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Abstract

The coupling between the coherent beam-beam modes and the head-tail modes can result in strong instabilities
under the effect of electromagnetic wake fields. This mode coupling phenomenon was modelled and observed in
the Large Hadron Collider (LHC) for the dipole mode. In the High Luminosity upgrade (HL-LHC), the low β

function at the interaction point may generate coupling instabilities of higher-order head-tail modes which would
not be stabilised by the transverse feedback. This paper describes the development of an efficient 6D model of the
coherent beam-beam interactions in order to assess the beam stability in configurations relevant for the HL-LHC.
After having described the limit of the simulation method, we show that the mechanism of Landau damping by the
synchrotron sidebands of the incoherent spectrum is sufficient to stabilise the beam in the operational scenario of
HL-LHC, including a backup scenario without crab-cavity featuring a large Piwinski angle.
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1 Introduction
The beam-beam interaction is a source of coupling between the colliding beams. Once coupled, a system of two
identical beams feature two modes oscillation [1] corresponding to in phase motion of the two beams, the so-called
σ -mode, with a frequency at the unperturbed tune, or out-of-phase motion, corresponding to the π-mode, with a
frequency shifted with respect to the unperturbed tune proportionally to the strength of the beam-beam force. These
two modes could couple with the natural higher order transverse modes of oscillation of each beam, the so called
head-tail modes and be driven unstable by the electromagnetic wake fields resulting from the interaction of the
charged particles with their surrounding. This so-called mode coupling instability of colliding beams was studied
for the Large Hardron Collider (LHC) [2], showing a strong instability resulting from the coupling of the azimuthal
head-tail mode±1 with the beam-beam modes σ and π . In absence of variations of the beam-beam force along the
bunch length, due to a crossing angle between the beams or due to the so-called hourglass effect, the beam-beam
force is mainly dependent on the first-order moment, or dipolar moment, of the transverse mode of oscillation.
The LHC is equipped with a transverse feedback acting on the dipolar motion and, consequently, was found to be
efficient against the mode coupling instability of colliding beams of low order mode. However, the variation of the
beam-beam force over the bunch length, generating the so-called synchrobetatron coupling, allows for coupling
of higher order modes for which the current transverse feedback is inefficient. Such an effect was shown in [3]
using a linearised model implemented in the code BimBim [4]. Due to the linearisation, the tune spread induced by
the beam-beam interactions is neglected, this model is therefore not suited for the estimation of Landau damping.
On the other hand, synchrobetatron coupling was identified as a mechanism enabling Landau damping of coherent
beam-beam modes by the synchrotron sidebands of the incoherent spectrum [5, 6] with the potential of damping
the resulting high order mode coupling instability. The effect is however not quantified, in particular in term of
acceptable impedance. The goal of this study is to develop a numerical model of the mode coupling instability
of colliding beams including the non-linearities of the beam-beam force, i.e. Landau damping, synchrobetatron
coupling and the effect of the wake fields in order to eventually use it to estimate the beam stability in the HL-LHC
configurations.

While such an implementation already exists in the code BeamBeam3D [7], the large computational require-
ments led us to a more efficient simplified implementation, yet maintaining the accuracy of the predictions for the
HL-LHC configuration. Thus, we start by describing two models : a full implementation and a computationally
more efficient model, based on a frozen beam distribution during a bunch crossing resulting in a limited domain of
validity. The single particle aspect of this implementation of the 6D beam-beam interaction in the macroparticle
code COMBI [4, 8–10] is then benchmarked against the original weak-strong code [11]. The coherent aspect is
also benchmarked against theoretical predictions via the Yokoya Factor [12]. The limits of the frozen model are
then explored, before investing numerically the link between the decoherence and the Landau Damping shown in
[5]. Finally, the results of parametric studies of the mode coupling instability of colliding beams in the HL-LHC
operational scenario are exposed.

2 Numerical Model of the 6D beam-beam strong-strong soft-Gaussian kick
To quantify the Landau Damping effect, we need a more accurate model than the linearised modal approach. In
particular, a model of the single particle motion in the presence of the strong non-linearity of the beam-beam force,
along with a model of the coherent force is required. In this section we present the way to model the evolution of
two bunches across each other over multiple turns using the macro-particle approach, based on the existing code
COMBI. In order to take into account the effect of the crossing angle at the Interaction Point (IP), as well as the
effect of the variation of the beam size over the length of the interaction, due to the low β ∗ in comparison to the
bunch length σs, we compute the kick on every single particle based on an adaptation of the weak-strong algorithm
developed in [11] which takes into account the statistical moments of the other beam’s particle distribution evalu-
ated numerically rather than the assumed values for the other beam.

The principle of the algorithm is as follows. For each colliding bunch, we perform the Lorentz boost of the
coordinate of each macro-particle from the laboratory frame to a referential moving transversely to the propagation
axis of the two beams, such that the crossing angle between the beams appears cancelled in this frame, as a result the
bunch distributions are tilted in this new frame, as illustrated in Fig. 1. Second, we sort the particles of each bunch in
Ns equidistant longitudinal slices and compute their first and second statistical moments based on the coordinates of
the macro-particles contained in each slice in the boosted frame. Then, we compute the variation of the momentum
of each particle based on the derivation of the electromagnetic fields for a Gaussian distribution of charges due
to each colliding bunch slice. Finally, we perform the inverse boost to restore the coordinate of each beam in its
own frame. As opposed to the weak-strong model, the moments of the slices have, in principle, to be recomputed
after every slice-slice interaction, since the trajectory of the particles is modified by the electromagnetic interaction.
Such a so-called full implementation is computationally expensive, as the statistical moments needs to be computed
N2

s times. In some cases however, the variation of the particles’ trajectories over a single interaction between two
bunches, and the resulting modification of the electromagnetic force, is negligible. In such configurations, the
computational needs can be reduced by computing the slice moments only once at the start of the interaction, thus
neglecting the effect of the beam-beam interaction. This method is somewhat intermediate between a weak-strong
model, where the reaction of the other beam is entirely neglected and a full strong-strong model, since it neglects
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the reaction of the other beam only through a single interaction, but does model properly the variations turn after
turn. This frozen model can therefore be used to describe the coherent modes only when the beam-beam interaction
is sufficiently weak. The next section describes the mathematical details of these implementations, including the
derivation of a criterion for the validity of the frozen model.

2.1 6D beam-beam soft Gaussian kick
2.1.1 Lorentz Boost

Figure 1: Schematic view of the distributions of macro-particles of the two beams in their own reference frame,
i.e. with respect to their own closed orbit at the IP, as modelled in COMBI (lower plot). The closed orbit of
the two beams, including the crossing angle is shown in the middle plot. Finally the upper sketch shows the
distribution of the macro-particle distribution in a boosted frame that cancels the crossing angle between the beams.
The interaction between a macro-particle (blue dot) and a slice of the opposing beam (black circled red dots) is
illustrated with a green dashed line. The fields are computed at the Collision Point (CP) defined by the location
where the particle and the slice are at the same longitudinal position, based on the statistical moments of the
distribution of the macro-particle in the slice.

Figure 1 illustrates two bunches colliding with a crossing angle φ at the IP in their own reference frame and
around their own closed orbit (i.e. corresponding to half the total crossing angle between the beams), as well as
the boost in the common frame where the collision is head-on. Considering the quadrivector conservation in the
ultra-relativistic approximation, the boost can be written [13, 14]:

x∗ = zcosα tanφ + x[1+h∗x cosα sinφ ]+ yh∗x sinα sinφ

y∗ = zsinα tanφ + y[1+h∗y sinα sinφ ]+ xh∗y cosα sinφ

z∗ = z
cosφ

+h∗z [x cosα sinφ + y sinα sinφ ]

(2.1)


p∗x =

px
cosφ
−hcosα

tanφ

cosφ

p∗y =
py

cosφ
−hsinα

tanφ

cosφ

d p
p
∗
= d p

p − px cosα tanφ − py sinα tanφ −h tan2 φ

, (2.2)

where α is the angle between the crossing angle plane and the s,x plane, (x,y,z, px, py,d p/p) are the coordinates
of the beam in its own frame, the corresponding Hamiltonian is given by:

h = 1+
d p
p
−

√(
1+

d p
p

)2

− p2
x− p2

y , (2.3)

and in the boosted frame:

h∗x =
p∗x√(

1+ d p∗
p∗

)2
− p∗2x − p∗2y

(2.4)

h∗y =
p∗y√(

1+ d p∗
p∗

)2
− p∗2x − p∗2y

(2.5)

h∗z = 1−
d p∗
p∗ +1√(

1+ d p∗
p∗

)2
− p∗2x − p∗2y

. (2.6)

2



High-Luminosity LHC - Note CERN-ACC-NOTE-2019-0032

(2.7)

2.1.2 Computation of the statistical moment
As illustrated in Fig. 1, the particles of the bunch are sorted in Ns longitudinal slices. The first and second statistical
moments of the distribution of slice k are computed based on the 6D coordinates of the macro-particles inside each
slice, Xk = (x, px,y, py,z,

d p
p ), noted

〈
Xk

i
〉

and Σk
i j respectively, with i, j = 1, ...,6. The IP is defined as the longitu-

dinal location where the bunch centres cross each other. In the ultra relativistic approximation, the electromagnetic
fields are purely transverse, as illustrated with blue arrows on Fig. 1. Consequently, the beam-beam forces between
a given macro-particle and a slice has to be computed at the corresponding Collision Point (CP), where the two are
located at the same longitudinal position (Fig. 1). The longitudinal distance between the CP and the IP for a given
macro-particle and slice k is given by:

Sz =
z∗−

〈
Xk

5

〉
2

. (2.8)

At the CP, the distance between the slice centroid and a given macro-particle is:

S{x,y} =
(
{x,y}∗+ p∗{x,y}Sz

)
−
(〈

Xk
{1,3}

〉
−
〈

Xk
{2,4}

〉
Sz

)
. (2.9)

The variation of the transverse position due to the crossing angle is now embedded in the momentum of the particles
in the boosted frame. The variation of the β function with the longitudinal position results in a modification of the
beam sizes σ k

{x,y}(Sz), which is taken into account as follows [13]:

σ
k
x (Sz) = Σ

k
11 +2Σ

k
12Sz +Σ

k
22Sz

2 (2.10)

σ
k
y (Sz) = Σ

k
33 +2Σ

k
34Sz +Σ

k
44Sz

2. (2.11)

2.1.3 Computation of the slice-macro-particle interaction
The variation of the transverse momentum of a particle experiencing the electromagnetic forces generated by a
Gaussian beam integrated over the collision was derived in [1]. For completeness, we write here the algorithm as
implemented in COMBI without derivation. Let us define the strength of the interaction based on the number of
particles in the slice Nk, the classical proton radius r0 and the relativistic γ factor:

f k
0 =−Nkr0

γ
. (2.12)

We can then write:

Fk
{x,y}(Sx,Sy,Sz) = f k

0

√
2π

ηk {Im,Re}

w

(
Sx + iSy√

2ηk

)
− exp

(
− Sx

2

2σ k2
x
−

Sy
2

2σ k2
y

)
w

 σ k
y (Sz)

σ k
x (Sz)

Sx + i σ k
x (Sz)

σ k
y (Sz)

Sy√
2ηk


 ,
(2.13)

where w is the error function and:
η

k = σ
k
x (Sz)

2−σ
k
y (Sz)

2. (2.14)

Implicitly, σ k
x > σ k

y is assumed here. The longitudinal component of the integrated force can be expressed in
function of the transverse components:

Fk
z (Sx,Sy,Sz) = Sz

(
Σ

k
22Gk

x +Σ
k
44Gy

y

)
+

1
2

[
Fk

x

(
p∗x−

Fk
x

2

)
+Fk

y

(
p∗y−

Fk
y

2

)]
, (2.15)

where:

Gk
{x,y}(Sx,Sy,Sz) = {−,+}

√
2

χ(Sz)

[
SxFk

x +SyFk
y + f k

0

[
σ k
{x,y}(Sz)

σ k
{y,x}(Sz)

e
−
(

x2

2σk
x (Sz)

+ y2

2σk
y (Sz)

)
−1

]]
, (2.16)

with:
χ(Sz) = σ

k
x (Sz)−σ

k
y (Sz). (2.17)

Finally we obtain the new coordinates of each macro-particle of the bunch due the electromagnetic force of all the
slices [13]: 

x∗new = x∗+SzFk
x (Sx,Sy,Sz)

p∗x,new = p∗x−Fk
x (Sx,Sy,Sz)

y∗new = y∗+SzFk
y (Sx,Sy,Sz)

p∗y,new = p∗y−Fk
y (Sx,Sy,Sz)

z∗new = z∗
d p
p
∗
new

= d p
p
∗−Fk

z (Sx,Sy,Sz).
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Statistical moments

Single 
particle kick

Figure 2: Illustration of the iterative method for the computation of the coherent 6D kick. At each step, the statistical
moments of the colliding slices (here the first and the second) of the two beams is computed and communicated via
MPI (solid lines) and then the kick applied to the single particles in the other beam (dashed lines). The particles
of each slices are transported to the location of the next interaction, with the next slice of the other beam (dotted
lines).

2.1.4 Iteration over the slices
In order to obtain a complete description of the interaction, a computation of the effect of each slice on every particle
of the other beam needs to be computed iteratively respecting causality and including a re-evaluation of the statis-
tical moments at every step due to the change in momentum generated by the interaction itself. This can be done
with n = 1, ..,2Ns−1 steps, at which the statistical moments of the slices with k ∈ [max(1,n−Ns +1),min(n,Ns)]
are computed and the interaction of these slices with the particles in the corresponding slice n− k+1 of the other
beam is evaluated as described previously. This iterative method is illustrated in Fig. 2. In order to fit the parallel
computing paradigm of COMBI, the statistical moments of each slice are computed by the MPI process holding the
memory with coordinates of the macro-particles in the beams, only the information of the statistical moments of
the slices is sent to the MPI process holding the coordinates of the colliding bunch of the other beam. This process
then computes the effect of the slices on the corresponding macro-particles, using a second level of parallelisation
based on OpenMP.

This method requires multiple evaluations of the statistical moments of each slice which becomes particularly
heavy when a large number of macro-particles are required to model the interaction accurately. The computational
requirement can be relaxed for configurations where the deflections due to the beam-beam interactions with the
slices are weak, such that the variation of the statistical moments over one interaction is negligible and consequently
do not need to be re-evaluated at every step. This condition is met if the effect of the maximum transverse deflection
over the interaction length, which we pessimistically consider equal to the bunch length, remains small when
compared to the beam size. In this case, we can write:

max
x′,y′,s′,k

Fk
{x,y}(x

′,y′,s′)σs

σx
<< 1. (2.18)

Remaining pessimistic, we derive the maximum of the kick neglecting the longitudinal variations of the force and
the crossing angle and we assume round Gaussian beams. The integrated beam-beam force in the horizontal plane
is given by:

Fx(x,y) =
2Nr0

γ

x
r2

[
1− e(−

r2

2σ2 )
]
, (2.19)

with r =
√

x2 + y2. The maximum of the force is given by:(
2x2

2σ2
x
+1
)

e
− x2

2σ2x = 1,y = 0. (2.20)

The solution xmax can be expressed using the lower branch of the Lambert function W−1 [15]:

x2
max

2σ2 =−W−1

(
− 1

2
√

2
√

e

)
− 1

2
≈ 1.2563. (2.21)

Finally we obtain for the maximum:

max
x,y

Fx(x,y) =
2Nr0

γxmax

[
1− e−

x2max
2σ2

]
≈ 0.9025

Nr0

γσ
. (2.22)

The criterion 2.18 roughly becomes:

χfrozen ≡
Nr0

ε

σs

β ∗
<< 1, (2.23)

where we recognise a dependence on the beam-beam parameter (Nr0/4πε) and on the hourglass parameter σs/β ∗.
The frozen model is therefore appropriate for reasonably low beam-beam parameter and weak hourglass effect.

4



High-Luminosity LHC - Note CERN-ACC-NOTE-2019-0032

In the HL-LHC operational scenario [16], the strongest head-on beam-beam interaction is obtained at the start of
collision in the ultimate scenario, where we have χfrozen ≈ 0.03, justifying the relevance of the frozen model in the
various HL-LHC configurations. Indeed, the most critical configuration is at the edge of numerical artefacts linked
to this approximation, as will be discussed in Sec. 2.3.

2.1.5 Reverse Lorentz Boost
After the computation of the new coordinates in the boosted frame, we perform the corresponding anti Lorentz
Boost to obtain the coordinates of the macro-particles of each beam in their own reference frame. Again follow-
ing [14], we have:

xnew = (x∗new[
1

cosφ
+ sinα tanφ(h∗y,new−h∗z,new sinα sinφ)]

+ y∗new sinα tanφ [h∗z,new cosα sinφ −h∗x,new] (2.24)

− z∗new tanφ [ cosα−h∗x,newsin2
α sinφ +h∗y,new cosα sinα sinφ ])/det(L)

ynew = (x∗new cosα tanφ [−h∗y,new +h∗z,new sinα sinφ ]

+ y∗new[
1

cosφ
+ cosα tanφ(h∗x,new−h∗z,new cosα sinφ)] (2.25)

− z∗new tanφ [ sinα−h∗y,newcos2
α sinφ +h∗x,new cosα sinα sinφ ])/det(L)

znew = (−x∗newh∗z,new cosα sinφ (2.26)

− y∗newh∗z,new sinα sinφ

+ z∗new[1+h∗x,new cosα sinφ +h∗y,new sinα sinφ ])/det(L),

where the determinant of the matrix L representing the transformation of Eq. 2.1 was introduced:

det(L) =
1

cosφ
+
(
h∗x,newcosα +h∗y,newsinα−h∗z,newsinφ

)
. (2.27)

By recomputing the Hamiltonian h and inverting the system 2.2, we find the corresponding momentum :
px,new = p∗x,newcosφ

+hcosα tanφ

py,new = p∗y,new +hsinα tanφ

d p
p new

= d p
p
∗
new
− px cosα tanφ − py sinα tanφ −h tan2 φ .

(2.28)

2.2 Benchmark
This section summarises convergence studies of the algorithm implemented against the weak-strong code BBC [11]
as well as a test of the coherent component of the algorithm by recovering the Yokoya factor [12] for the frequency
of the beam-beam π-mode. The theoretical result is also extended with these simulations to configurations with a
crossing angle.

2.2.1 Convergence against the weak-strong model

Table 1: Parameters used for the benchmark of the code and for the simulation of the HL-LHC. We shall note that
the latter differ slightly from the present baseline [16]. The partial compensation of the crossing angle by crab
cavities is modelled with an effective crossing angle. The wake field model is detailed in [17, 18]. 500 longitudinal
slices were used for the numerical modelling of the effect of the wake fields.

Benchmark HL-LHC
Energy [TeV ] 7.0
Intensity Nb [1011 p/b] 1.1 2.2
β ∗ [m] 0.6 0.15
Transverse Emittance εn [µm] 2 2.5
Longitudinal size σs [ns] 0.25 0.3
Rel. energy spread σp [10−4] 1.129 1.2
Betatron tunes (H/V) 0.31 / 0.32
Synchrotron tune 0.0012
Full effective crossing angle [µrad] 140

This implementation of the 6D electromagnetic model was benchmarked with the reference code BBC [11].
This reference code computes the momentum variation of a single particle experiencing the electromagnetic forces
of the other beam, taking into account the effect of the crossing angle and the hourglass effect, assuming a Gaussian
distribution of the charges. Contrary to COMBI, the distribution of the other beam, i.e. the strong beam, is known
and remains unchanged. The dynamics of the coherent instabilities requires a dynamical model of the distribution
of each beam and therefore can only be modelled with COMBI. Consequently, the physics of the two codes is
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expected to be identical on the first turn of the simulation since the macro-particles are initialized with a Gaussian
distribution in COMBI.

For the benchmark, we fixed the number of slices at 50 in the BBC input parameter. We compute for different
numbers of macro-particle and numbers of slices the distribution after one interaction with COMBI. In input of the
BBC software we used the random Gaussian distribution generated by COMBI before the first turn, such that the
result of the two codes can be directly compared.

After the computation of the boost, kick due to the beam-beam interaction and inverse boost for one turn, we
compare the two output distributions using the error definition:

∆
COMBI
i =

〈
∣∣∆pi

COMBI−∆pi
BBC
∣∣〉

〈
∣∣∆pi

BBC
∣∣〉 , (2.29)

where ∆pi is the difference in momentum due to the electromagnetic interaction at the IP for one turn with i= x,y,z.
The error is expressed relatively to the average value of the kick computed with the reference code BBC. In Eq.
2.29, 〈

∣∣∆pi
BBC
∣∣〉 represents the average of the absolute value of the difference in momentum computed with BBC

code:

〈
∣∣∆pi

BBC∣∣〉= 1
Nm

Nm

∑
n=0

∣∣∣∆pn
i

BBC
∣∣∣ , (2.30)

where Nm is the number of macroparticle and ∆pn
i is the difference in momentum corresponding to the macroparticle

n.

Fixing the number of slices in COMBI to 30, we obtained an error decreasing with ≈ N−0.5
m (Fig. 3a). This

convergence of the error is in agreement with the typical statistical error on the computation of the moments,
which is required in COMBI but not in BBC. Fixing the number of macro-particles to 106, we observed a strong
decrease of the error between 1 slice and 7 slices (Fig. 3b). For the low number of slices the field variations due
to the crossing angle could not be captured, resulting in a strong inaccuracy. Once a sufficient number of slices
is reached, the error decreases much slower, close to the expected statistical convergence. More generally, the
convergence is shown as a function of the two numerical parameters in Fig. 4. We observe that the accuracy is
mainly limited by the large number of macro-particles required, whereas approximatively 10 slices are sufficient
to reach the convergence in this numerical parameter. With 106 macro-particles, the remaining error is ≈ 5 ·10−3,
which is considered acceptable for the simulations of fast collective effects, as the error does not increase linearly
with time due to the mixing of the particles as they perform betatron oscillation in the presence of a strong non-
linear force.

(a) ∆COMBI
x in function of the number of macro-particles (Nm)

for a number of slice (NSlice) fixed at 30.
(b) ∆COMBI

z in function of the number of slice (NSlice) for a num-
ber of macro-particle (Nm) fixed at 106.

Figure 3: Relative difference in the 6D beam-beam kick in COMBI and BBC as a function of the number of macro-
particles (left plot) and the number of slices (right plot), using the benchmark configuration described in Tab. 1.
The horizontal and longitudinal kicks are shown, the same behaviour is observed in all degrees of freedom.

2.2.2 The Yokoya factor
When we consider two beams travelling through identical lattices and experiencing a single beam-beam interaction,
the dipole coherent modes of oscillation are the σ -mode and π-mode visible in the oscillation spectrum of the beams
shown in Fig. 5. The results of several simulations with different crossing angles are shown. For comparison the
frequency obtained with the linearised model are shown with dots. Red dots represent dipole modes whereas the
light yellow dots show higher order head-tail modes, which are therefore not visible in the beam spectrum. The
dependence of the π-mode on the crossing angle is similar for both the modal approach and the macro-particles
tracking simulations. The crossing angle is on the (x,s)-plane but the dependence of the angle is also visible in the
perpendicular direction y as it also introduces a, yet weaker, variation of the force in the non-crossing plane.
The frequency difference of the π-mode between the two approaches is due to variation of the beam distribution
caused by non-linearity of the beam-beam interaction which is only modelled by the macro-particle approach. The
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Figure 4: Convergence of ∆COMBI
z as function of the two numerical parameters, namely the number of macro-

particles and of slices. The configuration considered for this benchmark is a variation of the HL-LHC configuration
described in Tab. 1 but with β ∗ = 10 m and a full crossing angle of 500µrad.

(a) x-component.

(b) y-component.

Figure 5: Comparisons of the real part of the frequency between the modal analysis with BimBim (The red and
yellow dots represent mode with a large and small dipole moment respectively) and the macro-particle with 6D soft
Gaussian beam-beam kick COMBI (spectogram) for a variation of the HL-LHC configuration described in Tab. 1
but with β ∗ = 10 m and a full crossing angle of 500µrad. This simulation includes the effect of the lattice, the
beam-beam interaction and a beam-beam interaction at a single IP with the crossing angle in the (x,s)-plane. The
macro-particle simulations are based on the tracking of 106 particles over 104 turns. The coherent 6D beam-beam
interaction is modelled with 15 slices. The modal approach is based on a discretisation of the longitudinal phase
space with 4 slices a single ring, i.e. corresponding to the so-called air-bag model for the longitudinal phase space.
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(a) The ∆Q between the σ -mode and π-mode. (b) The Yokoya factor.

Figure 6: Tune shift between the π-mode and σ -mode as a function of the crossing angle based on the spectrum
shown in Fig. 5, the linearised model and a theoretical estimate, with the Yokoya factor deducted. The error bar
is evaluated based on the width of the π-mode peak in the oscillation spectrum of beam in the macro-particle
simulation shown in Fig. 7.

variation is described with a form factor called the Yokoya factor [12]. As the coherent 6D beam-beam kick is
based on a soft-Gaussian approximation, it is expected to find ΛYokoya ≈ 1.1.
The theoretical tune shift in the presence of a crossing angle, neglecting coherent effects, ∆Qth can be obtained by
computing the tune shift for a 4D beam-beam interaction and adjusting the beam size in the crossing angle plane
using the so-called effective beam size. Given the Piwinski angle:

Px,y =
σs

σx,y

φ

2
, (2.31)

with σx,y the r.m.s. transverse beam size in the plane of the crossing angle, we can write :

∆Qth
x =

Nbr0β ∗x

2πγσ0
x

√
1+Px

2
(

σ0
x

√
1+Px

2 +σy

) . (2.32)

Figure 6a shows a comparison of the tune shift between the σ and π modes obtained with the different approaches.
The frequency tune shift obtained with the linearised modal approach is noted ∆QBIMBIM. While the results ob-
tained with COMBI (points) are not compatible with the modal approach and the theoretical model without form
factor (dashed lines), they are compatible with the same curve assuming ΛYokoya ≈ 1.1. The Yokaya factor directly
estimated from this comparison is shown in Fig. 6b. The results obtained not only are in agreement with the theory
at zero crossing angle but also suggest that the Yokoya factor is constant, or varies weakly, with the crossing angle.
It is worth noting that for a half crossing angle greater than 300 µrad, the uncertainty on ∆Q increases (Fig. 6). This
effect is caused by a broadening of the peak corresponding to the π-mode in the beam oscillation spectrum, as il-
lustrated in Fig. 7b. For such angles, the frequencies covered by the incoherent spectrum due to the non-linearity of
the beam-beam force reaches the frequency of the π-mode, thus resulting in Landau damping of the coherent mode.

(a) For 100 µrad of half crossing angle. (b) For 400 µrad of half crossing angle.

Figure 7: Beam oscillation spectrum extracted from Fig. 5. The Gaussian fit performed to evaluate the error on the
frequency of π-mode, is shown with a dashed red line. The peak is marked with a grey vertical line. The results of
the fits were reported in Fig. 6.
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2.3 Limit of the frozen model: π-mode instability
The frozen model exhibits artificial coherent instabilities when pushed beyond its validity, i.e. when χfrozen ≈
1 or higher. Two examples of such artificial instabilities are described below, together with the corresponding
simulations using the full model, which does not feature this instability.

2.3.1 Decoherence studies

(a) Frozen model. (b) Full model.

(c) Frozen model. (d) Full model.

Figure 8: Observation of the decoherence of the π-mode for a large beam-beam parameter ξ = 3.2 QS and a strong
hourglass σs/β ∗ = 0.45, resulting in χfrozen = 0.04. The simulation is performed with the 6D soft-Gaussian frozen
model and a linear lattice.

The decoherence of a kick applied to the colliding beams will be discussed in the next section, here we
discuss a numerical instability that was encountered with the frozen model. The simulation setup for these studies
consist in initialising the two beams with an offset with respect to their reference orbit. In order to initialise
the beams in a σ -mode configuration, the two beams are offset in the same direction, as opposed to the π-mode
configuration in which the two bunches are initialised with opposite offsets. The beam parameter evolution during
a simulation of the decoherence of the π-mode with a large beam-beam parameter and a strong hourglass effect is
shown in Fig 8. Both the oscillation amplitude and the beam emittance are growing in time, indicating the presence
of a numerical instability. The parameters chosen correspond to χfrozen = 0.04. This numerical artefact of the frozen
model is not present when using the full implementation of the coherent 6D kick for the same simulation setup.

2.3.2 Impedance studies
A similar numerical instability is observed in the presence of wake fields but without initial offset. We consider here
a similar configuration with a single IP and two identical optics for the two beams, a strong hourglass effect and
without crossing angle. Figure 9 shows the comparison of the complex frequencies obtained for this configuration
with varying beam-beam parameter, at a fixed effect of the wake fields, with three models: the frozen model, the full
model and the linearised modal approaches. For both 6D soft-Gaussian model we observe a good correspondence
with the linearised modal approach only for the low beam-beam parameter (ξ /Qs). For Qs / ξ / 8Qs, we observe
the damping of the mode coupling instabilities in both macro-particle approaches as opposed to the linearised modal
approach. This effect can be attributed to Landau damping by the synchrotron side-bands, as will be discussed in
the next sections. For a beam-beam parameter larger than ≈ 8Qs, corresponding to χfrozen ≈ 0.08, an instability
of the π-mode is observed only in the frozen model. As in the decoherence studies, this instability is a numerical
artefact.
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Figure 9: Comparison of the complex tune shifts obtained with the modal approach using BimBim (dots colorcoded
in red to yellow corresponding to large to small dipolar moments) and the spectrum (colour coded on the two upper
plots) and growth rate (lower plot) obtained with the macro-particle approach with COMBI, using the frozen and
full 6D soft-Gaussian coherent beam-beam kick. The simulation were performed with the HL-LHC parameters
listed in Tab. 1 but without crossing angle and a single 6D beam-beam interaction. The number of macro-particles
is 106 and the number of longitudinal slices is 50. For the modal approach, the longitudinal phase space is modelled
with 50 slices and 5 rings. The effect of the wake fields are kept constant while scanning the beam-beam parameter.
The upper and lower limit of the single particle frequencies in the lower synchrotron side-band are represented in
dotted lines to guide the eye.

It is worth noting here that the computing time using the frozen model for this configuration, featuring 106

macro-particles and 50 longitudinal slices, is about 6 times faster than the full model, bringing the execution time
for a single simulation from about a week for the full model to about a day with the frozen model. Nevertheless,
these models seem limited to configurations with χfrozen in the order of a few percent.

3 Hourglass effect
Based on the development in [5], one does not expect any decoherence, and consequently any Landau damping
of both the σ and π-modes, in a configuration without synchrobetatron coupling. Indeed, the latter, together with
the overlap of the synchrotron side-bands of the spectrum of the single particles oscillating at different amplitudes,
so-called incoherent spectrum, with the frequency of the coherent modes, also called discrete modes, were shown
to be required conditions for both decoherence and Landau damping of these modes. In particular, it is also shown
that in the presence of both hourglass effect and chromaticity, the coupling between the longitudinal plane and the
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transverse plane is cancelled with the condition :

Q′σs

αpR
=

σs

β ∗x
, (3.1)

with the lattice chromaticity Q′, the momentum compaction factor αp and the machine average radius R. It is
therefore expected to recover the loss of Landau damping and lack of decoherence if this condition is met. In the
following, these results are verified and further extended with the new implementation of the 6D coherent kick in
terms of both decoherence and Landau damping.

3.1 Decoherence

(a) σs/β ∗ = 0.45. (b) σs/β ∗ = 9×10−3.

(c) σsQ′/αpR = 0.057. (d) σsQ′/αpR = 0.29.

Figure 10: Simulated decoherence rate of the π-mode for different configurations of chromaticity, hourglass and
crossing angle with a fixed beam-beam parameter of ξ = 2.86 Qs. The initial separation corresponds to 0.1 σx. The
simulations were performed with a single 6D frozen soft-Gaussian coherent kick and a linear lattice over 10000
turns, using 106 macro-particles and 50 longitudinal slices.

Figures 10 shows the result of simulations of the decoherence time of the π-mode, obtained by initialising
the position of both beams with an offset with respect to the closed orbit, in opposite directions. The decoherence
time is obtained with an exponential fit of the decaying oscillation amplitude. A configuration compatible with the
assumption behind Eq. 3.1 was chosen, with a single interaction point and an identical lattice for each beam. In the
various configurations of chromaticity, hourglass effect and crossing angle, the absence of decoherence is recovered
when the condition of Eq. 3.1, marked in red on the plots, is met. In all other cases, decoherence is observed as
expected.
We observe that the decoherence decreases with the crossing angle α , as it could be anticipated since the tune
spread induced by beam-beam interaction reduces.

The results of a similar set of simulations is shown in Fig. 11, in which the wake fields were introduced,
based on the HL-LHC and LHC models. The difference in wake models does not play a role in this study, however
we note that in the LHC-like configuration, with a low hourglass effect, the absence of decoherence is maintained
in the presence of wake fields. On the other hand, in the HL-LHC-like configuration, featuring a large hour-glass
effect, the absence of decoherence is not recovered. This can be explained as the condition of Eq. 3.1 results from
a subtle cancellation of the synchrobetatron coupling term, which is broken by the wake fields. Indeed, the wake
fields are a strong coherent source of synchrobetatron coupling which is not taken into account in the underlying
model. This effect is critical in the understanding of mode coupling instabilities of colliding beams, as the effect
of the wake fields can not be neglected. As a result, it is no longer expected to find configurations were the Landau
damping is lost, as long as the condition of overlap between the incoherent spectrum and the coherent mode is
met. Simulations are nevertheless still required to assess whether the Landau damping in such configurations is
sufficiently strong to mitigate the mode coupling instability of colliding beams for a given wake field model.
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(a) σs/β ∗ = 0.45. (b) σs/β ∗ = 9×10−3.

Figure 11: Simulated decoherence rate of the π-mode as a function of the chromaticity for a fixed beam-beam
parameter ξ = 2.86 Qs and different strengths of hourglass effect. The initial separation corresponds to 0.1 σx. The
simulations were performed with a single 6D frozen soft-Gaussian coherent kick and a linear lattice over 10000
turns, using 106 macro-particles and 50 longitudinal slices.

3.2 Landau Damping of the mode coupling instability
The mode coupling instability of colliding beams, in absence of hour glass effect and chromaticity, was shown
to occur only when the condition of overlap of the mode frequencies is met, similarly to the Transverse Mode
Coupling Instability (TMCI). However, the mode coupling instability exists at any beam-beam tune shift in the
presence of either hour glass effect or chromaticity. This effect is clearly observed in Fig. 12a where, for a strong
hourglass effect, unstable modes are already visible for a low tune shift. In other words, the destabilising effect
of the beam-beam interaction exists even when the frequency of the coherent modes are well separated. This can
be understood as the head and the tail of the bunch are no longer only coupled through the wake fields, but also
through the beam-beam force due to the variation of the beam size along the interaction. The TMCI-like behaviour
is recovered when the hourglass effect is reduced, as shown by Fig. 12b.
The growth rate of the instability obtained with the macro-particle simulations are compatible with the most un-
stable mode obtained with the linearised modal approach for low beam-beam parameter. Once the beam-beam
interaction is sufficiently strong, such that the π-mode enters the first lower synchrotron side-band of the incoher-
ent spectrum, the instability is naturally damped. This damping for large beam-beam parameters can be interpreted
as an effect of Landau Damping on the mode coupling instability of the colliding beam. Indeed, both the conditions
of overlap of the coherent mode with the incoherent spectrum and the presence of synchobetatron coupling [5] are
met. This interpretation is also compatible with the corresponding decoherence simulations (Fig. 12b). Indeed, the
decoherence is inexistent for small tune shift, but increases significantly for both the σ and π-modes when their
frequencies reach the first upper and lower sideband of the incoherent spectrum respectively.
The beam-beam force is such that the particles with a low oscillation amplitude experience a large tune shift
downwards when considering particles of the same charge sign in each beam, whereas the particles with a large
oscillation amplitude see a vanishing force and consequently a vanishing tune shift. As a result, the σ -mode lays
naturally at the upper end of the incoherent spectrum. Since we consider here a wake field model dominated by
resisitve wall contributions, in particular due to collimators, the tune of the σ -mode is naturally shifted down to-
wards the incoherent spectrum. It is therefore expected that as the wake fields strength increases, the decoherence
and Landau damping of this mode increases as well. This effect is shown with a decoherence simulation of the
σ -mode in the presence of wake fields in Fig. 12a. This effect does not apply to the π-mode, whose frequency lays
below the incoherent spectrum.
For weak hourglass effect, the absence of damping for the first mode coupling (π-mode and azimuthal head-tail
mode -1) is expected in absence of synchrobetatron coupling and is also compatible with the absence of decoher-
ence in the simulation. The damping of the second coupling (σ -mode and azimuthal head-tail mode +1) seem
however in disagreement with both. Yet, as shown in the previous section, the synchrobetatron coupling induced
by the wake itself can restore Landau damping. Here, we can interpret the difference of behaviour between the two
mode couplings by noticing that the frequency of the first occurs at the upper part of the first lower sideband of the
incoherent spectrum, whereas the second coupling occurs in the middle of the upper sideband. Since the centre of
the spectrum is significantly more populated than the edge, the Landau damping is expected to be more efficient
for the second coupling. This explanation was already discussed in [2].
Finally, comparing the real tune shift obtained with the macro-particle simulations with respect to the linearised
modal approach, one observes a slight difference, due to the Yokoya factor, equal to 1.1 for the macro-particles sim-
ulations using the soft-Gaussian model and 1.0 in the linearised model. As a result, the mode coupling instability
occurs at a slightly different frequency.

4 Application to the HL-LHC configuration

Thanks to the establishment of collisions with a large β ∗, allowing for luminosity levelling and the par-
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(a) HL-LHC case. (b) Low hourglass.

Figure 12: Simulations of the mode coupling instability of colliding beams with a varying beam-beam tune shift
using the macro-particle model with a single coherent 6D frozen beam-beam interaction and an identical lattice
for both beams (upper and middle plots) as well as decoherence rate simulations in the same configuration (lower
plots). When applicable, the effect of the wake fields is kept constant over the scan. On the upper plot, the
spectrum of the beam oscillations (colour coded) is compared to the real tune shift obtained with the linearised
modal approach (Dots shaded linearly from red to yellow with the corresponding dipolar moment of the mode from
large to small). To guide the eye, the upper and lower end of the incoherent spectrum as well as its sidebands
are marked with black lines, alternating solid and dashed for odd and even sidebands. The middle plots show a
comparison of the fitted growth rate of the most unstable mode in macro-particle simulations (green lines) with
the one derived from the complex tune shift of the linearised modal approach (dots shaded according to the dipolar
moment). The left plot corresponds to the HL-LHC configuration (Tab. 1) without crossing angle, featuring a strong
hourglass effect, whereas the right plot corresponds to the benchmark configuration (Tab. 1) without crossing angle
featuring a low hourglass parameter and is therefore comparable to the configuration studied in [2]. The macro-
particle simulations were performed with 106 macro-particles, 50 longitudinal slices over 7.5 ·104 turns. Both the
evolution of the dipolar moment and of the transverse emittances are fitted with exponentials, the fastest of the two
is reported here. The linearised model is based on 50 slices and 5 rings.

tial compensation of the crossing angle with crab cavities [16], the transverse feedback is expected to be efficient
against the mode coupling of colliding beams [2] when the intensity is the highest, i.e. at the start of collision. In
the following, we first study a pessimistic configuration for which the beam intensity would have been preserved
until the establishment of the lowest β ∗. Secondly, we study the impact of the absence of crab cavity for the same
configuration. Following the discussions above, we expect that Landau damping by the synchrotron side-bands will
occur in all these configurations. With these simulation we quantify whether its strength is sufficient to maintain
the beam stability, even in configurations for which the transverse feedback acting on the dipole component of the
oscillation is not sufficient to fully suppress the mode coupling instability of colliding beams.

Figure 13a shows the complex tune shifts of the coherent modes obtained with the modal approach for the
HL-LHC configuration when the crossing angle is partially compensated by crab cavities, varying the strength of
the beam-beam interaction while maintaining the interactions with wake fields at a constant value, corresponding
to the nominal bunch intensity. As expected from the analysis in the previous sections, there exists mode coupling
instabilities at all beam-beam parameters. The different radial modes associated to the same azimuthal mode (i.e.
with frequencies degenerated at a given synchrotron side band) are affected differently by the beam-beam interac-
tion due to their different longitudinal mode pattern. As a consequence, the degeneracy in the mode frequency is
lifted, visible with a splitting of the lines in the real part of the tune shift for increasing beam-beam tune shift (upper
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(a) BimBim

(b) COMBI

Figure 13: Comparison of the results of the modal analysis with BimBim (upper plot) and the spectrum and growth
rates obtained with the macro-particle approach with COMBI (lower plots). The simulations were performed with
the parameters of the HL-LHC (Tab. 1), including the wake fields effect, the lattice with a chromaticity of 15 units,
the beam-beam interactions (6D soft-Gaussian kick for macro-particle approach) at the two main IPs with crossing
angles in alternated planes and a transverse feedback with gain 0.01 (corresponding to a damping time of 200
turns). The effect of the wake fields is kept constant over the scan in beam-beam parameter. The simulations were
performed with 106 macroparticles over 2 · 105 turns. For the modal approach the longitudinal phase space was
represented by 60 slices and 15 rings. The shaded areas represents beam-beam parameters that cannot be achieved
with the expected beam parameters. In the upper plots, the blue lines highlight the real and imaginary part of the
most unstable mode.
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plot in Fig. 13a). For beam-beam tune shifts above ≈ 2Qs, the radial modes frequencies start to overlap with other
side bands leading to a forest of mode couplings between high order head-tail modes through the 6D beam-beam
interactions.
By comparing with the result of the corresponding macro-particle tracking simulations shown in Fig. 13b, we
observe that most of these instabilities are suppressed through the Landau damping mechanism discussed in the
previous sections. The only instability remaining appears at low beam-beam tune shift, i.e. well below the syn-
chrotron tune corresponding to the configuration when Landau damping by synchrotron side-band can not occur.
This instability is not expected to limit the HL-LHC as such low beam-beam tune shifts are not achieved in normal
conditions. Indeed, to perform optimally the intensity decay is limited [16], resulting in minimum beam-beam tune
shifts well above the synchrotron tune.

The results of simulations in a similar configuration but without crossing angle compensation by the crab
cavities are shown in Fig. 14. We note that the beam-beam tune shift due to the two IPs takes into account the
reduction to the crossing angle using Eq. 2.32 and is therefore significantly reduced with respect to the configu-
ration with crab cavities. Nevertheless, similar conclusions may be drawn in this configuration as the presence of
strong synchrobetatron coupling allows for Landau damping of all the mode coupling instabilities of higher order
head-tail modes.

We note that the linearised model (Figs. 13a and 14a), does not include the Yokoya factor, which explains
the small difference with respect to the extend of the beam spectrum shown in Figs. 13b and 14b respectively. The
growth rate obtained for small beam-beam tune shift, i.e. in absence of Landau damping, are in good agreement
between the models, for both the configurations considered.

5 Conclusion
In order to study efficiently the mode coupling instability of colliding beams in realistic configurations of the
HL-LHC, featuring strong synchrobetatron coupling, new numerical algorithms were implemented in the multi-
particle tracking code COMBI. First a full implementation of the 6D coherent beam-beam interaction, based on
Hirata’s incoherent model, describing the evolution of the distribution of both beams as they travel through each
other, in a boosted frame where electromagnetic forces between the beams can be expressed conveniently, was
implemented, similarly to the existing code BeamBeam3D. The need for update of the particles momentum through
each beam-beam interaction is however shown to be superfluous in configurations where the beam-beam interaction
is sufficiently weak, thus allowing for computationally efficient algorithm, the so-called frozen 6D model. These
models were successfully benchmarked against predictions from analytical models.
It is shown that the mode coupling instability of colliding beams is well suppressed by Landau damping when
the frequencies of the coherent modes overlaps with the synchrotron side-bands of the incoherent spectrum, as
predicted qualitatively by theoretical models. Moreover, the link between decoherence and Landau damping is
emphasised also in simulation. In particular, it is shown that the coherent tune shift induced by the impedance
can, in certain conditions, bring the σ -mode back in the incoherent spectrum thus restoring Landau damping and
decoherence. This stabilisation mechanism for high intensities is understood but was not anticipated.
The application of this method to the HL-LHC configurations suggest that Landau damping is sufficient to ensure
the stability in all realistic configurations with beams colliding head-on.
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(a) BimBim

(b) COMBI

Figure 14: Comparison of the results of the modal analysis with BimBim (upper plot) and the spectrum and growth
rates obtained with the macro-particle approach with COMBI (lower plots). The simulations were performed with
the parameters of the HL-LHC (Tab. 1) without crab cavities, i.e. a full crossing angle of 500µrad. The simulation
include the wake fields effect, the lattice with a chromaticity of 15 units, the beam-beam interactions (6D soft-
Gaussian kick for macro-particle approach) at the two main IPs with crossing angles in alternated planes and a
transverse feedback with gain 0.01 (corresponding to a damping time of 200 turns). The effect of the wake fields
is kept constant over the scan in beam-beam parameter. The simulations were performed with 106 macroparticles
over 2 ·105 turns. For the modal approach the longitudinal phase space was represented by 60 slices and 15 rings.
The shaded areas represents beam-beam parameters that cannot be achieved with the expected beam parameters.
In the upper plots, the blue lines highlight the real and imaginary part of the most unstable mode.

16



Bibliography
[1] K. Hirata, H. W. Moshammer, and F. Ruggiero, “A symplectic beam-beam interaction with energy change,”

Part. Accel. 40, 205 (1992).

[2] S. White, X. Buffat, N. Mounet, and T. Pieloni, “Transverse mode coupling instability of colliding beams,”
Phys. Rev. ST Accel. Beams 17, 041002 (2014).

[3] X. Buffat, J. Barranco, T. Pieloni, C. Tambasco, “Effect of the crossing angle on coherent stabil-
ity, Presentation at the HL-LHC WP2 meeting, 20th sept. 2016,” https://indico.cern.ch/event/
563293/contributions/2316566/attachments/1352296/2041874/2016-09-20-expanded.pdf, ac-
cessed: 2017-06-02.

[4] X. Buffat, Transverse beams stability studies at the Large Hadron Collider, Ph.D. thesis, EPFL (2015),
CERN-THESIS-2014-246.

[5] Y. Alexahin, “A study of the coherent beam-beam effect in the framework of Vlasov perturbation theory,”
Nucl. Instrum. Methods Phys. Res. A 480, 253 (2002).

[6] W. Herr and R. Paparella, Landau damping of coherent beam-beam modes by overlap with synchrotron side-
bands, LHC Project Note 304 (CERN, Geneva, Switzerland, 2002).

[7] J. Qiang, M. A. Furman, R. D. Ryne, W. Fischer, and K. Ohmi, “Recent advances in strong-strong beam-beam
simulation,” Nucl. Instrum. Meth. A558, 351 (2006).

[8] X. Buffat, “Coherent beam-beam effects,” CERN Yellow Reports: School Proceedings 3, 391 (2017).

[9] T. Pieloni, A study of beam-beam effects in hadron colliders with a large number of bunches, Ph.D. thesis,
EPFL (2008), CERN-THESIS-2010-056.

[10] W. Herr, M. P. Zorzano, and F. Jones, “Hybrid fast multipole method applied to beam-beam collisions in the
strong-strong regime,” Phys. Rev. ST Accel. Beams 4, 054402 (2001).

[11] K. Hirata, “A computer code for beam-beam interaction with a crossing angle, version 3.4,” BBC user’s guide
(1997).

[12] K. Yokoya, E. Kikutani, Y. Funakoshi, J. Urakawa, and H. Koiso, “Tune shift of coherent beam-beam oscil-
lations,” Part. Accel. 27, 181 (1989).

[13] L. H. A. Leunissen, F. Schmidt, and G. Ripken, “Six-dimensional beam-beam kick including coupled mo-
tion,” Phys. Rev. ST Accel. Beams 3, 124002 (2000).

[14] G. Iadarola, R. De Maria, and Y. Papaphilippou, 6D beam-beam interaction step-by-step, CERN-ACC-
NOTE-2018-0023 (CERN, Geneva, Switzerland, 2017).

[15] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,”
Advances in Computational mathematics 5, 329 (1996).

[16] E. Métral, S. Antipov, F. Antoniou, R. Appleby, G. Arduini, J. Barranco, P. Baudrenghien, N. Biancacci,
C. Bracco, R. Bruce, X. Buffat, R. Calaga, L. Carver, M. Crouch, R. D. Maria, S. Fartoukh, D. Gamba,
M. Giovannozzi, P. Gonçalves Jorge, W. Hofle, G. Iadarola, N. Karastathis, A. Lasheen, K. Li, T. Mas-
toridis, L. Medina, A. Mereghett, D. Mirarchi, B. Muratori, S. Papadopoulou, Y. Papaphilippou, D. Pellegrini,
T. Pieloni, S. Redaelli, G. Rumolo, B. Salvant, E. Shaposhnikova, M. Solfaroli, C. Tambasco, R. Tomàs, and
D. Valuch, Update of the HL-LHC Operational Scenarios for Proton Operation, CERN-ATS-Note-2018
(CERN, Geneva, Switzerland, 2018).

[17] N. Biancacci, B. Salvant, E. Métral, K. Li, “The HL-LHC impedance model and aspects of beam stability,”
in Proceedings of IPAC 2016, Busan, Korea (CERN).

[18] https://impedance.web.cern.ch/impedance/.

This is an internal CERN publication and does not necessarily reflect the views of the CERN management.


