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Abstract. The need for large scale and high fidelity simulated samples for the ATLAS
experiment motivates the development of new simulation techniques. Building on the recent
success of deep learning algorithms at interpolation as well as image generation, Variational
Auto-Encoders and Generative Adversarial Networks are investigated for modeling the response
of the electromagnetic calorimeter for photons in a central calorimeter region over a range of
energies. The synthesized showers are compared to showers from a full detector simulation using
Geant4. This study demonstrates the potential of using such algorithms for fast calorimeter
simulation for the ATLAS experiment in the future.

1. Introduction

The ATLAS experiment [I] relies on Monte Carlo (MC) simulation as a basis for data analysis.
Simulations of the deposition of energy in the calorimeter due to developing showers are slow
because they require the modeling of interactions of particles with matter at the microscopic
level, as implemented using the Geant4 toolkit [2]. ATLAS already relies on fast calorimeter
simulation techniques based on thousands of individual parametrizations of the calorimeter
response [3].

In recent years, deep generative algorithms such as Variational Auto-Encoders (VAEs) [4] 5]
and Generative Adversarial Networks (GANs) [6] have been demonstrated to accurately model
the underlying distributions of data from various domains, including the response of an ATLAS-
like calorimeter [7, 8, 9]. Crucially, deep learning based models have demonstrated the ability to
interpolate on untrained parameter spaces, allowing for smartly curated training datasets that
do not exhaustively encompass all possible input combinations.

This document summarises [10) [I1] the first application of a VAE, a GAN and an updated
version of the GAN for fast simulation of the calorimeter response of the ATLAS detector for
photons over a range of energies in the central region of the electromagnetic calorimeter.

The central region of the electromagnetic (EM) calorimeter is segmented into a matrix in the
r/z, n, ¢ space, and its structure is presented in Fig.

2. Monte Carlo Samples and Preprocessing

Samples of single unconverted photons are simulated using Geant4 10.1.patch03.atlas02, the
standard MC16 RUN2 ATLAS geometry (ATLAS-R2-2016-01-00-01) with the conditions
tag OFLCOND-MC16-SDR-14. The samples are generated for nine discrete particle energies
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Figure 1: Various calorimeter layer alignments caused by difference in cell widths between the
layers. Each layers is cropped with respect to the impact cell, to have the same number of
cells regardless of the alignment. p0 through p3 are four possible alignments in ¢ for the front
layer, (left, showing a 8 x 3 portion of the 56 x 3 cell image), and e0 & el are the two possible
alignments in 7 for the back layer, (bottom, showing a 4 x 1 portion of the 4 x 7 cell image)
with respect to the middle layer (center, showing the full 7 x 7 image). The calorimeter layers
are actually one behind another in the third dimension. [10]

logarithmically spaced in the range between approximately 1 and 260 GeV and uniformly
distributed in 0.20 < |n| < 0.25, totaling approximately 90000 events. The truth particles
are generated on the calorimeter surface. The generated samples do not include displacements
corresponding to the expected beam spread, electronic noise, cross talk between neighbouring
cells or dead cells. Cell energies are required to be positive.

For each layer of the calorimeter, the energy deposits within a rectangular region are selected
with respect to the impact cell, defined as the cell in the middle layer closest to the extrapolated
position of the photon. The dimensions for the presampler, front, middle, and back layers are
7x3,56x3,7x7,and 4 x 7, respectively, totalling 266 cells. 99% of the total energy deposited
is within this selection. The calorimeter cells’ nn and ¢ referred to in this document are the raw
values, i.e. not taking into account corrections accounting for imperfections of the detector.

3. Algorithms
The explored VAE (Fig. is composed of two stacked neural networks, acting as encoder and
decoder, both conditioned on the energy of the incident particle.

The VAE training uses an RM SProp optimiser. To ensure the latent space is continuous
and allows for smooth interpolations between the encoded instances, a negative Kullback-Leibler
divergence between gg(z|z) and the prior probability density function p(z), is included in the
loss function in addition to the mean-squared error reconstruction loss. Every additional loss
term is associated with a scalar valued hyperparameter that specifies its relative importance to
the total loss. The model is implemented in Keras 2.0.8 [12] using TensorFlow 1.3.0 [I3] as the
backend. The last epoch of the training is used for synthesizing the presented showers.

The first GAN discussed in this document (Fig. is composed of two neural networks, a
generator and a discriminator, trained with a Wasserstein loss function [I5] as proposed by [16].
Both networks are conditioned on the energy of the incident particle and the alignments of the
different calorimeter layers with the middle layer (Fig.[l)). The training was done with an Adam
optimizer on 4% of the available samples (due to unstable training on bigger training datasets).
The discriminator estimates a function that maximally separates the true and synthesized
showers which must lie in the space of 1-Lipschitz functions [17, 18], a constraint softly enforced
with a double sided penalty on the distance of the norm of the discriminator’s gradients from
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Figure 2: Schematic representation of the architectures of @ VAE, @ the first GAN, [10]
updated GAN (with a trainable swish[I4] activation), used in this study.

1 when evaluated on an image that is a randomly weighted average of an image from the
real (Geant4) and generated (from the generative network’s) distribution. The hyperparameter
associated with the additional loss term is known as the gradient penalty weight (Aqp). The
model is implemented in Keras 2.0.8 [12] using TensorFlow 1.3.0 [13] as the backend.

An updated GAN architecture (Fig. is later used to improve the energy resolution
(discussed in section . It was observed that lower gradient penalty weights improved the
energy resolution at the expense of other physics distributions, therefore two discriminators
with different gradient penalty weights are used. While the original discriminator has a
gradient penalty weight of 10, the additional discriminator has a smaller gradient penalty weight
of 1078, and it receives the total energy of an image as the input, instead of the image itself.
The updated GAN is further conditioned on the extrapolated position of the particle inside the
impact cell (Fig. . Changing the optimiser from Adam to RM S Prop allowed for the training
to remain stable on 50% of the dataset, which further improved results.

An L1 activity regularizer is applied on the generator output to encourage sparsity of cell
energies. When performing an optimization of the hyperparameters, four GANs are trained with
different random seeds and their average performance is compared to avoid picking up random
fluctuations. As a control, average performance of four GANs is compared with two other sets
of four GANs, all trained with the same hyperparemters but different random seeds.

The training takes 80h for 15000 epochs on 50% of the dataset for the updated GAN,
performed on an NVIDIA® Kepler™ GK210 GPU with a processing power of 2496 cores,
each clocked at 562 MHz. The card has a video RAM size of 12 GB with a clock speed of 5 GHz.

4. Results
This section presents comparisons between physics properties of the synthesised showers from
the generative models and the full simulation.

The energy deposited in the middle layer of the calorimeter, is shown in Fig. [3a] for photons
with an energy of approximately 65 GeV in the range 0.20 < |n| < 0.25. Both VAE and GAN
accurately describe the bulk of the energy deposits but with reduced agreement in the tails of
the distribution. They reproduce the energy weighted average 7 of the middle calorimeter layer,
shown in Fig. to a large extent. The shower depth, d = % >iclayers Lidi, calculated from the
energy weighted mean of the longitudinal center of all calorimeter layers, is shown in Fig.
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Figure 3: |(a)| The energy deposited, @ the average n distribution in the middle calorimeter
layer, and |(c)| the shower depth for photons with 65 GeV energy in the range 0.20 < |n| < 0.25.
The full simulation (black markers) is compared to a VAE (solid red line) and a GAN (solid
blue line). The underflow and overflow is included in the first and last bin of each distribution,
respectively. @ Energy response of the calorimeter as function of the true photon energy, where
the shown error bars indicate the resolution of the simulated energy deposits, and @ the same
for the updated GAN (green) [10} [11]

Both VAE and GAN reproduce the shape of shower depth simulated by Geant4, but with a
slight shift.

Fig. shows the simulated energy as a function of true photon energy. The modeling
of the total energy response reflects the modeling of the underlying distributions, i.e. the
energy deposited in the calorimeter layers, and enhances the mismodeling of the tails due to
underestimating the underlying correlations observed in these. Both generative models simulate
a wider spread of energies than Geant4d. The updated GAN architecture was conceived to
improve the modeling of this distribution, and Fig. [3€] shows considerable improvement in the
updated GAN.

5. Conclusion

This document presents the first application of generative models for simulating particle showers
in the ATLAS calorimeter. Two algorithms, a VAE and a GAN, have been used to learn the
response of the EM calorimeter for photons with energies between approximately 1 and 260 GeV
in the range 0.20 < |n| < 0.25. The properties of synthesized showers show promising agreement



with showers from a full detector simulation using Geant4. The only distribution these algo-
rithms completely failed to model, the energy response of the calorimeter as a function of the
true photon energy, has been addressed with the updated GAN. The updated architecture could
be extended to improve other distributions of particular concern in a similar fashion. This study
demonstrates the feasibility of using such algorithms for fast calorimeter simulation for the AT-
LAS experiment in the future and opens the possibility to complement current techniques. More
useful assessments of the performance of these algorithms will come from a direct comparison
with current fast simulation techniques used within ATLAS, by plugging the models into the
ATLAS software. These comparisons will reveal where further improvements are required. An
advantage of such models based on neural networks is their ability to interpolate on untrained
parameter spaces, which allows to train them without a dataset exhaustively encompassing all
possible input combinations. It is therefore imperative to verify that these models are able to
also simulate correctly photon showers at untrained energy points within the ATLAS software.
Incorporating other regions of the calorimeter as well as other types of particles are the next
logical steps for this effort. In addition, the algorithms must either be conditioned on the di-
rection of the incident particle, or be trained on more granular datasets which can benefit from
parameterisations already present in fast calorimter simulation techniques [3] used in ATLAS.
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