser/
runBrowserReport/runBrowserReport.html. Accessed: 2017-09-07. 141

[186] J. Hetherly, “Using V H Associated Production to Search for the bb̄ Decay of the Higgs
Boson with Data from the ATLAS Detector at

√
s = 13 TeV.”

https://cds.cern.ch/record/2313140, Apr, 2017. Presented 01 Mar 2017. 142, 143

[187] S. J. Sekula and C. Varni, “Performance of the ATLAS b-jet trigger in 2018 data at high
pile-up,” Tech. Rep. ATL-COM-DAQ-2018-124, CERN, Geneva, Jul, 2018.
https://cds.cern.ch/record/2631805. 143

[188] M. Feickert and J. Alison, “Performance of the ATLAS b-jet trigger in 2017 data at high
pile-up,” Tech. Rep. ATL-COM-DAQ-2017-182, CERN, Geneva, Nov, 2017.
https://cds.cern.ch/record/2294576. 144, 145

164

http://dx.doi.org/10.1088/1367-2630/13/5/053044
http://dx.doi.org/10.1088/1367-2630/13/5/053044
http://arxiv.org/abs/1103.3864
http://dx.doi.org/10.1016/j.physletb.2014.09.020
http://arxiv.org/abs/1404.7042
http://dx.doi.org/10.1103/PhysRevD.79.011101
http://dx.doi.org/10.1103/PhysRevD.79.011101
http://arxiv.org/abs/0809.3781
http://arxiv.org/abs/1101.0390
http://dx.doi.org/10.1140/epjc/s10052-010-1470-8
http://arxiv.org/abs/1005.1891
http://arxiv.org/abs/1005.1891
http://dx.doi.org/10.1140/epjp/i2012-12025-y
http://arxiv.org/abs/1111.2062
https://doi.org/10.1140/epjp/i2012-12025-y
http://dx.doi.org/10.1103/PhysRevLett.120.071802
http://arxiv.org/abs/1709.05543
https://cds.cern.ch/record/2674921
https://indico.cern.ch/event/631313/contributions/2695714/
https://twiki.cern.ch/twiki/bin/view/AtlasComputing/ConditionsMetadata
https://atlas-tagservices.cern.ch/tagservices/RunBrowser/runBrowserReport/runBrowserReport.html
https://atlas-tagservices.cern.ch/tagservices/RunBrowser/runBrowserReport/runBrowserReport.html
https://cds.cern.ch/record/2313140
https://cds.cern.ch/record/2631805
https://cds.cern.ch/record/2294576


[189] E. W. Vaandering, “Mass and Width Measurements of Σc Baryons.”
http://www-focus.fnal.gov/people/ewv/thesis/. 146

[190] N. Cabibbo, “Unitary Symmetry and Leptonic Decays,” Phys. Rev. Lett. 10 (1963)
531–533. [,648(1963)]. 146

[191] S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak Interactions with Lepton-Hadron
Symmetry,” Phys. Rev. D2 (1970) 1285–1292. 147

[192] M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory of Weak
Interaction,” Prog. Theor. Phys. 49 (1973) 652–657. 147

[193] ATLAS Collaboration, “Measurement of the Inelastic Proton–Proton Cross Section at√
s = 13TeV with the ATLAS Detector at the LHC,” Phys. Rev. Lett. 117 (2016)

182002, arXiv:1606.02625 [hep-ex].

[194] J. Pequenao, “Computer generated image of the ATLAS Liquid Argon.”
https://cds.cern.ch/record/1095928, Mar, 2008.

165

http://www-focus.fnal.gov/people/ewv/thesis/
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1103/PhysRevD.2.1285
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevLett.117.182002
http://dx.doi.org/10.1103/PhysRevLett.117.182002
http://arxiv.org/abs/1606.02625
https://cds.cern.ch/record/1095928

	 LIST OF FIGURES
	 LIST OF TABLES
	 Preface
	0.1. Units
	0.1.1. Natural Units
	0.1.2. Units of Cross Section
	0.1.3. Units of Luminosity

	0.2. Coordinates
	0.3. Statistics
	0.3.1. Likelihood Ratio
	0.3.1.1. Wilk's Theorem
	0.3.1.2. Profile Likelihood Ratio

	0.3.2. Intervals and limits
	0.3.2.1. Frequentist Confidence Intervals
	0.3.2.2. Bayesian Credible Intervals


	0.4. Open Source Tools

	1 Introduction
	2 The Standard Model and Extensions
	2.1. The Standard Model
	2.2. Quantum Field Theories
	2.2.1. Quantum Electrodynamics (QED)
	2.2.2. Quantum Chromodynamics (QCD)

	2.3. Spontaneous Symmetry Breaking
	2.4. Electroweak Symmetry and Interactions
	2.4.1. Electroweak Interactions

	2.5. Electroweak Symmetry Breaking
	2.6. The Higgs Boson
	2.7. Extensions to the Standard Model

	3 The Large Hadron Collider (LHC)
	3.1. Design
	3.2. Accelerator
	3.3. Collider

	4 The ATLAS Experiment
	4.1. Overview
	4.2. Geometry
	4.3. Tracking in the Inner Detector
	4.4. Calorimeter System
	4.4.1. Electromagnetic Calorimeter
	4.4.2. Hadronic Calorimeter

	4.5. Muon Spectrometer
	4.6. Trigger and Data Acquisition
	4.6.1. Level-1 Trigger (L1)
	4.6.2. High-Level Trigger (HLT)


	5 Event Reconstruction
	5.1. Tracks
	5.2. Electrons and Photons
	5.3. Muons
	5.4. Jets
	5.4.1. Large Radius Jets
	5.4.2. Variable Radius Track Jets

	5.5. Flavor Tagging
	5.6. Taus
	5.7. Missing Transverse Momentum

	6 Search for boosted low mass resonances in the bbarb final state
	6.1. Data and Simulation
	6.1.1. Simulated Signals
	6.1.2. Simulated Backgrounds

	6.2. Large-R Jet Trigger
	6.3. Signal Event Selection
	6.4. Backgrounds
	6.4.1. V + jets
	6.4.2. tbart

	6.5. Modeling of the Multijet Background
	6.5.1. Models Tested
	6.5.1.1. Likelihood ratio test
	6.5.1.2. F-test

	6.5.2. Model Selection
	6.5.3. Spurious Signal Tests
	6.5.4. Signal Injection Tests
	6.5.4.1. 1D Tests
	6.5.4.2. 2D Tests
	6.5.4.3. Alternate QCD Model


	6.6. Systematic Uncertainties

	7 Results
	7.1. Measurement of Standard Model Signals
	7.1.1. Observation of boosted Vbbarb
	7.1.2. Measurement of boosted Hbbarb

	7.2. Limits on Z production

	8 Conclusions
	A b-jet Triggers
	A.1. Parsing Trigger Chains
	A.2. Super-RoIs
	A.3. b-jet Trigger Efficiency in High Pile-up

	B b-hadron Lifetimes
	GLOSSARY
	BIBLIOGRAPHY

