
C
ER

N
-T

H
ES

IS
-2

01
9-

07
6

23
/0

5/
20

19

Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata

Dipartimento di Fisica

Corso di Dottorato in Fisica, Astrofisica e Fisica Applicata

Ciclo XXX

A 4D real-time tracking device

for the LHCb Upgrade II

Settore Scientifico Disciplinare FIS/01

Supervisore: Prof. Nicola NERI

Coordinatore: Prof. Francesco RAGUSA

Tesi di Dottorato di:

Marco PETRUZZO

Anno Accademico 2018/2019



Commission of the final examination:

External Referees:

Prof. Luciano RISTORI, FNAL, Chicago.

Dr. Massimiliano FERRO-LUZZI, CERN, Geneva.

External Members:

Prof. Tim GERSHON, University of Warwick.

Prof. Angelo CARBONE, Università degli Studi di Bologna.
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Introduction

General introduction

I started my Ph.D. at the Physics Department of Università degli Studi di Milano, in asso-

ciation with the Istituto Nazionale di Fisica Nucleare - Sezione di Milano, in March 2015.

My research activity as Ph.D. student has been carried within the LHCb collaboration

and the INFN CSN5 RETINA and TIMESPOT projects.

My contribution to the LHCb collaboration was focused on the testbeam campaign

for the study and characterization of the silicon sensors for the Upgrade I of the Upstream

Tracker sub-detector of the LHCb experiment. I participated to different testbeam cam-

paigns at the CERN Super Proton Synchrotron (SPS) in 2014, 2015, 2016; I mainly

worked on a custom DAQ board based on Field Programmable Gate Array (FPGA) tech-

nology for the readout of the silicon sensors that has been developed at INFN-Milano. I

also took part in the data taking shifts and in the analysis of the testbeam data; during

the last experience I co-directed the testbeam activity during the preparation, the set-up

of the experimental system and the data taking period. Within the RETINA project I

worked on the design of a device for real-time tracking of charged particles in FPGA; in

particular I developed a C++ software simulation and the VHDL firmware implementa-

tion of the system in FPGA. A prototype, based on a single-sided telescope, has been

successfully tested at SPS in October 2015.

The main result of my Ph.D. research activity, documented in this thesis, has been the

development and implementation of a new algorithm for application to a 4D (space-time)

tracking system to reconstruct the particle trajectories in real-time. The application of

such a system to the Upgrade II of the LHCb experiment has been considered in this

work; an application to the Beam Gas Vertex Detector has also been considered. The

inclusion of the time information in the first stages of the trigger decision would help

in mitigating the effects of the pile-up in the upgraded conditions of the LHC collider,

allowing LHCb to exploit the larger data sample for its physics program. The proposed

tracking algorithm is modular and highly parallelized, and is designed to work with large

tracking devices at high rates with latency below 1 µs. The performances of the 4D fast

tracking device and its firmware implementation have been tested on a custom board

equipped with latest generation FPGA (Xilinx Virtex UltraScale, XCVU095 ) and high-

speed serial links to sustain up to 1.6 Tbps input data bandwidth. The response of the

LHCb VELO detector based on pixel sensors has been simulated assuming 30 ps time

resolution. Simulated data from a sector (∼ 1/64) of the detector have been provided to

xiii
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the fast track finder prototype to test the system. This demonstrator prototype has to be

considered as a building block of a large scale system capable to process a large tracking

detector of a LHC experiment.

Thesis overview

My Ph.D. thesis is inserted in the context of the Upgrade II of the LHCb experiment, for

the High Luminosity phase of LHC. In particular the thesis is focused on the development

of a hardware demonstrator of a fast track finder using precise space and time information

of the particle hits in the detector, i.e. a possible upgraded VELO detector of the LHCb

experiment, able to identify and reconstruct the particle tracks in real time with low

latency. This feature would allow to use the track information in the early stage of the

trigger decision chain.

In the past the Silicon Vertex (SVT) of the CDF experiment at Fermilab played a very

important role in the study of heavy flavour physics thanks to the possibility of fast track

reconstruction with a very good quality. The selection was based on the track impact

parameter and the identification of displaced vertices with respect to the position of the

primary interaction. The SVT worked as part of the Level 2 of a three-level trigger system,

and implemented a highly parallelized pattern-matching using a custom-made processor,

the associative memory (AM). In particular the AM compares in parallel the hits from

the tracking system to several precomputed patterns, providing the tracks candidates

to be fitted using a simplified fitting algorithm in fast FPGAs. This made possible to

reconstruct tracks with offline-like resolution and latency of about 20 µs allowing the

Level 2 trigger to match the full output rate of approximately 30 KHz of the Level 1.

The evolution of this concept is exploited by ATLAS in the Fast TracKer (FTK) device,

that is being commissioned and will provide the information of the already reconstructed

tracks to the High Level Trigger (HLT). The working principle is substantially unchanged

while the modern electronics and a strongly pipelined architecture allow to handle a much

larger number of patterns and process the more complex ATLAS events at 100 KHz rate,

with an average latency below 100 µs.

The LHCb experiment is going to run at an instantaneous luminosity of 2×1033 cm−2s−1

during the Run 3, from 2021 to 2023, and the collaboration is currently working on an

extensive upgrade of the detector and the DAQ system in order to strengthen the physics

program. In particular the tracking detectors will be completely replaced with a pixel Ver-

tex Locator (VELO), a silicon tracking station before the magnet, the Upstream Tracker

(UT), and a Scintillating Fibre downstream tracker (SciFi). The detector will be read

out at 40 MHz and a full software trigger will process the full rate of inelastic collisions

delivered by the LHC, providing significantly increased efficiency in hadronic final states.

After the Long Shutdown 3 (LS3) the LHC conditions will be upgraded to the so-called

High Luminosity phase (HL-LHC) and the luminosity at the LHCb interaction point dur-

ing the Run 4, expected from 2026 to 2030, will be levelled to the same conditions of the

Run 3, allowing the Upgrade I detector to continue operating without major modifica-

tions. At the end of the Run 4 the precision on some important measurements will still

be limited by statistics and many parts of the detector will need to be replaced due to
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the radiation damage. For these reasons the LHCb collaboration has already proposed

an Upgrade II, which will operate at a luminosity of around 1 − 2 × 1034 cm−2s−1, to

exploit the potential of the HL-LHC during the Run 5, expected to start in 2031.

The trigger requirements at LHCb are very challenging due to the need of reading out

the whole detector at 40 MHz and processing the full event information, since the current

first level hardware trigger would be limited at higher luminosities for hadronic channels.

During Run 2 it was demonstrated that a full software reconstruction is possible for real-

time calibration and alignment and the strategy for the software and the computing of

the Upgrade I are under review. The software framework is going to be revised to full

profit of modern multi-core architectures, while solutions based on GPUs and hardware

accelerators are under study. The operation of the LHCb Upgrade II will provide even

more significant challenges; in fact the increased luminosity will lead to a higher event

complexity and higher data volumes to process, affecting the output bandwidth to be

managed by the trigger and offline system that will have to be improved to cope with the

harsher environment. Even though the Upgrade II trigger will remain software based,

it is not clear if the Upgrade I solutions can be adopted, even considering the expected

computing power growth during the 2020s. For this reason the use of dedicated processors

has to be considered as a viable solution to solve specific tasks and evaluate relevant

information to be fed to the reconstruction software at the earliest trigger level. An

example of these tasks could be the early reconstruction of the tracks downstream of

the magnet; in fact, these are not included in the baseline trigger scheme due to the

CPU time required to execute the search. Another example is the identification and

reconstruction of tracks in the VELO sub-detector, and eventually in the UT; this task is

computationally intensive and the use of custom processor would free a significant amount

of CPU computing power. Along with pure algorithm and computing strategies, another

relevant help could come by the inclusion of timing information of the hits, currently

not available, that would help in suppressing the combinatoric background, reducing the

negative effects of the pile-up as the incorrect track-vertex association.

Organizational note

The present thesis is organized as follows:

• Chapter 1. The LHC collider and in particular the LHCb experiment and the

Upgrade I and Upgrade II are described.

• Chapter 2. An overview of the existing fast tracking devices, along with their use

inside the trigger chain, is given.

• Chapter 3. The artificial retina for fast track reconstruction is described: the al-

gorithm, the hardware implementation on a hardware prototype and the testbeam

results are discussed.

• Chapter 4. An algorithm for real-time 4D track reconstruction using precise space

and time information of the detector hits is presented, together with the results

from the simulated response of the tracking device.
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• Chapter 5. The architecture of the hardware implementation in FPGA is described.

• Chapter 6. The results from tests of the algorithm implemented on a prototype

board and fed with data from a sector of the VELO sub-detector of the LHCb

experiment are reported.

• Chapter 7. A possible application of a real-time tracking algorithm in FPGA is

proposed for the LHC Beam Gas Vertex detector.



Chapter 1

LHCb detector and upgrades

The LHCb experiment [1] is one of the four main experiments located at the Large Hadron

Collider (LHC) [2] at CERN.

In this chapter we will provide an overview of the LHCb experiment and its upgrades

within the context of the LHC upgrade schedule to the High Luminosity phase (HL-

LHC) [3], planned to begin after the Long Shutdown 3 (LS3, 2024-2026); in particular,

the High Luminosity phase for LHCb will begin after the Long Shutdown 4 (LS4, 2030).

1.1 The Large Hadron Collider at CERN

The Large Hadron Collider is the world’s largest and most powerful particle accelerator,

located at CERN. The LHC is a two-ring superconducting accelerator, measuring 26.7

km in circumference. It is installed 100 m underground at the Franco-Swiss border near

Geneva, in the tunnel that previously hosted the Large Electron Positron (LEP) collider

which operated from 1989 to 2000.

The LHC is able to accelerate two counter-rotating beams of both protons and ions. The

first case represents the main operation mode of the LHC experiments, investigating in

particular proton-proton (pp) collisions at the center-of-mass energy of
√

s = 13 TeV,

near the maximum design value of 14 TeV.

The LHC accelerator ring represents the last acceleration stage, after several particle

accelerators. The scheme of the CERN accelerator complex, with the positions of the

four LHC experiments highlighted along the LHC ring, is shown in Fig. 1.1.

At the beginning, protons are obtained by ionizing hydrogen gas with an electric discharge

and are accelerated by the LINAC2 (Linear Accelerator 2 ) up to 50 MeV. The protons

are then injected into the PSB (Proton Synchrotron Booster) in which the proton beam

energy is increased up to 1.4 GeV. The PS (Proton Synchrotron) machine accelerates

protons up to 26 GeV and the beam is injected into the SPS (Super Proton Synchrotron)

accelerator where the proton beam reaches the energy of 450 GeV. The SPS represents

the last pre-acceleration stage before the LHC: the beam is split and injected into the

LHC where two separate beams travel in clockwise and anticlockwise directions and are

accelerated up to 6.5 TeV. After all the acceleration stages have been performed the two

beams collide in four interaction points where the main LHC experiments are located:

ALICE [4], ATLAS [5], CMS [6], LHCb [1]. Each beam consists nominally of 2808 proton

1



2 1.1 The Large Hadron Collider at CERN

Figure 1.1: Scheme of the CERN accelerator complex showing the acceleration facilities and

the four main experiments.

bunches spaced by 25 ns, resulting in the expected bunch crossing frequency of 40 MHz.

Each bunch is about 7.5 cm long in the beam direction and nominally contains 1.15×1011

protons leading to the instantaneous luminosity of 2×1034 cm−2s−1, reached during year

2018 at ATLAS and CMS interaction points, which is a factor of two higher than the LHC

design luminosity (1× 1034 cm−2s−1). At the LHCb interaction point the instantaneous

luminosity is reduced to 5 × 1032 cm−2s−1 using a larger transverse beam size in order

to reduce the number of interactions per bunch crossing; this is essential in terms of data

quality and detector radiation damage. At the ALICE interaction point the luminosity

(for pp interactions) is further reduced to 4× 1030 cm−2s−1.

The main four LHC experiments are designed for different scientific programs:

• The ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid)

experiments are General Purpose Detectors (GPDs) and are designed to study col-

lisions producing high transverse momentum particles. Their physics program is

focused on the study of the Higgs Boson properties and also includes search for

direct signals of New Physics beyond the Standard Model, search of Dark Matter

candidates and Standard Model precision measurements. Besides sharing similar

scientific goals, the ATLAS and CMS experiments differ in the apparatus design
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whose main difference can be identified in the magnet systems, while both are

based on a cylindrical barrel geometry and two symmetrical end caps placed along

the direction of the beam axis.

• ALICE (A Large Ion Collider Experiment) mainly profits of heavy ions collisions,

in particular lead ions, and it is designed to investigate the strong interaction theory

through the study of Quark-Gluon Plasma state. The detector uses both a Time

Projecting Chamber and a forward spectrometer.

• The LHCb (LHC beauty) is a single-arm forward spectrometer experiment. It is

dedicated to the indirect search of New Physics beyond the Standard Model, via

precise measurement of the CP violation and rare decays of bottom and charm

hadrons, using the vast statistics of heavy flavour hadrons produced in proton-

proton (pp) collisions in the forward region. Further details will be provided in the

following sections.

In addition to these four experiments, three smaller experiments dedicated to forward

physics are present at LHC.

• TOTEM [7] (TOTal Elastic and diffractive cross section Measurement), located

at the CMS interaction point, studies the total proton-proton cross-section, elastic

scattering and diffractive dissociation.

• LHCf [8] (LHC forward), located at the ATLAS interaction point, is used for

engineering measurements for astroparticle experiments simulating cosmic rays in

laboratory conditions.

• MoEDAL [9] (Monopole and Exotics Detector At the LHC ), located at the LHCb

interaction point, is dedicated to the search of the magnetic monopoles.

1.2 High Luminosity phase of LHC

The LHC was successfully commissioned in 2010 and started delivering proton-proton

collisions at a centre-of-mass energy of
√

s = 7 TeV in 2010-2012, and at
√

s = 8 TeV

from April 2012 until the end of the Run 1 .

The Run 2 of LHC started in June 2015 and ended in December 2018. During this

period the centre-of-mass energy of pp collision has reached the value of
√

s = 13 TeV

and an instantaneous luminosity of 2 × 1034 cm−2s−1, representing twice the nominal

design value, was achieved. At the end of the Run 2, the ATLAS experiment collected

a total integrated luminosity of 187.1 fb−1, the CMS experiment 192.0 fb−1, the LHCb

experiment 10.1 fb−1 and the ALICE experiment 81.7 pb−1, considering the proton and

ion delivered luminosities1.

During the LS2 the 160 MeV LINAC4 accelerator will be connected to the PSB while all

the pre-accelerators and infrastructures will undergo major maintenance and consolida-

tion.

1http://acc-stats.web.cern.ch/acc-stats/#lhc/.
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During the Run 3 of LHC, expected to start in 2021, the centre-of-mass energy for pp

collisions is expected to be increased up to
√

s = 14 TeV and the instantaneous luminosity

is expected to stay at the late 2018 value, reaching a delivered integrated luminosity of

400 fb−1 by the end of the run. In particular during the Run 3 the statistical gain in

running the accelerator without a luminosity increase will become marginal and if on one

hand this would lead to doubling the statistics from the Run 2 to the Run 3, on the other

hand the time necessary to reduce by half the statistical errors in measurement results

would be ten years starting from the end of Run 2 [10]. For this reason and to fully

exploit the potential of the LHC a major upgrade of the accelerator has been approved.

The so-called High Luminosity LHC (HL-LHC) [11] will operate after the LS3 and will

increase the luminosity by a factor five with respect to the current nominal design value

of 1034 cm−2s−1.

The LS3 is scheduled to start in 2024 and will last 18 months. During the shutdown

the LHC will undergo a major upgrade of its components, like low-β quadrupole triplets

and the use of crab cavities at the interaction regions, in preparation for the HL-LHC.

Moreover at that time many critical components of the accelerator will have reached the

end of their lifetime and the upgrade is necessary to allow the collider to work beyond

2025.

With the Run 4 of LHC, from 2026 to 2029, the High Luminosity phase will start, making

the machine able to deliver a peak luminosity of 7.5 × 1034 cm−2 without beam level-

ling, allowing an integrated luminosity of 300− 350 fb−1 per year, for an expected total

integrated luminosity of 4000 fb−1 after twelve years of operation, in 2037, that corre-

sponds to about ten times the integrated luminosity expected to be obtained at the end

of the Run 3. In particular, these value are intended to be valid for ATLAS and CMS

experiments that operate at the same level of luminosity delivered by the accelerator.

The LHC luminosity plan from 2010 to 2038 is shown in Fig. 1.2. The instantaneous and

integrated luminosity are represented by red dots and solid blue line, respectively.

In the case of the LHCb experiment the instantaneous luminosity will not be increased

after the Run 3 but only after the LS4, and the High Luminosity phase of LHCb will

start with the beginning of the Run 5. By the end of 2037 an integrated luminosity of

300 fb−1 is expected, to be compared with the value of 50 fb−1 expected at the end of

the Run 4.

The luminosity plan from 2010 to 2037 for the LHCb experiment is shown in Fig. 1.3. The

LHCb experiment makes use of the beam levelling to reduce the instantaneous luminosity

below the values delivered by the LHC accelerator. The instantaneous and integrated

luminosity are represented by red dots and solid blue line, respectively.

The HL-LHC will rely on a number of key innovations that push accelerator technology

beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting

magnets, compact superconducting cavities for beam rotation with ultra-precise phase

control, new technology and physical processes for beam collimation and 100 metre-long

high-power superconducting links with negligible energy dissipation. Details on the HL-

LHC project can be found in Ref. [3].
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Figure 1.2: LHC luminosity plan from 2010 to 2038. The red dots represent the value of

measured or predicted instantaneous luminosity. The solid blue line represents the value of

measured or predicted integrated luminosity (for the ATLAS and CMS experiments).

Figure 1.3: Luminosity plan from 2010 to 2037 for the LHCb experiment. Red dots represent

the value of measured or predicted instantaneous luminosity. Solid blue line represents the value

of measured or predicted integrated luminosity.
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1.3 The LHCb detector

The LHCb detector is a single-arm forward magnetic spectrometer with a polar angle

coverage from 15 mrad to 300 (250) mrad in the horizontal (vertical) plane, corresponding

to a pseudorapidity (η) range of 2 < η < 5 in the forward direction.

The layout of the LHCb detector and its sub-detectors is shown in Fig. 1.4. The beams

travel along the direction of the z -axis and collide in the region centred around the axes

origin, while the magnetic field is oriented along the vertical direction. The coordinate

system of the LHCb experiment is described in Ref. [12] and can be summarized as follows:

• the origin of the coordinate system is the interaction point;

• the x -axis is horizontal, and points from the interaction point towards the outside

of the LHC ring;

• the y-axis is perpendicular to the x -axis and to the beam line pointing upwards and

is inclined by 3.601mrad with respect to the vertical;

• the z -axis points from the interaction point towards the LHCb detector and is

aligned with the beam direction, to create a right handed Cartesian coordinate

system x-y-z.

Figure 1.4: Lateral view of the LHCb detector. The interaction region is centred around the

axes origin.

The peculiar geometry of the LHCb detector, compared to the typical design of the general

purpose detectors at CERN, is motivated by the fact that in proton-proton collisions at

the LHC energy scale the bb̄ hadron pairs are mainly produced at small polar angles

with respect to the beam direction as shown in Fig. 1.5 [13], both in the forward and

backward direction, with relatively high momentum. Although the geometrical coverage

of the detector corresponds only to 4% of the total solid angle, for a centre-of-mass energy
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of
√
s = 14 TeV the probability to find either the b or the b̄ hadron within the detector

acceptance amounts to 27%, while the probability of finding the bb̄ pair is 24%.

Figure 1.5: Left: Distribution of the production polar angles of the b quark and b̄ antiquark in

bb̄ quark-pair production processes. Right: Same distribution as a function of the pseudorapidity

of the b quark and b̄ antiquark. The red square highlights the geometrical acceptance of the LHCb

detector, compared to a general purpose detector, highlighted by the yellow square. Figure from

Ref. [13].

1.3.1 Tracking system

The tracking system of the LHCb experiment is based on several tracking sub-detectors.

• The Vertex Locator (VELO) [14] is positioned near the interaction region and it is

dedicated to the precise reconstruction of primary and displaced secondary vertices.

It consists of 21 disk-shaped tracking stations based on silicon strip sensors, mea-

suring separately the radial and azimuthal coordinates of track hits in the sensors.

• The Tracker Turicensis (TT) is a tracking detector placed upstream of the magnet.

It is mainly dedicated to the matching of tracks reconstructed in the VELO detector

with tracks reconstructed downstream of the magnet, in order to reduce the ghost

tracks. It is also dedicated to the reconstruction of tracks produced by the decay of

long-lived particles. The TT consists of four layers of silicon strip sensors arranged

in axial-stereo configuration: the silicon strips in the first and last layers are oriented

along the vertical direction, the second and third sensors are tilted by +5◦ and −5◦.

The axial-stereo configuration allows to reconstruct three dimensional trajectories,

with better resolution in x than in y direction.

• Three tracking stations (T1, T2, T3) are placed after the magnet; each station

consists of two separate detectors based on different technologies, the Inner Tracker

(IT) [15] and the Outer Tracker (OT) [16]. The IT, closer to the beam axis, is
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a cross-shaped detector based on silicon strip sensors arranged in a configuration

similar to that of the TT. The IT has a finer segmentation with respect to the

OT but only covers the 2% of the full detector acceptance, while containing 20%

of tracks produced in pp collisions. The OT is positioned around the IT to reach

the full detector acceptance coverage. Each station has four layers arranged in the

same configuration of each IT station. The OT is a drift gas detector based on

small straw tubes aligned along the vertical direction: when a particle crosses a

straw-tube, the electrons produced by the ionization of the gas drift towards the

anode wire and, at the end, generate an avalanche signal which is measured. A

time-to-digital converter measures the arrival time of the signal and by comparison

with the LHC bunch clock it is possible to estimate the horizontal position of the

hit with 200 µm space resolution.

• The dipole magnet provides an integrated field of 4 Tm in the vertical direction that

allows to estimate the charged particle momenta by measuring the track trajectory

curvature in the horizontal (x-z ) plane.

1.3.2 Particle identification

The particle identification in the LHCb experiment is based on two ring imaging Cherenkov

detectors (RICH1, RICH2) [17], a calorimeter detector [18] and five muon stations [19].

The RICH detectors are based on the emission of Cherenkov radiation and they are pri-

marily dedicated to distinguish between kaons and pions. They identify charged particles

with momenta in a range from 2 to 100 GeV/c. In particular the RICH1 sub-detector,

located before the magnet, is optimized for low-momentum (< 60 GeV/c) particles and

covers the full detector acceptance. The RICH2 sub-detector, located after the magnet

is dedicated to high-momentum particles (> 15 GeV/c) and covers a reduced acceptance

from 15 mrad to 120 (100) mrad in the horizontal (vertical) plane. The Cherenkov light

emitted in the RICH detector is guided outside the LHCb acceptance using spherical and

flat mirrors, then measured by a matrix of Hybrid Photon Detectors. The typical pattern

of Cherenkov light is represented by cones that are detected as rings. The particle velocity

is estimated from the measurement of the ring radius. This information combined with

the track momentum allows to evaluate the mass of the candidate particle. The RICH1

and RICH2 sub-detectors differ in terms of radiation mediums and for the material and

arrangement of the mirrors.

The calorimeter system is dedicated to identify electrons, photons and hadrons providing

the measurement of their energy. The calorimeter system comprises the Electromagnetic

Calorimeter (ECAL) and the Hadron Calorimeter (HCAL), both placed after the RICH2.

It covers an angular acceptance range from 25 mrad to 300(250) mrad in the horizontal

(vertical) plane, where the inner acceptance was driven by the particle density near the

beam pipe. The ECAL is equipped with two additional sub-detectors: the Scintillating

Pad Detector (SPD) and the Preshower Detector (PS).

The SPD is based on layers of scintillators. It is used to distinguish electrons from photons

and pions. A 12 cm thick lead layer is inserted between the SPD and the PS. Electrons
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passing the lead layer have higher probability to shower, with respect to hadrons, and are

detected in the PS. In this way the PS can distinguish between electrons and hadrons.

The ECAL and the HCAL are the main components of the calorimeter system. The

ECAL measures the energy of particles that interact by electromagnetic processes. It

consists of alternating layers of scintillating material and lead absorbers. When a particle

passes through the absorber it produces a shower originated from bremsstrahlung and pair

production mechanisms; the shower interacts and deposits its energy in the scintillating

material, the converted photons travel to the photomultipliers where the signal is collected

and recorded.

The HCAL works in a similar fashion and measures the energy of particles that interact

by strong nuclear interactions. The difference with the ECAL consists in the use of iron

(instead of lead) for the absorber layers.

1.3.3 Muon system

The muon system is read out at 40 MHz and the presence of muons with high transverse

momentum is a strong signature to perform hardware level trigger decisions (L0 trigger).

The muon system consists of five muon stations (M1-M5) that cover the angular accep-

tance range from 20 (16) mrad to 306 (258) mrad in the horizontal (vertical) plane. The

first station is placed between the RICH2 and the ECAL (SPD/PS), in order to improve

the measurement of the transverse momentum for muons that are detected also in the

other stations (M2-M5) placed after the HCAL. Stations from M2 to M5 are separated

by 80 cm thick iron absorber layers, to select muons with different energies. In particular

the minimum momentum to traverse all the layers is 6 GeV/c. Each station is divided

in four quadrants, each of them is divided in four regions (R1-R4) arranged around the

beam pipe whose dimensions follow the scale ratio (from R1 to R4) of 1:2:4:8 in order

to have regions with similar occupancies. The inner region of the first station (M1-R1)

is instrumented with triple-gas electron multiplier (triple-GEM) detectors, which better

cope with the higher particle flux before the calorimeter and closer to the beam pipe,

with respect to the multi-wire proportional chambers (MWPC) that are used in the rest

of detector. Both the triple-GEM and the MWPC are optimized for fast signal readout

and signal yield at 40 MHz, providing the detector information within 20 ns, with a time

resolution smaller than 4.5 ns. In particular, only the first three stations are used for

transverse momentum measurements, while the last two stations provides binary infor-

mation whether the particle passed the absorber material or not. For trigger purposes a

5-hit coincidence in all the muon stations allows to identify high-momentum muons.

1.4 LHCb Upgrade I

The LHCb detector will undergo a major upgrade during the Long Shutdown 2, after

the completion of Run 2 in October 2018. The Upgrade I is motivated by the necessity

to extend the experiment sensitivity on crucial flavour physics observables, that is still

limited by the statistics and with the current configuration would need several years

of additional data taking. An increase of the instantaneous luminosity to the value 2 ×
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1033 cm−2s−1, corresponding to a factor five more with respect to the Run 2 conditions, is

foreseen. In these conditions the average number of proton-proton collisions at each bunch

crossing will be equal to 7.6, leading to higher detector occupancy and radiation level.

The maximum readout rate of LHCb is currently limited by the front-end electronics of

many sub-detectors: this limitation also strongly motivates the need of a detector upgrade

in order to read the full detector at the maximum bunch crossing rate of 40 MHz.

The lateral view of the LHCb Upgrade I detector is shown in Fig. 1.6.

Figure 1.6: Lateral view of the LHCb Upgrade I detector.

Sub-detectors as the SPD, PS, and the M1 station of the muon detector will be removed,

since they are partly obsolete and can not be operated in the upgraded conditions. The

higher luminosity will lead to higher pile-up, number of tracks and irradiation of the

detector. This makes necessary an increase of the granularity in order to still be able to

reconstruct particles in the detector.

The most relevant modification consists in fully replacing the tracking system. The VELO

is replaced with a new version [20] based on hybrid pixel sensors, instead of strip sensors.

The upgraded detector is positioned closer to the beam axis in order to improve the

impact parameters resolution. The sensors will have a finer granularity with respect to

the current design, in order to cope with the higher particle density, primarily in the

region closest to the beam. The upgraded VELO is composed of 26 detector planes

perpendicular to the beam axis, arranged in two retractable halves, similar to the current

design. The minimum distance from the sensitive are to the beam pipe is 5.1 mm, the

pixel size is 55× 55 µm2.

The Upstream Tracker (UT) [21] replaces the TT, but maintains a similar layout. It is

based on single-sided silicon strip sensors arranged in four layers in axial-stereo configu-

ration. The geometrical acceptance at small polar angles is larger and new silicon sensors

with improved radiation hardness and finer granularity are mounted near the beam pipe.

The front-end electronics have been redesigned in order to perform the readout at 40 MHz

rate.
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The IT and the OT are replaced by the SciFi Tracker based on scintillating fibres that are

read out by silicon photomultipliers. The layout and configuration of the SciFi Tracker

is similar to the IT+OT configuration.

The current trigger system, based on both L0 hardware trigger and high level software

trigger, is substituted by a full-software trigger. In fact, the L0 trigger on one hand limits

the 40 MHz input rate down to 1.1 MHz, while on the other hand becomes inefficient for

hadronic events at increased luminosities. The new trigger is able to process events at 40

MHz and take decisions on the basis of the full event information.

Additional information on the LHCb Upgrade I can be found in Ref. [21].

1.5 LHCb Upgrade II

As discussed in the previous sections, the LHC will undergo a major upgrade to enter

the High Luminosity phase during the Run 4 . The LHCb collaboration, aware of the

need to fully exploit the flavour physics opportunities of the HL-LHC, proposed a second

upgrade, called LHCb Upgrade II to be installed during the LS4 in 2030.

The Expression of Interest for the LHCb Upgrade II is reported in Ref. [22]. The physics

case opportunities achievable from the upgrade are reported in Ref. [23].

In the next paragraphs we will report the main contents related to the tracking system

upgrade, together with the introduction of precise timing measurements.

With the increase of the instantaneous luminosity the mean number of interactions at

each bunch crossing will increase up to µ ≈ 50, resulting in a significant increase of the

total number of tracks to reconstruct per each event. Significant challenges in terms

of data rates, reconstruction quality, and increased radiation damage will be faced by

old sub-detectors. The collaboration has already identified some potential solutions that

would allow the feasibility for the LHCb detector to work in harsher conditions and the

introduction of precise timing detectors has been identified as crucial to help the event

reconstruction in conditions of increased pile-up and detector occupancy. The use of

precise timing will be essential in the tracking detectors, as the VELO, the Upstream,

and the Downstream tracking systems. In fact, a resolution of a few tens of ps per particle,

will allow charged tracks and photons to be associated with the correct interaction vertex,

thereby suppressing the combinatorial background and also allowing for time-dependent

CP violating measurements. Moreover, the experiment will also profit from the precise

timing in downstream detectors for improving particle identification for low-momentum

tracks. Other detector upgrades are proposed such as the replacement of the ECAL with a

high granularity tungsten sampling electromagnetic calorimeter, and the instrumentation

of the lateral walls of the dipole magnet to significantly increase the detector acceptance

for low momentum tracks.

1.5.1 VELO sub-detector with timing at high luminosity for the

Upgrade II

At the expected conditions of LHCb Upgrade II with instantaneous luminosity of 2 ×
1034 cm−2s−1, the expected pile-up is µ ≈ 50, with a total number of 1500-3500 charged
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particles within the detector acceptance. The quality of the track and vertex reconstruc-

tion performed by the VELO sub-detector will be primarily affected. It is demonstrated

that the use of the Upgrade I VELO sub-detector in the Upgrade II environment would

not be feasible, leading in particular to a consistent increase of the ghost2 track rate from

1.6% to 40%. A modest reduction of the tracking efficiency from 99% to 96%, together

with a degradation in the impact parameter resolution is expected, as a consequence of

the reduced resolution on the primary vertex. Monte Carlo simulation studies for tracking

performance at Upgrade II conditions are summarized in Fig. 1.7.

Figure 1.7: Tracking performance of the VELO Upgrade-I sub-detector, with no modifications,

at Upgrade I (black points) and Upgrade II (red points) nominal luminosity conditions. Left:

ghost fraction as a function of the pseudorapidity. Centre: track efficiency as a function of

pseudorapidity. Right: impact parameter resolution as a function of the inverse transverse

momentum. Figure from Ref. [22].

Before introducing the precise timing as a viable solution to recover the desired Upgrade

I VELO tracking performance, we point out that other less innovative strategies have

been considered. As an example, the performance loss can be almost entirely recovered

by halving the VELO pixel pitch from the 55 µm baseline value to 27.5 µm, particularly

for the innermost region of the pixel sensors, and by reducing the silicon sensor thickness

from 200 µm to 100 µm. With these modifications the ghost rate ratio can be reduced to

the value of 2%, keeping the tracking efficiency to the acceptable value of 96%. Another

solution that would benefit the VELO track reconstruction would consist in removing or

redesigning the RF foil, present in the Upgrade I VELO. The RF foil is a thin metal

shield whose main purpose is to separate the VELO detector vacuum from the LHCb

beam vacuum, suppress the wake-fields (produced by the charged bunch) and to reduce

the interference from the bunched beams on the detector electronics. It is important to

note that the pattern recognition used for this studies has been only coarsely optimized

and there could be space for improving the track reconstruction with a better investigation

and redesign of the track finding algorithms.

Although the proposed solutions seem encouraging, it is worth investigating the intro-

duction of precise timing in the VELO, and in general in the other tracking detectors. In

fact, even if adopting this solution the problem of the mis-association of tracks to their

production vertices (PV) and decay vertices would still be present. The identification of b

and c hadrons is mainly based on the reconstruction of their flight distance, in particular

2fake tracks reconstructed from spurious hit combinations.
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on the presence of a displaced vertex. In conditions of high pile-up, it is easier to incor-

rectly associate a track from a secondary vertex with a primary vertex from a different pp

interaction, hence reducing the reconstruction quality and degrading the time-dependent

CP -asymmetry measurements. Adding the precise time information would resolve this

problem by providing an additional coordinate for performing the PV association, which

currently relies only on space track parameters (a track is associated with the PV with

closest impact parameter value). The PV mis-association could be reduced from 20%

down to 5% with a timing precision of 50-100 ps. The distribution of multiple PVs in

space and time, as an example, is shown in Fig. 1.8.

Figure 1.8: Distribution of tracks in space and time originated from different PVs. The intro-

duction of timing helps to separate PVs with similar IP values. Figure from Ref [23].

It has been evidenced that the addition of precise timing provides benefits both to track

reconstruction and to the PV association. Moreover the addition of timing to the re-

constructed tracks would be helpful for other tasks of the event reconstruction, i.e. it

could be used to improve the association between tracks reconstructed upstream and

downstream of the magnet and/or the association of tracks to hits in sub-detectors not

directly involved in the tracking reconstruction, as the TORCH that also features precise

timing sensors. R&Ds for pixel sensors with precise timing are well motivated and the

possibility to have fast-timing sensors with the characteristics required to be used in the

upgraded VELO tracker has to be taken in account. In addition, the timing information

of the hits can be used at an early reconstruction stage, i.e. in the pattern recognition,

to reduce the combinatorics of hits from different pp interactions, allowing to relief the

computational workload associated with the crowded events expected during the Upgrade

II.
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1.5.2 Timing in trigger and data processing

At Upgrade II luminosity the LHCb detector is expected to produce data at rates of

∼ 32 Tbps [24]. This amount of data has to be processed in real time by the trigger in

order to select relevant events. The rate is expected to be reduced by at least 4-5 orders of

magnitude before being stored. The projection of technological improvements indicates

as feasible the task of moving this volume of data from the detector to the processing farm

by the time of Upgrade II. On the other hand, the data processing will be a challenge,

with pile-up of µ ≈ 50 and multiple heavy-flavour hadrons produced at every bunch

crossing. The traditional trigger strategy based on the selection and the acquisition of

bunch crossing events according to inclusive topologies, i.e. the presence of a displaced

vertex, will no longer be able to significantly reduce the data rate. The Upgrade II data

processing strategy should be based on the pile-up suppression providing data reduction

by discarding detector hits that are not associated with interesting pp interactions. For

this reason there is the necessity to distinguish the reconstructed objects associated with

different PVs in a fast manner. The introduction of precise timing in all the sub-detectors

would significantly help in this task, in particular mitigating the negative pile-up effects,

i.e. the PV mis-association being able of separately reconstructing multiple pp events

generated within the same bunch crossing. In this scenario, considered the demonstrated

ability of LHCb to reconstruct full events with offline-quality in near real-time during Run

2, and considered the technology evolution in the next decade we can consider as feasible

the task of triggering at high luminosity also exploiting new computing architectures based

on hardware accelerators such as GPGPUs and/or FPGAs to which the IT industry is

dedicating a growing interest.



Chapter 2

Fast track finding device for efficient triggering

2.1 Challenge of event reconstruction at the High Lu-

minosity LHC

In this section an introduction to the main challenges of event reconstruction and real-

time track reconstruction at 40 MHz in the environment of the High Luminosity LHC is

provided.

As already introduced, one of the negative effects of the luminosity increase at HL-LHC

is given by the increase of the pile-up and the track multiplicity. In the context of the

event reconstruction this will result in a consistent slowdown of all the reconstruction

algorithm. Moreover the pile-up increase will lead to a loss of physics performance. An

already discussed example related to the tracking is the increase of the PV mis-association

but effects will be visible in other contexts as the expected decrease of efficiency in the

electromagnetic calorimeters, the reduced selection efficiencies for electrons and photons,

for hadronic tau decays and b-jets, an expected worsening of the energy resolution for

electrons, photons, taus, jets and missing energy.

A key role for profiting of the HL-LHC is to maintain the excellent efficiency in all

the LHC experiments, in particular by upgrading the detectors with higher granularity

devices and precise timing. Regarding the trigger and the event reconstruction, the

increase of the event complexity has to be efficiently handled in order to minimally affect

the processing time. Moreover the pile-up increase will lead to the increase of the ratio

between interesting and uninteresting events, reducing the fraction of the events that can

be discarded. In fact, the traditional trigger systems at LHC are designed to keep or

discard the whole bunch-crossing event; this approach becomes unfeasible for growing

luminosities. As an example, in a situation of high pile-up with an interesting signature

from a single pp the best option would be to identify and store the information from

products of that single interaction instead of storing all the detector information; following

this approach would result in a strong data reduction but has to be based on a reliable

and fast separation of pp interactions within the same bunch-crossing.

15
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2.2 Examples of fast track finding devices

Fast track finding devices cover a fundamental role for triggering efficiently on interesting

physics processes. Generally they rely on fast pattern recognition and simplified track

fitting techniques.

The process of pattern recognition is typically serialized and solved by trials. A simple

example of pattern recognition of straight tracks is based on the identification of a track

road connecting one hit in the first sensor to one hit in the last sensor. Hits compatible

with the track road are searched in the intermediate layers and a good track candidate is

identified if a minimum number of hits are associated with the track road. On the other

hand the process of track finding will fail for many track roads identified from spurious

combinations of hits. This process has to be performed for different track roads, whose

total number is given in first approximation by the product of hits in the first and last

detector layer. In this simplified scenario the algorithm execution time is proportional to

the second power of the number of hits. This feature could be problematic in trigger ap-

plications where having a fast response is crucial. For this reason parallelized approaches

are generally more suitable to be applied to fast tracking devices; moreover solutions

based on hardware processing are typically faster compared to software solutions.

In the following, we describe some examples of fast tracking devices that already proved

being able to perform fast track reconstruction in HEP experiments with reduced latency

and whose information can be included and used in trigger applications, together with

proposed R&D for future applications. These solution are based on the use of Associative

Memory devices or on the implementation of highly parallelized and pipelined tracking

algorithms in Field Programmable Gate Arrays (FPGA).

2.2.1 Pattern recognition in Associative Memory devices

Here we describe the working principle of the pattern recognition using Associative Mem-

ories (AM) applied, for sake of simplicity, to the reconstruction of 2-dimensional straight

tracks. Let’s consider the example of a 2-dimensional tracking system composed of five

layers. Each sensor provides the measurement of the track hit position within the layer;

we consider each layer to be divided into a limited number of spatial bins defined by

nbins, smaller than the number of channels. In general a track crossing the detector will

produce a hit in one bin per layer, as shown in Fig. 2.1.

Each bin is identified by its coordinate and we define a pattern as a set of bin coordinates

corresponding to a possible track. In particular, since the bin size is greater than the

spatial resolution there is a one-to-many correspondence between patterns and candidate

tracks, and different tracks in a reduced region of the track parameter space can match

the same pattern. If on one hand the resolution is artificially reduced, on the other hand

the number of possible patterns is limited to ∼ n2bins, while the full track resolution can

be recovered in the following steps. Having a limited set of possible patterns, which can

be evaluated from simulation, allows to construct the list of all the possible patterns that

is called the pattern bank, that will be used to perform the task of pattern recognition by

comparison of the measured hits in the tracking system to the list of patterns.
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Figure 2.1: Examples of straight tracks (blue lines) matching coarse-grained patterns (red

segments). Each track produces a hit in one spatial bin per layer; the number of possible

patterns is proportional to the number of spatial bins in which the detector layers are divided.

The AM is a particular type of content addressable memory (CAM) in which the pattern

bank is stored and can be implemented in custom ASICs. The AM receives the detector

hits in input and compares them to the pre-computed patterns; in particular a pattern is

matched if all the bins have been activated by at least on hit. For each matched pattern

the AM provides the list of the addresses of matching hits in output.

From a practical point of view, all the measured hits are fed to multiple AM chips over

which the complete pattern bank is distributed. The AM chips determine in parallel

whether the received hits matched one or multiple patterns. The operation is iterated

for all the hits and the pattern recognition process completes as soon as the last hit is

processed.

It is important to note that the computing time is independent from the size of the pattern

bank, while it is proportional to the time needed to read out and deliver the hits from

the detector. The pattern and the hits provided in output from the AM are finally used

to perform the track fitting in the following stage of processing, eventually discarding

candidate tracks obtained from spurious combinations of hits.

As previously pointed out, the size of the detector bins has to be tuned in order limit the

size of the pattern bank and optimized according to the expected trajectories evaluated

from simulations. As stated before, the coarse resolution of the patterns does not allow

to directly estimate the track parameters but provides a good hint of the track trajectory,

since the hits lie in a limited range of coordinates; this makes possible to apply simpli-

fied fitting techniques, as the linearized track fitting, to evaluate the track parameters.

Examples of systems using the AM are the Silicon Vertex Trigger (SVT)[25] of the Col-

lider Detector at Fermilab (CDF)[26], and the Fast TracKer (FTK)[27] of the ATLAS

experiment.
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2.2.2 Silicon Vertex Trigger at CDF

Here we provide a brief description of the CDF experiment, which implemented a fast

tracking device based on Associative Memories for fast track reconstruction, as part of

the trigger decision chain.

CDF detector A scheme of the CDF detector is shown in Fig. 2.2.

Figure 2.2: Scheme of the CDF detector.

The CDF is a cylindrical detector based on multiple layers of sub-detectors organized as

follows, with increasing radius: the Silicon Tracking System and the Central Outer Tracker

(COT) placed between the beam pipe and the solenoid magnet, the Electromagnetic and

Hadronic Calorimeters and the Muon Detectors placed after the magnet. The solenoid

magnet is located at 1.5 m from the beam line, and provides a uniform magnetic field of

1.4 T that is needed for the particles momenta measurement.

The Silicon Tracking System is composed of three concentric cylindrical sub-detectors, the

Innermost Silicon Layer (L00), the Silicon Vertex Detector (SVXII) and the Intermediate

Silicon Layer Detector (ISL); all of them are based on silicon strip sensors. The L00 layer

is placed at a distance of 13.5 mm from the beam axis. The SVXII is based on three

layers of double-sided silicon sensors to provide 3-dimensional measurement of the track

hits; it is placed at a distance from the beam axis between 25 mm and 106 mm. The ISL

is based on three layers of sensors at distances of 200, 220, 280 mm. The Silicon Tracking

System has a total of eight layers of sensors measuring the hits position with a resolution

of 10 µm and the impact parameter with 40 µm resolution, with a total pseudorapidity

coverage of |η| < 2. The system covers a crucial role in the identification of b hadrons
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since their typical signature is given by the presence of a displaced vertex with respect to

the primary vertex of the pp̄ collision.

The COT is dedicated to tracking at larger distances from the beam axis ( from 400 mm

to 1370 mm ). It is a drift chamber with sensing wires in stereo configuration, with half of

the wires oriented along the beam axis and half tilted by ±2◦ angle. Tracks in the COT

are reconstructed by first identifying three hits compatible with a particle trajectory from

the interaction point, adding further hits near the track projection and finally fitting the

hits with a five parameter helix. The COT tracks are projected to evaluate the expected

position of the hits in the Silicon Vertex Detector and the two best candidate hits in each

layer are linked to the COT track. The final track is obtained by selecting the one with

best fit by mean of a χ2 minimization algorithm.

The Electromagnetic and Hadronic Calorimeters measure the energy of particles and jets

from hadronization and they are based on alternating layers of scintillators with lead and

steel absorbers, respectively. The particles interact in the absorber and produce a shower

of lower energy particles that are converted into photons in the scintillators, whose light

is collected by photomultiplier tubes.

The Muon Detectors represent the last layer of sub-detectors; they are based on drift

chambers and arranged in multiple sub-systems covering different geometrical accep-

tances.

CDF Trigger System and Silicon Vertex Trigger The CDF Trigger System is

based on three levels of processing. Level 1 and Level 2 are completely implemented in

hardware while Level 3 is implemented in software. The CDF trigger provides a strong

data reduction through fast identification of distinctive signal signatures, many of them

are based on the fast track reconstruction of charged-particles in the bending plane of the

spectrometer. The event rate is reduced from 2.5 MHz, corresponding to the Tevatron

bunch crossing frequency, to 30 KHz at the Level 1, and down to 300 Hz at the Level 2.

The Level 1 trigger requires at least two COT tracks, reconstructed by the eXtremely Fast

Track processor (XFT), providing 2-dimensional tracks measured in the plane transverse

to the beam axis. The tracks are matched to the silicon hits from the SVXII by the Silicon

Vertex Trigger (SVT) that is part of the Level 2 trigger. The Level 2 requires at least

a 120 µm impact parameter, defined as the distance of a track from the primary vertex.

The Level 3 provides a full software confirmation of the previous selection reducing the

rate to 75 Hz.

The SVT is an example of fast tracking device able to provide reconstructed tracks with

35 µm impact parameter resolution, performing the full tracking in ∼ 15 µs. The same

algorithm implemented in software would require ∼ 0.1 s, considering the computing

power at the time of the experiment[25]. This is possible thanks to a highly parallelized

and pipelined architecture, in particular using the AM and performing the track fit in

FPGAs.

The SVT receives and processes the hits from the SVXII sub-detector, whose scheme is

shown in Fig. 2.3.

The SVXII has a cylindrical symmetry and can be divided in 12 angular wedges, each

of them can be processed independently by dedicated hardware; this feature allows a
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Figure 2.3: Scheme of the SVXII sub-detector.

first level of parallelization of the processing. The presence of tracks in the COT and

compatible hits (based on the COT track projection to the SVXII) is required to start

the reconstruction of tracks in the SVXII by the Silicon Vertex Trigger system. Each

sensor layer is divided in programmable width bins, typically 250 − 700 µm, while the

COT track projection to the outer radius of the SVXII are considered as an extra (virtual)

layer, with typical bin size of 3 mm. A pattern bank of 32K most probable patterns is

computed offline based on Monte Carlo simulation and loaded into the AM system. The

SVT compares the measured hits to the pattern bank an the AM system provides the

valid patterns together with the hits of each identified candidate tracks, which are fitted

using a linearized track fitting algorithm performed in FPGAs.

2.2.3 Fast Tracker at ATLAS

Here we provide a brief description of the ATLAS tracking system and the trigger system

together with the description of the Fast Tracker (FTK), a fast tracking device based on

Associative Memories providing the reconstructed tracks to the high level trigger.

ATLAS detector A scheme of the ATLAS detector is shown in Fig. 2.4.

The ATLAS is a cylindrical detector composed of the following sub-detectors: the Inner

Detector, the Calorimeters, the Forward Detectors, the Muon System.

The Inner Detector is the main tracking system: it is based on different sub-systems and

its scheme is shown in Fig. 2.5.

The Insertable B-Layer (IBL) is the first detector layer, featuring pixel sensors based on

different technologies. In the barrel region, whose minimum and maximum radius are 31

mm and 40 mm, 3D pixel sensors are used due to the higher radiation tolerance while

in the end-cap regions it features planar pixel sensors. The pixel size is 50 × 250 µm2

for both types of sensors. The IBL is an extra detector added during LS1 to improve

the track and vertex reconstruction provided by the Pixel Detector, dedicated to precise
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Figure 2.4: Scheme of the ATLAS detector.

Figure 2.5: Scheme of the ATLAS Inner Detector.

vertex reconstruction. The Pixel Detector is based on silicon pixel sensors and is arranged

in three concentric barrel layers at distances of 50.5 mm, 88.5 mm, 122.5 mm from the

beam axis and four disks, orthogonal to the beam axis, to complete the angular coverage.

The pixel size is 50×400 µm2. The Semi-Conductor Tracker detector (SCT) is positioned

after the Pixel Detector and is composed of four layers at 299 mm, 371 mm, 443 mm and

514 mm from the beam axis; these layers are based on silicon strip sensors arranged in

stereo configuration. Two groups of nine disks each, based on tapered sensors, complete

the angular coverage. The Transition Radiation Tracker (TRT) is the outermost tracking
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detector. It is based on straw tube detectors, combining both tracking and particle

identification capabilities.

The Calorimeter system is composed of the Liquid Argon calorimeter and the Tile hadronic

calorimeter, both placed after the solenoid magnet. The first features both electromag-

netic and hadronic calorimeter functions either in the barrel region and in the end-cap

regions. The Tile calorimeter is a hadronic calorimeter based on scintillating tiles and

iron absorbers.

The Muon system is the outermost sub-detector and provides the momentum measure-

ments for muons using the track deflection by three large superconducting magnets. Muon

tracks are measured in three cylindrical layers both in barrel and forward/backward re-

gions.

ATLAS Trigger System and Fast Tracker The ATLAS trigger system consists of

two levels: a hardware based Level 1 (L1) trigger and a software based High-Level trigger

(HLT). At each level uninteresting events are rejected in order to efficiently reduce the

amount of data in the final storage. The L1 trigger performs the event selection based on

the coarse granularity information from the calorimeter and the muon detector, reducing

the event rate from 40 MHz to 100 kHz. The L1 trigger uses custom electronics to

determine Regions of Interest (RoIs) to be processed in the HLT, within a decision time of

2.5 µs. The HLT applies more sophisticated selection algorithms using the full granularity

detector information in either the previously identified RoIs or the full event, reducing

the rate of accepted events from 100 kHz to 1 kHz, within a decision time of about 200

ms.

The FTK is a fast hardware-based tracking system designed to perform track reconstruc-

tion using the information from the Inner Detector. It is based on the use of AMs following

the CDF SVT approach and experience, with some different technical features. The FTK

provides the track information to the HLT, which processes the events selected by the

L1 trigger. This information is used to improve many trigger selections that require the

full-event tracking information, i.e. the identification of b-jets or decay modes with b

quarks in the final state.

As in the case of the SVXII in the CDF experiment, the geometry of the Inner Detector

has a cylindrical symmetry and the processing of the hits and tracks from different angular

sectors is performed in parallel by dedicated hardware. In particular the Inner Detector

sensors are organized in 64 overlapping towers, given by 4 longitudinal blocks and 16

angular wedges (22.5◦ plus 10◦ overlap).

The FTK receives the hits from the twelve layers of the Inner Detector in the barrel

region; the clustered hits are sorted and distributed to the 64 processing regions. The

hits from the eight inner layers are fed to the AM system and compared to a pattern

bank of ∼ O
(
109
)

patterns, similarly to the case of the CDF SVT. For each identified

valid pattern the full resolution of the hits is used to evaluate the track fit parameters

by mean of a linearized track fit algorithm performed in FPGAs, discarding low-quality

tracks based on a χ2 cut. Finally the hits from the remaining four layers are added to

the candidate track and the full track is fitted and provided to the HLT.

In the ATLAS FTK, the AM pattern recognition follows a refined approach with respect
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to what previously described. Each detector layer is divided in bins, here called Super

Strips. A Super Strip comprises ∼ 24 × 36 pixels or ∼ 24 strips, in the Pixel Detector

and in the Semiconductor Tracker, respectively. The main difference with the CDF SVT

is the use of variable resolution patterns: this results in the possibility to change the

width of the bins, allowing for more flexibility in the construction of the pattern bank.

An illustration of the working principle of the variable resolution patterns is shown in

Fig. 2.6. In the example the same set of tracks matches different number of patterns

depending on the size of the bins in the different layers; this feature allows to optimize

the number of patterns in the pattern bank, in particular dedicating more patterns to

discriminate more probable track trajectories.

Figure 2.6: Variable resolution patterns. The same set of tracks matches a different number of

patterns, depending on the size of the bins.

The ATLAS FTK is currently under commissioning in order to be fully operating during

Run 3. A tower (processing one of the 64 sectors) of the final FTK has been integrated

and tested, processing data from real events. Results from the operation of the FTK are

reported in Ref. [28].

2.2.4 CMS Track Trigger based on FPGA

In order to cope with the harsher conditions provided by the HL-LHC, the CMS ex-

periment is developing a new tracking detector together with a track finding algorithm

implemented in FPGA, to allow to reconstruct charged particle tracks with low latency

and to include the tracking information in the Level 1 (L1) trigger. Similarly to the other

LHC experiments, the current L1 trigger of CMS is based on the identification of single

muons, electrons and jets, whose rate is expected to exceed the current front-end capabil-

ities at High Luminosity, and increasing the trigger thresholds would produce a loss of the

physics performance. On the other hand the inclusion of the tracking information would

provide several additional improvements, while reducing the L1 trigger rate and keeping

high performance. It would allow to add the track isolation for leptons and photons, to

improve the momentum measurement and vertex association for leptons, and to perform

the vertex identification for the hadronic objects.

In the following we will give a brief description of the CMS experiment, the upgrade of

the CMS Tracker and the description of the demonstrator of a fast track finding device
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based on FPGA.

CMS detector A scheme of the CMS detector is shown in Fig. 2.7.

Figure 2.7: Scheme of the CMS detector.

The CMS is a barrel detector based on different sub-detectors in the following order,

starting from the beam line towards the outer region: the Inner Detector, the Electronic

Calorimeter and Hadronic Calorimeter are located within a superconducting solenoid

magnet with internal diameter of 6 m, providing a uniform 3.8 T magnetic field; the

magnetic flux outside the solenoid is returned through a yoke of three layers of steel,

interleaved with the Muon Detector system; Forward Calorimeters are placed after the

Muon Detector in the end-cap regions.

The Inner Detector is composed of the Inner Tracker (IT) and the Outer Tracker (OT)

. The Inner Tracker is based on silicon pixel sensors with pixel size of 150 × 100 µm2,

with three layers covering the barrel regions at distances between 43 mm and 110 mm

from the beam line, and two disk layers for each end-cap. The Outer Tracker is based

on single-sided and double-sided silicon strip sensors, with pitch ranging from 83 µm to

205 µm: ten layers cover the barrel regions while twelve layers cover the end-cap regions

extending the pseudorapidity acceptance to |η| < 2.5.

The Electromagnetic Calorimeter (ECAL) is based on fine granularity lead tungstate ta-

pered crystals that induce electromagnetic cascades from photons and electrons. The

scintillation light is reflected within the crystals, and collected and measured by silicon

photomultipliers. In the end-cap regions, the Electromagnetic Preshower (ES) is placed

before the ECAL. It is a sampling calorimeter composed of lead and silicon layers ded-

icated to separate high energy photons from the primary interaction from π0 decays at
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small angles. Thanks to its finer granularity, with respect to the ECAL, it is able resolve

the two photons from π0 decays individually.

The Hadronic Calorimeter (HCAL) is placed after the ECAL and is dedicated to the

reconstruction of the energy and position of the QCD jets and neutral hadrons. It is

based on layers of brass plates and plastic scintillator tiles. The HCAL covers the barrel

and the end-cap regions, while the coverage is extended by the Forward Calorimeter (FC)

to |η| < 2.5. The FC adopts the same technology and, differently from the rest of the

HCAL, is placed in the very forward region after the Muon Detector.

The Muon Detector is placed outside the solenoid magnet; four layers of steel are used to

return the magnetic flux providing a magnetic field of 2 T. The steel layers are interleaved

with three layers of gas chamber detectors based on different technologies: Drift Tubes

are used in the barrel region where the magnetic field is uniform, the neutron-induced

background and the muon rate are small; Cathode Strip Chambers are used in the end-

cap regions where the muon rate and background are higher; Resistive Plate Chambers

are used in both regions.

The CMS trigger system consists of a Level 1 (L1) hardware trigger able to reduce the

event rate from 40 MHz to 100 kHz, and the High Level Trigger (HLT) based on software

that reduces the accepted rate of events down to 1 kHz.

The L1 Trigger consists of two sub-systems performing trigger decisions based on the data

from the calorimeters and from the muon detectors, the Micro Global Trigger (MicroGT)

combines the outputs of the calorimeter and muon triggers and provides the final decision

within a latency of ∼ 4 µs. The L1 trigger has been updated before the Run 2 of

LHC and it features large FPGAs mounted on custom data processing boards, equipped

with high speed optical links with up to 1 Tbps bandwidth per board. In fact FPGAs

are well suitable for implementing sophisticated algorithm with pipelined and parallel

architectures at a reduced cost compared to custom ASIC development and keeping high

flexibility for the revision or the implementations of new features.

The HLT uses the complete detector information providing decisions within a latency of

∼ 4 ms, by implementing simplified reconstruction algorithms with respect to the full

online event reconstruction. The architecture of the HLT is based on the evaluation of

sequential reconstruction and filter stages, starting from the ones that mostly reduce the

number of events that will undergo higher complexity stages as the track reconstruction.

CMS Track Trigger R&D for HL-LHC During the Run 4, the expected pile-up at

CMS experiment is estimated to be between 140 and 200 and an upgrade of the CMS

detector is scheduled during the LS3. In particular the Inner Tracker and the Outer

Tracker will be replaced, and the High Granularity Calorimeter (HGCal) will replace the

end-cap ECAL. The tracking detector will feature higher granularity and more radiation

hard sensors to cope with the increased pile-up and radiation damage with respect to the

current detector.

The new tracker is designed with the purpose of including tracking information in the L1

trigger to keep the L1 acceptance rate below 750 kHz without reducing the sensitivity to

interesting physics. In fact it is expected that even at the higher expected pile-up value

of 200, the inclusion of the track reconstruction for high pt tracks (pt > 3 GeV) will allow
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to keep the acceptance rate at 750 kHz, which would exceed 4 MHz without the tracking

information.

One of the most innovative upgrades in the tracking system will be the use of the so-called

pt-Modules that allow for real-time estimate of the particle momentum for high-pt tracks.

In particular these are based on two closely spaced layers of silicon sensors that are read

out by the same front-end ASIC that is able to identify hit doublets (stubs) compatible

with a high-pt track. Two types of sensors have been developed: one implementing two

silicon strip layers (2S) with strip size of 50 mm × 90 µm, and the other implementing a

silicon strip and a silicon macro-pixel layer (PS) with strip size of 24 mm × 100 µm and

pixel size of 1.5 mm × 100 µm; the PS modules, due to their finer granularity, will be

implemented in regions with higher occupancy. The use of pt-Modules will also allow for

a local data reduction in the front-end electronics, providing a pre-selection of the hits.

The scheme of the proposed geometry of the upgraded CMS tracking system is shown in

Fig. 2.8. In particular, it features tilted sensors in order to optimize the stub efficiency,

the material budget is reduced with respect to the current design, and the pseudorapidity

coverage is extended from |η| < 2.4 to |η| < 4.0, increasing the forward acceptance and

mitigating pile-up effects in the forward region.

Figure 2.8: Scheme of the CMS Phase II tracking system featuring tilted sensors in order to

optimize the stub efficiency.

Together with the new tracker, the CMS collaboration is developing a fast track finding

device. Different approaches are under study based on the use of AM and FPGAs and

on full FPGA-based architectures. In the following, we will present an overview of the

implementations based on FPGA. Two different solutions are under investigation, one

based on the Tracklet approach, the other based on the use of the Hough Transform.

In the following we report about the full FPGA-based solution based on the Tracklet

approach; the information are reported from Ref. [29].

The algorithm is based on the identification track seeds formed from pairs of stubs in

adjacent layers (or end cap disks), called tracklets in order to estimate the initial track

parameters. The tracklets are then projected to the other layers (or disks) and compatible

stubs are associated with the track. A track candidate is identified from at least four

stubs. After the tracks have been identified a linearized χ2 fit is performed, using the

information from all the stubs belonging to the track candidate and providing the final
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track helix parameters. The algorithm is massively parallelized, in particular the detector

is divided in 28 angular wedges processed by independent hardware. The architecture is

fully pipelined and operating at a single reference clock of 240 MHz and the processing

is time multiplexed by a factor 6, which means that each board receives data from a new

event once every 150 ns. Moreover it is designed to work with fixed latency that means

that each processing step can perform a fixed number of operations while the processing

of eventually exceeding data is truncated; nevertheless the system is designed to minimize

the effect of the truncation. In the final design each detector sector will be processed by

one ATCA board featuring Xilinx Virtex UltraScale+ FPGAs.

A demonstrator system based on four CPT7 [30] µTCA boards, each one featuring a

Xilinx Virtex-7 FPGA and Xilinx Zynq-7000 SoC has been developed and confirmed the

feasibility of the system, providing a total measured latency of 3.3 µs, compatible with

the maximum required latency budget of 4 µs.

This system, together with the second approach based on the Hough Transform, represents

an interesting implementation of track finding devices fully based on FPGA capable to

perform the track reconstruction with high efficiency and low latency at 40 MHz rate, at

the expected HL-LHC conditions.





Chapter 3

Artificial retina algorithm for 2D fast track

reconstruction

In this chapter we present the artificial retina algorithm for fast track reconstruction of

2-dimensional tracks. The algorithm is inspired from neurobiology and it is based on the

parallel evaluation of the response of a grid of cellular units, tuned to recognize specific

track trajectories. It has been implemented in hardware using a custom acquisition board

based on commercial FPGA, used for both the readout and processing of data from a 2-

dimensional tracking system based on silicon strip sensors. Details about the custom data

acquisition board and the silicon telescope construction are given. The testbeam results

of the first real-time embedded tracking system based on the artificial retina algorithm

are also reported.

3.1 Artificial retina algorithm

The artificial retina algorithm for fast track reconstruction in high energy physics has

been first proposed and described in Ref. [31] and is inspired by the mammals low-level

mechanism for recognizing straight edges. In particular, in the visual cortex dedicated

neurons are tuned to recognize particular shapes and orientations of the objects and

produce an electrical response that is proportional to the good match of the image to

the feature they are tuned to recognize. In the artificial retina, cellular units distributed

over the space of the track parameters are tuned to identify specific charged particles

trajectories and provide a response on how well a set of hits matches a specific track

hypothesis. In this section, we describe the artificial retina algorithm for a 2D tracking

system and briefly discuss the possibility of its extension to 3D tracking systems.

Let’s consider a two dimensional tracking system based on multiple layers of silicon strip

sensors orthogonal to the z -axis as shown in Fig. 3.1. We define (xf , zf ), and (xl, zl), the

coordinates of the intersections of the tracks in the first and last layer, respectively. We

also define the constant terms z± = (zf ± zl)/2 that depend on the geometry, and the

track parameters x± = (xf ± xl)/2 used to describe the equation of a 2D track

x(z) = x+ + x−(z − z+)/z− . (3.1)

A grid of cellular units covers the space of the track parameters (x+, x−). In particular

each cellular unit, identified by its index (i, j) in the grid, is associated with the track

29
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Figure 3.1: (Left) Layout of a 2-dimensional tracking detector based on multiple sensors placed

along the z -axis and measuring only the x coordinate of the hits. (Right) Grid of cellular units

uniformly distributed over the space of the track parameters. Each point of the grid corresponds

to a track hypothesis.

parameters (xi+, xj−) and a set of receptors on the tracking detector, identified by the

intersections of the track in the detector layers. Each cellular unit evaluates the distances

sijk of its track receptors from the measured k-th hits, given by

sijk = xk − xi+ − xj− (zk − z+) /z− , (3.2)

and evaluates a response according to a Gaussian field, exp(−s2ijk/2σ2), where σ is the

width of the Gaussian to be adjusted for optimal response. The weight function Wij of

the (i, j)-th cell is then defined as the sum over the non-negligible contributions

Wij =
∑
k

Wijk, (3.3)

where Wijk is the contribution from the k-th hit, defined as

Wijk =

exp
(
− s

2
ijk

2σ2

)
if |sijk| ≤ 2σ,

0 if |sijk| > 2σ.
(3.4)

The evaluation of the weight function is performed in parallel by the cellular units and

a candidate track is identified by a local maximum of the response in the grid; the value

of the maximum response is also required to be over a certain threshold according to the

minimum number of hits required to identify a track. The reconstructed track parameters

(x+, x−)rec are obtained by interpolations of the weight values adjacent to the maximum,

along the x+ and x− axes. In particular the track parameters are determined by means

of a Gaussian interpolation, defined as

x−,rec = xj− +
∆x−

2

ln(Wij−1/Wij)− ln(Wij+1/Wij)

ln(Wij−1/Wij) + ln(Wij+1/Wij)
, (3.5)

x+,rec = xi+ +
∆x+

2

ln(Wi−1j/Wij)− ln(Wi+1j/Wij)

ln(Wi−1j/Wij) + ln(Wi+1j/Wij)
, (3.6)

where ∆x± is the granularity of the grid of the track parameters.
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The typical response of the artificial retina algorithm for a single track crossing a 8-layer

detector in shown in Fig. 3.2. The contributions from different hits to the response, sum

up in a single point of the space of the track parameters corresponding to the parameters

of the tracks to be measured. A local maximum, whose value corresponds approximatively

to the number of contributing hits, as expected from Eq. 3.3, can be identified and the

parameters recovered by interpolation of the response.

Figure 3.2: Typical response of the artificial retina to a single-track event.

Possible extension to a 3D tracking system The principle of the described algo-

rithm could be extended to 3D tracking systems based on pixel sensors and eventually

the time information of the hits could be added. Nevertheless it is worth noting that

a 3-dimensional track is described by four track parameters that can be identified as

(x+, x−, y+, y−) extending the definition given in Eq. 3.1 to

x(z) = x+ + x−(z − z+)/z− ,

y(z) = y+ + y−(z − z+)/z− .
(3.7)

Using this simplified extension we would need to distribute the cellular units over the

4-dimensional space of the track parameters (x+, x−, y+, y−). This would be equivalent

to allocate a 2-dimensional sub-grid of cellular units distributed over the (y+, y−) space

for each point of the grid covering the (x+, x−) sub-space. In order to use this approach

we need to extend the hit-receptors distance from Eq. 3.2 to an Euclidean 2-dimensional

distance. The rest of the algorithm would remain unchanged that means a candidate

track is still identified by a local maximum of the response and the track parameters are

recovered by interpolation of the weight function along the four axes.

This approach is theoretically feasible but it is worth noting that the amount of needed

resources, i.e. the number of cellular units, would scale as the inverse fourth power of the

grid step if we don’t consider any geometrical constraint. As an example at the LHC the

proton-proton interaction region is limited in space; this reduces the space of the track
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parameters of the reconstructible tracks and allows to distribute the cellular units over a

limited region of the full 4-dimensional (x+, x−, y+, y−) space.

3.2 Artificial retina architecture

Here we describe the device architecture and the firmware implementation of the artificial

retina algorithm in FPGA. The system is composed of three main blocks: the Switch

receives the data from the Data Acquisition (DAQ) and delivers to the regions of cellular

units where the hits are expected to produce a non-negligible response; the Engines

evaluate in parallel the responses associated with the cellular units; the Track Fitter

evaluates the parameters of the candidate track by interpolation of the weight values

of the identified local maxima and their neighbour cells. The generic scheme of the

architecture is shown in Fig. 3.3.

Figure 3.3: Generic scheme of the artificial retina architecture. The DAQ performs the readout

of the sensors and delivers the hits to the artificial retina architecture that is divided into three

main blocks: the Switch, the Engines and the Track Fitter. The device provides the reconstructed

track information in output.

Switch The purpose of the Switch is to deliver the hits from the DAQ to the Engines as

fast as possible. In particular the Switch distributes the hits only to the regions of cellular

units expected to provide a non-negligible response according to the Eq. 3.4, optimizing

the flux of data to be sent to the Engines. In order to describe the behaviour of the

Switch, we define a Group as a set of adjacent strips of the telescope sensors, without

any overlap between different Groups. In this way a hit in the detector is associated with
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one and only one Group. In particular the Group information corresponds to the most

significant bits (MSB) of the hit data. We also define an Engine Region as a set of Engines

covering part of the space of the track parameters (x−, x+); even in this case there is no

overlap between the Engine Regions. A hit is distributed to all the Engines in an Engine

Region according to precomputed data paths evaluated offline and stored into Look-Up

Tables (LUT) within the Switch logic. In particular, the data path is evaluated according

to the Group information only. This means that a hit is distributed to all the Engine

Regions where any of the hits in the Group would produce a non-negligible response in

at least one Engine.

The basic unit of the Switch is the 2x2 Sorter. It has two inputs and two outputs and is

composed of a layer of 2-way Dispatchers and a layer of 2-way Mergers connected as in

Fig. 3.4. The Switch is composed of a full-mesh network of these modules organized in

such a way that hits from any input can be delivered to any of the Switch outputs.

Figure 3.4: The 2x2 Sorter is composed of two 2-way Dispatchers that receive data from the

inputs, and two 2-way Mergers that receive data from the 2-way Dispatchers and are connected

to the output. The internal connections are organized as shown in the picture.

The 2-way Dispatcher has one input and two outputs. For an incoming hit, it compares

the Group information to a LUT that contains the pre-computed data paths and provides

a 2-bit word that identifies if the hit has to be forwarded to zero, one or both the outputs.

The hit data is then forwarded to the corresponding outputs.

The 2-way Merger has two inputs and only one output and it is meant to receive the hit

data from different 2-way Dispatchers, as shown in the 2x2 Sorter scheme in Fig. 3.4. If

the 2-way Merger receives data from only one input, the data is delivered to the output;

if both the inputs are active, one data is delivered and the other is stored and delivered

during the next available clock period.

Hold logic in the Switch modules An hold logic is implemented in the Switch in

order to prevent data losses when a module is busy and not able to accept data. The

hold logic is based on the back propagation (with respect to the hit data flow) of signals
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to communicate the status of the module. The simplest example in which the hold signal

is asserted is when both the inputs of a 2-way Merger are receiving data during a clock

cycle: in this case only one hit can be delivered to the output, while the other has to be

stored into the 2-way Merger buffer. The module will not able to accept any data until,

at least, the next clock cycle. Another general case in which the hold signal is asserted is

when a module is trying to forward a data to an output port from which the hold signal

is received. The use of the hold logic in the Switch ensures that none of the hit data is

lost, unless the hold signal back propagates till the Switch inputs that receives data from

the DAQ.

Engine An Engine corresponds to the hardware implementation of the cellular unit

introduced in the algorithm description. A FanOut is used to connect one Switch output

to all the Engines within the same Engine Region. The Engine logic is shown in Fig. 3.5.

Figure 3.5: Logic scheme of the artificial retina Engine. The Engine receives the hit data,

evaluates the Gaussian response based on the distance from the track receptor and sums the

value to the weight function.

We recall that a cellular unit corresponds to a pre-computed track and is associated with

track receptors corresponding to the intersection of the track with the sensor, at each

detector plane. For each incoming hit (zk, xk), the evaluation of the Gaussian response is

performed in different pipelined stages:

• the position of fij(zk) of the track receptor in the plane at z = zk is evaluated,

according to a LUT;

• the distance from the hit to the track receptor is evaluated as sijk = xk − fij(zk);

• the absolute value of the distance, namely |sijk|, is evaluated;

• a LUT provides the evaluation of the Gaussian response Wijk; if the distance is

greater than 2σ the evaluated response is zero;

• the response is summed to the total weight function Wij of the Engine.

The Engines work in parallel and they are independent from each others during the

evaluation of the Weight function. When an End Of Event signal is asserted from the

DAQ, after the detector readout is complete, each Engine compares the values of its

Weight function to a threshold (thr) and with the value of its first neighbour cells. If a

local maximum over threshold (Wij > thr) is identified, the coordinates of the Engine,

the value of the Weight function and the value of the neighbours’ response are provided
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to the Track Fitter. Finally, the Engine resets the Weight function value and is ready to

process new hits from the following readout of the tracking detector.

Track Fitter The Track Fitter receives the Weight function values from the Engines

corresponding to the local maxima of the artificial retina response. A Track Fitter is con-

nected to each Engine Region through a FanIn module. Two independent evaluations are

performed in order reconstruct the (x−, x+) parameters of the candidate tracks, accord-

ing to the Eq. 3.5 and the Eq. 3.6. The logarithmic terms of the interpolation equations

are evaluated using a LUT, in order to improve the speed performances. After the track

parameters of the identified track have been evaluated, these are sent to a PC and stored

to disk or they can be used as input for further processing.

3.3 Tracking system prototype

A silicon strip telescope together with a custom DAQ board based on FPGA, in which the

artificial retina algorithm has been implemented, have been developed and built at INFN

Milano within the INFN RETINA project. The prototype has been tested on a particle

beam at the CERN Super Proton Synchrotron (SPS) in November 2015 as a hardware

demonstrator of the artificial retina capabilities. Details about the silicon strip telescope,

the DAQ board and the testbeam results are given in the following.

3.3.1 Silicon strip telescope

The telescope is based on 8 planes of single-sided silicon strip sensors. The sensors can be

arranged in different configurations: all with parallel strips for 2D track reconstruction or

with parallel and perpendicular strips for 3D track reconstruction. We will refer to these

configurations as 2D configuration and 3D configuration, respectively. The algorithm

described in Sec. 3.1 is intended for reconstruction of 2D straight tracks, so the detector

planes have been arranged to measure one track coordinate only.

Sensor module The sensors used for the telescope construction are single-sided p-in-

n CMS-OB2 [32] silicon strip sensors. These sensors were originally produced by ST

Microelectronics for the Outer Barrel of the CMS experiment. The silicon sensor has 512

channels with a strip of 183 µm pitch, the nominal thickness is 500 µm and the active area

is 93.9× 91.6 mm2. The sensor is mounted on an aluminium frame as shown in Fig. 3.6.

The aluminium plate also hosts the front-end hybrid board (TTHybrid) and a custom

pitch adapter to connect the sensor, with a pitch of 183 µm, to the TTHybrid, with a

pitch of 112 µm. The TTHybrid is the front-end board used in the LHCb experiment for

the readout of the Tracker Turicensis (TT) sub-detector modules; the Beetle chip [33] is

a custom ASIC that provides the analog readout of 128 channels at a sampling rate of

40 MHz. The TTHybrid is connected to a custom DAQ board through an adapter card

via a VHDCI (Very High Density Interconnect) cable.
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Figure 3.6: Sensor module hosting the silicon sensor, the pitch adapter and the front-end

electronics.

Telescope layout at SPS A picture of the silicon strip telescope mounted at the

CERN SPS during a testbeam in November 2015 is shown in Fig. 3.7.

Figure 3.7: Silicon strip telescope mounted at SPS. The telescope hosts 7 planes arranged in a

2D configuration. Two scintillators provides the trigger and linear and rotation stages allow to

move the system.

In this configuration the telescope hosts 7 sensors arranged as two symmetrical arms

composed of 3 sensors, with one sensor in the middle. The distance between the planes

is 4 cm within the arms, while the distance between the central sensors and the nearest

ones is 8 cm. Two plastic scintillators, mounted before the first and after the last sensor

plane, are used in coincidence to provide the trigger. A linear and a rotation stage are

used to move the telescope in order to study the performance of the fast tracking device
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for tracks crossing the systems in different position and at different angles. The whole

system is enclosed in a light-tight box with an active cooling system.

MAMBA DAQ board The telescope is read out using a custom DAQ board called

Milano Advanced Multi Beetle Acquisition (MAMBA) board, shown in Fig. 3.8.

Figure 3.8: Picture of the MAMBA DAQ board for the readout of the silicon strip telescope

and for the implementation of the real-time tracking algorithm.

The MAMBA board is based on a Xilinx Kintex 7 (XC7K410T) FPGA operated at 400

MHz clock and it is equipped with eight 4-channel 12-bit analog-to-digital converters

(ADC) for the digitization of the analog signals from the Beetle ASICs. The Beetle

ASICs are clocked at 40 MHz and configured via I2C protocol. Each one performs the

readout of 128 silicon strip signals through an analog line for a total of 4096 channels. In

this way one board can control and read out all the telescope planes. The DAQ board

performs the internal coincidence between two transistor-transistor logic (TTL) signals

from two plastic scintillators that provide the trigger to the system at a maximum rate of

280 kHz. The rate is limited by the maximum accepted trigger rate of the Beetle chips,

due to the time needed to read out the strip signals from the Beetle analog pipeline. Other

configurable LEMO connectors can be used for additional input/output to synchronize

the board with external systems or with another MAMBA DAQ board, receiving or

forwarding the clock and reset signals. A time-to-digital converter (TDC) is implemented

to measure the interval between the trigger and the sampling time. The MAMBA DAQ

board communicates to a PC via a USB 3.0 interface and is controlled and monitored via

a dedicated graphic user interface (GUI) called MAMBA GUI.

Slow control and online monitoring system The MAMBA GUI software has been

designed in Visual Basic and runs on a Windows PC and allows to perform the DAQ

slow control, to store the data to disk and to process online part of the acquired data. It

provides the event display and useful data quality monitor (DQM) plots, as the noise and
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signal distribution, the space distribution of the hits in the planes, particularly useful at

the testbeam to identify the position of the particle beam. Two CAEN SP5602 plastic

scintillators, read out through Hamamatsu MPPC S10362-11-100C silicon photomulti-

pliers, are used to provide the trigger and are controlled using the proprietary software.

The telescope is enclosed in a metal light-tight box with an active cooling system. A

chiller refrigerates and circulates a thermal fluid to a heat sink inside the box that cools

down the air temperature. Alternatively a Peltier cell can be used to cool down only the

DUT, while the telescope can work at ambient temperature. Dry air is flowed inside the

light-tight box to maintain low humidity and prevent water condensation on the sensors

when the box is refrigerated. The cooling is necessary for testing irradiated sensors at

temperatures below 0◦C and the humidity and temperature of the air in the box is moni-

tored, as well as the temperature of the telescope and DUT aluminium frames, using four

PT100 temperature sensors. The high voltage is provided independently to the DUT and

to the telescope sensors using two Keithley 2410 Source Measure Units that are remotely

controlled via a custom LabView VI (Virtual Instrument) to set the voltage and monitor

the leakage current.

3.3.2 Hardware specific implementation of the artificial retina

algorithm

The artificial retina algorithm has been implemented in FPGA on the MAMBA DAQ

board. The hardware specific scheme of the artificial retina architecture is shown in

Fig. 3.9. The system performs the readout of up to 8 sensor modules. A programmable

Figure 3.9: Architecture of the artificial retina hardware prototype. The device receives the hit

data from the DAQ, a 4x16 Switch delivers the hit data to 16 Engine Regions with 32 Engines

per region, for a total of 512 Engines. Track Fitters (16 units) receive data from the Engine

Regions and are connected to the output.

threshold is applied to the strip signals to identify the hits, then a Cluster unit identifies

clusters of adjacent hits for each sensor module. The clusters signal are formatted as
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13-bit data providing the information about the index of the sensor module (3 bits) and

the position of the cluster within the module (10 bits). The ADC information is discarded

since it is not used in the artificial retina algorithm. Cluster data from couples of sensor

modules are grouped and sent to the device through 4 lines.

The Switch has 4 inputs and 16 outputs connected to the Engine Regions. Each Engine

Region hosts 32 Engines for a total of 512 Engines uniformly distributed over the space

of the track parameters, within the geometrical acceptance of the telescope. The output

of each Engine Region is connected to a Track Fitter for a total of 16 units. The output

data of the Track Fitter units are collected through a FanIn, sent to the PC, and then

written to disk. For debugging purposes the complete readout of the silicon telescope is

also stored to disk.

The device operates at a clock frequency of 150 MHz, hence a clock cycle corresponds to

6.7 ns. Results are provided with a latency < 1 µs, according to number of clock cycles

required to perform the track reconstruction. The amount of FPGA resources needed for

the implementation of the DAQ and the tracking algorithm are 3% and 68%, respectively.

The contributions to the latency and the percentage of resources needed by the three

blocks of the artificial retina are reported in Table 3.1. We can observe that the major

contribution to the latency is given by the Track Fitter due to the need of performing

the interpolation of the weight values, defined by the Eqs. 3.5, 3.6, that includes the

evaluation of logarithmic functions performed using a LUT, and division operations. In

fact, the division operation can be implemented in FPGA using different techniques in

order to save resources or reduce the latency. If on one hand the implementation of the

Track Fitter could be revised to reduce the latency, on the other hand this would increase

the resources usage. Moreover the Track Fitter, thanks to its pipelined architecture, is

able to accept new data while it is processing the older ones in the pipeline, independently

from its latency, which does not represent a major concern.

Module Clock cycles FPGA resources(%)

Switch 14 7

Engines 12 37

Track Fitter 68 24

Total 94 68

Table 3.1: Minimum latency of the tracking device response in number of

clock cycles of the FPGA and percentage of logic resources allocated for each

individual module.

3.3.3 Testbeam results

The full chain of the tracking system has been successfully tested using 180 GeV/c protons

during a testbeam at CERN SPS. The event display of a typical single-track event is shown

in Fig. 3.10.

Tracks have been reconstructed in real time using the MAMBA board tracking device.

The track parameters are in good agreement with the results obtained from a simple
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Figure 3.10: Response of the artificial retina to a single-track event at the testbeam at SPS.

χ2-minimization algorithm. For debugging purposes the response of the device to real

testbeam data has been simulated and it reproduces the results obtained from the artificial

retina algorithm running in FPGA. The distribution of the track parameters determined

by the MAMBA board tracking device, together with the distribution obtained by simu-

lation of the algorithm, are shown in Fig. 3.11.
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Figure 3.11: Track parameters distribution determined by the artificial

retina. Testbeam data processed by the MAMBA board (retina) and verified

using the simulated response (MC retina).

The resolution on the track parameters obtained by the online algorithm has been evalu-

ated from the offline (χ2-minimization) reconstruction. The distribution of the residuals

for (x−, x+) are shown in Fig. 3.12 and have been fitted with a Gaussian function. The

obtained widths are σx− = 12.5 µm and σx+
= 14.9 µm .
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Chapter 4

4D real-time tracking algorithm

In this chapter we present the algorithm for 4D real-time track reconstruction. The

algorithm is capable to perform both the pattern recognition and the reconstruction of

the track parameters. It is highly parallelized and particularly suitable for implementation

in FPGA with a pipelined architecture.

The version that we present is intended to reconstruct straight 3-dimensional tracks with

the addition of the time information. This applies the reconstruction of tracks using a

detector based on multiple layers of silicon pixel sensors providing additional precise time

information of the hits, as proposed for an upgraded version of the VELO sub-detector

for the LHCb Upgrade II. In general the same algorithm can be used for real-time track

reconstruction of 3-dimensional tracks without considering the time information of the

hits, although with lower performance.

The 4D real-time tracking algorithm that we present is new and more advanced compared

to the artificial retina algorithm for 2D track reconstruction. However, there are some

common features: both are based on the comparison of the measured hits to pre-computed

tracks and the evaluation of the analog response of a grid of cellular units associated

with different possible candidate tracks. More details on the algorithm are given in the

following.

4.1 Algorithm description

The algorithm is intended to identify and reconstruct straight tracks using a detector

based on layers of pixel sensors, providing space and time information of the hits. In this

scheme a track is defined by 5 track parameters that we will consider as two primary pa-

rameters used to perform the track identification, similarly to the case of the 2D artificial

retina algorithm, and three additional parameters that are reconstructed but not used in

the pattern recognition.

The algorithm is based on the identification of couples of hits in adjacent sensors that

we will call stubs. The use of the stubs is motivated by the dimension of the space of

the track parameters. In fact, as we discussed in the previous section, each measured

hit identifies a bundle of track. The degrees of freedom of the line bundle is given by

the total number of track parameters minus the number of constraints provided by the

hit. Considering the case of 4D (or 3D, without time) tracks, the measurement of single

43
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hit identifies a bundle of track with 3 degrees of freedom (or 2, without time). A stub,

instead, is more similar to a track since all the track parameters can be evaluated from

the couple of hits. The number of degrees of freedom of the tracks that contains the

measured stub is theoretically reduced to zero, except for the hit resolution and multiple

scattering effects.

In order to define the complete algorithm we first provide the definition of the track

parameters and the stubs, then we discuss how the pattern recognition is performed and

the evaluation of the track parameters for the candidate tracks.

Track parameters We consider a detector based on multiple layers of pixel sensors

providing space and time information of the hits. The sensors are orthogonal to the z -

axis as shown in Fig. 4.1. A track is defined by 5 parameters (x+, x−, y+, y−, t0), with

(x±, y±) = ((xf ± xl)/2, (yf ± yl)/2) and z± = (zf ± zl)/2, where zf , zl are the z -

coordinates of the first and last tracking planes, respectively, and (xf , yf ) and (xl, yl) are

the coordinates of the track at zf , zl. In particular (x+, y+) corresponds to the coordinates

of the intersection of the track with a reference plane placed at z+ and this quantity will

assume a particular relevance in the following, while (x−, y−) are related to the tangent

of the track angles.

A more classical definition of the 3D track can be given as:(
x(z)

y(z)

)
=

(
x0 +mx z

y0 +my z

)
, (4.1)

where x0, y0 are the coordinates at z = 0 and mx, my are the track slopes.

The relation between the two sets of coordinates is given by the following equations:(
x−
y−

)
=

(
mx z−
my z−

)
,

(
x+
y+

)
=

(
x0 +mx z+
y0 +my z+

)
. (4.2)

Including the time coordinate to the track definition, by extension of the Eq. 4.1, we

define the time of the track as the time of the particle at z = 0, namely t0 according to

the following equation:

t(z) = t0 +

√
m2
x +m2

y

c
× z , (4.3)

where the particle is assumed to travel at the speed of light c.

Stub coordinates A stub is formed by any combination of hits that is compatible

with a reconstructible track, i.e. at LHCb the direction of a stub must be compatible

with a particle originated in the proton-proton interaction region. The stub coordinates

are defined following the same notation of the track parameters, since a stub represents

a track hint. Assuming (x1, y1, z1, t1) and (x2, y2, z2, t2) the coordinates of the first and

second hit of a stub candidate, respectively, the stub parameters are evaluated according
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to the following equations:

x−,stub =
x1z− − x2z−
z1 − z2

x+,stub =
x1(z+ − z2)− x2(z+ − z1)

z1 − z2
y−,stub =

y1z− − y2z−
z1 − z2

y+,stub =
y1(z+ − z2)− y2(z+ − z1)

z1 − z2
t0,stub =

t1 + t2
2

− z1 + z2

2 c

√
1 + (x−/z−)

2
+ (y−/z−)

2

(4.4)

The velocity of the particle can be estimated as an additional stub parameter. The stub

velocity is defined as |~x1 − ~x2| /(t1 − t2), where ~x1 = (x1, y1, z1), ~x2 = (x2, y2, z2) are

the spatial coordinates of the first and second hit of a stub candidate. The velocity is

used only during the stub construction and the reconstructed tracks are always assumed

to be associated with particles travelling at the speed of light. In fact, if the velocity

determined from the stub is not compatible with the speed of light c then the candidate

stub is rejected. Other cuts based on the spatial parameters are also applied and discussed

later.

Pattern recognition and cellular units The pattern recognition consists in the asso-

ciation of multiple stubs to a track candidate according to their projection to a reference

plane. In particular, we consider the stub projections at z = z+ that are defined by the

couple of stub parameters (x+, y+).

A grid of cellular units is allocated in the sub-space of the track parameters (x+, y+)

and is labelled by the couple of indexes (i, j). In this 4D real-time tracking algorithm

a cellular unit is associated with a bundle of tracks that intersect the reference plane,

placed at z = z+ in the coordinates (xi+, yj+) defined by the cellular unit, as shown in

Fig. 4.1. The other stub parameters (x−, y−, t0) are free to assume any value, provided

that these are compatible with the geometrical acceptance and timing cuts.

Each cellular unit, whose coordinate are defined by (xi+, yj+), evaluates a Gaussian re-

sponse according to the distance of the cell in the reference plane from the measured stub,

whose coordinates are (xk+, yk+). The squared distance is defined as

s2ijk = (xk+ − xi+)2 + (yk+ − yj+)2 , (4.5)

and the response to a single stub is defined as

Wijk = Nijk · exp

(
−
s2ijk
2σ2

)
, (4.6)

with

Nijk =

{
1 if |sijk| ≤ 2∆

0 otherwise
, (4.7)
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Figure 4.1: Layout of a VELO-like detector and visual representation of the grid of cellular

units, distributed over a reference plane placed at z = z+.

where ∆, σ are parameters to be adjusted for optimal response. In particular ∆ is about

the size of the grid step in the simplest case of a grid of uniformly distributed cellular

units, and the value of σ is comparable to ∆. The total response (weight function) of each

cellular unit is evaluated as the average of the contributions from the measured stubs. A

contribution is considered negligible, hence not included in the average, if Nijk = 0. The

weight function is then defined by the following equation:

Wij =
1

Nij

∑
k

Wijk, (4.8)

where

Nij =
∑
k

Nijk . (4.9)

The weight function of the cellular units is shown in Fig. 4.2 for an event with 1200

generated tracks.

It is worth noting that the weight function only depends on the x+, y+ quantities from

the measured stubs. Three additional quantities are evaluated by each cellular units from

the (x−k, y−k, t0k) stub parameters.

x−ij =
1

Nij

∑
k x−ijk , (4.10)

y−ij =
1

Nij

∑
k y−ijk , (4.11)

t0ij =
1

Nij

∑
k t0ijk , (4.12)

where

x−ijk = Nijk · x−k , (4.13)

y−ijk = Nijk · y−k , (4.14)

t0ijk = Nijk · t0k , (4.15)
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Figure 4.2: Typical response of the grid of cellular units for an event with 1200 generated

tracks and 90,000 cellular units. The candidate tracks are identified by the cellular units whose

response is maximum with respect to their neighbours.

and x−k, y−k, t0k are the (x−, y−, t0) values of the k-th stub.

The evaluation of the weight function can be performed in parallel since it only depends

on the inputs from the measured stubs and a track is identified by a local maximum of

the weight function. The function Nij for the local maxima is required to be greater

than a certain threshold. In fact the value Nij corresponds to the number of stubs that

belong to the candidate track, in the simplest case in which stubs from different tracks

excite different cellular units. In this simulation the minimum number of stubs required

to identify a track has been set to 2.

Track fitting For each candidate track the reconstructed track parameters (x+, y+)rec
are obtained by interpolations of the weight values adjacent to the maximum along the

x+, y+ axes. In particular these are determined by means of a Gaussian interpolation,

defined as

x+,rec = x+ij +
∆x+

2

ln(Wi−1j/Wij)− ln(Wi+1j/Wij)

ln(Wi−1j/Wij) + ln(Wi+1j/Wij)
, (4.16)

y+,rec = y+ij +
∆y+

2

ln(Wij−1/Wij)− ln(Wij+1/Wij)

ln(Wij−1/Wij) + ln(Wij+1/Wij)
, (4.17)

assuming ∆x+
= (xi+1j − xij) = (xij − xi−1j), ∆y+ = (yij+1 − yij) = (yij − yij−1),

where (i, j) are the indexes associated with the local maximum in the grid. The remaining
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track parameters are evaluated as

x−,rec = x−ij , y−,rec = y−ij , t0,rec = t0ij , (4.18)

according to the Eqs. (4.10), (4.11), (4.12).

4.2 Simulated response of the 4D tracking algorithm

In this section we present the results of the high-level simulations of a software-implemented

version of the 4D tracking algorithm. The purpose of this simulation is to evaluate the

performance of the algorithm applied to a tracking system similar to the VELO Upgrade

detector providing both space and time information of the hits.

The performances are estimated in terms of the quality of the reconstructed track pa-

rameters, compared to the parameters of the generated tracks, and in terms of the recon-

struction efficiency and purity of the identified tracks.

A comparison between the presented 4D real-time tracking algorithm and the perfor-

mances of the same algorithm without including the time information, but still based on

the use of the stubs, is provided.

In the software simulation the evaluation of the response is not parallelized and data flow

to the cellular units is not modelled nor simulated. The reconstruction is performed on a

event-by-event basis. For each event a certain number of tracks is generated, the hits are

measured and the stubs are identified by a loop over all the couples of hits in adjacent

planes, then spatial and time cuts are applied. When all the stubs have been processed

the weight function is evaluated for all the cellular units and the tracks are identified and

fitted.

Tracking system layout and track generation In the simulations we considered a

tracking system composed of 12 planes of silicon pixel detectors positioned along the z

axis. The layout is similar to part of the VELO Upgrade of the LHCb detector. The

positions of the sensors are reported in Table 4.1. Each pixel sensor has been modelled as

a 66×66 mm2 square with a square “hole” of 5×5 mm2 around the beam pipe. The pixel

size is 55× 55 µm2 and the thickness is 200 µm. The timing information of the track hits

has been modelled by evaluating the time of passage of the tracks in the sensors, then a

Gaussian smearing has been applied, with a Gaussian width σt,hit corresponding to 30 ps

if not specified.

Sensor 0 1 2 3 4 5 6 7 8 9 10 11

z [mm] 1 26 51 76 101 126 151 176 201 226 251 276

Table 4.1: Positions of the sensors along the beam axis.

In the LHCb the typical r.m.s. of the longitudinal size of the colliding proton bunches is

7.5 cm and the r.m.s. of the transverse size is few µm. In this scenario the proton-proton

interactions are distributed over a region of about 10 cm. In particular we simulate an

interaction region Gaussian distributed along the beam axis with σz = 5 cm. To take into
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account displaced vertices from secondary interactions the interaction region is Gaussian

distributed also along the x, y axes with a width σx,y = 500 µm. The distribution in

time is Gaussian with a width σt,lumi = σz,lumi/c = 167 ps. Tracks are generated in the

forward region with a uniform distribution of the polar angle θz (w.r.t. to the z axis) in

the range [0.035, 0.270] , while the distribution of the azimuthal angle φx,y is uniform in

the range [0, 2π] .

Cellular units distribution and stub cuts The response of the 4D real-time track-

ing algorithm has been simulated using a grid of about 360,000 cellular units uniformly

distributed over a reference plane (x+, y+) placed at z = z+ = 138.5 mm in the range

[−40 mm, 40 mm] × [−40 mm, 40 mm]. The region of track parameters in the range

[−3 mm, 3 mm]× [−3 mm, 3 mm] has not been considered in the reconstruction since it is

outside the acceptance of the simulated detector. The granularity of the grid in (x+, y+)

is 133 µm for both the directions, and depends on the number of cellular units in the grid.

Different cuts have been applied to reject misidentified stub candidates that are not

compatible with a generated track. In this way most of the stubs obtained by linking two

points belonging to different tracks are removed. Selection cuts have been applied based

both on the spatial parameters of the stub and on the difference in time between the two

measured hits. The geometrical acceptance cuts are reported below:√
(x20 + y20)stub < 15 mm , (4.19)√

(m2
x +m2

y)stub < 0.27 , (4.20)

|d0|stub < 1.25 mm , (4.21)

|z0|stub < 150 mm . (4.22)

where d0 is defined as the (signed) distance of closest approach of the stub projection line

to the z axis, and z0 is the position along the z-axis where d0 is evaluated. The variables

d0 and z0 are defined as follows:

d0 = (x0 my − y0 mx)/
√
mx mx +my my , (4.23)

z0 = − (x0 mx + y0 my)/ (mx mx +my my) . (4.24)

In order to apply a cut based on the time of the hits, the velocity is calculated as ~v2,1 =

(~x2−~x1)/(t2−t1), where (~x2−~x2) is the spatial distance between the first and the second

hit of the stub, (t2 − t1) is the difference in time and ∆z2,1 = (z2 − z1) is the distance

between the planes. The following cut is applied, according to the resolution on the time

of the hit σt : ∣∣∣∣∆zstub( 1

vstub
− 1

c

)∣∣∣∣ < 4
√

2σt . (4.25)

Results Simulations of events with 1200 generated tracks in the acceptance have been

performed. The algorithm response has been simulated in two cases, using the information

on the time of the hits with a resolution of 30 ps and without using the time information.

Events with only one track have been simulated as benchmark for evaluating the quality
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of the reconstruction. The resolution on the track parameters are evaluated fitting the

residual distribution of the reconstructed minus the generated parameter with the sum

of two Gaussian functions. The value of the resolution is defined as the root mean square

of the fitting function.

The obtained resolution on the x−, y− track parameters are σx−,y− = 46 µm, the resolu-

tion on x+, y+ are σx+,y+ = 27 µm and the resolution on the time of the track (at z = 0)

is σt0 = 11.4 ps .

In presence of a high number of tracks different contributions can decrease the quality

of the reconstruction and increase the number of ghost tracks. In particular, the pattern

recognition, which is the identification of local maxima, is performed only in a sub-

space of the track parameters; in this sense tracks that have similar values of (x+, y+) or

misidentified stubs can produce an excitation of the same cellular units. The worsening of

the resolution is in general due to the contamination of the weight function near the local

maximum corresponding to an identified track. This effect depends on the granularity of

the grid and it is reduced when increasing the number of cellular units. The contributions

given by the misidentified stubs can be mitigated using the time information in the fast

tracking algorithm.
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Figure 4.3: Residual distribution for reconstructed minus generated x− and x+ track parame-

ters for simulated events with 1200 generated tracks in the acceptance with no time information

(top) and using the information of th hits with 30 ps resolution (bottom). The resolution im-

proves when using the time information and changes from σx− = 100 µm and σx+ = 37.8 µm to

σx− = 73.0 µm and σx+ = 35.0 µm . Similar results are obtained for σy− and σy+ .

The residual distributions of reconstructed minus generated x− and x+ track parameters
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for events with 1200 generated tracks in the acceptance are shown in Fig. 4.3. The

resolutions obtained without using the time information of the hit are σx− = 100 µm and

σx+
= 37.8 µm. When including the time information of the hit the tracking performance

improves and the resolution on the track parameters becomes σx− = 73.0 µm and σx+ =

35.0 µm.

The residual distribution for the reconstructed minus generated time of the track is shown

in Fig. 4.4. The simulated resolution on the time of the hit is 30 ps and the obtained

resolution on the time of the track is σt0 = 29.1 ps when the time cut defined in Eq. 4.25

is applied in the stub construction. The system provides a good determination of the time

of the track and this information can be used at later stages of the event reconstruction

to distinguish among particles coming from vertices close in space but originated from

proton-proton interactions occurring at different times. The previous result is compared

to the case in which the time of the track is evaluated according to the Eq. 4.18 but the

cuts based on the velocity of the particle are not applied. In this case the resolution on

the time of the track is σt0 = 45.2 ps.
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Figure 4.4: Residual distribution for reconstructed minus generated time of the track for

simulated events with 1200 generated tracks in the acceptance without using the time cut in the

stub construction (top) and applying the cut (bottom). The simulated resolution on the time of

the hit is 30 ps in both cases. The resolution improves in the latter case, from σt0 = 45.2 ps to

σt0 = 29.1 ps .

Resolution Without timing cuts With timing cuts

σx− (µm) 100.0 73.0

σy− (µm) 99.2 72.4

σx+ (µm) 37.8 35.0

σy+ (µm) 38.2 35.2

σt0 (ps) 45.2 29.1

Table 4.2: Resolution on x+, x−, t0 track parameters, obtained without

applying the timing cuts during and applying the timing cuts.

The resolutions obtained on x+, x−, t0 track parameters are summarized in Table 4.2.

The reconstruction efficiency εrec is defined as the ratio between the number of recon-
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structed tracks and the number of generated tracks that can be reconstructed using the

4D tracking algorithm. To evaluate the efficiency, for each generated track it is required

to find a reconstructed track whose distance in the (x+, y+) is less than 200 µm. The

reconstructed track is also required not to be a ghost track. A track is defined as well

reconstructed (not a ghost track) if more than 70% of the contributions to the cellular

unit identified as maximum comes from a real track. In both cases, with and without

the time information of the hit, the efficiency is εrec = 98.5%. The rate of ghost tracks

is instead reduced when using the time information. The reconstruction purity Prec is

defined as the ratio between the number of well reconstructed tracks and the total number

of reconstructed tracks. The purity improves when using the time information, going from

Prec = 60% to Prec = 82%. The reconstruction purity as a function of the number of

stubs that contributed to the weight function of the engine associated with an identified

track is shown in Fig. 4.5. In both cases the purity increases with the increasing of the

number of stubs, that is correlated to the number of hits that belong to each track.
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Figure 4.5: Purity of the reconstruction as a function of the number of stubs contributing to

the identified track, using the time information with 30 ps resolution (left) and without using

the time information (right). The distributions of number of stubs are superimposed as shaded

histograms.

The results presented in the following, if not specified, refer to simulations that includes

the time information of the hit, with 30 ps resolution.

The reconstruction efficiency as a function of the track parameters (x+, y+) and as a

function of the variable r+ =
(
x2+ + y2+

)1/2
is shown in Fig. 4.6. It can be seen that

there is a small inefficiency for low values of r+, where the distribution of the tracks is

maximum as represented by the shaded histogram superimposed to the efficiency plot.

The efficiency as a function of the pseudo-rapidity η = − ln (tan (θ/2)), the azimuthal

angle φ, d0 and z0, where θ is the polar angle with respect to the z axis, is shown in

Fig. 4.7. The efficiency decreases for high values of the pseudo-rapidity η, corresponding

to tracks with lower values of the polar angle θ: this reflects the inefficiency shown for low

values of r+. The efficiency does not show a dependence on the φ and d0 track parameters

as expected, while it decreases for increasing values of z0 reflecting the fact that tracks

with higher z0 intersect a lower number of planes.

The reconstruction purity as a function of the resolution on the time of the hit is shown in

Fig. 4.8. The purity decreases for increasing values of the time resolution and the results
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Figure 4.6: Efficiency as a function of (x+, y+) (left) and r+ =
(
x2+ + y2+

)1/2
(right); the shaded

histograms represents the r+ distribution of the tracks.
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Figure 4.7: Efficiency as a function of the pseudo-rapidity η (top-left), the azimuthal angle φ

(top-right), d0 (bottom-left), z0 (bottom-right). The distributions of the track parameters are

superimposed as shaded histograms.

obtained assuming 150 ps resolution are comparable with the results obtained without

using the time information. In fact if the value of the time resolution is comparable to

the dimension of the beam (in time, σt,beam = 167 ps ), the time cut defined in Eq. 4.25

becomes inefficient. Nevertheless it should be noted that the information on the time of

the track is still accessible and can be used in the next level of processing, i.e. in the

vertex reconstruction.
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Figure 4.8: Reconstruction purity as a function of hit time resolution. The lower limit is

represented by the case in which the time information is not used.



Chapter 5

Device architecture and implementation in FPGA

In this chapter we describe the implementation of the proposed algorithm for fast track

reconstruction in FPGA. The system has been implemented using Xilinx Vivado Design

Suite1 that has been used for both synthesis and simulation. The hardware description

language (HDL) that has been used is VHDL2 for all the fast tracking algorithm im-

plementation. In some cases the hardware description has been provided using Verilog

language, in particular for the instantiation of some Xilinx LogiCORE IPs.

Here we first give an overview of the architecture of the proposed fast track finding system

and then provide the description of all the modules that are used inside the main blocks.

General architecture The architecture of the proposed fast tracking device is divided

in different major modules.

• The Stub Constructor module receives the data from the DAQ, identifies and for-

mats the stubs, then forwards them to the following module.

• The Switch module receives the stub data and delivers each one to a unique output

according to the address evaluated by the Stub Constructor module. Each output

of the Switch is connected to an Engine Region that is associated with a region of

the space of the track parameters.

• The Engine Region receives the data from the Switch and delivers them to a number

of Engine modules that evaluate the response to the stimuli provided by the incom-

ing stubs. The Engines correspond to the cellular units described in Chapter 4 and

identify the candidate tracks and evaluate the track parameters. A FanIn collects

the outputs of the Engines and forwards them to the Engine Region output.

• One or multiple FanIn modules receive the reconstructed track data from the Engine

Regions and provide them to the output ports of the whole system. The FanIns

represent the last modules of the proposed fast track finding system.

1Vivado Design Suite; https://www.xilinx.com/products/design-tools/vivado.html
2Very High Speed Integrated Circuits Hardware Description Language
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5.1 Description of the implemented modules

In this section we give a description of the modules that have been implemented and

used for the implementation of the 4D real-time tracking algorithm. In particular all the

modules are optimized to reduce the minimum latency of the system.

5.1.1 VHDL package: algorithmtools

A VHDL package called algorithmtools has been developed and used in this project.

The package allows to define constants, custom types and functions to be shared and

used within multiple design units in order to enhance the readability and maintainability

of the code. In particular all the modules that we will describe in the following sections

make use of the definitions provided by the algorithmtools package and the majority

of them is transparent with respect to changes of the custom types definitions. Simple

examples of values defined in algorithmtools are the data size, the dimension of the

Switch, the number of Engines in each Engine Region. Others definitions provided in the

package are the hit, stub, track and hold custom types, that we describe with more detail

in the following.

Hit data format A record has been used to define the hit data format as a custom

data type. In VHDL the records are similar to the structures in C programming. The

r_hitdata type is used to describe the hit data format and it is defined as follows:

type r_hitdata is record

dv : std_logic;

bco : std_logic_vector(hit_bco_size-1 downto 0);

x_address : std_logic_vector(hit_x_address_size-1 downto 0);

y_address : std_logic_vector(hit_y_address_size-1 downto 0);

t0 : std_logic_vector(hit_t0_size-1 downto 0);

eoe : std_logic;

padding : std_logic_vector(hit_padding_size-1 downto 0);

end record r_hitdata;

In particular, dv is the Data Valid flag, bco is the bunch crossing timing information,

where 1 unit represents 25 ns, x_address and y_address form the address of the data,

namely the position of the hit in one tracking plane, t0 represents the timing information

with finer resolution within the 25 ns bunch-crossing interval, eoe is the End Of Event

flag that is used to identify when all the hit data from one detector have been read,

padding is a null padding that is filled with zero bits.

hit_bco_size, hit_x_address_size, hit_y_address_size, hit_t0_size, hit_padding_size

are constant integers and define the size of the items in the r_hitdata record. The data

size of the record is defined by the r_hitdata_size constant value and the hit_padding_size

is defined accordingly.

The auxiliary constant r_hitdata_zero is defined as an r_hitdata with all the signals

set to zero. Arrays and matrices of r_hitdata are often used in the implementation and
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dedicated types are defined as r_hitdata_array and r_hitdata_matrix respectively.

The definitions are given by:

constant r_hitdata_zero : r_hitdata := (

dv => ’0’,

bco => ( others => ’0’ ),

x_address => ( others => ’0’ ),

y_address => ( others => ’0’ ),

t0 => ( others => ’0’ ),

eoe => ’0’,

padding => ( others => ’0’ )

);

type r_hitdata_array is ARRAY( natural range <> ) of r_hitdata ;

type r_hitdata_matrix is ARRAY( natural range <>, natural range <> ) of r_hitdata ;

Stub data format Similarly to the case of the hit data format, the r_stubdata record

defines the stub data format

type r_stubdata is record

dv : std_logic;

bco : std_logic_vector(stub_bco_size-1 downto 0);

detindex : std_logic_vector(stub_detindex_size-1 downto 0);

x_address : std_logic_vector(stub_x_address_size-1 downto 0);

y_address : std_logic_vector(stub_y_address_size-1 downto 0);

xminus : std_logic_vector(stub_xminus_size-1 downto 0);

yminus : std_logic_vector(stub_yminus_size-1 downto 0);

t0 : std_logic_vector(stub_t0_size-1 downto 0);

eoe : std_logic;

conf : std_logic;

padding : std_logic_vector(stub_padding_size-1 downto 0);

end record r_stubdata;

In particular, dv is the Data Valid flag, bco is the bunch crossing timing information,

where 1 unit represents 25 ns, detindex is the index of the couple of detector planes in

which the stub has been identified, x_address and y_address form the address of the

data, and are used in the Switch module to evaluate the data path to the Engines, and

represent the position of the stub projection to the tracking reference plane. The xminus,

yminus, t0 fields represent the (x−, y−, t0) values of the stub, as defined in the Eq. 4.4,

eoe is the End of Event flag that is used to identify when all the stub data from the Stub

Constructor have been read and delivered to the Switch module, conf is the Configuration

flag that is used for the initial configuration of the Engines, padding is the null padding.

Similarly to the previous case, the size of the record items are defined by integer constant

values.
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The auxiliary constant r_stubdata_zero is defined as an r_stubdata with all the signals

set to zero and arrays and matrices of r_stubdata are defined by two custom types

r_stubdata_array and r_stubdata_matrix.

Track data format The r_trackdata record is used to contain the information of the

identified and reconstructed tracks, evaluated and provided by the Engines. The record

is defined as follows:

type r_trackdata is record

dv : std_logic;

bco : std_logic_vector(track_bco_size-1 downto 0);

x_address : std_logic_vector(track_x_address_size-1 downto 0);

y_address : std_logic_vector(track_y_address_size-1 downto 0);

counter_sum : std_logic_vector(track_counter_sum_size-1 downto 0);

xplus_sum : std_logic_vector(track_xplus_sum_size-1 downto 0);

yplus_sum : std_logic_vector(track_yplus_sum_size-1 downto 0);

xminus_sum : std_logic_vector(track_xminus_sum_size-1 downto 0);

yminus_sum : std_logic_vector(track_yminus_sum_size-1 downto 0);

t0_sum : std_logic_vector(track_t0_sum_size-1 downto 0);

padding : std_logic_vector(track_padding_size-1 downto 0);

end record r_trackdata;

In particular, dv is the Data Valid flag, bco is the bunch crossing timing information,

where 1 unit represents 25 ns, x_address and y_address form the data address, in par-

ticular these value are used to store the indexes of the Engine (in the instantiated grid of

Engines) that identified the track, counter_sum represents the number of stubs identified

as part of the reconstructed track, xplus_sum, yplus_sum, xminus_sum, xminus_sum and

t0_sum represent the sums of the stub parameters from the stubs that contributed to the

track, padding is the null padding.

Even in this case, the size of the record items are defined by integer constant values.

The auxiliary constant r_trackdata_zero is defined as an r_trackdata with all the

signals set to zero and arrays and matrices of r_trackdata are defined by two custom

types r_trackdata_array and r_trackdata_matrix.

Hold data format The hold signals are used to back propagate (with respect to the

flow of the stub data) the information about the state of the modules receiving the hit,

stub or track information. In particular a module asserts the hold signal when it is not

able to accept an incoming data. More information about the hold logic will be given in

the following section.

A record has been defined for the hold signals, together with the r_hold_zero constant,

r_hold_array and r_hold_matrix data types. In this case the r_hold record contains

only a std_logic signal, according to the definitions given in the following:

type r_hold is record

value : std_logic;

end record r_hold;
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5.1.2 Ring Buffer

The Hit, Stub and Track Ring Buffers are basic components that are used inside different

other modules, i.e. the Stub Ring Buffer are present inside the submodules used to build

the Stub Switch, as the Stub N-way Dispatchers and N-way Mergers. The Hit, Stub

and Track Ring Buffer are defined in the same way and only differs for the type of data

provided in input and output. For this reason we will generically refer to any of these

module as Ring Buffer, unless specifically required. In general a Ring Buffer is used at

each input of the Switch sub-modules.

Here we describe the Ring Buffer implementation using the Hit Ring Buffer as an example;

the entity is called hit_ring_buffer and it is described as follows:

entity hit_ring_buffer is

generic (

buffer_size : integer := 2

);

port (

clk : in std_logic;

reset : in std_logic;

w_en : in std_logic;

r_en : in std_logic;

data_in : in r_hitdata;

data_out : out r_hitdata;

full : out std_logic;

not_empty : out std_logic

);

end hit_ring_buffer;

Figure 5.1: Scheme of the Ring Buffer ports. The direction of the arrows highlights input and

output ports.

The scheme of the ports is described in Fig. 5.1. The module includes a buffer whose

depth is defined by the parameter buffer_size, defined by the generic integer and

provided when instantiating the Ring Buffer module. The generic value of buffer_size

shown in the code and in general all the generic values in the entity declarations are
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intended as default ones, to be used when a specific value is not passed during the entity

instantiation.

The behaviour of the module is described as follows: when the write enable signal w_en is

high the incoming r_data is read from data_in and stored in the buffer at the position

defined by the write_index internal signal, then the write_index is increased. The

data_out port always outputs the content of the buffer at the position defined by the

read_index internal signal. When the read enable signal r_en is high the buffer data at

read_index position is deleted and the index is incremented. The full and not_empty

flags provide information about the status of the buffer, in particular the full signal is

connected to the module that is providing data to the buffer and it is asserted when the

Ring Buffer is not able to accept data. The signal is deasserted as soon as a data is read

and a position in the buffer becomes available for writing a new one.

The module operates at a reference clock speed given by the clk signal. At each rising

edge of the clock the module updates all the output and internal signals. The reset signal

is provided asynchronously and is used to clear the content of the buffer and reinitialize

the read_index and write_index.

The Ring Buffer, in fact, acts as a First Word Fall Through (FWFT) FIFO3 buffer. The

FWFT FIFO differs from a Standard FIFO in the way the output data is accessed: in a

Standard FIFO the read enable signals is asserted and after one clock period the FIFO

output is available at the corresponding port, in the FWFT FIFO the first available data

immediately appears at the output port without having to strobe the read enable signal,

that is used as an acknowledge signal to clear the data content in the FIFO after it has

been read.

The Ring Buffers can be substituted by FWFT FIFOs generated using the Xilinx FIFO

Generator IPcore, that allows either to generate FIFOs using the FPGA sparse logic or

using dedicated Block RAMs (BRAM) present in the FPGA. The main reason to usually

prefer the custom implemented Ring Buffers is that it is more flexible to changes in the

implementation, i.e. changes of the generic constant buffer_size or the input/output

data size, that would require the FIFO IPcore to be regenerated. Moreover, when imple-

menting FIFOs based on the use of BRAMs we should consider that the minimum BRAM

size is 18 Kb or 36 Kb, that is too much if compared to a typical data size of 64 bits and

buffer size of 2, so the use of BRAMs would end in a waste of resources since if a BRAM

is only partially used the rest of the memory is not available for other purposes.

5.1.3 Single Clock FIFO FWFT Wrapper

Similarly to the previous case three modules are defined to be used with hit, stub or track

data. This module is a wrapper that includes a FWFT FIFO based on a 18 Kb or 36 Kb

BRAM (depending on the data size). The entity of the Hit Single Clock FIFO FWFT

Wrapper is described as follows:

entity hit_single_clock_fifo_fwft_wrapper is

port (

3First In First Out
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clk : in std_logic;

reset : in std_logic;

w_en : in std_logic;

r_en : in std_logic;

data_in : in r_hitdata;

data_out : out r_hitdata;

full : out std_logic;

not_empty : out std_logic

);

end hit_single_clock_fifo_fwft_wrapper;

The module has exactly the same structure of the Ring Buffer and the two modules can

be considered as interchangeable, provided the fact the latter does not make us of generic

value to declare the buffer depth.

The wrapper includes also the logic for the type conversion from r_hitdata to std_logic_vector

and vice versa, in order to write and read the FIFO that accepts and provides std_logic_vector

input and output data. The type conversion functions for hits, stubs and tracks are in-

cluded in the algorithmtools package. The depth of the FIFO is chosen in order to be

512 in both the case of r_hitdata_size = 32 or r_hitdata_size = 64 ; in the first case

one 18 Kb BRAM is used, while in the second case one 36 Kb BRAM is used. It has to

be noted that 512× 32 bits = 16 Kb, that corresponds to the user available memory of a

18 Kb BRAM, being 2 Kb reserved for parity check; similarly the user available memory

of a 36 Kb BRAM is 32 Kb.

The Single Clock FIFO FWFT Wrapper modules are used as moderately large input

buffers at the Stub Constructor inputs and at the Stub Switch inputs to absorb fluctua-

tions in the data flow between main components of the hardware architecture.

5.1.4 N-way Dispatcher

The N-way Dispatcher is a module with one input and multiple outputs and two versions

have been implemented for the hit and stub data, respectively. It receives a data from the

only input and evaluates to which ports it has to be forwarded according to x_address

and y_address content of the received data. The N-way Dispatcher can also be used

as a FanOut according to the value of the mode generic value; in this case the data is

always forwarded to all the output ports. The entity of the Hit N-way Dispatcher is

called hit_n_waydispatcher and it is described as follows:

entity hit_n_waydispatcher is

generic (

buffer_size : integer := 2;

x_outsize : integer := 2;

y_outsize : integer := 2;

x_address_index : integer := 0;

y_address_index : integer := 0;

x_level : integer := 0;
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y_level : integer := 0;

x_overlap_level : integer := 0;

y_overlap_level : integer := 0;

mode : integer := 1 -- mode: 0 -> fanout, 1 -> dispatcher

) ;

port (

clk : in std_logic;

reset : in std_logic;

data_in : in r_hitdata_matrix( 0 downto 0, 0 downto 0 ); --hard coded dimension

hold_in : out r_hold_matrix( 0 downto 0, 0 downto 0 ); --hard coded dimension

data_out : out r_hitdata_matrix( x_outsize - 1 downto 0, y_outsize - 1 downto 0 );

hold_out : in r_hold_matrix( x_outsize - 1 downto 0, y_outsize - 1 downto 0 )

);

constant x_insize : integer := 1;

constant y_insize : integer := 1;

constant x_outsize_nbits : integer := integer(ceil( log2( real( x_outsize ) ) ) );

constant y_outsize_nbits : integer := integer(ceil( log2( real( y_outsize ) ) ) );

constant x_address_index_vector : std_logic_vector(hit_x_address_size-1 downto 0)

:= std_logic_vector(to_unsigned(x_address_index,hit_x_address_size));

constant y_address_index_vector : std_logic_vector(hit_y_address_size-1 downto 0)

:= std_logic_vector(to_unsigned(y_address_index,hit_y_address_size));

end hit_n_waydispatcher;

Figure 5.2: Scheme of the N-way Dispatcher with N = 2 outputs.

The scheme of an N-way Dispatcher with 2 output ports is shown in Fig. 5.2.
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Many generic values are used to set relevant parameters when instantiating the entity. The

meaning of these values will be discussed together with the description of the behaviour

of the module.

The ports associated with the one and only input are data_in and hold_in, receiving

and providing a r_hitdata_matrix and a r_hold_matrix, respectively. The dimensions

of the matrices are hard-coded and equal to one; the constant values x_insize and

y_insize are defined for better code readability. The choice of using matrices even for

the case of one input is motivated to keep the same structure for inputs and outputs

in this and other structures and modules described in this work. Similarly the ports

associated with the outputs, data_out and hold_out are arranged in matrices whose

dimensions are defined by the generic values x_outsize and y_outsize. Moreover, it

has to be noted that according to the entity description hold_in is actually an output

port and similarly hold_out is an input port, despite the naming convention. In order to

avoid misunderstandings we will use in and out suffixes according to the direction of the

data flow and we remind that the hold signals always propagate in the opposite direction

(back propagation); this justifies the non obvious naming convention for the hold signals.

Now we describe the behaviour of the N-way Dispatcher module: a Ring Buffer, whose

depth is defined by buffer_size is instantiated and data_in and hold_in are directly

connected to the data input and the full flag of the buffer respectively, the w_en is given

by the dv of the incoming r_hitdata (or r_stubdata); this means that every valid data

at the input of the N-way Dispatcher is written into the buffer, if the buffer is not full.

When used in fanout mode, the N-Way Dispatcher performs the AND of all the sig-

nals from hold_out: if the result is negative the data from the Ring Buffer is for-

warded to all the output ports, otherwise the output signal is set to r_hitdata_zero (or

r_stubdata_zero) on all the output ports. If the Ring Buffer is empty the data output

is set to zero by default. When used in dispatcher mode, the N-Way Dispatcher processes

the data from the Ring Buffer (if not empty) and selects the output ports to which the

data from the buffer should be forwarded, according to the content of x_address and

y_address: if none of the selected ports is receiving the hold value (formally, if the hold

value is equal to r_hold_zero for all the selected output ports) the data is forwarded to

those port, while the output data to the remaining port is set to r_hitdata_zero (or

r_stubdata_zero); if any of the selected ports is receiving a hold signal, all the output

signals are set to zero. In both cases the read enable signal of the Ring Buffer is asserted

only if the data has been forwarded.

The instantiated Ring Buffer receives the clk signal and operates synchronously with the

input clock, while all the evaluations performed by the other logic of the N-way Dispatcher

are performed asynchronously. Nevertheless, since all the input signals are synchronous

with the input clock, the output signals result to be synchronous too; in particular at

the rising edge of the clk signal, the hold_out signals (from the modules that follow the

N-way Dispatcher) and the signals from the internal Ring Buffer are updated, then the

output data are updated and the results remain unchanged until the input changes at the

next rising edge of the clock signal. The reset signal is provided asynchronously and is

used only by the Ring Buffer since the N-way Dispatcher has no internal signals to reset.
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Output selection mechanism in dispatcher mode We previously stated that the

selection of the active output ports is based on x_address and y_address data content

that are processed as independent from each others. In this paragraph we provide more

detail on the selection rules; in particular we will describe only how the first index of

the output matrix is selected, based on the x_address value, while the second index is

selected using the same rules applied to the y_address data content.

The x_address is split in different parts according to the values of x_level, x_overlap_level

and x_outsize_nbits.

• the (x level+x outsize nbits)-th bit of the data from the Ring Buffer is compared

to the LSB4 of the x_address_index generic values (converted from integer). In

particular the x_address_index represents the position of the Dispatcher in a net-

work of different modules. The result of the comparison is stored in the signal

x_is_from_border;

• if x_is_from_border is ’0’, the x_address content of the data is stored in the signal

x_temp_address, otherwise the bitwise NOT is applied and the value stored to the

x_temp_address signal;

• x_central_output_index_from_address is evaluated by conversion

of x_temp_address( x_level+x_outsize_nbits-1 downto x_level ) to an inte-

ger value;

• the signal x_rest_of_address is built

from x_temp_address( x_level-1 downto x_overlap_level );

• the x_left_edge signal is evaluated by application of the AND operator to the

result of the bitwise NOT applied to x_rest_of_address;

• the x_right_edge signal is evaluated by application of the AND operator

to x_rest_of_address. it is worth noting that x_left_edge and x_right_edge

can not be simultaneously equal to ’1’;

• all the useful quantity have now been evaluated; the “x” index of the selected output

ports are

x_central_output_index_from_address,

x_central_output_index_from_address - 1 if x_left_edge = ’1’,

x_central_output_index_from_address + 1 if x_right_edge = ’1’.

All these considerations apply also to the selection of the output based on the y_address

content. The result of merging the two selection processes is that one data can be for-

warded to one, two or four output ports.

The N-way Dispatcher is, de facto, an intelligent 1-to-N demultiplexer, in which the

selection of the output ports is based on the data from the input and the hold signals

from the output ports. In order to save resources, only the Data Valid value of the output

signals is evaluated in the selection process while all the other items within the Hit (or

4least significant bit
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Stub) data record are directly forwarded from the Ring Buffer to all the output ports; this

scheme allows to reduce the number of look-up tables needed to synthesize the module,

moreover it does not affect the logic behaviour since any module receiving from the N-way

Dispatcher will accept the data only if the Data Valid is equal to ’1’.

5.1.5 N-way Merger

The N-way Merger is a module with multiple inputs that has the task of sorting the

incoming data and forwarding them to the only output. It has been implemented for hit,

stub and track data without differences. The entity of the Hit N-way Merger is called

hit_n_waymerger and it is described as follows:

entity hit_n_waymerger is

generic (

buffer_size : integer := 2;

x_insize : integer := 4; -- x_insize must be a power of 2

y_insize : integer := 4; -- y_insize must be a power of 2

x_address_index : integer := 0;

y_address_index : integer := 0;

x_level : integer := 0;

y_level : integer := 0;

mode : integer := 0 -- mode: 0->normal mode; 1->fanout

);

port (

clk : in std_logic;

reset : in std_logic;

data_in : in r_hitdata_matrix( x_insize-1 downto 0, y_insize-1 downto 0 );

hold_in : out r_hold_matrix( x_insize-1 downto 0, y_insize-1 downto 0 );

data_out : out r_hitdata_matrix( 0 downto 0, 0 downto 0 ); -- hard coded dimension

hold_out : in r_hold_matrix( 0 downto 0, 0 downto 0 ) -- hard coded dimension

);

constant x_insize_nbits : integer := integer( ceil ( log2( real ( x_insize ) ) ) ) ;

constant y_insize_nbits : integer := integer( ceil ( log2( real ( y_insize ) ) ) ) ;

constant x_outsize: integer := 1;

constant y_outsize: integer := 1;

end hit_n_waymerger;

The scheme of an N-way Dispatcher with 2 input ports is shown in Fig. 5.3.

The x_insize and y_insize values define the dimension of the data_in and hold_in ma-

trices; both the values must be a power of two in this implementation. The x_address_index

and y_address_index are defined as for the N-way Dispatcher and represent the position

of the module within a network.
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Figure 5.3: Scheme of the N-way Merger with N = 2 inputs.

The N-way Merger can work in two different modes, according to generic value mode;

in particular if mode = 0 the x_address and y_address content of the output data is

forwarded from the selected input data, while if mode = 1, that we will call FanIn mode,

part of the x_address and y_address values are overwritten with the information of the

index from which the data has been forwarded. The latter mode is used to keep track of

the path of the data within a network of N-way Merger.

A Ring Buffer, whose depth is defined by buffer_size, is instantiated for each input of

the N-way Merger. Similarly to the case of the N-way Dispatcher, the data_in matrix is

connected to the data input port of the matrix of Ring Buffers, while the hold_in matrix

is connected to the full flags of the buffers; the w_en are represented by the Data Valid

values of the input data and every valid data is written into the corresponding buffer, if

not full. The r_en is provided by the rest of the internal logic, that evaluates from which

input the data has to be read and then forwards the data to the output port.

Before giving further details about the N-way Merger implementation a general descrip-

tion of its behaviour is given: if the hold_out is high or no data are available from the

Ring Buffers, nothing is forwarded to the output; for data not flagged as End Of Event,

if one or multiple data are available the one which first entered the N-way Merger is

forwarded to the output; in case of an End Of Event signal received from one input, the

stream of data on that line is paused until the End Of Event signals are received from all

the other inputs and then a unique End Of Event is provided at the output.

Input selection mechanism It is important to note that the selection mechanism of

the input from which the data has to be read treats the input indexes as a 1-dimensional

array, instead of a matrix. This is done by simply unrolling the matrix whose dimensions
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are given by x_insize and x_insize, to an array which dimension is given by x insize×
y insize.

This is necessary because the selection process is based on a pyramidal network of Merger

Selectors that perform a binary selection of the input.

The scheme of the N-way Merger with 2, 4 and 8 inputs is shown in Fig. 5.4.

Figure 5.4: Structure of the N-way merger with N = 2, 4, 8 inputs. A Ring Buffer is instantiated

for each input, then a network of N − 1 interconnected Merger Selectors. The output of the last

Merger Selector is connected to the only output of the N-way Merger.

The N-way Merger can be considered as an intelligent N-to-1 multiplexer that selects the

input signal to be forwarded, on the basis of the input signals themselves. In particular

the N-way Merger is composed of m = log2(N) layers of Merger Selectors that perform the

selection between two inputs. Each layer has 2m−1−i Merger Selectors with i ∈ [0,m− 1]

for a total of N − 1 submodules.

The logic of the Merger Selector is shown in Fig. 5.5 and can be summarized as follows: if

no data is available from the inputs or the dv_out is low, nothing is forwarded; if one or

multiple data are available, one data is forwarded and the corresponding r_en is asserted,

while the other is deasserted. The selection of the input from which the data has to be

forwarded is based on these rules, considering data not flagged as End Of Event : if only

one input is active, then it is selected; if both the inputs are active, the input that was

not active during the previous clock cycle is selected.

It is worth noting that all the signals in the Merger Selector are evaluated asynchronously,

except for the prev_path value that contains the information about the active input index

during the previous clock cycle. The asynchronous evaluation allows the N-way Merger

to promptly evaluate which input has to be activated and to forward the corresponding

data from the Ring Buffer to the N-way Merger output, making its latency independent

from the number of inputs. It is also important to point out that storing the prev_path
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Figure 5.5: Internal logic of the Merger Selector used in the module is used in the N-way Merger.

The module acts as a 2-to-1 multiplexer in which the selection of the data to be forwarded is

performed according to the data themselves.

signal value inside all the Merger Selectors plays a key role in queueing the data, allowing

the first data that was available at the input to be first forwarded to the output.

5.1.6 NxN Sorter

The NxN Sorter is a module with multiple inputs and multiple outputs composed of a

layer of N-way Dispatchers and a layer of N-way Mergers. Despite its name, the number

of inputs and outputs don’t have to be necessarily identical.

It has been implemented for hit and stub data. The entity of the Hit NxN Sorter is called

hit_nxn_sorter and it is described as follows:

entity hit_nxn_sorter is

generic (

dispatcher_buffer_size : integer := 2;

merger_buffer_size : integer := 2;

x_insize : integer := 2;

y_insize : integer := 2;

x_outsize : integer := 2;

y_outsize : integer := 2;

x_address_index : integer := 0;

y_address_index : integer := 0;

x_level : integer := 0;

y_level : integer := 0
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);

port (

clk : in STD_LOGIC;

reset : in STD_LOGIC;

data_in : in r_hitdata_matrix( x_insize - 1 downto 0, y_insize - 1 downto 0 );

hold_in : out r_hold_matrix( x_insize - 1 downto 0, y_insize - 1 downto 0 );

data_out : out r_hitdata_matrix( x_outsize - 1 downto 0, y_outsize - 1 downto 0 );

hold_out : in r_hold_matrix( x_outsize - 1 downto 0, y_outsize - 1 downto 0 )

);

constant x_insize_nbits : integer := integer(ceil(log2(real( x_insize ))));

constant y_insize_nbits : integer := integer(ceil(log2(real( y_insize ))));

constant x_outsize_nbits : integer := integer(ceil(log2(real( x_outsize ))));

constant y_outsize_nbits : integer := integer(ceil(log2(real( y_outsize ))));

end hit_nxn_sorter;

The NxN Sorter has no internal logic, except for the connections between its inputs and

the layer of N-way Dispatchers, the internal connections to the N-way Mergers, and the

connections to the output.

The generic values dispatcher_buffer_size and merger_buffer_size represent the

values to be passed to the dispatchers and mergers, respectively, as their generic value

buffer_size. All the other generic values are directly passed to the internal components.

A grid of x insize × y insize N-way Dispatchers forms the first layer of the NxN Sorter.

The N-way Dispatchers receive the data directly from the inputs of the NxN Sorter. The

dimensions of each N-way Dispatcher are x outsize and x outsize.

A grid of x outsize× y outsize N-way Mergers forms the second layer of the NxN Sorter.

The N-way Mergers provide the data directly to the outputs of the NxN Sorter. The

dimensions of each N-way Merger are x insize and x insize.

The connections between the two layers are arranged in order to connect each input to

all the outputs of the NxN Sorter. In particular the (ix-th,iy-th) output of the (jx-th,jy-

th) N-way Dispatcher is connected to the (jx-th,jy-th) input of the (ix-th,iy-th) N-way

Merger.

The scheme of the NxN Sorter is shown in Fig. 5.6 for N = 2, 4. In order to keep the

visual description of the module as simple as possible, we considered a one dimensional

graphical representation of the inputs and the outputs.

An example of NxN Sorter with non equal number of inputs and outputs is shown in

Fig. 5.7.

5.1.7 NxN Switch

The Switch is a module with multiple inputs and outputs composed of a network of NxN

Sorters, N-way Mergers, N-way Dispatchers arranged to connect all the input to all the
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Figure 5.6: Structure of an NxN Sorter with 2 inputs, 2 outputs (left) and a with 4 inputs,

4 outputs (right). The data flow is intended from top to bottom. A row of N-way Dispatchers

deliver the data from the inputs to a row of N-way Mergers connected to the outputs, according to

the data address. Connections associated with different addresses are highlighted using different

colours.

Figure 5.7: Structure of an NxN Sorter with 2 inputs, 4 outputs. The data flow is intended

from top to bottom. Two 4-way Dispatchers deliver the data from the inputs to four 2-way

Mergers connected to the outputs, according to the data address. Connections associated with

different addresses are highlighted using different colours.

outputs and it delivers the data to the proper output according to their region_address

content.

The NxN Switch is implemented for Hit and Stub data; the entity is called hit_nxn_switch

and it is described as follows:

entity hit_nxn_switch is

generic (

dispatcher_buffer_size : integer := 2;

merger_buffer_size : integer := 2;

x_sorter_size : integer := 2;

y_sorter_size : integer := 2;

x_insize : integer := 4;

y_insize : integer := 4;

x_outsize : integer := 4;

y_outsize : integer := 4;
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x_address_index : integer := 0;

y_address_index : integer := 0;

x_level : integer := 0;

y_level : integer := 0

);

port (

clk : in std_logic;

reset : in std_logic;

data_in : in r_hitdata_matrix( x_insize - 1 downto 0, y_insize - 1 downto 0 );

hold_in : out r_hold_matrix( x_insize - 1 downto 0, y_insize - 1 downto 0 );

data_out : out r_hitdata_matrix( x_outsize - 1 downto 0, y_outsize - 1 downto 0 );

hold_out : in r_hold_matrix( x_outsize - 1 downto 0, y_outsize - 1 downto 0 )

);

constant x_switch_size : integer :=

integer(realmin(real(x_insize),real(x_outsize)));

constant y_switch_size : integer :=

integer(realmin(real(y_insize),real(y_outsize)));

constant x_sorter_size_nbits : integer :=

integer(ceil(log2(real( x_sorter_size ))));

constant y_sorter_size_nbits : integer :=

integer(ceil(log2(real( y_sorter_size ))));

constant x_switch_size_nbits : integer :=

integer(ceil(log2(real( x_switch_size ))));

constant y_switch_size_nbits : integer :=

integer(ceil(log2(real( y_switch_size ))));

constant x_outsize_nbits : integer := integer(ceil(log2(real( x_outsize ))));

constant y_outsize_nbits : integer := integer(ceil(log2(real( y_outsize ))));

end hit_nxn_switch;

First we will describe the topology of Switches with equal number of inputs and outputs,

then the general case will be discussed.

A square Switch is built using a network of NxN Sorters and we will describe a Switch

that is composed of NxN Sorters with N=2, that we will call 2x2 Sorters, since it is easier

to visualize. In this case the simplest and smallest Switch is the 2x2 Switch that is exactly

a 2x2 Sorter. In order to construct a 4x4 Switch two layers of 2x2 Sorters are used, while

to construct a 8x8 Switch three layers of 2x2 Sorters are used, arranged as in Fig. 5.8.

In general, to construct an NxN Switch using MxM Sorters, logM N layers of N/M MxM

Sorters are used5 for a total of N/M logM N MxM Sorters.

5Both logM N and N/M must be integer numbers.
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Figure 5.8: Structure of a 4x4 Switch (left) and a 8x8 Switch (right). The NxN Switch is

composed of a network of Sorters; 2x2 Sorters are used in this example.

The internal connections between the 2x2 Sorters are arranged in such a way that the

first layer of 2x2 Sorters is directly connected to the Switch inputs and dispatches the

data to the first or the second half of 2x2 Sorters in the second layer. The first half of 2x2

Sorters of the second layer dispatches the data to the first and second quarter of Sorters

in the third layers while the second half of 2x2 Sorters of the second layers is connected

to the third and fourth quarter of Sorters. This structure is repeated until the last layer

of Sorters, whose output are connected to the Switch outputs.

Alternative description of the Switch The structure of the NxN Switch can be

described in a simpler way as a layer of N/2 2x2 Sorters followed by a layer of two

(N/2)x(N/2) Switches, that we will call sub-Switches: the first output of each 2x2 Sorter

is connected to an input of the first sub-Switch, the second output of each 2x2 Sorter is

connected to an input of the second sub-Switch. As an example, the scheme of the 8x8

Switch is shown in Fig. 5.9.

Figure 5.9: Recursive structure of a 8x8 Switch, built using four 2-way Sorters and two 4x4

sub-Switches.
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Also in this case, the NxN Switch can be built using MxM Sorters, with a first layer of

N/M MxM Sorters connected to a layer of M (N/M)x(N/M) sub-Switches.

Using this descriptive approach, the scheme of the internal connections is very simplified:

the i-th output the j-th Sorter is connected to the j-th input of the i-th sub-Switch.

Extension to non degenerate case In the previous examples, we illustrated the

scheme of connections in the case of 2x2 Sorters. We have to note that a 2x2 Sorter has

2 inputs that could be the case of x n inputs = 2 and y n inputs = 1, so the data_in

and hold_in matrices degenerated to 1-dimensional arrays; the same consideration is

valid for the number of outputs of the Sorter. In general in the Switch implementation

we always used 4x4 Sorters, in which x n inputs = y n inputs = 2, and x n outputs =

y n outputs = 2. All the previous considerations are still valid if we consider the non

degenerate case by adding an extra dimension (namely the y dimension) to the example

shown in the previous description, paying attention to satisfy the following equation that

defines the number of layers needed in the Switch, that is log(x n inputs/x sorter size) =

log(y n inputs/y sorter size).

Non-square Switch Switches with different number of inputs and outputs can be

constructed. When x n outputs > x n inputs and y n outputs > y n inputs , the Switch

is constructed by connecting N-way Dispatchers to the outputs of a square Switch in order

to fit the requested number of x n outputs and y n outputs. In the opposite case N-way

Mergers are instantiated before a square Switch.

Two examples of non-square Switches are shown in Fig. 5.10. In the first example the

number of outputs is greater than the number of inputs and a layer of N-way dispatchers

is used; vice versa, in the second example a layer of N-way Mergers is used.

Figure 5.10: Structure of a 4x16 Switch (left) and a 16x4 Switch (right). The non-square Switch

is composed of a square Switch connected to a layer of N-way Mergers or N-way Dispatchers,

depending on the number of inputs and outputs.

5.1.8 Stub Maker

The Stub Maker is the basic module of the Stub Constructor, that we will discuss later,

and multiple Stub Maker modules are instantiated for each couple of detector planes in

order to identify the stubs from couples of hits that are compatible with a particle track

from the beam interaction region. The entity is called stub_maker and it is described as

follows:
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entity stub_maker is

generic (

bufferdata_depth : integer := 8;

x_outsize : integer := 1;

y_outsize : integer := 1

) ;

port (

clk : in std_logic;

reset : in std_logic;

data_in : in r_hitdata_array( 2-1 downto 0 ); -- hard coded dimension

hold_in : out r_hold_array( 2-1 downto 0 ); -- hard coded dimension

data_out : out r_stubdata_matrix(x_outsize-1 downto 0, y_outsize-1 downto 0);

hold_out : in r_hold_matrix(x_outsize-1 downto 0, y_outsize-1 downto 0)

);

constant insize : integer := 2; -- hard coded dimension

end stub_maker;

The module has two inputs, receiving hit data from two compatible regions of pixels in

adjacent planes. The definition of the regions of pixels is based on the geometry of the

tracking detectors and the interaction region and is obtained from the simulation.

For each input a buffer (not a Ring Buffer), whose dimension is given by the generic

parameter bufferdata_depth, is instantiated. Hit data are temporarily stored in both

the buffers until the End Of Event signals are received (one for each input port), then a

process to evaluate the combinatorics between hits from one and the adjacent detector

starts. All the combinations between the hits in the first and second detector regions are

evaluated but, in principle, not all are compatible with the trajectory of a particle from

the beam interaction region; each candidate stub is checked and, if valid, provided to one

of the output ports.

The number of output ports is defined by the generic parameters x_outsize and y_outsize,

that formally are the dimensions of the r_stubdata_matrix provided in output. The

simplest case is represented by x_outsize = 1 and y_outsize = 1, in which all the hit

combinations are evaluated in a serialized double loop: the first hit in the first buffer is

selected and a candidate stub is formed by combining it with one hit of the second buffer;

when all the hits in the second buffers have been checked the loop starts over considering

the second hit in the first buffer and all the combinations with hits of the second buffer;

the process continues until all the combinations have been checked.

After the End Of Event signal has been received at each input, the corresponding hold_in

signal is raised; the hold signals stay high until the combinatoric process complete, then

the buffers are reset and the Stub Maker is able to process hits from the following event.

It is important to note that due to the fixed depth of the buffer, if the number of hit data

on one input port exceeds the dimension defined by bufferdata_depth, the extra ones

are discarded and lost, without raising the hold_in signals. In fact, if on one hand raising

the hold signal would prevent data to be lost, on the other hand this would prevent also



Device architecture and implementation in FPGA 75

the End Of Event signal to reach the Stub Maker that would end in a stuck state, not

being able to process data any more.

The general behaviour of the Stub Maker has been described. A simplified scheme of

the module is shown in Fig. 5.11, in which an example case with bufferdata_depth =

8, x_outsize = y_outsize = 2 is represented. The incoming data flow to the buffers

until the End Of Event signals are received; in this example each buffer is divided in

two halves, in particular the even and the odd positions of each buffer are processed

independently; four blocks evaluate in parallel the hit combinations and provide the stub

data on a dedicated output port.

Figure 5.11: Schematic view of the Stub Maker with bufferdata depth = 8, x outsize = y outsize

= 2. The incoming data are stored into the buffers, then four blocks evaluate in parallel the

possible combinations of hit data from the two buffers. In this example each block processes only

half of the hit data from each buffer and provide the stub data on a dedicated output port.

Detailed description of the Stub Maker logic The behavioural logic of the Stub

Maker is implemented using a finite-state machine with three states that we called

FSM START, FSM WRITING, FSM READING. In this paragraph we describe the logic

in more detail, through the description of its states.

• FSM START : all the internal signals are initialized, the content of the buffers is

cleared, then the state machine moves to the next state FSM WRITING. The

hold_in signal is high for both the inputs, since the buffers are not able to ac-

cept data while resetting.

• FSM WRITING : the hold_in is released and the incoming data are written into

the buffers. The hold_in is never raised during this phase, even if the buffers are

full and the extra data are lost. For each input a latch signal eoe is raised when the
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End Of Event signal is received and the corresponding hold_in signal is raised.

When both the eoe signals are high, the finite-state machine moves to the following

state FSM READING.

• FSM READING : the hold_in signals stay high for both the inputs. The first buffer

is divided in x outsize parts, the second buffer is divided in y outsize parts and a

total of x outsize×y outsize blocks evaluate in parallel the combinations of hits from

the different parts of the buffers. In particular the (i,j)-th block process the hit data

stored in the first and second buffer at the positions that satisfy the following rules:

buffer 0i mod x outsize = i and buffer 1j mod y outsize = j . The choice to slice

the buffers in this way, instead of dividing the buffers in fixed parts is motivated

by the fact that the buffers are not always completely filled and this would lead to

an unbalanced number of data in the different buffer parts. Using this method the

maximum difference in occupancy of the different buffer parts is one.

Each block evaluates one combination per clock cycle and provides it in output, if

the corresponding hold_out signal is not high, the it moves to the next candidate

combination. This process is achieved through a double loop on the buffer positions

associated with that block. When one block has finished the loop, a latch signal

reading_complete is raised.

When all the blocks have finished the finite state machine moves to the initial state

FSM START.

5.1.9 Stub Constructor

The Stub Constructor is one of the main modules on which the full architecture is based

and one module is instantiated for each couple of detector planes; in particular the Stub

Constructor is composed of two Hit Switches and a pool of Stub Makers. Each Hit Switch

receives the data from one detector plane and delivers them to the Stub Makers according

to pre-computed paths obtained from simulation.

The entity is called stub_constructor and it is described as follows:

entity stub_constructor is

generic (

bufferdata_depth : integer := 8;

dispatcher_buffer_size : integer := 2;

merger_buffer_size : integer := 2;

fanin_buffer_size : integer := 1;

x_sorter_size : integer := 2;

y_sorter_size : integer := 2;

x_stub_maker_size : integer := 2;

y_stub_maker_size : integer := 2;

x_insize : integer := 2;

y_insize : integer := 2;

x_outsize : integer := 4;

y_outsize : integer := 4;
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x_address_index : integer := 0;

y_address_index : integer := 0;

x_level : integer := 0;

y_level : integer := 0

) ;

port (

clk : in std_logic;

reset : in std_logic;

data_det0_in : in r_hitdata_matrix(x_insize-1 downto 0, y_insize-1 downto 0);

hold_det0_in : out r_hold_matrix(x_insize-1 downto 0, y_insize-1 downto 0);

data_det1_in : in r_hitdata_matrix(x_insize-1 downto 0, y_insize-1 downto 0);

hold_det1_in : out r_hold_matrix(x_insize-1 downto 0, y_insize-1 downto 0);

data_out : out r_stubdata_matrix(x_outsize-1 downto 0, y_outsize-1 downto 0);

hold_out : in r_hold_matrix(x_outsize-1 downto 0, y_outsize-1 downto 0)

);

end stub_constructor;

The module has two groups of inputs, associated with the first and second detector

planes in which the stub search will be performed; the number of inputs for each detec-

tor depends on the number of lines used to carry out the hit data and it is set through

the generic parameters x_insize and y_insize. The total number of outputs is set

through the generic parameters x_outsize and y_outsize, while the number of instanti-

ated Stub Maker modules is evaluated from the ratio between the total number of output

lines of the Stub Constructor and the number of output lines of each Stub Maker. All

the other generic parameters are used for the configuration of the internal sub-modules.

A simplified scheme of the module is shown in Fig. 5.12, in which only one line from each

detector plane to the corresponding Hit Switch is shown and Stub Makers with only one

output are represented.

Similarly to other modules described in the previous subsection, the Stub Constructor is

based only on the logic provided by the internal interconnected sub-modules. In particular

the scheme of the internal connections is the following: the inputs associated with the first

(second) detector plane are directly connected to the corresponding Hit Switch inputs;

each output of the first (second) Hit Switch is connected to the first (second) input of

each Stub Maker; the outputs of the Stub Makers are directly connected to the output

ports of the Stub Constructor.

5.1.10 Engine Region

The Engine Region is a container of Engines that cover a region of the space of the track

parameters. The entity is called engine_region and it is described as follows:

entity engine_region is

generic (

x_address_index : integer range 0 to 2**x_region_address_size-1 := 0;

y_address_index : integer range 0 to 2**y_region_address_size-1 := 0;
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Figure 5.12: Scheme of the Stub Constructor, composed of a Hit Switch for each detector plane

and a pool of Stub Makers.

x_n_engines : integer := 2**x_engine_address_size;

y_n_engines : integer := 2**y_engine_address_size

) ;

port (

clk : in std_logic;

reset : in std_logic;

data_in : in r_stubdata_matrix(x_n_engines-1 downto 0, y_n_engines-1 downto 0);

hold_in : out r_hold_matrix(x_n_engines-1 downto 0, y_n_engines-1 downto 0);

data_out : out r_trackdata_matrix(x_n_engines-1 downto 0, y_n_engines-1 downto 0);

hold_out : in r_hold_matrix(x_n_engines-1 downto 0, y_n_engines-1 downto 0)

);

end engine_region;

The input of an Engine Region is represented by an r_stub_data_matrix and the output

is represented by a r_trackdata_matrix, whose dimensions are given by the generic

parameters x_n_engines and y_n_engines.

In fact, an Engine Region is a wrapper for a grid of Engine modules that are connected one

by one to the input and outputs of the regions. Multiple Engine Regions are connected

to the Stub Switch output, while the output of the Engine Regions are connected to the

Track FanIn, that collects the results of the Engines.



Device architecture and implementation in FPGA 79

5.1.11 Engine

The Engine is the module that mimics the behaviour of a cellular unit and its first

neighbour cells, placed along the x+ axis and the y+ axis. Each Engine has an unique

address inside the Engine Region and its (x+, y+) coordinates depends on the position of

the Engine Region within the region of the track parameters, and on the position of the

Engine within the Engine Region.

The entity is called engine and it is described by:

entity engine is

generic (

x_address_index : integer range 0 to 2**x_engine_address_size-1 := 0;

y_address_index : integer range 0 to 2**y_engine_address_size-1 := 0

) ;

port (

clk : in std_logic;

reset : in std_logic;

data_in : in r_stubdata;

hold_in : out r_hold;

data_out : out r_trackdata;

hold_out : in r_hold

);

end engine;

The Engine receives an r_stubdata in input and provides an r_trackdata in output,

corresponding to a track data, when a candidate track has been identified by the Engine

logic.

The behaviour of the Engine is slightly different from the one described in the algorithm

section for practical and technical reasons. In the algorithm description we said that a

stub data is accepted by the cellular unit if the distance in the (x+, y+) reference plane

is less than a certain value, according to the Eq. 4.7. Nevertheless it has to be noted

that the stub data path is already evaluated in the Switch, so the stub data are already

delivered to the proper Engines and there is no need to check again if the distances of the

stub projection to the Engine is within a fixed tolerance. For this reason a stub data is

accepted by default by the Engine that corresponds to its destination address. Moreover

we recall that the N-way Dispatchers, hence the Switch, are programmed to deliver the

data to one or multiple output, hence multiple Engines, according to the LSB values of the

data address. In particular a data is sent to adjacent Engines if the stub projection falls

halfway between the Engines. In practice if we consider that the Engines are distributed

over a two dimensional grid, a stub data is distributed to multiple Engines if the stub

projection lies near the border of the cells in the grid.

A simplified schematic view of the Engine is shown in Fig. 5.13.

In the following we describe the logic of the Engine:

• a stub data is received at the input port data_in and a total data counter is

incremented;
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Figure 5.13: Behavioural logic of the Engine. The Engine receives the stub data, accumulates

the (x+, y+, x−, y−, t0) values, increments the proper counters.

• an Engine corresponds to one central and eight lateral cells; the x_address and

y_address contents of the incoming data are compared to the x_address_index and

y_address_index values of the Engines, respectively. The result of the comparison

identifies in which cell the stub projection lies. A counter is instantiated for each

cell and the one corresponding to the activated one is incremented;

• a record is defined within the Engine to store the accumulated (x+, y+, x−, y−, t0)

values of the incoming stubs. In particular, for each incoming data the x+ value

is summed to the x+ values of the previous data, and similarly for the other track

parameters. It has to be noted that the (x−, y−, t0) values where already defined in

the r_stubdata record, while the (x+, y+) values are retrieved from the x_address

and y_address contents, respectively. In particular the x+ is obtained from the

LSBs of the x_address, that identifies the coordinate of the stub projection within

the Engine acceptance area. The same consideration is valid for the y+ coordinate

evaluation;

• the identification of the activated cell and the sum of the stub contributions are per-

formed in parallel during one clock cycle. The process is repeated for any incoming

stub data during the following clock cycles.

• when an incoming data flagged as End Of Event is received, the sum process stops

and the counter values are checked to evaluate if a track has been identified. In

particular the counter corresponding to the central cell is required to be greater

then zero and the total data counter is required to greater than or equal to a fixed

threshold, that is set to 2 in order to recognize tracks with at least two identified

stubs (4 hits) in the tracking detector. Moreover the central cell counter value is

compared to the counter of four lateral cells, along the x+ and y+ axes; the central

counter is required to be grater than or equal to any of the lateral cell counters that

means the central cell of the Engine has been identified as a local maximum. If both

the conditions are satisfied the results of the sums of the stub parameters and the
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value of the total counter are provided together with other relevant information, as

output from the Engine, formatted as a r_trackdata. The track parameters will be

evaluated as the average of the stub parameters that contributed to the identified

track as the result of the division of the (x+, y+, x−, y−, t0) contents of the track data

by the total counter. We prefer to not evaluate the division within the Engine logic

since it would be resource and/or time consuming, depending on implementation of

the division algorithm in FPGA. The complete evaluation of the track parameters

could be included after the Track FanIns, allowing for resources sharing, instead

of having to replicate the division logic for all the Engines. The other possibility,

considered as the baseline strategy is to carry out the track information in the

previously described format and perform the final track parameters evaluation in

the following stage of process, i.e. in a PC receiving and processing the track data.

Another technical difference from the description of the Engine that has been provided

in the algorithm section and its practical implementation is evident from the architecture

description; in fact, the evaluation of the weight response of the cells to the stub projec-

tions is not performed on the basis of a Gaussian function and it is substituted by the

evaluation of the data counters for the central and lateral cells, that corresponds to the

substitution of the Gaussian shape with a binary response based on the distance from

the cells. This choice is motivated by the necessity to reduce the logic needed for the

Engine implementation, in particular for the Gaussian function evaluation and for the

track fitting results described by Eqs. 4.16 and 4.17, that would require extra logic as

Look-Up Tables to perform the evaluation of the logarithmic functions.

Nevertheless it should be noted that the choice of the Gaussian response is motivated

by the need of having a near-zero response to stubs whose projections are far from the

position of the cell in the tracking reference plane, but the Switch already provides this

kind of suppression, since the data are delivered only to the Engines with expected non

zero response.

5.2 Hold logic details, latency and throughput of the

implemented modules

In the previous section we stated that all the modules have been implemented putting

particular attention on minimizing the latency. The latency is defined as the time required

by the logic to complete a computation. In particular the latency of a module can be

defined as the time interval between the arrival of the data at the input(s) and the

processed data appearing at the output(s). We can observe that all the basic components

of the architecture act as synchronous circuits, and in particular they all share the same

clock signal. For this reason we can measure the latency in terms of clock cycles: this

makes the measurement independent from the value of the system clock. As an example

we will see that the minimum latency of a Ring Buffer is equal to one clock cycle, that is

equivalent to 2.5 ns if we consider a system clock frequency of 400 MHz, while it would

be 3.125 ns using a system clock frequency of 320 MHz.
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We recall that a hold logic has been implemented, based on the back propagation of

signals that provide information on the status of the module, in particular on its ability

to accept a data. According to this we have to note that the latency of each module

will be influenced by the status of the module itself and the hold signal coming from

the following module, that has to receive the processed data. For this reason we define

the minimum latency of a module, as the minimum achievable latency by the module

when no hold signals are received and all the data can be processed without introducing

any pause in the data flow. In particular the simplest case where a hold signal could be

generated is represented by the N-way Merger, when multiple data are available at the

different inputs, but only one data for clock cycle can be forwarded to the only output

port. In this case, if other data access the N-way Merger and the buffers completely fill,

the hold signal is generated and back propagated at the input ports. We also have to

note that when a module raises the hold signals, it does not necessarily generates a pause

in the data flow. In fact, the module that is receiving a hold signal could have no data

available at its output and so its behaviour is not affected by the received hold signal.

In the opposite case, the data is kept until the hold signal is deasserted; if, during this

period, the buffers fill up, the module raises the hold signal that is back-propagated to

the previous module.

Together with the concept of latency, we define the throughput of a module as the pro-

cessing rate or, equivalently, the data transfer rate inside the module. Again this is related

to the clock frequency and its value will be provided in terms of number of data (that

can be r_hitdata, r_stubdata or r_trackdata) that can be processed during one clock

cycle. In particular the throughput of a module also depends on the hold signals and the

maximum throughput is achieved when no hold signals is received.

Ring Buffer latency and throughput According to the description of the Ring Buffer

and the Single Clock FIFO FWFT Wrapper, these modules behave exactly in the same

way and any Ring Buffer can be substituted by a Single Clock FIFO FWFT Wrapper in

the implementation, and vice versa. For this reason any consideration that is valid for

the Ring Buffer can be applied also to the Single Clock FIFO FWFT Wrapper module.

The minimum latency of the Ring Buffer is one clock cycle. The simplest case is repre-

sented by a data accessing an empty Ring Buffer. The data is processed at the rising edge

of the reference clock and stored in one of the buffer positions. At the next clock cycle the

data is already available at the output. If another data accesses the Ring Buffer during

this clock cycle, it is stored in the following buffer position and it will be available at

the output during the following clock cycle. If no hold signal is received at the hold_out

port, no pauses are introduced in the data flow and the occupancy of the buffer remains

limited to one, in this simple example. On the other hand, if a hold signal is received and

the Ring Buffer is still receiving data, these are stored in the available buffer positions

until the buffer is full: only in this case the hold_in signal is raised and the module will

stay in the same state until the hold_out is released and the Ring Buffer can restart to

output the data and free the buffer positions that will be able to accept further incoming

data.

We recall that the role of the Ring Buffer (and the Single Clock FIFO FWFT Wrapper)
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is to absorb the fluctuations of the data flow in the modules in which that Ring Buffer

is used, as the N-way Dispatcher or the N-way Merger. In particular the maximum data

throughput of the Ring Buffer is defined as 1 data per clock cycle and, considering that

the maximum input data rate is also 1 data per clock cycle, the Ring Buffer is available to

process a continuous stream of data. This makes it possible to introduce the Ring Buffer

in a pipeline.

The simulated response (testbench) of the Ring Buffer is shown in Fig. 5.14. A series of

16 data with is provided to the data_in port. The left marker highlights the start of the

input sequence.

In this example the bco value is used as a counter in order to distinguish the data, and it is

incremented at each clock cycle. Each data is processed by the Ring Buffer and provided

at the data_out port after one clock cycle, assuming that no hold signal is received. The

right marker highlights the end of the output sequence, one clock after the last input

signal has been received.

Figure 5.14: Testbench of the Ring Buffer. A sequence of 16 data is provided to the data input

port. Each data appears to the data output port after one clock cycle.

N-way Dispatcher latency and throughput The N-way Dispatcher is composed of

a Ring Buffer that works synchronously with the input reference clock and some additional

logic to select the output port(s) to which the input data has to be delivered; in particular

the additional logic is asynchronous and its input is represented by the internal Ring

Buffer’s. In this scheme the N-way Dispatcher can be considered as a synchronous circuit

even if it is a mix of synchronous and asynchronous logic; in fact if we assume a data

accessing an empty N-way Dispatcher6 the data is stored into the Ring Buffer and will

be available at its output during the next clock cycle; then the asynchronous logic of the

N-way Dispatcher acts as demultiplexer forwarding the data to one ore multiple output

ports. If the Ring Buffer was not empty, the data at the input of the N-way Dispatcher

6an N-way Dispatcher whose internal Ring Buffer is empty
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is forwarded to the buffer, while one data from the buffer is processed and forwarded.

It is important to note that the asynchronous logic introduces an additional delay between

when the Ring Buffer data is available and when a stable output is achieved. This delay

is not taken in account in the evaluation of the minimum latency since it is typically

lower than a clock cycle period if the clock frequency is below a reasonable value of 400

MHz. The maximum achievable clock frequency depends, in practice, on the particular

implementation of the module in hardware performed by the synthesizing tool, Xilinx

Vivado in our case. Moreover, the output of an N-way Dispatcher is typically connected

to some synchronous logic, as the Ring Buffer instantiated in another N-way Dispatcher,

or an N-way Merger, that processes the data at the rising edge of the reference clock;

this justifies how a small delay (with respect to the clock period) can be neglected in the

evaluation.

With the previous assumptions, the minimum latency of the N-way Dispatcher is equiv-

alent to the Ring Buffer value. The maximum throughput is equivalent to the maximum

input data rate that is defined by 1 data per clock cycle.

The effective latency depends on the status of the hold_out port signals, in particular on

the signals associated with the selected outputs. This means that the N-way Dispatcher

can work without introducing pauses even if some output ports are receiving a hold signal

while the module is sending data to other available outputs.

The simulated response of the N-way Dispatcher is shown in Fig. 5.15. In this example

an N-way Dispatcher with x_outsize=y_outsize=2 has been considered, for a total of

2 ∗ 2 = 4 output ports. The dimension of the x_address_size and y_address_size

has been set to four, with level = 3. This means the destination output of the data is

given by the most significant bit of the data addresses, i.e. data with x_address in range

[8 ∗ i, 8 ∗ (i + 1) − 1] and y_address in range [8 ∗ j, 8 ∗ (j + 1) − 1] are forwarded to the

(i,j)-th output of the N-way Dispatcher, and one or multiple neighbour outputs, with one

bit overlap.

A series of 16∗16 = 256 data is provided at the data_in port. In particular the y_address

value is incremented at each clock cycle in the range [0,15] while the x_address value is

incremented every 16 clock cycles, in the range [0,15].

In the top picture the testbench is shown in the case that no hold signal is provided

from the hold_out ports. Only the dv values of the output data are shown for a better

visualization. It can be seen that each data appears at the proper output port(s) after

one clock cycle. In particular some data reach multiple output ports, i.e. data with

x_address=7, x_address=8 are forwarded the (i,j)-th output ports with both i=0 and

i=1. The same consideration is valid for the output evaluation based on the y_address

value.

The left marker highlights the start of the input data sequence, while the right marker

highlights the end of the output data sequence, after 256+1 clock cycles, where 256 is the

length of the sequence, while 1 clock cycle is given by the N-way Dispatcher minimum

latency discussed before.

In the bottom picture the testbench is shown in the case in which the hold signal is

provided to each of the hold_out ports with 25% probability. In this testbench the same

sequence of data is provided, but the data is accepted only if there is no hold signal at
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the hold_in port. The markers are placed in the same position of the previous case.

It can be seen, by comparison with the top picture, that the data are not always output.

This is due to the presence of the hold signals and causes the filling of the Ring Buffer.

When the buffer is full, the hold_in signal is raised and the input data is not accepted,

even if still present and valid at the input port. In fact it can be seen that about one half

of the data has been processed at the time highlighted by the right marker, but no data

is lost during the process, thanks to the hold logic.

Figure 5.15: Testbench of the N-Way Dispatcher. In the top picture a sequence of 256 data is

provided to the data in port and no hold is provided to the hold out ports. Each data appears at

the output port(s) after one clock cycle delay. In the bottom picture the same sequence of data is

provide while the hold signals at the hold out ports is randomly generated with 25% probability.

The data are not output when the hold out are present, causing the filling of the internal Ring

Buffer and consequent raising of the hold in signal, that prevents the N-way Dispatcher accepting

the input data, that are not incremented until the hold in signal is released.
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N-way Merger latency and throughput The N-way Merger is composed of multiple

Ring Buffers, in particular one for each input port, and the asynchronous logic that selects

the Ring Buffer from which the data has to be read and delivered to the only output. As

in the previous case the N-way Merger can be considered as a synchronous circuit, from

a global point of view, if the asynchronous logic introduces a negligible delay compared

to the reference clock period. As we stated before, this module can be considered as a

multiplexer; since only one output port is present, it means that only one data can be

read and forwarded from one of the Ring Buffers. In terms of throughput this means

that the maximum achievable value is 1 data per clock cycle; the maximum input data

rate, instead, is given by N data per clock cycles, where N identifies the total number

of inputs. This means, in terms of latency, that even if no hold signal is present at the

hold_out port, the minimum latency is guaranteed only for one of the N (or less) data

accessing the N-way Merger. This is valid for data that do not represent an End Of Event

signal, in which case the stream of data from one input is paused until all the other End

Of Event signals are received from the other ports. In fact the N-way Merger is the first

module in which a hold signal on hold_in can be generated, even if no hold_out signal

is received

In the following we identify a couple of example cases to show how a hold signal can be

generated:

• considering to start from an empty N-way Merger (all buffers empty), if the input

rate is equal to or less than 1 data per clock cycles, at most one data will be available

in one of the buffers; in this situation the only available data from the Ring Buffers

will be selected and forwarded to the output without increasing the occupancy of

the buffers, resulting in no one filling up nor providing the hold signals on hold_in

port;

• if the input rate is more than 1 data per clock, that is higher than the maximum

throughput, only 1 data can be forwarded while the others will be stored in the

corresponding buffers. If this situation is repeated one or multiple Ring Buffers

will eventually get full and not able to receive any more data and the hold signal

will be generated and raised on the hold_in port. In this case, if all the buffers

are full and the output port not receiving any hold, a continuous stream of data is

guaranteed with the maximum data throughput, while the internal generation of the

hold_in signals allows a levelling of the total input data rate down the maximum

data throughput;

• the last case is represented by the back propagation of the hold_out signal to one

or multiple inputs. This results in the output data rate to be zero, the Ring Buffers

independently receive the data from the inputs until they completely fills and then

they provide the hold signal on hold_in.

While the first and last case can occur even with other described modules, like the N-way

Dispatcher, the second example case is typical of the N-way Merger. For this reason when

an N-way Merger is used in a network of different modules, as could be the case of the

Switch, it has to be guaranteed that the input data rate is, on average, less than the
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maximum data throughput, or output data rate, while fluctuations around the average

are absorbed by the buffers.

Higher average input data rates will eventually produce a bottleneck in the data flow that

would end in the back propagation of the hold signal through all the network until the

very first input ports.

The simulated response of the N-way Merger is shown in Fig. 5.16. In particular an

N-way Merger with 2 ∗ 2 = 4 inputs has been simulated. The left marker highlights the

start of the input data sequence, while the middle and right markers highlights the start

and end of the output data sequence. For the input data port, only the dv and counter

are shown, for sake of better visualization. The counter has been defined as an alias

and is not present in the stub data record definition. For the output data port, the dv,

x_address, y_address and the counter values are shown; in particular the x_address

and y_address are evaluated by the N-way Merger and represent the indexes of the input

port from which the data has been received and forwarded.

In this example the depth of the Ring Buffer is equal to two and a sequence of four data

has been provided at each data input port, while no hold signal is present at the output

port. Starting from the left marker, we can see that the first four data marked with bco

= 0 are accepted. During the next clock cycle one of these data is output and other four

data, with bco = 1 are accepted; at this point some of the buffers completely filled and

will raise the corresponding hold_in signals during the following clock cycle and some

data at the inputs will not be accepted by the N-way Merger. Without hold signal from

the hold_out port, the output data sequence is represented by a continuous stream of

data; in particular it is important to note that the output data are ordered with respect

to the bco value, that means that data that first entered the N-way Merger are output

first.

This example highlights how the hold signal is internally generated in the N-way Merger,

even if there is no hold signal back propagated from the following module to the hold_out

port. It can also be seen that the first data is provided at the output after one clock cycle

latency.

NxN Sorter latency and throughput In the previous paragraph we provided the

values of the minimum latency and maximum throughput for the N-way Merger and N-

way Dispatcher, that are the basic modules of the NxN Sorter and the NxN Switch. We

recall that an NxN Sorter is always composed of two layers of sub-modules: one layer of

N-way Dispatchers receives the data from the inputs, one layer of N-way Mergers receives

the data from the first layer and provides the data to the output ports of the NxN Sorter,

as shown in Figs. 5.6 and 5.7.

Due to this structure, each incoming data has to pass through one N-way Dispatcher and

one N-way Merger; the minimum latency can be evaluated as the sum of the minimum

latencies of the sub-modules, then it is quantified in 2 clock cycles. The maximum data

throughput is proportional to the number of output ports and it is equivalent to N data

per clock cycles, where N is the number of output ports (non necessarily equal to the

number of input ports), as shown in Fig. 5.7.
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Figure 5.16: Testbench of the N-Way Merger. A sequence of four data is provided at each of

the four inputs of the N-way Merger and no hold signal is present at the hold out port. The left

marker highlights the start of the input data sequence. The middle marker highlights the start

of the output data sequences, represented by a continuous stream of data, that lasts for 16 clock

cycles until the right marker. The minimum latency is measured in one clock cycle for the first

data, while the other data are stored into the internal Ring Buffers of the N-way Merger until

they are full. If a buffer is full the corresponding hold in signal is raised and the data in is not

accepted.

NxN Switch latency and throughput According to its description, the NxN Switch

is a network of NxN Sorters that form the so-called square Switch as shown in Fig. 5.8

and an additional layer of N-way Dispatchers if the number of outputs is higher than the

number of inputs, or a layer of N-way Mergers in the opposite case, as shown in Fig. 5.10.

As in the case of the NxN Sorter, the minimum latency is evaluated as the sum of the

minimum latencies of the different layers, since every data has to pass through all of

them flowing from any of the input, to any of the output ports. From the description

of the Switch, we recall that a square Switch with N inputs and N outputs, made of

Sorters with M inputs and M outputs is composed of logM N layers, then its minimum

latency is given by 2 ∗ logM N . The minimum latency for a non-square Switch is given by

2 ∗ logM N + 1, where N in this case is the minimum value between the number of inputs

and number of outputs of the Switch.

Stub Maker latency and throughput In the previously described modules, like

the Switch and its components, each evaluation depends only on the data that is being

processed, and all the data are processed in a pipeline without any correlation between the

previous or following data flowing through each module. In these cases all the evaluations

can be performed in parallel and the data flow is self adjusted according to the data

content and the status of the modules in the network, represented by the hold signals.

The Stub Maker is the first example where a pause in the data flow is inserted on purpose.

In fact, the Stub Maker has to evaluate the combinatoric of two lists of hit data: first, the
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hit data have to be stored in two separate buffers, then the combination are processed,

filtered and provided through one or multiple ports.

In the case of the Stub Maker we can not define the latency for a single hit data and

we will define the latency as the difference in time between the first hit data entering

the Stub Maker, and the last processed stub data exiting the module. In particular we

described the Stub Maker through a finite-state machine with three states FSM START,

FSM WRITING, FSM READING and we will define the latency according to the time

duration of these three states.

• The finite-state machine FSM START state only lasts one clock cycle; during this

state the Stub Maker does not accept any data, so we will not take in account its

duration in the total latency evaluation

• The FSM WRITING state duration depends on how the hit data are received from

the data acquisition system. Assuming that these are provided as two continuous

streams followed by the End Of Event signals, and defining Nhits,1 and Nhits,2 the

number of hits from the first and second detector planes, then the minimum duration

of the FSM WRITING state is evaluated as the maximum between (Nhits,1+1) and

(Nhits,2 + 1)

• The FSM READING state duration depends either on the number of hits to be

combined and the number of parts in which the two buffers are divided, that corre-

sponds to the dimensions of the output data matrix. In particular the first buffer

is divided into the x_outsize parts, the second buffer is divided into y_outsize

parts. The duration of the FSM READING state is evaluated from the maximum

number of combinations that have to be checked in each sub process associated

with a particular output; two additional clock cycles are needed to check that all

the subprocess have completed the combinatoric process and to generate and out-

put the extra stub data flagged as an End Of Event. The duration can be written as

floor((Nhits,1 + x outsize− 1) /x outsize)×floor((Nhits,2 + y outsize− 1) /y outsize).

The total minimum latency is given by the sum of the latencies produced during the

FSM WRITING and FSM READING states. In particular, excluding the case in which

a Stub Maker does not receive any hit data, then the minimum value that we can obtain

is given by the case in which Nhits,1 = 1 and Nhits,2 = 1 , that leads to a total minimum

latency of (2)+(1+2) = 5 .

In general the value depends on the variables described before, in particular the number of

hits provided to each Stub Maker depends on the detector occupancy and on the number

of dedicated Stub Maker modules for each couple of detectors, and the number of outputs

declared in each Stub Maker.

The maximum throughput of the Stub Maker is evaluated in the special case in which all of

the hits combinations, namely the candidate stubs, are properly filtered by the application

of the geometrical and timing cuts, that means that no fake stubs are identified. In this

case the maximum throughput is given by the ratio between the number of identified

stubs and the total processing time, measured in units of clock periods.
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The simulated response of the Stub Maker is shown in Fig. 5.17. In this example a

stream of five and four hit data, followed by the End Of Event signals, has been provided

to the first and second input of the Stub Maker, respectively. For purposes of better

data visualization only part of the hit input data and stub output data is shown. In

particular the counter is an incremental index to identify the hits; the same is valid for

counter_det0 and counter_det1 that represent the indexes of the hits from the first

and second input, respectively7 .

The left marker highlights the start of the data input sequence: the finite-state machine

is in the FSM WRITING state, and the hold_in at each input port signal is low, until

the End Of Event is received. When both the End Of Event signals have been received,

the state changes to FSM READING and the Stub Maker starts to output the data.

In the top picture the testbench of a Stub Maker with one output port is shown: the

state-machine stays in the FSM READING state for 5∗4+1 = 21 clock cycles, necessary

to evaluate all the combinations and generate the End Of Event signal. In the bottom

picture the same input data are provided to a Stub Maker with 2 ∗ 2 = 4 outputs: in

this case the state-machine stays in the FSM READING for a reduced amount of time,

3 ∗ 2 + 1 = 6 + 1 clock cycles in this example, since the evaluation of the hit combinations

is performed in parallel by four sub processes. When all the hit combinations have been

evaluated the state-machine transitions to the FSM START starts, resets all the internal

signals and transitions again to the FSM WRITING state; the right marker highlights

the end of the process.

Engine latency and throughput The Engine is the second and last module where

pauses in the data flow are inserted on purpose. Similarly to the case of the Stub Maker,

the Engine has to accumulate data until an End Of Event stub data is received, then

the candidate track, if any, is provided to the output. Even in this case we consider

the minimum latency of one Engine as the difference in time between the first stub data

entering the Engine and the track data being provided at the output of the engine. In

particular the minimum number of stubs that an engine should receive in order to identify

a candidate track is given by the r_threshold value, defined within the algorithmtools

package. The value is typically set to 2, in order to identify tracks with at least 4 hits in

the tracking device.

In general the minimum latency of the Engine can be evaluated from the number of stub

data that the Engine receives, that we will call Nstubs. For each received stub data,

the Engine takes one clock cycle to sum the stub parameters to the parameters of the

previously received stubs; conversely when the End Of Event signal is received there is

no need to evaluate any sum and the data_out signal is immediately updated with the

value of the candidate track. Then the total minimum latency is simply given by Nstubs,

provided the simple assumption of a continuous stream of stub data followed by the End

Of Event signal. Without considering any special case the latency is given, instead, by

the difference in time between the first and last received data.

The throughput of the Engine is given by the ratio between the number of identified tracks

and the processing time. This depends on many factors since the Engine is basically the

7The counter, counter det0, counter det1 are not defined in the hit and stub data record definition.
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Figure 5.17: Testbench of the Stub Maker. In this example five and four hit data are provided

to the Stub Maker inputs, respectively. In the top picture a Stub Maker with one outputs has

been tested, while in the bottom picture a Stub Maker with four outputs has been considered.

Starting from the left marker the Stub Maker receives the hit data from the inputs until both

the End Of Event signals have been received, then it starts evaluating the hit combinations and

provides the stubs in output through one or four ports. When all the stubs have been output,

the Stub Makers reset all the internal signals, releases the hold in signals and is able to process

new data.

last processing unit of all the algorithm. Similarly to the Stub Maker case, we could

define the maximum throughput of the Engine, in units of tracks over clock cycles, as

the inverse ratio of its minimum latency. In general this is an over optimistic value, since

according to the number of tracks per event and in particular to the number of identified

stubs, and the number of Engines instantiated to cover the space of the track parameters,

it is expected to have a certain number of Engines that don’t identify any track for a

specific event. In particular for a well reconstructed event we expect this value to be
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1−Ntracks/NEngines .

The simulated response of the Engine is shown in Fig. 5.18. The left marker highlights

the start of the input data sequence, represented by a stream of six stub data followed

by the End Of Event signal, while no hold signal is received by the Engine. In this case,

for each received stub data the Engine updates the internal values and never provides the

hold_in signal. One clock after the End Of Event signal is received, the Engine outputs

the track data, if a candidate track has been identified.

Figure 5.18: Testbench of the Engine. Six stub data are provided data in port, followed by

the End Of Event signal. The Engine outputs the track data one clock cycle after receiving the

End Of Event. The left and right marker represent the start of the input sequence and the end

of the processing, respectively.

5.3 Overview of the complete architecture

Here we give an overview of the architecture of the 4D real-time tracking algorithm im-

plementation. All the major and basic modules have been described in the previous

section and the complete architecture is based on the combination of the Stub Construc-

tors, Stub Switches, Engine Regions and FanIns, that are connected together following a

vertical approach.

The scheme of the full architecture of the tracking system is shown in Fig. 5.19.

We can identify the major modules that are instantiated in rows. In particular the Stub

Constructors receive data from the detectors, the Switches receive data from the Stub

Constructors and so on. In the beginning of the chapter we referred to the major blocks as

single units, while we can note that the architecture is not monolithic and the processing

is parallelized over multiple independent blocks; a clear example can be identified in the

presence of multiple Stub Switches, each one connected only to a group of Engine Regions.

In the following the architecture scheme is briefly described. The detectors are grouped

into couples and each couple is connected to a Stub Constructor; each Stub Constructor
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Figure 5.19: Architecture of the 4D real-time tracking system.

evaluates and provides the Stub data to multiple Stub Switches. In particular each Stub

Switch receives Stubs with track parameters belonging to non-overlapping region of the

space of the main track parameters, hence the Switches works completely in parallel

without any kind of lateral communication. This allows to implement these modules into

different FPGAs. Each Stub Switch distributes the Stub data to a set of Engine Regions,

that host the Engines; even in this case no lateral communication is implemented between

the Engine Regions, nor between the Engines within the region. The Engines process the

Stub data and provide the candidate tracks as output. The Track data are then collected

via multiple FanIns and provided to the next stages of processing.

Discussion on the architecture parallelization As evidenced in Fig. 5.19 the archi-

tecture is based on different interconnected modules that are always connected following

the direction of the data (and hold logic) flow and the same is valid within all the sub-

modules described in the previous section. According to this structure, modules that lie



94 5.3 Overview of the complete architecture

on the same row are independent from each other and can operate in parallel resulting in

a high level of parallelism of the complete algorithm architecture.

It is worth noting that the possibility to parallelize the track reconstruction is given

primarily by the fact that the charged particles production at colliders, as in the case of

LHC, is invariant with respect to rotations around the beam axis. For this reason the

LHC detectors ALICE, ATLAS, CMS are based on a cylindrical layout. Conversely LHCb

does not have a cylindrical symmetry and, moreover, the particle trajectories after the

magnet are not invariant under rotation around the beam axis; nevertheless it should be

noted that before the LHCb magnet, in particular within the VELO the charged particle

distribution shows the cylindrical production symmetry.

According to these considerations the problem of the track reconstruction can be ap-

proached dividing the space of the track parameters in non-overlapping φ-regions, where

φ represents the azimuthal angle with respect to the beam axis, and running the algorithm

for the different regions in parallel. Similarly, the space of the track parameters can be

divided in non-overlapping regions with respect to other variables, even if there is no in-

variance in the track generation. Referring to the proposed architecture, this means that

Engines belonging to different Engine Regions identify tracks with parameters belonging

to different regions of the space of the track parameters.

So far we stated that the parallel nature of the algorithm reflects in the parallel structure of

the architecture that allows for no lateral communication between the same level modules.

Even though there are no horizontal connections we should observe that it is not true that

the behaviour of a logic module is not affected by the status of its neighbour modules,

as one could naively think. In fact, this is true only in situations in which the hold logic

signal is not back-propagating. In the opposite case the presence of a hold signal affects

the data distribution by introducing a pause in the data flow: a simple example could

be the case in which a hold signal is received at one output of a FanOut8 and the data

coming at the input are buffered instead of being forwarded to the N outputs. In this

case, even if the hold signal comes from only one port, none of the modules connected to

the FanOut will receive any data until the hold signal is released. On the other hand it

is always true that no data can be transferred between same level modules.

8refer to the N-way Dispatcher module description



Chapter 6

Results on a prototype device

The algorithm described in the previous chapters has been implemented in FPGA and

tested both in simulation and running on hardware. In particular the system has been

implemented on a Xilinx Virtex UltraScale FPGA mounted on a gFEX prototype v2

board. In this chapter we will describe the prototype board together with its main

characteristics, then we will provide the obtained implementation results.

6.1 gFEX prototype v2 board

The Global Feature Extractor (gFEX) is part of the Level-1 online trigger system of the

Phase-I Upgrade of the ATLAS experiment, designed to help maintain the ATLAS Level-

1 trigger acceptance rate at increased LHC luminosity. The gFEX is designed to extract

information from the entire calorimeter and to identify patterns of energy associated

with hadronic decays of high momentum Higgs, W and Z bosons, top quarks, and exotic

particles in real time at the 40 MHz LHC bunch crossing rate. The role of the gFEX is

described in Ref. [34] and it is not part of this thesis.

The design of the gFEX is based on a custom ATCA board equipped with multiple

FPGAs. The board has reached the fourth generation, that represents the final design

for production.

In this section we will describe the features of the gFEX prototype v2 board and in

particular the features of the one used for the implementation and test of the proposed

4D real-time tracking algorithm. In fact the board that has been purchased at INFN

- Milano slightly differs from the original design in terms of number and model of the

FPGAs, hence in the number of high-speed serial links for communication with other

systems and FPGA-to-FPGA internal communication.

The fully assembled gFEX prototype v2 board and its floor plan are shown in Fig. 6.1.

The gFEX prototype v2 board (from now on, only gFEX board) is equipped with three

Virtex UltraScale FPGAs (XCVU095 ) for data processing, we will refer to these as Pro-

cessor FPGA A, B, C, and one Xilinx Zynq FPGA (XC7Z045 ) for control and monitoring.

The four FPGAs communicate between each others via different groups of parallel data

buses, implemented using GPIO (general purpose input/output) links running in DDR

(double data rate) at 560 MHz clock rate for a total data rate of 1.12 Gbps for each data

line. 96 DDR lines connect the Processor A with the Processor B, 72 DDR lines connect

95
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Figure 6.1: Picture (left) and floor plan (right) of the fully assembled gFEX prototype v2

board.

the Processor A and Processor C, 72 DDR lines connect the Processor B and Processor

C. The Zynq FPGA has 23 DDR lines connected to each of the Processor A,B,C FPGAs.

The parallel data buses can be operated both for transmitting or receiving data from/to

the different chips.

Different kinds of MGTs (Multi-Gigabit Transceiver) are present in the design depending

on the FPGA model: GTX on the Zynq FPGA and GTH, GTY on the Virtex UltraScale

FPGAs. Most of the MGT links are connected to MiniPOD receivers and transmitters

for communication via optical fibres and each link can run at 12.8 Gbps. In particular

the Processor A and B have 96 RX (receiver) and 12 TX (transmitter) optical links, the

Processor C has 92 RX and 20 TX optical links, while the Zynq FPGA has 4 RX and

4 TX links. A small group of MGT links is used for on-board communication between

the four FPGAs and can run at 25.6 Gbps. The on board MGT links are distributed

as follows: the Zynq FPGA communicates with 4 RX and 4 TX links with each of the

Processor A, B, C FPGAs, while the Processor A and B communicates to the Processor

C via 4 TX lines each.

It is worth noting that the gFEX board is highly unbalanced in terms of ratio between

input and output high speed serial links connections. In fact, since the board is designed

to be a part of the trigger system, it is expected to receive all the data from the detector

and select only the useful events, with a significant data reduction.

The gFEX prototype v2 board has been fully characterized at Brookhaven National Lab-

oratory (BNL). The board description together with the results of the characterization,

as the BER (Bit Error Ratio) for the MGT links and the test of the communication over

the parallel data buses and the power consumption can be found in Ref. [35].



Results on a prototype device 97

gFEX board at INFN - Milano A custom version of the described gFEX prototype

v2 board has been purchased by INFN - Milano by both the LHCb and ATLAS groups.

This board slightly differs from the previously described design, in particular it hosts

the same model of Xilinx Zynq FPGA (XC7Z045), while only two Processor FPGAs are

present, namely the Processor A and B. Moreover the model of the Processor FPGAs is

different, XCVU095 instead of XCVU160. A comparison table between the Xilinx Virtex

UltraScale XCVU095 and XCVU160 models is shown in Fig. 6.2; the product tables of

Zynq-7000 Family and Virtex UltraScale FPGAs can be found in Refs. [36], [37].

Figure 6.2: Comparison summary of the Xilinx Virtex UltraScale XCVU095 and XCVU160

resources. The XCVU095 has, in general, less resources with respect to the second and most

powerful model.

The XCVU095 features less resources for the logic implementation; moreover it has a

reduced number of MGT transceivers and this affects mostly the internal communication

capabilities between the Processor A,B (C is not present) and the Zynq FPGA.

A picture of the gFEX board available at INFN - Milano is shown in Fig. 6.3. By compari-

son with Fig. 6.1 it is easy to note the absence of the Processor C FPGA, together with all

the MiniPODs originally connected to its MGT transceivers. It is also worth noting that

that some MiniPODs (one for Processor A, one for Processor B) are missing since they

where originally connected to MGT transceivers that are not present in the XCVU095

FPGA; for the same reason, some of the MiniPODs are not fully connected while the on

board MGT connections for internal communication are missing. All the other features

of the gFEX board are untouched, as for the on-board chip-to-chip communication via

the parallel data buses implemented using DDR links.

In the following a summary of the input/output communication capabilities for the custom

gFEX board available at INFN - Milano: 96 DDR lines between Processor A and Processor

B, 23 DDR lines between Processor A and Zynq FPGA, 23 DDR lines between Processor

B and Zynq FPGA, no on-board chip-to-chip communication via MGT links, 64 MGT

RX lines and 4 TX lines connected to the optical fibres via the MiniPODs for Processor

A, 64 MGT RX lines and 8 TX lines for Processor B, 4 MGT RX and 4 MGT TX lines

for Zynq FPGA.

With this design, if we consider a simplified scheme in which we want to implement data

communication between Processor A and Processor B, the maximum achievable data
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Figure 6.3: Picture of the gFEX v2 prototype board available at INFN - Milano. This board

is equipped with only two Xilinx Virtex UltraScale FPGAs (XCVU095 ) and one Xilinx Zynq

FPGA (XC7Z045 ).

transfer via serial links is obtained connecting the 8 MGT TX lines of the Processor B to

8 MGT RX lines of the Processor A, obtaining a total of 102.4 Gbps unidirectional data

transfer rate. This value is similar to the maximum unidirectional data transfer achievable

via parallel data bus, equal to 107.52 Gbps, considering 96 DDR lines running at 560 MHz;

the latter value could be different since the DDR links can be used in RX or TX mode,

then many configurations are possible, i.e. half of the DDR lines set for communication

from Processor A to B and half of DDR lines used in the opposite direction. Moreover

we should consider that part of the DDR lines are dedicated clock lines used for data

synchronization. Regarding the MGT links the maximum achievable data transfer rate

depends on the communication protocol, i.e. if the 8b10b encoding is used, each MGT

lines can transfer data at the maximum rate of 10.24 Gpbs = 8/10 ∗ 12.8 Gpbs, since

part of the transferred data are not available to the user, being used to perform the data

encoding and decoding.

6.2 Test of optical MGT links

Before implementing any kind of protocol for chip-to-chip and external communication

via MGT links, the good quality of the links has been proved performing a Bit Error

Ratio test using the IBERT (Integrated Bit Error Ratio Tester) LogiCore IP from Xilinx

design suite. The tool allows to evaluate and monitor the quality of the links implemented

using the GTX/GTH/GTY transceivers. In particular it is based on the generation of
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specific data patterns that are transmitted by the TX transceiver to an RX transceiver

that receives and compares the data to the expected pattern.

The setup of the gFEX board for the test of the MGT links is shown in Fig. 6.4. In

Figure 6.4: gFEX setup for the test of MGT links. (Left) All the MiniPODs are connected to

the front panel using MTP-48 patch cables. (Right) Eight TX lines from the Processor B are

connected to 8 RX lines of the same FPGA; the optical fibres can be accessed singularly by using

different patch cables.

the left picture the connections from the MiniPOD connectors to the MTP-48 couplers,

mounted on the front panel (left) are highlighted, in particular each MTP-48 coupler hosts

48 optical fibres connected to 4 MiniPODs, each one having 12 optical fibres; 2 MTP-48

patch cables are connected to the Processor A, 2 are connected to the Processor B and

1 is connected to the Zynq FPGA. Moreover we remind that the MTP-48 connectors are

not fully populated. In the right picture a particular setup is shown: the gFEX board is

powered using a Vadatech VT000-1000 ATCA power supply [38] (right part of the picture)

and only some links from/to the Processor B are connected resulting in the connection of

the 8 TX lines to 8 RX lines of the same FPGA. In particular MTP-48 to MTP-12 patch

cables are used to split the fibres into groups of MTP-12 connectors and MTP-12 to LC

patch cables are used to access and connect the fibres one by one. Despite this scheme

of connections seems tricky it allows to save space on the front panel by use of MTP-48

connectors while allowing to test the fibres singularly with different configuration, while

the position of the fibres and how they are associated with the MGT links in the firmware

implementation has been mapped to simplify the access to the different groups of MGT

links for debugging purposes.

Link speed test with IBERT The BER test has been performed to confirm the

quality of the links. Using the IBERT tool it is possible to produce the eye diagram and

obtain the BER value for the link under test. The link speed has been set to 12.8 Gbps

and different configurations have been tested, in particular the connections between the

Processor A and B (and vice versa) and the connection between different MGT links on

the same FPGA; in fact since the Processor A (B) has only 4 GTH (8 GTY) TX lines it

was not possible to test all the RX lines at the same time.
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The test reproduced the results from Ref. [35], by giving no errors in the IBERT test. An

example of the eye diagram obtained using the IBERT tool is shown in Fig. 6.5. In this

example the link under test connects an MGT TX transceiver to an RX transceiver on a

different group of MGT links in the same FPGA. The total length of the fibre is about

20 meters.

Figure 6.5: Example of eye diagram obtained using the Xilinx IBERT LogiCORE IP. In this

test an MGT transceiver is connected to a second MGT transceiver on the same FPGA.

6.3 Implementation of user data communication over

MGT links

Starting from the Xilinx UltraScale FPGAs Transceivers Wizard LogiCORE IP example

design, a simple communication protocol based on 8b10b encoding has been implemented

and first tested using pseudorandom binary sequence (PRBS) data, transmitted over an

optical fibre and received on the other end and compared to the expected pattern by a

simple data checker.

The TX 8b10b encoder and the RX 8b10b decoder are built-in features of the GTH and

GTY LogiCORE IPs. The 8b10b encoding is an industry standard encoding in which

for each byte (8 bits) two additional bits are generated resulting in a total of 10 bits

transmitted for each 8 bits provided by the user logic; similarly on the receiver side

10 bits are received and an 8 bit word is decoded and then provided to the user logic.

In particular the additional bits are generated in such a way to achieve DC-balance and

bounded disparity, the RX decoder checks for errors in the data by comparison of the extra

bits to the expected bits evaluated from the received data. In general, different status flags

are provided by the RX decoder and when the 8b10b encoding is enabled some of them

are used to address errors in the received data: in the implemented design the running

disparity error is monitored together with a flag that indicates if the received byte is a

valid character with respect to the 8b10b encoding table; if any of this error is raised

the data is discarded. More information on the Xilinx UltraScale FPGAs Transceivers

Wizard LogiCORE IP can be found in Ref. [39].

The design has been customized to transmit 32-bits user data at 320 MHz reference clock
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for an effective link speed of 10.24 Gbps per each GTH/GTY line. This is in agreement

with the previously declared value of 12.8 Gbps that refers to the total data rate obtained

from the link characterization with the IBERT tool; the maximum value could be achieved

by disabling the 8b10b encoding.

In the design implementation, the transceivers are instantiated in groups of four lines,

that share the same reference clock and are part of the same FPGA bank; each group,

including both four TX and four RX lines is referred to as Quad transceiver. A wrapper

has been designed to include the GTH or the GTY Quad transceivers and allows to

instantiate up to eight modules for a maximum of 32 lines of the same kind. The GTH

and GTY transceivers are customized in the same way and are interchangeable within the

wrapper. All the lines can be accessed singularly and the wrapper includes a dual clock

First Word Fall Through FIFO for each line. In particular the choice of using dual clock

FIFO is motivated by the necessity to write data that are generated by the user logic at a

reference clock; the same is valid for data received from transceiver lines at the reference

clock of 320 MHz and have to be provided to the user logic, i.e. the tracking algorithm,

running at different clock speed.

Test with PRBS data A PRBS (pseudorandom binary sequence) is a sequence of 0

and 1 bits generated with a deterministic algorithm and represents a typical test pat-

tern for evaluating the quality of serial links. In fact the IBERT LogiCORE IP is itself

based on the generation and reconstruction of PRBS data. The Xilinx UltraScale FPGAs

Transceivers Wizard example design includes the logic for the generation of PRBS data

on the transmitter side and the checking of the received data and these features have been

kept in the customized design, in particular the data generated has been moved before

the FIFO on the TX side and after the FIFO in the RX side: this mean that PRBS data

are generated, provided to the FIFO, then transmitted over the optical fibre; on the other

side the received data pass through the FIFO and are checked to be consistent with the

expected pattern.

The test with PRBS data has been performed for groups of four (eight) optical fibres that

represents the maximum number of available TX lines on Processor A (B).

The test consists in the following steps:

• a special sequence of data is sent through the link in order to align the transmitter

and the receiver, in fact since the data are serialized these are received as a con-

tinuous stream of bits and a reference has to be provided to identify the first and

last bit of the transmitted word(s). The RX transceiver module includes the logic

to identify special characters within the received data and aligns itself in order to

provide the correct output. This process has to be performed even when using the

transceivers with user provided data;

• the RX transceiver evaluates and provides a signal that indicates the status of the

link, in particular if the received data are correctly aligned, the status signal is

provided to a Virtual Input/Output LogiCORE IP (VIO) that can be monitored

on a PC within the Xilinx Vivado Hardware Manager software;
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• when the link is up and correctly running the generation of PRBS data is started

manually. The receiver logic checks if the received data are consistent with a PRBS

sequence and latches a status signal if the result is negative at least once: the status

signal is monitored through the VIO and stays high until manually reset.

The communication has been tested both connecting TX and RX within the same FPGA

and connecting different FPGAs, proving no errors in the received data.

Test with user generated data The communication over optical fibres has been

tested also with user generated data. A data generator has been designed to provide a

known sequence of data to the TX transceivers. The TX transceivers have been connected

to the RX ones, where a data checker module compares the received data to the known

pattern. The data checker provides a status flag that is read using a VIO LogiCore IP on

a PC: if the pattern comparison fails at least once, the status flag indicates an error and

the value stays unchanged until the sequence is reset from the VIO. Also in this case the

communication has been tested and validated both connecting TX and RX within the

same FPGA and from one FPGA to the second FPGA of the gFEX board.

6.4 Implementation and test of the Stub Switch and

Engines

In this section we describe the test performed on a simplified implementation of the

algorithm comprising the Stub Switch and Engines. The Stub Constructor is not fully

implemented but it is based on the Hit Switch, that follows the same behaviour of the Stub

Switch, and on the Stub Makers, whose performances in terms of latency and throughput

have been demonstrated.

The implemented system consists of a 64 × 64 Stub Switch and 16 Engine Regions, for

a total number of 1024 Engines. The engines distribution in the space of the main track

parameters has been optimized in order to achieve uniform occupancy of the Engine

Regions, and of the Engines within the region. To do this we decided to perform the

pattern recognition, hence the distribution of the Engines, in the space of the track

parameters (r+, φ+), the radial and azimuthal coordinates of the track intersection at the

reference plane, instead of (x+, y+). This space has been divided in 8×8 sectors according

to the distribution of the track parameters obtained by the simulation; in particular the

distribution of the tracks with respect to the φ+ is flat as expected due to the cylindrical

symmetry of the particle production in pp collisions. The distribution with respect to

r+ depends on multiple factors, as the polar distribution of the tracks and the vertex

distribution in pp collisions; this leads to a non uniform occupancy of the reference plane

at which the pattern recognition is performed. Each r+ sector covers a different range

in the r+ sub-space in such a way that the distribution of the Stubs data to the Engines

is balanced and as uniform as possible. It is worth noting that the distribution of the

Engines over a non uniform grid in the reference plane can be also modelled with a change

of coordinates making the occupancy uniform over the normalized space.
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Resources occupancy It is estimated from the simulation of one sector that 1024

Engines are needed to keep high efficiency and purity, in order to reproduce the results

from the high level simulation of the algorithm, shown in Section 4.2. The number of

inputs/outputs of the Stub Switch has been chosen to be equal to the number of RX

transceivers (64) available on the Xilinx XCVU095 FPGAs (Processor A and Processor

B) on the gFEX board. The number of Engines is limited by the resources needed for their

implementation, in particular the implementation of the system with the Stub Switch,

the pool of Engines, and the FanIns for data collection, takes the 60% of the FPGA

resources, while the rest is kept for including the Stub Constructor as soon as it will be

fully implemented.

From this point we focus on the details of the described sub-system. In this scheme the

4D real-time tracking algorithm can be implemented using a total of 64 sectors with 1024

per each, implemented in different FPGAs. Recalling the design of the gFEX board, this

means that one board can be used to process 1/32 of the full tracking system. Moreover,

in the system there is space for technical optimizations.

Test architecture The proposed test of the system has been performed with a stan-

dalone architecture fully implemented in a single FPGA (Processor A/B). In fact the

input/output communication has already been tested and proved to work.

The architecture for the test of the Stub Switch and Engines is shown in Fig. 6.6.

The test architecture is composed of the Data Generator, the Device Under Test, the

Data Checker; all the system works at a reference clock of 320 MHz.

The Data Generator comprises a read-only memory (ROM) in which the Stub Data

evaluated from simulation are stored. At each clock cycle the ROM is read out providing

one data per input to the Stub Switch, if the Switch itself is not back propagating any

of the hold signals (in Fig 6.6 the Hold signal is highlighted with only a single line for

a better view). If at least one hold signal is active, the ROM is not read, in order not

to lose any data, and the address of the value to be read is not incremented. The Hold

Checker, together with additional internal logic of the Data Generator, controls the Input

data ROM and monitors the number of received hold signals, compared to the number

of times in which the Detector Under Test was able to receive data. Two counters, hold

counter and tot counter, are associated with these values and can be read out from a PC

through a VIO LogiCore IP.

The Device Under Test features the Stub Switch, Engines and FanIns.

The Data Checker comprises a ROM in which the expected Track Data evaluated from

simulation are stored and a Data Comparator that reads data from both the ROM and

the Device Under Test; every time the Data Comparator receives a valid Track Data from

the Engines, the data is compared to the value stored in the ROM. The internal logic

of the Data Checker controls the readout of the ROM and provides a status flag that

indicates if the comparison provided negative result. The status flag is read out through

a VIO LogiCore IP.

Test results Using the previously described test architecture we obtained the following

results.
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Figure 6.6: Architecture test for the 4D real-time tracking system, based on the Stub Switch

and Engines. Input data are read from a ROM and fed to the Device Under Test, output data

are compared to the expected value written in a second ROM.

First it has been checked if the evaluations performed in the hardware implemented algo-

rithm reproduce the expected results. The Stub Switch has been tested in a standalone

test and then the Device Under Test described in the previous paragraph has been tested,

including the Engines and the FanIns. This kind of test has been performed first with

single track events, for debugging purposes, in order to have a reduced data flux within

the Stub Switch and exclude possible effects related to an incorrect hold logic manage-

ment within the Switch; this test provided a positive result with exact match between the

output data processed by the Device Under Test and the expected values, stored in the

Data Checker with the system running at a reference clock of 320 MHz. The same test

has been reproduced simulating events with full events in 1/64 of the tracking system, in

particular in the central region of the space of the track parameters (r+, φ+). Considering

64 bits for each Stub Data, and considering that the Data Generator has to feed data to

64 Stub Switch inputs, a 4 MB Block Ram has been used to implement the Input Data
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ROM with a depth equal to 1024. In particular the ROM contains the data associated

with the already identified and filtered Stubs that point to the region of the space of

parameters covered by the Engines; in these conditions, the ROM was loaded with data

associated with 398 simulated events and the hardware implemented algorithm provided

the expected output values.

The second result obtained is the estimation of the maximum throughput of the system.

This measurement, even if limited by the low statistics due to the ROM size, is achieved as

follows. The reference clock of the test architecture is set at a value of 320 MHz. The Data

Generator provides the Stub data associated with 398 events, stored in a ROM with a

depth of 1024 that is continuously read (in a loop) if no hold signal comes from the Device

Under Test, this means that the Data Generator is able to provide a maximum event rate

of 398/1024 × 320 MHz = 124.375 MHz; the Hold Checker manages the readout of the

Input Data ROM and starts to increment the hold counter and the tot counter as soon as

the first hold signal is received from the Stub Switch: the tot counter is incremented at

each clock cycle, while the hold counter is incremented when the Stub Switch is providing

at least one hold signal, that prevents the ROM to be read out. The ratio between the hold

counter and the tot counter is 0.67 and together with the maximum event rate evaluated

before provides an estimation of the maximum throughput of the Device Under Test that is

evaluated as: throughput = Max.evt.rate× (1− hold counter/tot counter) = 40.9 MHz.

It is worth noting that this result depends on the reference clock of the system, that if

increased to 400 MHz would push the maximum throughput up to 51.1 MHz.





Chapter 7

Possible application of real-time tracking algorithm to

the Beam Gas Vertex Detector

In this chapter we will provide a description of the Beam Gas Vertex Detector, together

with the results of a study on the feasibility of the application of a real-time tracking

algorithm for event reconstruction, implemented in FPGA and based on an architecture

similar to the one described in the previous chapters.

7.1 Beam Gas Vertex Detector

The Beam Gas Vertex Detector (BGV) [40] is a beam monitor system that is being

developed as part of the High Luminosity LHC project. The measurement of the beam

profile is obtained from the vertex reconstruction of particle tracks produced in proton-gas

interactions. The BGV aims at providing a non-invasive measurement of the transverse

beam size with less than 5% error within an integration time of 5 minutes. A prototype

demonstrator has been commissioned and installed at LHC Point 4, on the Beam 2 ring

in 2016. The detector consists of three main parts, as shown in Fig. 7.1 (from left to

right): the Gas Target, the Tracking Detector composed of four tracking station based

on SciFi detectors, the Hardware Trigger system composed of three scintillator stations.

Figure 7.1: Layout of the Beam Gas Vertex Detector. From left to right: Gas Target, Tracking

Detector, Hardware Trigger system.

The Gas Target system is a 2-meters aluminium vacuum tank designed to minimize the

impact on the LHC beam. It is composed of a conical tube followed by a cylindrical

section. Protons interact with neon gas at low pressure and multiple tracks are produced

in the forward direction. Different optimizations include a reduced thickness of the tank

exit window (down to 1.15 mm) to minimize the particles’ multiple scattering, and a

107
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reduced size of the beam pipe diameter at the end of the conical section and near the

tracking stations; the beam pipe reduction allows to minimize the distance of the sensors

from the interaction region and acts as a gas flow restriction allowing to reach ≈ 1×10−7

mbar gas pressure in the tank, while keeping the pressure in the adjacent beam pipes at

nominal LHC vacuum value (1× 10−11 mbar).

The tracking detector is composed of two stations (near and far stations). The near

station is placed just after the exit window of the Gas Target tank, the second station is

placed at about 1 meter distance. Each station includes two pairs of SciFi sensor modules

placed above and under the beam pipe. Each pair of modules is arranged to provide the

3-dimensional measurement of the track hits, with the first orthogonal to the second one.

Each SciFi module contains two sensitive sides with 4 (near station) or 5 (far station)

layers of scintillating fibres of 250 µm diameter. The readout of the scintillating fibres

is performed using silicon photomultipliers for a total of 1024 channels for each module

side, using four Beetle ASICs.

The Trigger system consists in three stations of 300 × 300 mm2, 1 cm thick, plastic

scintillators above and below the beam pipe: the first station, located before the Gas

Target system is used to veto interactions occurring before the gas tank, the second and

third station are located after the tracking system and provide the trigger based on the

coincidence signal from the two planes.

First results from the 2016 and 2017 collected data are reported in Ref. [41], first results

from the 2018 collected data are reported in Ref. [40] and are not discussed here.

7.2 Proposed real-time reconstruction algorithm in FPGA

We will describe an algorithm for 3-dimensional pattern recognition and track recon-

struction based on a stub identification approach, similarly to the one described for 4-

dimensional track reconstruction using pixel sensors. In particular in the BGV, SciFi

sensors provides only 2-dimensional measurements of the track hits, and the information

from pairs of orthogonal layers have to be merged in order to provide a 3-dimensional

measure of the trajectories.

Track parameters A 3-dimensional track is defined by 4 track parameters (x+, y+,mx,my),

with (x+, y+) = ((xf + xl)/2, (yf + yl)/2) and z± = (zf + zl)/2, where zf , zl are the

z -coordinates of the first and last tracking planes, respectively and (xf , yf ) and (xl, yl)

are the coordinates of the track at zf , zl. In particular (x+, y+) are the coordinates of the

intersection of the track at a reference plane placed at z = z+; (mx,my) are the slopes of

the track along the x, y directions as defined in Eq. 4.1, described in Sec. 4.1.

Tracking system layout The detector is composed of a total of 16 SciFi module sides,

which we will simply refer to as sensors in the following. Each sensor can be modelled

as strip sensor with dimensions of 261.25 mm and 340.00 mm in the direction orthogonal

and parallel to the strips, respectively.

an 97.9 × 97.9 mm2 cut-out is present to accommodate the beam pipe. Sensors are

organized in groups of four, as shown in Fig. 7.2: the first pair measures the x coordinate
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of the hit, in the local coordinate system highlighted in the picture. One sensor is rotated

by 2◦ with respect to the other (stereo configuration). Similarly the second pair of sensors

measures the y coordinate. Both the near and far station comprise two groups of four

sensors above and below the beam pipe, symmetrical to each other. We will refer to the

sensors placed above and below the beam pipe as top and bottom sensors, respectively.

Figure 7.2: Arrangement of a group of four BGV sensors, organized as two pairs of orthogonal

sensors, in stereo configuration.

The positions of the BGV sensors along the beam line are reported in Table 7.1. The

sensors 0-7 are located above the beam line while sensors 8-15 are located below. For the

purposes of the algorithm description we will refer to the tracking systems as two separate

tracking systems formed by the two groups of sensors. We will refer to the sensors within

the group of four as x, u, v, y sensors; in particular the x and v sensors are orthogonal

to each others, the u sensor is rotated by 2◦ with respect to the u sensor, the v sensor is

rotated by 2◦ with respect to the v sensor. Each tracking system is composed of 8 layers

arranged according to the following scheme: x-u-y-v-x-u-y-v. The tracking algorithm is

performed separately on the two tracking systems and will be described for just one of

them and applied in the same way to the second.

Pattern recognition The pattern recognition algorithm is based on the identification

of tracks with a hit in each tracking plane. It is based on the identification of pairs of hits

in adjacent planes, called halfstubs, then on the identification of pairs of halfstubs that

will form a stub and finally on the identification of tracks as pairs of stubs.
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Sensor 0 1 2 3 4 5 6 7

z [mm] 1995.40 2042.16 2045.32 2092.08 2978.40 3025.16 3028.32 3075.08

Sensor 8 9 10 11 12 13 14 15

z [mm] 2095.24 2142.00 2145.16 2191.92 3078.24 3125.00 3128.16 3174.92

Table 7.1: Longitudinal positions of the bottom and top sensors in the BGV

In particular, according to the layout of the tracking system, a halfstub is formed by hits

in sensors that are arranged in stereo configuration. The use of the stereo configuration

allows to retrieve a 3-dimensional information of the pair of hits, with better precision

on one of the two coordinate in the plane transverse to the z -axis. As an example,

a halfstub obtained from a pair of x-u sensors, will provide a precise measurement of

the x coordinate; vice versa for a halfstub obtained from a pair of v-y sensors. The 3-

dimensional coordinates of a halfstub are defined as follows: the z coordinate is defined

as the position in between the z coordinates of the two planes; the x and y coordinates

are obtained from the coordinate of the line that minimizes the 3-dimensional distance

of the hit strips from the line itself, in particular it is assumed that the origin of the

line is positioned at (0,0,1000 mm). This assumption is motivated by the fact that the

interaction region is approximately defined by 0 mm < z < 2000 mm. The identification

of the halfstubs can be performed in parallel over all the pairs of sensors: for each pair of

sensors a set of geometrical cuts is evaluated from Monte Carlo simulation and applied to

prevent processing pair of hits that are not compatible with a track from the interaction

region; in particular the cuts consist in the application of a threshold to remove hit strips

whose distance is higher with respect to the maximum value evaluated from simulation.

The identification of the halfstubs from the measured hits, and the identification of the

stubs from pairs of halfstubs is graphically described in Fig. 7.3.

The following step of the pattern recognition is based on the identification of stubs starting

from the previously evaluated halfstubs. As we previously observed the use of the stereo

configuration allows to evaluate the 3-dimensional coordinate of the halfstub, even if with

different precisions. A stub is obtained from a pair of halfstubs whose coordinates are

compatible within a certain distance range, evaluated from simulation. Each stub is then

formed by a x-u halfstub and a v-y halfstub, hence a full track trajectory can be evaluated

from the four 2-dimensional measured hits in four adjacent plane: the stub parameters

are defined in the same way as the track parameters (x+, y+,mx,my) and are evaluated as

the parameters of the track the minimizes the 3-dimensional distance of the 2-dimensional

hits from the line itself, similarly to the case of the halfstub parameters. Although, it has

to be noted that no assumption on the line trajectory is done in this case. Even in this

case the identification of the stubs can be performed in parallel over all the groups of four

x-u-v-y sensors. After a candidate stub has been identified and its parameters evaluated,

additional cuts are applied to discard stubs that are not compatible with particles from

the interaction region, i.e. the d0 and zv parameters, evaluated as the distance of closest

approach of the track to the beam line and the longitudinal coordinate of the track where

this distance is minimum, respectively, are evaluated and required to be compatible with

the distribution obtained from simulation.
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Figure 7.3: Example of identification of halfstubs and stubs in the BGV. Hits from two tracks,

track0 (red) and track1 (blue) are considered. The halfstub identification process is performed in

parallel on x−u and y−v sensor pairs. The halfstubs whose coordinates are outside the sensitive

area are rejected. The stubs are identified from pairs of halfstubs with compatible coordinates.

The last step of the pattern recognition is the identification of compatible pairs of stubs,

that we will refer to as superstubs. A superstub is formed by associating two stubs,

one in the near station and one in the far station; in particular we point out that the

association of the two stubs is performed on the basis of their (x+, y+) coordinates,

only: stubs belonging to the same superstub need to have similar values of the main
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track parameters, while the other two parameters (mx,my) are not used in the pattern

recognition but only to evaluate the complete track parameters of the superstub. It is

worth noting that a superstub actually represents a candidate tracks, since it is formed

by eight hits (in the bottom or top tracking system).

The identification of the superstubs from the measured stubs is graphically described in

Fig. 7.4.

Figure 7.4: Example of identification of superstubs in the BGV. The stubs identified in the

near and far station are projected to a reference plane. A superstub is identified from pairs of

stubs with similar x, y coordinates.

The process of superstubs identification is performed in parallel for the bottom and top

tracking systems. Once a superstub has been identified, the track parameters are obtained
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as the parameters of a straight line connecting the barycentres of the first and second

stub. Further cuts are applied to refine the evaluation and discard superstubs based on

the line-to-hit distances of the track trajectory from the measured hits.

Algorithm architecture The proposed architecture for the algorithm implementation

is similar to the one proposed in Section 5.3 for the 4D real-time tracking system with

some modifications. In general it is possible to use part of the described modules to build

the architecture, whose scheme is shown in Fig. 7.5 for a sub-system composed of the top

sensors. The described architecture is replicated for a second sub-system composed of the

bottom sensors.

Figure 7.5: Architecture of the proposed algorithm for track reconstruction in BGV for half of

the tracking system (bottom or top).

For each pair of sensors a Halfstub Constructor is instantiated. Its architecture follows

from the architecture of the Stub Constructor described in Chapter 5. The difference in

the use of the terminology has to be noted and is motivated as follows: in both cases a

stubs provides the minimum information to identify a track without any extra assumption,

even if with a reduced number of hits. Since pixel sensors (without timing) provide 3-

dimensional information, all the four parameters of a straight 3-dimensional tracks can

be estimated from the combination of two points; strip sensors, instead, provide only

2-dimensional information, so the combination of two hits is not enough to estimate the

four track parameters, while the combination of four 2-dimensional hits allows to estimate
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all the track parameters1.

The architecture of the Halfstub Constructor is based on the distribution of the hits from

the first and the second sensor (within a pair) to a pool of Halfstub Makers, that process

the combination of hits and provide the halfstubs in output. Each sensor is divided

in a certain number of regions in such a way that each region is equally populated,

according to the distribution of the hits obtained from simulated events. One Halfstub

Maker is associated with each region of the first sensor, while a Hit Switch delivers the

hits from the second sensor to a finite set of Halfstub Makers, according to the map

of compatible pairs of regions, that has been previously evaluated from Monte Carlo

simulations. The Halfstub Makers operate in parallel, each one processing just a part of

all the hits combinations: this allows to speed up the computation time and to simplify

the combinatoric problem. In fact, the hit distribution in the Switch already reduces the

number of combinations, by delivering the hits only to the regions where valid halfstubs

are expected to be found.

The architecture of the Stub Constructor is replicated from the previous one. In this case

the Stub Constructor receives the halfstubs from the Halfstub Constructor and provides

Stubs in output. The space of the halfstub coordinates for each detector pair is divided

into an equally populated grid. The map of compatible regions is previously evaluated

and used to configure the Switches inside the Stub Constructor: halfstubs from the first

and second sensor doublets (within each group of four) are delivered to the appropriate

regions according to the map; the Stub Constructor is composed of a pool of Stub Makers,

each one processing one region. The Stub Makers operate in parallel and evaluate and

filter the stubs from halfstubs combinations.

Regarding the identification of superstubs, the same strategy is applied. In this case a

pool Superstub Makers is associated with a grid of regions in the (r+, φ+) space, designed

to be equally populated. This choice of parameters is motivated by the fact that the

distribution of the tracks with respect to r+ is almost independent from the distribution

the tracks with respect to φ+: in fact the track generation is independent with respect to

rotations around the z -axis; nevertheless the detector is not cylindrically symmetric. The

Superstub Makers operate in parallel, as in the previous cases, and provide the superstubs

(tracks) in output.

It is evident from the description that the proposed architecture is intrinsically parallel.

On one hand the simplest level of parallelization is obtained by separating the processing

over independent modules, i.e. the halfstub search is performed for each pair of sensors

independently from each other. The second level of parallelization is obtained within the

single Halfstub/Stub/Superstub constructors, in which the data are delivered in parallel

to the regions with expected non-zero response.

Simulation results The algorithm has been simulated using 10000 events of the beam-

gas interactions in the Gas Target system. Events with only one track have been used

to perform the training of the algorithm, i.e. for evaluating the compatible regions on

the sensors. Moreover single track events are used to provide a benchmark of the recon-

struction quality in order to compare the resolutions obtained from simulation of realistic

1from a pure geometrical point of view only three hits are needed.
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events.

Results are obtained from high level simulation of the algorithm that is intended to provide

information on the algorithm reconstruction quality and it is not fully optimized. In this

simulation 32 Halfstub Makers have been instantiated for each Halfstub Constructor, 8×8

Stub Makers for each Stub Constructor, 8 × 16 Superstub Makers for each Superstub

Constructor.

The resolution on the track parameters is evaluated from the fit of the distribution of the

reconstructed parameters minus the parameter of the simulated track. The distributions

have been fitted with a Gaussian function or the sum of two Gaussian functions. The

resolution is defined as the root mean square of the fitting function. The resolution on

(x+, y+) parameters for single track events is σx+,y+ = 0.050 mm, while the resolution on

(mx,my) parameters is σmx,my
= 0.0001.

The residual distributions for reconstructed minus generated (x+, y+,mx,my) track pa-

rameters, obtained from simulation of beam-gas interactions in the BGV are shown in

Fig. 7.6. The resolutions obtained from the Gaussian fit of the distributions are similar to

the values obtained from single track events and are σx+
= 0.056 mm, σy+ = 0.056 mm,

σmx = 0.0001, σmy = 0.0001.
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Figure 7.6: Residual distributions for reconstructed minus generated (x+, y+,mx,my) pa-

rameters for simulated beam-gas events in the BGV. The resolution are: σx+ = 0.056 mm,

σy+ = 0.056 mm, σmx = 0.0001, σmy = 0.0001.

The residual distributions for (d0, z0) parameters are shown in Fig. 7.7. These are defined

as the distance of closest approach of the track to the z -axis and the z coordinate where

the distance is minimum, evaluated according to Eq. 4.23. The resolutions obtained on
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d0, z0 track parameters are σd0 = 0.213 mm, σz0 = 6.17 mm.
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Figure 7.7: Residual distributions for reconstructed minus generated (d0, z0) parameters for

simulated beam-gas events in the BGV. The resolution are: σd0 = 0.213 mm, σz0 = 6.17 mm.

The reconstruction efficiency εrec is defined as ratio between the number of reconstructed

tracks and the number of reconstructible tracks. In order to evaluate the efficiency, for

each generate track it is required to find a reconstructed track within a maximum distance

of 2
√

2 mm in the (x+, y+) plane. The estimated efficiency is εrec = 97%.

The reconstruction efficiency as a function of the r+, φ+, d0, z0 track parameters is shown

in Fig. 7.8.

rplus [mm]

0 50 100 150 200 250

E
ff

ic
ie

n
c
y

0

0.2

0.4

0.6

0.8

1

phiplus [rad]

3− 2− 1− 0 1 2 3

E
ff

ic
ie

n
c
y

0

0.2

0.4

0.6

0.8

1

d0 [mm]

0.05− 0.04− 0.03− 0.02− 0.01− 0 0.01 0.02 0.03 0.04 0.05

E
ff

ic
ie

n
c
y

0

0.2

0.4

0.6

0.8

1

z0 [mm]

500− 0 500 1000 1500 2000 2500

E
ff

ic
ie

n
c
y

0

0.2

0.4

0.6

0.8

1

Figure 7.8: Reconstruction efficiency as a function of r+, φ+, d0, z0. The dashed histograms

show the distribution of the generated track parameters.

The reconstruction efficiency as a function of the number of reconstructible tracks per

event and as a function of the number of track hits in the whole detector is shown in

Fig. 7.9.
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Figure 7.9: Reconstruction efficiency as a function of the number of tracks and hits in the

BGV. The dashed histogram show the distribution of the number of reconstructible track and

hits in the BGV.

The efficiency plots show no dependence of the reconstruction efficiency form the different

track and event parameters.

Discussion on hardware implementation In the previous paragraph the results

from high level simulation have been shown, providing good reconstruction quality in

terms of track parameters resolution and in terms of efficiency.

The high-level simulation does not provide direct evidence of the feasibility of the hard-

ware implementation, which has to be discussed. Nevertheless, information about the

expected throughput and latency can be extracted from the simulation at intermediate

steps. In this paragraph we will discuss the expected performances of the processing

system, and in particular we will refer to the configuration proposed before: 32 Halfstub

Makers for each Halfstub Constructor, 8 × 8 Stub Makers for each Stub Constructor,

8× 16 Superstub Makers for each Superstub Constructor.

The distribution of the maximum occupancy of the Halfstub Makers (on an event-by-

event basis) for each Halfstub Constructor, associated with the eight pairs of sensors, is

shown in Fig. 7.10. The distributions show the maximum number of candidate halfstubs

to be processed in each event (dots), namely the product of the number of hits from the

first and second sensor within the pair, and the number of halfstubs provided in output

after the application of the geometrical cuts (solid line).

We point out that the maximum number of hit combinations can be used to estimate

the computation time needed for the identification of the halfstubs in a single event: in

fact, in presence of multiple Halfstub Makers, the computation time can be approximated

to the time needed by the slowest one. From the plots we can observe that the most

occupied modules are associated with the pairs of sensors in the far stations, with an

average number (worst case) of ∼ 3.9 candidate combinations to process, with standard

deviation of ∼ 2.7. Recalling the discussion on the latency and throughput of the Stub

Maker in Chapter 5, one candidate halfstub can be processed per each clock cycle, in a

pipelined architecture; this means that if we assume an event rate of 40 MHz and the

algorithm processing data at a reference clock of 320 MHz we can expect no loss of data

and a full throughput of identified and filtered halfstubs.
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Figure 7.10: Distribution of the maximum occupancy per event of the Halfstub Makers for

the eight detector pairs: number of hits combinations to process (dots) and number of filtered

halfstubs (solid line).
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The distribution of the maximum occupancy of the Stub Makers (on an event-by-event

basis) for each group of four tracking sensors is shown in Fig. 7.11. Similarly to the

previous plots, the distributions show the maximum total number of stubs to be processed

in an event (dots) and the number of identified stubs, filtered by the application of

geometrical cuts (solid line).
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Figure 7.11: Distribution of the maximum occupancy per event of the Stub Makers for the

four detector quadruplets: number of halfstubs combinations to process (dots) and the number

of filtered stubs (line).

The most occupied Stub Makers corresponds to the quadruplets of sensors in the far

stations. The worst case value of occupancy corresponds to an average of ∼ 3.4, with

standard deviation of ∼ 2.8. Provided the previous assumptions on the reference clock for

the running algorithm we can expect on average no loss of data and full data throughput

of identified and filtered stubs.

The distribution of the maximum occupancy of the Superstub Makers for the bottom and

top tracking systems is shown in Fig. 7.12. The distribution of the maximum value of

number of superstubs to be processed in an event (dots) and the corresponding number

of identified superstubs after the geometrical cuts (solid line) is shown.

The obtained value of occupancy corresponds to ∼ 2.0 (∼ 2.3) with standard deviation of

∼ 2.6 (∼ 2.6) for the Superstub Makers associated with the bottom (top) tracking system.

This means that an average of 2 clock cycles are needed to process the superstubs of each

event, while the proposed system is expected to be able to process eight combinations,

at a reference clock of 320 MHz, compared to the bunch collision rate of 40 MHz, before

new data are available from the processing of the following event.
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Figure 7.12: Distribution of the maximum occupancy per event of the Superstub Makers for the

bottom and top tracking systems: number of stubs combinations to process (dots) and number

of filtered superstubs (line).

It is worth that the current trigger rate for the BGV, is at the order of 100 KHz, with

bunches of 1011 protons and neon pressure of ≈ 1 × 10−7 mbar [42]. These conditions

are very relaxed with respect to the maximum rate of 40 MHz used in the previous

considerations. In this sense the quantity of resources for reconstructing the BGV tracks in

real-time could be revised, i.e. reducing the number Halfstub/Stub/Superstub Makers or

by resource sharing in the FPGA implementation: this would lead to higher computation

times while reducing the hardware resources.

Conclusions In this section an algorithm for real-time track reconstruction has been

proposed. The algorithm is based on the identification of hit doublets in adjacent sensors,

then on the identification of pairs of doublets and finally on the identification of track

candidates from quadruplets of hits in the near and far tracking stations of the BGV.

The architecture is highly parallelized and the high level simulation of the system shows

that it is able to provide a good reconstruction quality with high efficiency. The feasi-

bility of the hardware implementation in FPGA has been briefly discussed; in fact the

architecture is similar to the one described for the implementation of the 4D real-time re-

construction algorithm and the implementation of the major logic modules can be reused

with minor modifications. At first approximation, there is no evidence of possible bottle-

necks in the reconstruction chain even at 40 MHz event rate. Moreover the conditions of

the BGV beam-gas interactions are quite relaxed.

The proposed study can not be intended as a complete study since the system has not

been implemented and tested in hardware. Nevertheless it is intended as a starting point

for a possible application of a real-time tracking algorithm in the future BGV detector,

since after having demonstrated its capabilities, it is going to be upgraded to operate at

HL-LHC.



Summary

In this thesis we presented a fast-tracking device for real-time track reconstruction and

its implementation in FPGA. The device has been designed to be applied to a possible

Upgrade II of the VELO detector of the LHCb experiment, capable to provide precise

space and time information of the detector hits for a 4D reconstruction of the tracks. The

LHCb collaboration identified the addition of timing information as a solution to cope

with the effects of the luminosity increase and to allow the experiment to keep producing

high quality measurements.

The proposed tracking algorithm is based on the early parallel identification of hit doublets

in adjacent sensor planes, stubs, and on the identification of candidate tracks from groups

of stubs with similar parameters. The algorithm has been characterized in terms of track

reconstruction quality and efficiency using a high-level standalone simulation of a VELO-

like system and provided high efficiency and good resolution on the track parameters.

In particular the results from the simulations show a reduction of the ghost track ratio

with respect to the case in which the timing information is not included in the pattern

recognition, while keeping high efficiency.

The tracking algorithm has been implemented in FPGA and described using VHDL lan-

guage. All the modules used for the firmware implementation have been designed from

scratch with a particular focus on the minimization of the system latency, achieved by

the implementation of a highly parallelized and pipelined architecture and a hold logic

for the optimization of the data flow. The parallelized nature of the algorithm and the

modularity of the system make it suitable for implementation on independent FPGAs,

and scalable to large detectors.

The system has been tested in hardware using the gFEX prototype board featuring mul-

tiple Xilinx Virtex UltraScale FPGAs and a Xilinx Zynq SoC FPGA, together with high-

speed optical links with up to 1.6 Tbps input bandwidth. The hardware test of a sector

corresponding to 1/64 of the VELO-like detector reproduced the results obtained from

low-level simulation of the implemented algorithm. The test has been performed by

generating, processing and analyzing the elaborated data with an ad-hoc architecture im-

plemented in a single FPGA. From these results we can assume that the full system can

be processed using 32 gFEX boards, equipped with two FPGAs. Moreover, more powerful

121
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FPGAs with respect to the one that we used are already available on the market at the

time of this writing. The system has proved to be able to process the simulated data at

event rates of 40 MHz within a latency of O(1) µs, which proves the feasibility of this

approach for a fast tracking device for a future LHCb Upgrade.

Other topics covered in this thesis include the implementation of the Artificial Retina

algorithm for real-time track reconstruction applied to a 2-dimensional tracking system

based on silicon strip sensors. This work has been propaedeutic to the design of the

4D real-time tracking device; in fact on one hand the two systems implement similar

technical features, while on the other hand all the implemented modules for the 4D real-

time tracking system have been completely redesigned. The Artificial Retina algorithm

has been implemented in FPGA on a custom DAQ board (MAMBA board) and has been

tested and validated with real data from a testbeam and represents a demonstration of the

Artificial Retina approach, even if with relaxed conditions and lower rates with respect

to collisions at LHC.

Finally, we provided a feasibility study for a real-time reconstruction algorithm imple-

mented in FPGA to be applied to the Beam Gas Vertex detector for beam profile mea-

surements at LHC. In this study, an architecture similar to the one proposed for the

4D real-time tracking algorithm has been addressed for the parallel identification of hit

doublets, quadruplets and finally tracks in the BGV detector. This system has not been

implemented in FPGA but it is based on the same modules implemented for the 4D track-

ing system with minor modifications. This study represents a starting point for discussing

a possible upgrade of the reconstruction strategy of BGV events, now based on software.
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