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Abstract 

We study the transverse and longitudinal forces acting on a relativistic beam particle 
due to the interaction with an electron cloud present in the beam pipe. It is found to be 
convenient to compute the electromagnetic field in a boosted reference frame, moving 
rigidly with the beam. In such a reference frame, charge and current densities are 
stationary, therefore the electric and magnetic fields are solution of an electrostatic and 
a magnetostatic problem respectively. It is possible to show that the force acting on the 
bunch (in the lab frame) is simply proportional to the gradient of the scalar potential 
and is therefore irrotational. This happens since the non-irrotational part of the electric 
field force is cancelled exactly by the force due to the magnetic field. For a relativistic 
beam the scalar potential can be calculated with good approximation as the solution of 
a 2D Poisson problem. The Hamiltonian of the resulting transformation can be written 
as a function of the position coordinates, showing that the map is symplectic and can be 
modelled as a “thin” element in tracking codes. 



1 Introduction

We want to compute the transverse and longitudinal forces acting on a relativistic
beam particle travelling in an indefinitely long perfectly conducting beam pipe, due
to the interaction with an electron cloud [1, 2] present in the chamber.
The particle belongs to a bunch travelling at velocity βc (where c is the speed of light
and β the relativistic factor) along the s axis coinciding with the longitudinal direction
of the pipe. We want to evaluate the effect of the interaction with a portion of the e-
cloud having length L and situated between two sections along the pipe, which are
identified by two points at rest, namely P1 = (0, 0,−L/2) and P2 = (0, 0, L/2) (see
Fig. 1).

Figure 1: A beam particle (in red) travels within an electron cloud. The effect of the interac-
tion with the electrons in a portion of beam-line of length L needs to be evaluated.

The e-cloud pinch follows the bunch, which means that, if we define ρ0 (x, y, t) and
J0 (x, y, t) as the electron charge and current density at the section s = 0 as a function
of the time t and of the transverse coordinates x and y, we can write the charge and
the current density in the entire space as:

ρ (x, y, s, t) = ρ0

(
x, y, t− s

βc

)
(1)

J (x, y, s, t) = J0

(
x, y, t− s

βc

)
(2)

We assume that the electrons do not move along s :

Js = 0 (3)

(the more general case is discussed in appendix).
The reference particle moves accordingly to:

s (t) = βct (4)

A generic particle arriving at the section s = 0 with a delay τ with respect to the
reference particle will move according to:

s (t) = βc (t− τ) (5)
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We define the distance between the two particles in the lab frame :

ζ = −βcτ (6)

which is positive when the particle arrives earlier than the reference particle.
The particles will take a time:

T =
L
βc

(7)

to cross the e-cloud. Of course here we are assuming that particles have the same
momentum and therefore they move at the same speed.

2 Lorentz boost

We call K the lab reference frame in which we have defined all equations above, and
we introduce a boosted frame K′ moving rigidly with the reference particle. The co-
ordinates in the two systems are related by a Lorentz transformation [3]:

ct′ = γ (ct− βs) (8)

x′ = x (9)

y′ = y (10)

s′ = γ (s− βct) (11)

The corresponding inverse transformation is:

ct = γ
(
ct′ + βs′

)
(12)

x = x′ (13)

y = y′ (14)

s = γ
(
s′ + βct′

)
(15)

In the frame K′, the kinematic equation of the particle can be obtained by replacing
Eqs. 12 and 15 into Eq. 5:

s = γ
(
s′ + βct′

)
= βγ

(
ct′ + βs′

)
− βcτ (16)

Solving for s′ we obtain:
s′ = −βγcτ = γζ (17)

Of course for the reference particle we obtain s′ = 0. We observe that beam particles
are at rest in the reference frame K′ and that the distance between them is increased
by a factor γ with respect to the lab frame K.
We now transform the left e-cloud boundary P1, which in the frame K is at rest:

s1(t) = −
L
2

(18)

Using Eq. 15 this becomes:

s′1
(
t′
)
= − L

2γ
− βct′ (19)
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Similarly for P2:

s′2
(
t′
)
=

L
2γ
− βct′ (20)

We see that the e-cloud is moving along s′ with speed −βc.
The length of the e-cloud in the frame K’ is given by L′ = s′2 (t

′)− s′1 (t
′) (difference

of the two positions measured at the same time) obtaining:

L′ =
L
γ

(21)

which shows that in the frame K′ the e-cloud is shorter by factor γ.
In the frame K′, the points P1 and P2 pass at s′ = 0 at times t′1 and t′2 which can be
obtained from Eqs. 19 and 20:

t′1 = − L
2βcγ

(22)

t′2 =
L

2βcγ
(23)

The interaction of the e-cloud (moving) with the particle (at rest) therefore lasts T′ =
t′2 − t′1:

T′ =
L

γβc
=

T
γ

(24)

The interaction lasts γ times less time in the frame K′ compared to the frame K.

3 Electrodynamics in the boosted frame

We now want to transform the charge density function ρ (x, y, s, t) = ρ0

(
x, y, t− s

βc

)
.

The quantities
(
cρ, Jx, Jy, Js

)
form a Lorentz 4-vector and therefore they are trans-

formed between K and K′ by relationships similar to the Eqs. 8-10 [3]:

cρ′
(
r’, t′

)
= γ

[
cρ
(
r
(
r’, t′

)
, t
(
r’, t′

))
− βJs

(
r
(
r’, t′

)
, t
(
r’, t′

))]
(25)

J′s
(
r’, t′

)
= γ

[
Js
(
r
(
r’, t′

)
, t
(
r’, t′

))
− βcρ

(
r
(
r’, t′

)
, t
(
r’, t′

))]
(26)

where the transformations r (r’, t′) and t (r’, t′) are defined by Eqs. 12 and 15 respec-
tively. The transverse components Jx and Jy of the current vector are invariant for our
transformation.
Taking into account that we assumed Js = 0 we obtain:

ρ′
(
r’, t′

)
= γρ

(
r
(
r’, t′

)
, t
(
r’, t′

))
(27)

J′s
(
r’, t′

)
= −γβcρ

(
r
(
r’, t′

)
, t
(
r’, t′

))
= −βcρ′

(
r’, t′

)
(28)

Using Eqs. 1 and 12-14, we obtain:

ρ′
(
x′, y′, s′, t′

)
= γρ

(
x′, y′, s(s′, t′), t(s′, t′)

)
= γρ0

(
x′, y′, t(s′, t′)− s(s′, t′)

βc

)
(29)
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From Eq. 11 we get:

t(s′, t′)− s(s′, t′)
βc

= − s′

γβc
(30)

where the coordinate t′ has disappeared.
We can therefore write:

ρ′
(
x′, y′, s′, t′

)
= γρ0

(
x′, y′,− s′

γβc

)
(31)

Similarly from Eq. 26 we can write:

J′
(
x′, y′, s′, t′

)
= J0

(
x′, y′,− s′

γβc

)
− γβcρ0

(
x′, y′,− s′

γβc

)
îs (32)

where îs is a unit vector identifying the s direction.
We found that, in the reference frame K’, both the charge density and the current
density are not depending on time. As the sources are stationary the fields will also
be stationary.
This means that, in the frame K’, the electric field is solution of the electrostatic prob-
lem:

∇′ × E’ = 0 (33)

∇′ · E’ =
ρ′

ε0
(34)

and the magnetic field is solution of the magnetostatic problem:

∇′ × B’ = µ0J’ (35)

∇′ · B’ = 0 (36)

As the magnetic field B′ is solenoidal and the electric field E’ is irrotational, we can
introduce a vector potential A′ and a scalar potential φ′ so that:

B’ = ∇′ ×A′ (37)

E’ = −∇′φ′ (38)

The potentials can be chosen in order to satisfy the Lorentz gauge condition:

∇′ ·A′ + 1
c2

∂φ′

∂t′
= 0 (39)

where the second term of the left hand side vanishes due to the fact that the scalar
potential is stationary. The vector potential is therefore solenoidal:

∇′ ·A′ = 0 (40)

Replacing Eq. 37 into the Eq. 35, we can write:

∇′ ×
(
∇′ ×A′

)
= ∇′

(
∇′ ·A′

)
−∇′2A′ = µ0J’ (41)
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and using the Eq. 40, we obtain Poisson’s equation for the vector potential:

∇′2A′ = −µ0J’ (42)

Replacing Eq. 38 into Eq. 34 we obtain Poisson’s equation for the scalar potential:

∇′2φ′ = − ρ′

ε0
(43)

To solve Eqs. 42 and 43, appropriate boundary conditions need to be imposed. For
a perfectly conducting chamber, this translates into Dirichlet boundary conditions
both for φ′ and A′, as the scalar and vector potentials need to be continuous across
boundaries [4].
Projecting the Eq. 42 along s′ and using Eq. 28, we obtain:

∇′2A′s = −µ0 J′s = µ0βcρ′ (44)

Comparing against Eq. 43 we can write:

A′s = −
β

c
φ′ (45)

Using this result and taking into account that the quantities
(

φ
c , Ax, Ay, As

)
form a

Lorentz 4-vector, we can show that the s component of the vector potential in the lab
frame vanishes:

As = A′s + β
φ′

c
= 0 (46)

and that the scalar potential in the lab frame is proportional (with a factor 1/γ) to the
scalar potential in the boosted frame:

φ = γ
(
φ′ + βcA′s

)
= γ(1− β2)φ′ =

φ′

γ
(47)

In the frame K’, the beam particle on which we want to evaluate the Lorentz force is
at rest, hence we do not need to compute B’ in order to evaluate the force acting on it.
We therefore focus on the calculation of the electric field E’ from Eqs. 38 and 43.
Equation 43 can be written explicitly as:

∂2φ′

∂x′2
+

∂2φ′

∂y′2
+

∂2φ′

∂s′2
= −ρ′(x′, y′, s′)

ε0
(48)

From Eq. 31 we can write:

∂2φ′

∂x′2
+

∂2φ′

∂y′2
+

∂2φ′

∂s′2
= −

γρ0(x′, y′,− s′
γβc )

ε0
(49)

Using the variable ζ defined by Eq. 6, corresponding to the “coordinate along the
bunch” in the lab frame, which is related to s′ by Eq. 17, we re-define the distribution
in the lab frame with respect to ζ:

ρ̃0 (x, y, ζ) = ρ0

(
x, y,− ζ

βc

)
(50)
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We can rewrite Eq. 49 as:

∂2φ′

∂x′2
+

∂2φ′

∂y′2
+

∂2φ′

∂s′2
= −

γρ̃0

(
x′, y′, s′

γ

)
ε0

(51)

and, using the Eq. 47 we obtain:

∂2φ

∂x′2
+

∂2φ

∂y′2
+

∂2φ

∂s′2
= −

ρ̃0

(
x′, y′, s′

γ

)
ε0

(52)

We observe that φ is the solution of a Poisson problem where the charge distribu-
tion is “streched” along the s′ direction by a factor γ compared to its definition with
respect to the ζ variable in the lab frame. This suggests that, for γ large enough, φ
is well approximated by the solution of 2D Poisson problem.
To better visualize this fact we make the substitution:

ζ =
s′

γ
(53)

obtained from Eq. 17, which allows to rewrite Eq. 52 as:

∂2φ

∂x2 +
∂2φ

∂y2 +
1

γ2
∂2φ

∂ζ2 = − ρ̃0 (x, y, ζ)

ε0
(54)

Here we have dropped the “′” sign from x and y as these coordinates are unaffected
by the Lorentz boost.
For large enough values of γ, Eq. 54 can be approximated by:

∂2φ

∂x2 +
∂2φ

∂y2 = − ρ̃0 (x, y, ζ)

ε0
(55)

which is the 2D Poisson equation solved in CERN macroparticle codes like ECLOUD,
PyECLOUD, HEADTAIL [5, 6, 7, 8].

4 Transverse kick on the beam particle

We now evaluate the change on the transverse momentum for a beam particle defined
in the lab frame by its transverse coordinates x and y and by its delay τ with respect
to the reference particle (or equivalently by its ζ coordinate, defined by Eq. 6).
We have seen that in the frame K′ the particle is at rest and has longitudinal coordinate
s′ = γζ (see Eq. 17). The x’ component of the electric field E′ acting on P is given by
(see Eqs. 38 and 47):

E′x = −∂φ′

∂x
= −γ

∂φ

∂x
(56)

Again, we have dropped the “′” sign from x and y as these coordinates are unaffected
by the Lorentz boost.
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The change in the x component of the momentum, which is an invariant for our
Lorentz transformation, is given by :

∆Px = ∆P′x = qE′xT′ (57)

Using Eqs. 56 and 24 we can write:

∆Px = −qL
βc

∂φ

∂x
(x, y, ζ) (58)

Normalizing to the momentum of the reference particle:

∆px =
∆Px

P
= − qL

mγβ2c2
∂φ

∂x
(x, y, ζ) (59)

Similarly, for the y-direction we can write:

∆py =
∆Py

P
= − qL

mγβ2c2
∂φ

∂y
(x, y, ζ) (60)

Eqs. 59 and 60 provide the transverse components of the kick from the e-cloud
in the form implemented by CERN macroparticle codes HEADTAIL, PyECLOUD-
PyHEADTAIL [6, 8].

5 Longitudinal kick on the beam particle

In the frame K’, the longitudinal component of the electric field is given by:

E′s = −
∂φ′

∂s′
= −γ

∂φ

∂ζ

∂ζ

∂s′
= −∂φ

∂ζ
(61)

where we have used the fact that ∂ζ
∂s′ =

1
γ (see Eq. 53).

As the particle was not moving along s′ before the interaction with the e-cloud, its
longitudinal momentum after the interaction is given by:

P′s = qE′sT′ = − qL
γβc

∂φ

∂ζ
(62)

The total energy of the particle in the frame K′ is given by:

E ′ =
√

m2c4 + c2
(

P′s
2 + P′x

2 + P′y
2
)

(63)

Assuming that in K′ after the kick the particle remains not relativistic, i.e.:(
P′s

2
+ P′x

2
+ P′y

2
)
� m2c2 (64)

we can approximate Eq. 63 as follows:

E ′ ' mc2

(
1 +

P′s
2 + P′x

2 + P′y
2

2m2c2

)
(65)
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The quantities
(
E/c, Px, Py, Ps

)
form a Lorentz 4-vector [3] and therefore can be trans-

formed as follows:
E
c
= γ

(
E ′
c
+ βP′s

)
(66)

Ps = γ

(
P′s + β

E ′
c

)
(67)

Replacing Eq. 65 into Eq. 66 we obtain:

E = cγ

(
mc

(
1 +

P′s
2 + P′x

2 + P′y
2

2m2c2

)
+ βP′s

)
(68)

Neglecting second order terms this can be rewritten as:

E = mc2γ

(
1 + β

P′s
mc

)
(69)

The energy change due to the interaction with the e-cloud is given by:

∆E = E −mc2γ = βγcP′s (70)

Replacing Eq. 62 into Eq. 70 and normalizing to the reference energy E0 = mγc2 we
obtain:

∆E
E0

= − qL
mγc2

∂φ

∂ζ
(71)

From this we can easily compute the change in total momentum. Taking into account
that dP

dβ = mcγ3, dE
dβ = mc2βγ3 and P

E = β
c , we can write:

∆P
P0

=
1
β2

∆E
E0

(72)

Combining Eqs. 71 and 72 we obtain:

∆P
P0

= − qL
mγβ2 c2

∂φ

∂ζ
(73)

6 Practical steps to evaluate the kick

We now recollect the main results found above that are useful for a numerical imple-
mentation:

1. We have a particle having phase space coordinates [9]:

x (74)
px = Px/P0 (75)
y (76)
py = Py/P0 (77)
ζ = (β/β0)s− βct (78)
δ = (P− P0)/P0 (79)
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2. We want to compute the interaction of the particle with an e-cloud pinch de-
scribed by the evolution of the charge density at one section (s = 0):

ρ0(x, y, t) (80)

or equivalently as a function of ζ = −βct:

ρ̃0 (x, y, ζ) = ρ0

(
x, y,− ζ

βc

)
(81)

The e-cloud pinch follows the bunch over a length L along the accelerator. The
effect of the the speed difference between the particle and the bunch (β 6= β0 is
neglected.

3. We compute the scalar potential φ(x, y, ζ) by solving Eq. 54:

∂2φ

∂x2 +
∂2φ

∂y2 +
1

γ2
∂2φ

∂ζ2 = − ρ̃0 (x, y, ζ)

ε0
(82)

For large values of γ, this can be approximated by the 2D equation:

∂2φ

∂x2 +
∂2φ

∂y2 = − ρ̃0 (x, y, ζ)

ε0
(83)

4. The interaction of the beam particle with the e-cloud is modelled by the follow-
ing map (defined by Eqs. 59, 60, and 73):

x 7→ x (84)

px 7→ px −
qL

P0βc
∂φ

∂x
(x, y, ζ) (85)

y 7→ y (86)

py 7→ py −
qL

P0βc
∂φ

∂y
(x, y, ζ) (87)

ζ 7→ ζ (88)

δ 7→ δ− qL
P0βc

∂φ

∂ζ
(x, y, ζ) (89)

The CERN codes PyECLOUD-PyHEADTAIL and HEADTAIL implement only
the transverse part of this map [6, 7].

7 Hamiltonian of the e-cloud interaction

The map defined by Eqs. 84-89 is generated by the Hamiltonian:

H =
qL

P0βc
φ (x, y, ζ) δ(s) (90)
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This can be easily verified using Hamilton’s equations:

dpx

ds
= −∂H

∂x
(91)

dpy

ds
= −∂H

∂y
(92)

dδ

ds
= −∂H

∂ζ
(93)

dx
ds

=
∂H
∂px

(94)

dy
ds

=
∂H
∂py

(95)

dζ

ds
=

∂H
∂δ

(96)

(97)

which, for the Hamiltonial defined in Eq. 90, coincide with Eqs. 84-89.
The fact that it is generated by an Hamiltonian proves that the map is symplectic.

8 Where did the magnetic field go?

It is tempting to interpret φ as the electrostatic potential in the lab frame and therefore
interpret the kicks defined by Eqs. 84-89 as the exclusive effect of the electric field. This
would be puzzling, since the time-changing sources defined by Eqs. 1 and 2 should
in general generate also magnetic fields, which should be visible on the force acting
on the moving particle. Still, observing Eqs. 84-89, we cannot recognize anything that
looks like the vector product from the Lorentz force expression.
To understand this apparent contradiction it is worth stating explicitly that in general
in the lab frame:

E 6= −∇φ (98)

Instead, as the sources are not stationary, the electric field depends on both electro-
magnetic potentials A and φ:

E = −∇φ− ∂A
∂t

(99)

and the magnetic field can be written as:

B = ∇×A (100)

where the Lorentz gauge has been assumed.
The Lorenz force on a particle travelling along the s axis with speed βc can be written
as:

F = q
(
E + βc îs × B

)
(101)

11



Combining Eqs. 99, 100 and 101 we obtain:

F = q

 −∇φ︸ ︷︷ ︸
Irrorational

part of E

−∂A
∂t︸ ︷︷ ︸

Non-irrotational
part of E

+βc îs × (∇×A)︸ ︷︷ ︸
B field

 (102)

Taking into account that As = 0 (see Eq. 46), by expressing the curl in Cartesian
coordinates, we can write:

îs × (∇×A) = −∂Ax

∂s
îx −

∂Ay

∂s
îy = −∂A

∂s
(103)

As the e-cloud is following the bunch, the potentials will have the same form as the
sources (this can be shown explicitly using the Lorentz transformations):

A(x, y, s, t) = A0

(
x, y, t− s

βc

)
(104)

For a function in this form we can write:
∂A
∂s

= − 1
βc

∂A
∂t

(105)

Replacing Eq. 105 into Eq. 103, we obtain:

îs × (∇×A) =
1
βc

∂A
∂t

(106)

which shows that in Eq. 102 the magnetic component of the Lorentz force cancels
exactly the non-irrotational part of the electric component (as shown in [10] for the
special case of a circular symmetric geometry). Hence the force is proportional to the
gradient of the scalar potential:

F = −q∇φ (107)
from which the map defined by Eqs. 84-89 can be easily derived.

9 Conclusions

The transverse and longitudinal forces acting on a beam particle due to the effect of
an electron cloud, can be conveniently calculated in a reference frame moving rigidly
with the particle. In such a reference frame, charge and current densities are station-
ary, therefore the electric and magnetic fields are solution of an electrostatic and a
magnetostatic problem respectively.
It is possible to show that the force acting on the bunch (in the lab frame) is simply
proportional to the gradient of the scalar potential and is therefore irrotational. This
happens since the force due to the non-irrotational component of the electric field is
cancelled exactly by the force due to the magnetic field.
For a very relativistic beam the scalar potential can be calculated with good approx-
imation as the solution of a 2D Poisson problem. The Hamiltonian of the resulting
transformation can be written as a function of the position coordinates, showing that
the map is symplectic and can be modelled as a “thin” element in tracking codes.
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Appendix: Extension to the case Js 6= 0

We now briefly discuss how the results described above need to be changed in case
the hypothesis Js = 0 is not verified and therefore As can in general be non-zero.
In this case Eq. 103 can be generalized as follows:

îs × (∇×A) =

(
∂As

∂x
− ∂Ax

∂s

)
îx +

(
∂As

∂y
−

∂Ay

∂s

)
îy

=

(
∂As

∂x
− ∂Ax

∂s

)
îx +

(
∂As

∂y
−

∂Ay

∂s

)
îy +

(
∂As

∂s
− ∂As

∂s

)
︸ ︷︷ ︸

=0

îs

= ∇As −
∂A
∂s

(108)

Using Eq. 105 this can be rewritten as:

îs × (∇×A) = ∇As +
1
βc

∂A
∂t

(109)

Eq. 109 can be replaced in the expression of the Lorentz force, obtaining:

F = q
(
−∇φ− ∂A

∂t
+ βc îs × (∇×A)

)
= q

(
−∇φ− ∂A

∂t
+ βc∇As +

∂A
∂t

)
= −q∇ (φ− βcAs)

(110)

This shows that also in this case the force can be written as the gradient of a scalar
potential, but it is not anymore simply proportional to φ.
The potential As and φ are related to φ′ by a Lorentz transformation:

φ′ = γ (φ− βcAs) (111)

Hence Eq. 110 can be rewritten as:

F = − q
γ
∇φ′ (112)

where φ′ is the electrostatic potential calculated in the boosted frame and remapped
to the lab frame.
Following the same reasoning exposed in Sec. 3, the potential φ′ can be calculated as
the solution of Poisson’s equation (Eq. 43):

∇′2φ′ = − ρ′

ε0
(113)

where ρ′ is related to ρ and Js by the Lorenz transformation in Eq. 25. This results in
an additional term in Eq. 82, which becomes:

∂2φ

∂x2 +
∂2φ

∂y2 +
1

γ2
∂2φ

∂ζ2 = − 1
ε0

[
ρ̃0 (x, y, ζ)− β

c
J̃0s (x, y, ζ)

]
(114)
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where, J̃0s is defined similarly to ρ̃0 (see Eq. 81):

J̃0s (x, y, ζ) = J0s

(
x, y,− ζ

βc

)
(115)

Also in this case, for large values of γ, Eq. 114 can be approximated by a 2D Poisson
equation.
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