Author(s)
|
Verlinde, M. (Leuven U.) ; Kraemer, S. (Leuven U.) ; Moens, J. (Leuven U.) ; Chrysalidis, K. (CERN) ; Correia, J.G. (Lisbon, IST) ; Cottenier, S. (U. Gent (main) ; Unlisted, BE) ; De Witte, H. (Leuven U.) ; Fedorov, D.V. (Kurchatov Inst., Moscow) ; Fedosseev, V.N. (CERN) ; Ferrer, R. (Leuven U.) ; Fraile, L.M. (UCM, Madrid, Dept. Phys.) ; Geldhof, S. (Jyvaskyla U.) ; Granados, C.A. (CERN) ; Laatiaoui, M. (Helmholtz Inst., Mainz ; Mainz U., Inst. Kernchem.) ; Lima, T.A.L. (Leuven U.) ; Lin, P.C. (Leuven U.) ; Manea, V. (Leuven U.) ; Marsh, B.A. (CERN) ; Moore, I. (Jyvaskyla U.) ; Pereira, L.M.C. (Leuven U.) ; Raeder, S. (Helmholtz Inst., Mainz ; Darmstadt, GSI) ; Van den Bergh, P. (Leuven U.) ; Van Duppen, P. (Leuven U.) ; Vantomme, A. (Leuven U.) ; Verstraelen, E. (Leuven U.) ; Wahl, U. (Leuven U. ; IST, Lisbon (main)) ; Wilkins, S.G. (CERN) |
Abstract
| A new approach to observe the radiative decay of the $^{229}$Th nuclear isomer, and to determine its energy and radiative lifetime, is presented. Situated at a uniquely low excitation energy, this nuclear state might be a key ingredient for the development of a nuclear clock, a nuclear laser and the search for time variations of the fundamental constants. The isomer's $\gamma$ decay towards the ground state will be studied with a high-resolution VUV spectrometer after its production by the $\beta$ decay of $^{229}$Ac. The novel production method presents a number of advantages asserting its competitive nature with respect to the commonly used $^{233}$U $\alpha$-decay recoil source. In this paper, a feasibility analysis of this new concept, and an experimental investigation of its key ingredients, using a pure $^{229}$Ac ion beam produced at the ISOLDE radioactive beam facility, is reported. |