ASITP

INSTITUTE OF THEORETICAL PHYSICS ACADEMIA SINICA

AS-ITP-94-20
July 1994

Six-Vertex Type Solutions of Yang-Baxter

Equation With Color Parameters

S

-

Wh\f\_ va

.

Xiao-dong SUN and Shi-kun WANG

.

P.0.Box 2735, Beijing 100080, The People’s Republic of China

Telefax : (86)-1-2562537 Telephone : 2563343

Telex : 22040 BAOAS CN Cable : 6158

VAINED ‘SINIVILIT NYID

)



ASITP-94-20
ASIAM-94-27
July 1994

Six-Vertex Type Solutions of Yang-Baxter Equation
with Color Parameters!

Xiao-dong SUN! Shi-kun WANG??
! Institute of Applied Mathematics, Academia Sinica, Beijing 100080
2 [nstitute of Theoretical Physics, Academia Sinica, Beijing 100080

Abstract: In this paper, we obtain all solutions of Yang-
Baxter equation with color parameters for six-vertex model
in theory of exactly solved statistical models by five solu-
tion transformations, three non-degenerate basic solutions
and several degenerate basic solutions. And we show that
we can obtain all solutions of Yang-Baxter equation with
spectral parameter for six-vertex model from solutions of
Yang-Baxter equation with color parameters for six-vertex
model.
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§1 Introduction

In the research of exact solution of integrable statistical models, C.N. Yang(l] and
R.J. Baxter(2] independently proposed a very important non-linear algebraic equation,
which is later called Yang-Baxter equation(YBE). (One can also find the history and
review of Yang-Baxter equation in {3] and references therein)

Since 1960s, many excellent research works and results on finding solutions of YBE
and corresponding theories of exactly solvable statistical models have appeared. Yang
gave the first solution of YBE(1}], Lieb{4] and Sutherland{5) studied and solved the six-
vertex model, Baxter studied eight-vertex model and obtained an elliptic solution of
YBE(2], Fan and Wu gave the famous Free-Fermion condition[6], and we can also find
discussion of solutions and method to find solutions in [7-15] and references therein.

There are different types of expressions of YBE. Here we introduce three types, the
first is the type of YBE with spectral parameter

Rlz(u)Rgg(‘u + ’U)Rn(‘u) = Rgg(‘U)Rn(‘u. + U)Rzg(u), (1)

! Supported Climbing Up Project, National Natural Scientific Foundation and Natural Sci-
entific Foundation of Academia Sinica (KM85-32).

where u, v and u + v are spectral parameters,
Ria(u)= R(x)® E,  Rn(u) = E® R(u),

E is the unit matrix of order n, symbol @ denotes the tensor product of two matrices.
Other types of YBE are

RIZ(E; U)st(f, /\)Rlz(TI, A= Rm('), /\)Rlz(f. /\)Rza(E, 7 (2)

which is called YBE with color parameters, where £, 7 and X are color parameters; And
Rua(u, €,m) Raa(w + v, 6, \) Rya(v,m, A) = Raa(v, 1, M) Ruz(w + 0,6, \) Raa(w, €,9),  (3)

which is called the colored YBE with spectral and color parameters, where u, v and
u + v are spectral parameters, £, 7 and A are color parameters. Generally, if a solution
of YBE is found, then the corresponding statistical model can be exactly solved.

Equation (1) and (2) are two special cases of equation (3). After simple analysis, one
can see the if R(u) is a solution of (1), then R(¢ —7) must be solution of (2). In [15], we
gave all the six-vertex type solutions of (1). In this paper, we will give all the six-vertex
type solution of (2) and do some preparation for studying the solutions of (3). To solve
the YBE with color parameters is to find a square matrix of order n? with entries of
two-variable functions, R(¢,7) = (@:;)1<i j<n2, which satisfies equation (2). Six-vertex
type solution with color parameters is the solution of (2) with the form

"o wen) wm 0
. _ a2(&,m) as(§,n
R(fﬂl) - 1] a6(€,7]) aB(E) T]) 0
0 0 0 04(51 77)

If a;(€,7) #0 (i =1,2,---,6), then we call it the non-degenerate six-vertex type solution
of YBE with color parameters, otherwise we call it the degenerate six-vertex type solution

‘of YBE with color parameters. For six-vertex type solutions, the Free-Fermion condition

can be expressed as

az(€,m)as(€,n) = ar(€, n)as(€,7) - as(€,m)as(€,7) = 0. (4)

Now we are going to give all solutions with color parameters of six-vertex type. For

simplicity, we denote R(¢,7) =< a1(£,n), as(£,m), as(£,m), au(€, m), as(é, n), as(€,m) >
Therefore, equation (2) is equivalent to following 13 equations:

aa(€,m)ax(n, Naa(€, A) — a3(€,n)as(n, Maz(£,2) = 0, (5a)
ar{€, myar(n, Naa(é, X) — a2(€, n)ax(n, Mai(€, A) — as(€, m)as(n, A)aa(€,A) = 0,
a1(€,n)ax{n, X)as(€, A) — as(€,m)axn, M)ar(€, A} — a3(€,n)as(n, M)ax(€,2) =0, (5b)
az(€,max(n, Nae(€, A) — aa(€, n)as(n, Mar(€, X) — as(€, n)as(n, A)az(€, X)) = 0,
aq(€,m)as(m Nas(€, X) - aa(€, m)aa(m, Mas(£, A) — as(€,m)as(n, Mas(€, A) =

aq(€,m)aa(n, Aas(€, A) — as(€, )az(n, May(€, X) — as(€,n)as(n, A)aa(€,A) =0,  (5¢)
ay(€,m)aq(n, Mas(€, A) — az(€,n)as(n, Nas(€, A) — as(€, n)as(n, A)ax(€, 1) = 0,
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al(fy 7’)‘11(7]1 A)aa(f- A) e 0.3(6, "1)‘13(77: A)al(fl ’\) - as(f, 17)(15(7], A)a':!(fv A) = 0!
a1(&, m)aa(n, \as(£, 2) — as(€, mas(n, A)ar(€, A) — aa(€, n)as(n, A)aa(£, 1) = 0,
43(6: 71)41("), A)‘:lﬁ(fx ’\) - a3(£s 71)“5(77: A)al(f» ’\) - aG(E» 77)0"1(771 ’\)a3(61 A) =0,
’14(61 71)0'4(77. A)"'3(6) A) - a3(f) 7’)‘13(771 A)0'4(61 A) - a5(£1 7])‘16(77, A)“:)(E: A) = 01
0'4(61 77)“3("], ’\)aﬁ(fr A) - aﬁ(fv U)“J(ﬂ» A)a4(fy A) - 52(57 77)‘15(7), A)‘13(61 A) = 01
a3(€, maa(n, A)as(€, X) — aa(€, n)as(n, X)ay(€, X) ~ as(€, 7)az(n, A)ea(é, A) = 0.

Ome can see that only the sub-indices 2,3 appear in the first equation. If we permute
these two sub-indices, (5a) remains the same, but (5b) and {5¢) interchange with (5d).
Similarly, if we permute sub-indices 1 with 4 and 5 with 6 spontaneously, (5b) inter-
changes with (5¢), but (5a) and (5d) keeps invariant. Thus we have:

(A-) If R(f» 77) =< a'l(fr 77):‘1'7(6)7’)7aa(fln)ya4(fln))a5(€: 77),046(5» T’) > is a solution
of (2), then

(5d)

I:z(fv 77) =< & (Er 7’)7 aJ(Er 7])’ a'2(£) Tl)r 0'4(61 7))1 aS(Ev 77)1 aﬁ(fy 7’) >,
{2(61 7’) =< a4(£! 7’)1 a7(£1 77)) a3(£» 7’)1 a1(£1 77)1 aﬁ(fy 77)1 a5(£» 71) >,
R’(E: 77) =< a4(f, 7’)1 "'3(5) 77)7 a'2(£1 7])! dx(f, 7])! aG(El 7’)1 a5(fv 77) >

are also solutions.

_Additionally, from equations (5a)—(5d), we find following solution transformations.
It R(f) 77) =< al(fr 77)1 a?(f; 77), a3(£1 7’)1 G.g(f, T’)r a5(£1 77)1 a’ﬁ(fy n) > is a solution of (2)!
then:

(B) F(€,m)R(£, 1) is also a solution of (2), where f(u) is an arbitrary non-zero func-
tion;

(C) B(&,m) =< a(€,m),aa(é,m), as(€, ), a(€, 1), # ™ as(€, m), pas(£,7) > is also a
solution of (2), where p is a non-zero constant;

(D) R(£,7) =< a(t,n), ;ff,)) 26, E;’; as(6,7), aa(€,m), as(é,n), as(€m) > is

also a solution of (2), where f(u) is an arbitrary non-zero function;

(B) R(¢,9) =< al(a B), az(a ﬁ),ag(a ﬂ) a4, ), as(a, B), ag(e, B) > is also a so-
lution of (2), where @ = f(£), 8 = f(%), f is an arbitrary non-zero function of one
variable;

In the following context, we call (A), (B), (C), (D), (E) the solution transformations

A, B, C, D, E of six-vertex type YBE with color parameters. And the Free-Fermion .

condition is invariant with respect to the solution transformations A, B, C,D,E.

§2 Non-degenerate six-vertex type solutions with color parameters
We first consider the non-degenerate solutions. Since a(¢,7) 20, from (5a) we have

az a a;
2em= 260/ 200, (6)

Noticing that the left-hand-side of (6) is independent of A, up to solution transformation
D, we can assume

a2(é,7) = as(&,n). (1)

By considering with solution transformation B, we can assume a3(£,7n) = a3(é,7) = lin
the following discussions of non-degenerate solutions without losing generality. Therefore
equations (5a)—(5d) are equivalent to following six equations up to solution transfor-
mations B and D:
0
0 (8a)
0
aq(€n)aa(n, A) — aqa(€,A) ~ as(€,n)as(n, A) = 0
aa(€,m)as(€, A) — as(é, m)aa(é, A) ~ as(n, A) = 0 } (8b)
44(7], ’\)a5(fl A) - aS(ﬂr )(14(5 A) - a5(£ 7]) =0

Next, from equations (8) we will use a;(¢, A\) and a;(n,A) (i = 1,2, --,6) to represent
ai(§,7) (i=1,2,---,6). From (8a) we have

0-1(5. ﬂ)dl(ﬂy ’\) - a’l(fr A) - aG(E; 7’)0'5(7’1 )‘) =
al(f: 7’)“5(61’\) - aS(El Tl)ﬂl(f, ’\) - a5(7” A) =
“1(77, )‘)as(fl A) - as(’l. ’\)al(fr A) - aG(E- n)=

a1(6,7) = SHET3(1 - as(r, Noa(n, 1) + as(r, Aae(E, V),
as(6.)) as(n,2) (%)
as(6,m) = SRy (L= as(m Masln, X)) — ZHa(1 - as(€, Ma(£, 1),

as(£, 1) = a1(n, M)as(§, A) — a1(€, A)as(n, A),

and from (8b) we have

aul€m) = SXEL1 ~ as(r, Nas(n, 1) + as(€, Naan, ),

as(€, ) = aa(7, A)as(€, A) - aq(¢, Aas(n, 1), (10)
ag(€, ) _os(mN) .

ﬂs(f,ﬂ) a (17 ,\)(1 ( A)'—"'6("’1’\)) a (E A)(l 5(61/\) S(EwA))

By comparing the expressions of as(£,7) and ag(€,7) in (9) and (10), we have

ay(€, Nas(€, A1 ~ a1(n, A)aq(n, A) - as(n, A)ag(n, X))
= a(n, A)as(n, AN1 - a1(é, M)aa(§, A) — as(§, M)as(£, A)),
as(€, X)ag(€, M)(1 ~ ai(n, A)aq(n, A) - as(n, M)ag(n, A))
= aq(n, A)ag(m, A1~ a1(€, A)ag(§, A) — as(§, Mas(é, A)),

(L = a1(§s Maa(§, A) — as(€, M)as(£, A))

ax(€, Nas(€, A) = el (11)
(1~ a1(§, Maa(€, A) — as(§, M)as(€, A)) _ Ca(N)
a4(€, Mas(€, 2) '

where C,C, are functions of A. Now we fix A to a value and denote f;(£) = ai(€,))
(i=1,4,5,6), then f;(§) (i = 1,4,5,8) satisfy

1= () fal&) = fs(€) fe(€) = CLfi(€)fs(E),

(12)
L= fi(€) fa(€) « f5(E)f6(€) = Cafa(€) fe($),
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where Cy, Cy are constants. Therefore, from the combination of (9), (10) and (12), the
expressions of a;(£,9) (i = 1,4,5,6) by fi(€), fi(n) (i = 1,4,5,6) are as follows

ar(§,m) = [l fa(n) + Cifs(m)) + fs(n)fe(£),
aq(€,n) = fa(€)(Ailn) + Cafe(m)) + f5(€) fo(m),
as(§,m) = fa(n)fs(€) — fo(€)fs(n),
ag(£,n) = fi(n)fe(€) — f1(€) fa(n)-

Since we consider non-degenerate solutions, there are only two cases for C; and C,,
one is Cy = C3 = 0, the other is Cy # 0 and C; # 0. And by solution transformation C,
we can assume Cy = Cq = —2cos(C).

For the case C; = C; = 0,

1~ fi(€)fu(8) - f5(€) fs(€) = 0.

Equivalently, fi(§) (i =1,4,5,6) can be parameterized as

1€ = (£6) + La(6),

A(€) = (= £(6) +1)/9(6), (1)
5(6) = FOR(E),

€)= FEME),

(13)

where f, g, h are arbitrary functions of one variable. And corresponding expressions of '

a‘(f»ﬂ) (" = 172)"'16) are

. ) o8) A(n)
(&) = (f(6) + D(~f(m) +1) e )+f(5) (n )h(()
a?(f» 7’)= a3(Errl) =1,

as(m) = S~ f(n)+1)_%_ F=FE) + 1) Eg
calf,m) = FESn)+ YT - Ja)E) + DA,

This solution satisfies the Free-Fermion condition (4).

For the case Cy, C; are non-zero, by solution transformation C, we can assume C; =
Cz=-2cos(C)#£0,

1= fil€)ful€) ~ fs(£)fs(£) = =2 cos(C) f1(€) fs(€) = —2cos(C)fal(€) fe(€).  (16)

Since —2cos(C) # 0,
F(E) f5(€) = fa(€) fe(£)- (17)

By (17), fi(€) (i = 1,4,5,6) can expressed as follows

(6 =h(€)/9(6),  fa§) = A(£)g(£),

A(E) = FOSE),  fel) = FE/alE) (8)
Then we can rewrite (16) as
KH(€) — 2 cos(CIR(E) F(£) + f2(£) ~ 1 = 0. (19)

Considering (19) as a second order equation of A(£), we have the solutions as

h(£) = cos(C)f(€) = /1 = sin®(C) F3(§). (20)
1) If cos(C) = *1, then sin(C) =0,

h(§) = £f(6) = 1.
After considering f;(£) (i = 1,4,5,6) and h(§), f(£) with the influence of solution trans-
formations B,C,E and other equivalent conditions, we find that we need only assume
cos(C) =1, h(§) = f(€)+ 1.

Thus
RO = (O +1)/a(6)  f() = F(E)9(6), (21)
fa(€) = (&) +1)g(6),  fe(€) = f(&)/a(£),

The solution of (2) is -
= - 9in)
ar(§,m) = (f(§) - flm) + 1)g(£),

a(éim) = as(éin) =1,

as(6,m) = (F(6) f(n)+1)§éfl)) 22)
as(€,m) = (F(€) - (n))g(E)y( )

2) If cos(C) # %1, then sin{C) # 0. Up to solution transformation E, We assume
£(€) = sin(8)/ sin(C).

Thus
h(€) = cos(C)sin(£)/ sin(C) % cos(¢) = sin(é & C)/ sin(C).

After considering the influence of solution transformations B,C,E and other equivalent
conditions, we find that we need only assume

£(€) = sin(€)/ sin(C)  h(€) = sin(£ + C)/ sin(C).

6



Therefore

_sin(¢ +C) _ sin(£)g(£)
f&)= ——-—-*singg)gg)),(f) fs(8) = —SE"((E.—;—, 23)
_sin(§ + C)g _ sin(§
MO="ae 0 HO= g
The solution of (2) for this case is
_sin(§ —7+C)g(n)
al(£1 7’) - sm(C’) g(f)'
a?(f; 77) = aa(fyﬂ) = 1)
_ sin(f -7+ C)g(é)
ay(é,m) = TH(C)—KT)_)’ (24)
as(tm) = 2= Mo(e)o(o)

aglt,m) = SBE=m) 1
o(6m)=—31E) e

where C is arbitrary constant.

From above discussions, we finally have the following theorem.

Theorem Up to solution transformations A,B,C,D,E, any non-degenerate six-vertex
type solution of YBE (2) with color parameters is equivalent to one of the three sets of
basic solutions: (15), (22) and (24).

Remark 1: If we take f(£) = £, g(£) = A(¢) = 1 in (15), solution (15) becomes

al(fyn)=£_77+ 11

a?(f)”) = a3(£l7l) = 11

aén)=n-£€+1, (25)
ﬂs(f; 7’) = E /Y

ag(é,n) =€ —n.

If we take f(£) = sin(£)/sin(C), g(¢) = sin(£ + C)/(sin(zi) + sin(C)) and h(€) = 1 in
(15), solution (15) becomes

ar(é,m) = Sin(—ii;{%g—).

ax(§,m) = a3(,m) = 1,

ety = Sin(:’i;(f:';r 9, (26)
as(¢,7) = %%ZTM,

as(6om) = Sl:i(f(;)n)'

If we take f(£) = ¢, g(¢) = 1 in (22), solution (22) becomes

al(Et”)=£" 7’+ 1!
aa(§,m) = as(é,n) = 1,

a(fm)=£E-n+1, (27
as(f, 7’) = E -
ds(f, 77) = f -
If we take g(£) = 1 in (24), solution (24) becomes

al(El 17) = %ﬂl

az(§,n) = aa(§,m) =1,

"'4(51 77) = W: . (28)

' _ sin(é - n) '
aS(Ev Tl) - sm(C) ]

_ sin(§ - n)
aG(El Tl) - sm(C) .

In (25), (26), (27) and (28), a;(¢,n) (i = 1,2,-..,6) are in forms of functions of two
variables, but they can also be regarded as one-variable functions of £ — . Therefore
from three basic solutions (15), (22) and (24) of (2), we obtain the four basic solutions
of (1).(please see [15])

§3 Degenerate six-vertex type solutions with color parameters
Now that we have discussed the non-degenerate.solution, we come to the degenerate
solutions of equations (5a)—(5d).
1. If aa(€,7n) = a3(€,n) = 0, then a1(¢,n), a(€. n), as(€, 1), as(€, 1) can be arbitrary
functions. .
2. If az(€,1) = 0 or a3(€,n) = 0, then up to solution transformation A, we assume
az(¢,m) #0, a3(€,7) = 0 without losing generality, equation (2) is equivalent to following
six equations:
‘11(61 "1)“1(7]- A) - al(E) A) - as(fv 7’)0'5(771 ’\) =0,
al(Ev 17)45(6) ‘\) - aS(E: 7’)“1(61 ’\) = 01
al(": A)“G(E) ’\) - 46(77, A)al(f) A) = 07
a((f» 7’)“4(7’1 A) - a4(€1 A) - a'5(£r 77)"-6(77» A) = 0!
aa(€,m)as(€,A) — as(€,n)aq(€,2) = 0,
as(n, Aas(€, ) — as(n, A)aqy(€,2) = 0.
a. If we have as(€,7) = ag(€,77) = 0 additionally, then up to solution transformations,
the basic solutions for this case are ’

a1(§,m) = &1 (€} i),

ﬂz(f, 7’) = 11

a((f$ TI) = E4f4(6)/f4(7’))

0.3(6, 7]) = aS(E» 7’) = ds(f, 7]) =0,

(29)

(30)

8



where fi, f4 are arbitrary functions, €1,€4 are 1 or 0.

b. If we have as(§,1) = 0 or ag(£,n) = 0 additionally, then up to solution transfor-
mation A, we assume as(£,7) 0, as(£,7) = 0 without losing generality, therefore for
this case there are four sets of basic solutions up to the solution transformations:

i) a1(€,n) = aa(£,n) = au(£,7) = as(§,n) = 0, az(€,n), as(, 7) are arbitrary func-
tions, .

ii) a1 (€, 1) = aa(€,n) = as(€,n) = 0, as(€, 1) = fuil§)/ faln), @a(6,7) = 1, as(§, ) =
fa(€) fs(n),

iii) aa(€,m) = au(é, ) = as(€,1) = 0, ar(€,0) = f1(6)/ fu(n), aal€,m) = 1,.a5(§,m) =
fs(6)/ fu(n), .

iv) aa(€,7) = as(6,7) = 0, a1(€, 1) = A(€)/ f(n), au(€,n) = ful€)/ fa(m), a2(€,7) =
1, as(é,m) = fa(€)/ fi(m),

where f, f4, fs are arbitrary functions.

c. If we have as(€,7) #0 and ag(£, n) 5 0 additionally, up to solution transformations,
the basic solutions for this case are

ateny = 158
1(61 7’) - fs(n)(g(frr’)‘*' 1/2)1

az(f,ﬂ) = 17
0.3(6,7]) = Ov

\ aq(é,n) = %(—g(f,rlﬂ 1/2), 3y

as(€,m) = C—fj,%(g(s,nwr 1/2),

as(€,m) = —-Cff—‘g‘,ﬁleg(s,nw 1/2),

d
* a(E,n) = C\Cs  fol€)
wem= 1+ C1Cs fo(n)’
ﬂz(f,ﬂ)=1,

03(6, 7’) = 0:

c,C 32
aem = 700 L), )
1+ C1Cy f5(m)
Cy  fs(€)
a 1] = H}
1) = 1306 o)
Ci fel€)
as({,n) = .
o&m) = T2, Falm)
where fy, fa, f5 are arbitrary one-variable functions, g is arbitrary two-variable function,
C1, Ca are non-zero constants. And solution (31) satisfies Free-Fermion condition (4).
3. If ax(€,7) #0 and a3({,n) £0, we also have following cases,

a. If we have ag(§,n) = ag(§,7) =0 additionally, then up to solution transformations,
the basic solution for this case is

a(§,1) = ful€)/ filn),
ai(Elﬂ) = aQ(El ") = lv
‘14(5, 71) = f‘(E)/f‘(n))
a5(£1 7’) = 46(61 77) = 01

where f, f4 are arbitrary functions.

b. If we have as(£,%) = 0 or ag(¢,7) = 0 additionally, then up to solution transfor-
mation A, we assume as(£,7) #0, ag(€,17) =0 without losing generality, equation (2) is
equivalent to following six equations:

al(e; 77)“1(’]: A) - al(ér A) = 0!
al(f» 7’)“5(6) k) - ﬂs(f,"l)al(ﬁn A) - a'5(7’1 A) =0,
aﬂ(fy 7’)“4(171 A) - 114(6, A) = 0)
as(m A)as(€,)) — as(n, Nag(§, A) — as(£,n) = 0.

Then up to solution transformations, the basic solutions for this case are

(33)

_ h@
al&m =gy
a?(ft 7’) = a;,(f,r]) =1,
. = hln) : 34
4(e,n)-?§g. fs(n) "
_ B8 fin)
as(6,m) = 203 7 Ry
as(f:"l) = 0»
and AE)
— s
al(Erﬂ) - fl("’)l
ax(€,n)=aa(€,n)=1,
aulfm) = -f:—ﬁf—)— (35)
a (f )= f4("7)(1 = f1(5)f4(f)) _ fA(f)(l - fl(’l)fA(’I))
st Ch{E) Chn) ;
aG(E)T’) = 0:

where f1, fs, fs are arbitrary functions, C is non-zero constant. And solution (34) satis-
fied Free-Fermion condition (4). :

c. If we have as(£,1) 50 and ag(£,7) I 0 additionally, there is no degenerate
solution for this case. Otherwise, let a4(£,7) = 0 for example, then from equations (5¢)
one can see at least one of az(£,7), as(£, 1), as(€, 1), a(£, ) must be zero, that gives the
contradiction, i.e. there are only non-degenerate solutions for this case.
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In fact, from above discussion, we give all the six-vertex type degenerate solution
with color parameters up to solution transformations A,B,C,D,E.

Remark 2: In both references [12,13], a solution of equations (2) is mentioned and
can be expressed in the notations of this paper as:

#(£) 0 0 0

0 ”————’(f()"l 10
B ?(n)
o KO 4 5 | (36)
?(n) .
0 00—

If we let

P(n)+1 . p(§)

1
a6 m) = OB fs(€) = AT folf) = O =1)’

in the degenerate basic solution (31) discussed in this paper, the above solution (36) is
obtained.
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