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Abstract

We present a formulation of the correlation problem in the transverse plane of high-
energy nuclear collisions. The correlation variable is the azimuthal angle between two
transverse momenta. We assume that the effects of quark-hadron phase transition are
manifested in the existence of a coherence angle x and a parameter ¢ characterizing
the irreducible correlation. We then derive the consequences on the observable two-
particle correlation function.



Among the various observable effects of the formation of quark-gluon plasma in
heavy-ion collisions, the ones that have been extensively studied are signals from
the primordial state when the quark system has high temperature and high density,
e.g., photons and dileptons. Less investigated are the possible phenomenological
implications near the end of the plasma lifetime when the quarks turn into hadrons.
Theoretical understanding of the quark-hadron phase transition process is still meager
at this point, although there has been some small success recently in finding the
observables that exhibit scaling behaviors as consequences of the transition [1,2]. In
this paper we look for another observable that may reveal the coherence aspect of the
plasma as it undergoes a second-order phase transition (PT).

In statistical physics it is well known that a system at second-order PT has infinite
coherence length £, a property that can be checked in experiments by taking the
system to the critical point. In heavy-ion collisions even if the plasma that is formed
can be described by the same physics during hadronization, the experiments cannot
be controlled by the tuning of a parameter like the temperature. Hadrons may be
produced under varying conditions having a range of values of £, which may all be
of the order of the dimensions of the system. Even when hadronization occurs at
the phase transition temperature, finite pion mass may prevent £ from being too
large. Furthermore, the geometrical shape of the system and its dynamical behavior
introduce essential complications that must be sorted out from the features that
characterize the PT.

We limit the degree of complication by focusing on the azimuthal dependence of
the observables. There are several reasons for this choice. First, the longitudinal ex-
pansion is relativistic. How causality affects coherence is a complex issue that we can
avoid by considering only a small rapidity interval. Secondly, the two-dimensional ge-
ometry in the transverse plane may provide interesting features that are absent in the
longitudinal one-dimensional system that is usually studied. Thirdly, the coherence
length £ has a dimension, while the measure of correlation in the azimuthal angle is
dimensionless; their relationship may contain some elements of physical significance.

On the subject of correlation and, more generally, multiparticle interference phe-
nomena, there have been many investigations from various points of view and with
different emphases [3-9]. A common approach is to use the classical source formalism
to describe the pion emission process. Adopting the same approach, we use j(r) to
denote the source function so that |j(r)|? is the probability of emitting a pion from
the spatial point r. In applying the formalism to heavy-ion collisions, we consider
the specific case of second-order quark-hadron PT, where hadronization is assumed
to take place on the surface of the expanding cylindrical plasma. This corresponds to
the simplest scenario for a plasma undergoing PT, where the temperature T in the
interior of the plasma is greater than the critical temperature T., and is < T, at the
surface. Assuming boost invariance along the longitudinal direction, we can focus our
attention on a particular, small rapidity interval, so that j(r) is nonvanishing only
in a thin shell of constant radius |r| = R in the transverse plane. We further make




the simplifying assumption that transverse expansion has a negligible effect on the
azimuthal correlation which is therefore to be calculated for a fixed R at a given time
t of evolution of the plasma. The t dependence of R can be considered later after
the azimuthal correlation is determined for pions emitted from a given R. The usual
procedure in the study of correlations is to integrate first the single- and two-particle
distributions over space-time before calculating the correlation. Our procedure is
different and can be justified phenomenologically only if experimental cuts can be
made in the transverse momentum pr that corresponds to narrow ranges of R. When
that can be done, the theoretical description of fixed-R azimuthal correlation then
becomes very transparent, being decoupled from the expansion problem.

Let the single- and two-particle distributions be denoted by P, (k) and P (k, ko),
respectively, so that the correlation function is

Co(ky, ka) = Po(ki, ko) /Pi(k:) Pi(kz). (1)

If the pion-emitting sources are in a pure coherent state, then P(k) is related to
J(k), the Fourier transform of j(r), by [3, 5, 10]

Py(k) = (Jla"(k)a(k)|J) = |J (k) (2)

where a(k) is the pion annihilation operator, of which |J) is the eigenstate with eigen-
value J(k). If they are not in a pure coherent state, the problem can be treated by mul-
tiplying j(r) by a phase factor v(r) and endowing the ensemble average (y(r)y*(r'))
with information on the coherence of the state. For a totally chaotic source we would
have

(v(@)y* () = 6(r — r'). ©)

The Fourier transform in the transverse plane becomes, in the notation k = (k, ¢)
and r = (r,a),

@) = [ &r e i) y(e) = [drrjr) [daeeo-a@),  (4)

where, for the geometry of a thin circular shell, we have assumed that (r) depends
only on the spatial azimuthal angle «, and j(r) on r only. Approximating j(r) by
6(r — R), and ignoring the overall normalization factor of J(k) that is cancelled in
the ratio in (1), we have

/2

J@) = [ dactReme satg). 5)

We set the limits of integration in (5) to £7/2, measured from the direction of k, on
the grounds that only the source in the same hemisphere as k can influence the pions
emitted at ¢.



Our main dynamical input that summarizes the behavior of the quark-gluon sys-
tem undergoing phase transition is

{(v(@)v*(B)) = coexp(—|a — B|/x) (6)

where x is the coherence angle. If a more detailed study of the quark-hadron PT
problem yields a coherence length £ (which may be a quantity averaged over a range
of hadronization temperature), then we would relate it to x by x = £€/R. In that sense
we may regard (6) as describing the correlation between two points in the plasma in
PT, the distance between them being wrapped around the circle of radius R. To
conform with the angular part of (3) the normalization factor ¢, can be determined,
in the case where x is not large, from the integral of (6) over 8 from —oo to +oo,
yielding ¢ = (2x)~'. This will be used in the following with x regarded as a free
parameter, although the precise value of c, does not affect the correlation function
Co, since it gets cancelled in the ratio in (1). We now can generalize (2) to the case
of finite coherence length, getting

PI(¢) — <|J(¢)|2> - (2X)—1 /W//i do dIBe—ikR(cosa—cosﬂ)—h—ﬁl/x’ (7)
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which is, of course, independent of ¢, as it should. If x is small, P; has the normal-
ization equal to .

For P(¢1, ¢2) where ¢, and ¢, are the azimuthal angles of k; and k;, respectively,
we need to consider the ensemble average of four phase factors {(y(a1)v*(81)v(02)7v* (B2))-

Naively, one would expect it to be {y(c1)7*(61)) (v(a2)7* (82))+ (v ()7 (B2)) (v* (Br) ()
However, that is only partially correct, as can be seen in the following example where
(o) is replaced by e*%; we have

<ei9i6—i9je‘i9kc_wl> = 6i56k1 + 61k — Oijki- (&)

The last term is necessary in order that when we take i = j = k = [ in the limit
X — o0, (8) reduces to 1, not 2, i.e., there should be no correlation in the pure
coherent case. In the diagrammatic language the three terms on the RHS of (8)
correspond respectively to the direct, exchange and quartic terms. In general, we
should therefore write

()" (B)v(e2)y* (B2)) = (v(aa)¥* (B1)) (v(@2)7* (B2))
+{(v(@)7* (B2)) (v(c2)y* (B1)) — (v(a)v* (B)¥(2)v* (B2))a 9)

where the quartic term represents new physics that is not contained in what is known
about (y(a)y*(8)). In the spirit of the form used in (6) and (8) we parametrize the
quartic term by

(v(e)7* (B1)v(e2)" (B2))a
= cq exp[=(lon — ] + |ar = Bo| + |z — Bi| + ez — Bal)/(2ex)] (10)
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where ¢ is a new parameter that is unknown except that it is not expected to be large,
probably < 1; for otherwise such a strong 4-particle clustering effect would have been
revealed in the 2-particle correlation function already. For finite x, perfect coherence
occurs when ) = az = B = s, viz., the rhs of (8) should be 1. This requires ¢, = 3.
Note that in the limit x — 0 (10) becomes €26(a;1 — 1) 6(ca— B2) exp|—|a1 —aa|/(ex)],
where the last exponential factor makes the whole expression vanish. That is the usual
result for Gaussian random noise, corresponding to a totally incoherent source.
We now can obtain from the two-particle distribution

Po(n,62) = (V@)1 (62)%) = [ doudBidasds,
exp|~ikR(cos(c ~ ¢1) + cos(axs — ¢2) — cos(By — ¢1) — cos(Bs — ¢2))]

()7 (B1)v(02)v* (B2)) (11)

the correlation function
Co(@) = LA - p Az(¢) (12)

where ¢ = ¢ — ¢y, and
Ai(¢) = B(¢)B(—9), (13)

B@) = @07 [ dadsexpl-ikR(cosa— cos )] expl-la~ 6 - 6l/x], (1)

Ax(d) = (2x) 2 /_W/; dondfidaqdf; exp[—ikR(cos ay + cos ap — cos B — cos ()]
-exp[—(lan — Bl + oz — Bo| + |a1 — B2 — @] + |z — B + 8])/(2ex)]. (15)

Az(¢) is invariant under ¢ — —¢, so Cy(¢) is an even function of ¢.

It is useful to consider the limits kR — 0 and oo as useful bounds of the more
physical cases for intermediate values of kR. For kR — oo one can use the stationary-
phase approximation to pick out regions near ¢; = §; = 0 and get

Co(@) =~ 1 4 e~ 219l/x _ o=18l/(ex), (16)

For kR — 0, B(¢) and Ay(¢) involve integrals of elementary functions and can be
carried out analytically. However, the process is very long and tedious so we will not
reproduce the formulas here. The results for both cases will be presented below.

Consider next the hmlt x—0 for which we use the superscript (¥) on the functions
in (12)-(15). Since A2 (¢) =0, Pl =7 and

/2
BO(¢) = / P da exp{—ikR|cos o — cos(a — ¢)]} (17)
we obtain for the chaotic sources
C(9) = 1+ |BO(¢)/x . (18)
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This has the proper limit of 2 as ¢ — 0. In Fig. 1 is shown the ¢ dependences
of C’éo) (¢) for a range of values of kR. This may be regarded as the result of the
Hanbury-Brown-Twiss interferometry [11] for azimuthal correlation. The behavior
in Fig. 1 looks different from the usual empirical parametrization of Bose-Einstein
correlation [12] ’

Ca(ky, ko) = 1+ Aexp(—q*R?/2), (19)

where ¢ = |k; — ka|, and R is the size of the emitting source. There is oscillation in
¢ that cannot be parametrized by a Gaussian. However, the general features at very
small ¢ are rather similar when ¢ is identified with 2k sin(¢/2). Fig. 1 shows that,
for kR not very large, the peak in ¢ can be quite wide, which is a rather striking
phenomenon in the azimuthal correlation.

When there is some coherence in the system, we have two parameters, x¥ and
€, in addition to kR. In Figs. 2 and 3 we show our computed results for various
combinations of the three parameters. It is clear from (14) and (15) that there are
rapid oscillations at large kR, although they are suppressed if x and/or ex are small, a
feature which is evident in Figs. 1-3. The curves shown can only give an indication of
what is expected at large kR, given the finite accuracy used in the calculation. Those
curves are sufficient for our purpose here, since in reality the system under study is
not as ideal as we have formulated. Variation in &k and R, etc., will imply substantial
smearing of C3(¢), rendering the curves shown to be fairly accurate averages of the
theoretical results to be compared with the observed data. Figs. 2(a) and 3(a) are
similar because x is small in both cases, so they correspond to various kR sections of
Fig. 1.

What is most notable about our result is that when x is large, like around «, and
€ not too small, Co(9) is nearly independent of kR and ¢, and is roughly 1 even near
¢ = 0. An observation of such features in the data should surely be a clear signal for
an unusual phenomenon, highly suggestive of a phase transition. At the very least it
would be hard to avoid the conclusion that there is strong coherence in the system
undergoing hadronization.

In the less spectacular cases we would have the intermediate situation of finite,
small, but nonvanishing values of x. It is a general feature that the peak at small ¢
becomes narrower at larger kR and the zero-intercept C>(0) does not depend sensi-
tively on moderate values of kR. As is usually recognized, C, (0) provides information
on the degree of coherence. In our formulation that corresponds to values of x and e,
which can be determined only by fitting Cy(¢) over the whole range of ¢. Since our
knowledge on ¢ is meager, data on C,(¢) can give us valuable hint on the size of the
quartic term. If € is small, Cy(4) can be approximated by the conventional formula
(19), which for small ¢ becomes

C2(8) = 1+ A exp(—¢?/45). (20)

It involves two parameters A and ¢y, which can be approximately related to our y, €
and kR. However, if there is anticorrelation, i.e., when C2(¢) dips below 1, then
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A in (20) would have to assume an unconventional negative value; an experimental
confirmation of that would by itself be interesting.

In this paper we have departed from the conventional approach to the study of
correlations in a number of ways.

First, our emphasis is in azimuthal correlation in the transverse plane. This
eliminates the complication arising from the relatisvistic longitudinal expansion. The
transverse expansion is used to our advantage implicitly by requiring that the data
be analyzed in various pr cuts so that hadronization at different times and different
radii of the plasma surface can be separately studied in the hope that information
about the system that would otherwise be lost due to the usual integration over pp
can now be extracted.

Second, instead of the usual way of introducing coherence through the use of a
parameter mixing the coherent and chaotic components, we formulate the problem
at a more basic level through the use of a coherence length, which in the present
azimuthal problem takes the form of a dimensionless coherence angle x.

Third, instead of avoiding it, we confront the fact that there is a quartic term in
the two-particle correlation function and parametrize its contribution by a coherence
angle ex. Since the value of ¢ is largely unknown, any estimate of it by phenomenology
would be of some scientific interest.

It is hoped that this work will stimulate the experimental effort to measure the
azimuthal correlation. When the data become available and the dependence on pr
becomes known, specific suggestions on how best to do the analysis in determining
the coherence parameters may then be made more concrete. It seeems at this point
that any data on C3(¢) would be highly interesting.

One of us (RCH) would like to thank R. Weiner and Yu. Sinyokov for interesting
discussions. This work was supported, in part, by the U.S. Department of Energy
under Grant No. DE-FG06-91ER40637, and by the Natural Sciences and Engineering
Council of Canada and the Quebec Department of Education.
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FIGURE CAPTIONS

Fig. 1  Correlation function C'éo) (@) for x = 0 as a function of ¢ and kR.

Fig. 2 Correlation function Cy(¢) for € = 1 and several values of kR with (a) x =
7/100, (b) x = n/8, and (c) x = .

Fig. 3  Correlation function Cy(¢) for € = 0.5 and several values of kR with (a) x =
n/100, (b) x = /8, and (c) x = 7.
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