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for ground states and collisions of nuclei

H. Feldmeier, K. Bieler and J. Schnack

Gesellschaft fir Schwerionenforschung mbH, Postfach 110 552,
D-64220 Darmstadt

Abstract

The antisymmetric many-body trial state which describes a system of interac-
ting fermions is parametrized in terms of localized wave packets. The equations of
motion are derived from the time-dependent quantum variational principle. The
resulting Fermionic Molecular Dynamics (FMD) equations include a wide range of
semi-quantal to classical physics extending from deformed Hartree-Fock theory to
Newtonian molecular dynamics. Conservation laws are discussed in connection with
the choice of the trial state. The model is applied to heavy-ion collisions with which
its basic features are illustrated. The results show a great variety of phenomena
including deeply inelastic collisions, fusion, incomplete fusion, fragmentation, neck
emission, promptly emitted nucleons and evaporation.

1 Introduction and summary

The mean-field picture has been applied successfully to low energy heavy-ion
collisions where the velocity of the nucleons is large compared to the surface ve-
locity of the mean field. For beam energies K145 — Ecg 2 50 AMeV above the
Coulomb barrier the relative velocity between the two nuclei exceeds the Fermi
velocity of the nucleons inside the nuclei. Thus for Erap — Ecg 215 AMeV,
which corresponds to about half the Fermi velocity, one expects that the
nucleons are too slow to establish a common mean field. This is reflected
by the observation of large fluctuations in the final mass distribution or in
other observables. Therefore a molecular dynamics model, which is not based
on the mean-field assumption, seems to be most promising for a dynamical
description of these collisions.

Long before the observation of multifragmentation reactions one has attemp-

ted to set up classical molecular dynamics models to describe the collision of
nuclei [1-3]. While collective degrees of freedom like the center of mass of a
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nucleus can be treated classically, the trajectories of the individual nucleons
cannot. This is readily seen from the two conditions for a classical treatment
which are:

a) The de Broglie wavelength in the relative motion of two nucleons should
be shorter than the variations in the two-body interaction.

Considering the range of the nucleon-nucleon potential, 0.3 fm may serve as
an upper limit for the de Broglie wavelength

2
ABroglie = —kﬁ <03fm — k>20fm™

This localization implies that the relative momenta k of the nucleons should
be greater than 4000 MeV /c which is never fulfilled for nucleons in the same
nucleus as the Fermi momentum is only 300 MeV/c. The necessary relative
momenta are reached in collisons with Epap > 8 AGeV but only for nucleons
which are in the target and in the projectile, respectively.

b) The wave packet should not spread too much during the reaction time.

As an estimate one may take the time in which a freely moving packet of
minimal uncertainty has doubled its spatial width. In the rest frame of the
particle with mass my= 939 MeV/c? this time is given by

2
Treaction < 2mN0'0 ~ lfm/c

which implies for an initial width of oo = 0.3 fm a time scale of 1 fm/c. Again
this condition is only met for relativistic collisions.

Therefore one must conclude that a naive non-quantal molecular dynamics
picture where the nucleons are represented by points in the phase space cannot
be applied to non-relativistic heavy-ion collisions below about 8 AGeV beam
energy.

Quantum Molecular Dynamics (QMD) {5,6] attributes instead of a point to
each nucleon a gaussian phase-space distribution with a time-independent
width but still uses classical equations of motion for their mean positions
r. and mean momenta p;. These equations of motion contain a mean-field
force and a fluctuating force generated with random numbers. While in the
fluctuating force (collision term) the Pauli exclusion principle for identical fer-
mions is taken notice of by means of a " Pauli blocker”, the mean-field force is
that of distinguishable particles.

Antisymmetrized Molecular Dynamics (AMD) [7,8] is based on the same con-
cept as QMD but the smooth part in the motion of the nucleons is described
by the fermionic equations of motion (10] but using fixed widths. Also the



"Pauli blocker” in the collision term is improved as it refers to approximate
canonical variables rather than to the parameters r, and py.

Fermionic Molecular Dynamics (FMD), introduced in ref. [10], takes the fol-
lowing view: The closest quantum analogue to a point in the single-particle
phase space representing a classical particle is a wave packet well localized in
phase space. The analogue to a point in the many-body phase space repre-
senting several classical particles is a many-body state which is the product
of localized single-particle packets. If the particles are identical fermions, the
analogue is the projection of this many-body state onto the subspace anti-
symmetric with respect to particle exchange. For identical bosons it is the
projection onto the symmetric subspace. The wave packets are given by a
set of parameters including mean position 7, mean momentum p;, complex
width ax and spin direction o,. Furthermore, the equations of motion for these
parameters are derived from a quantum variational principle.

Using wave packets automatically guarantees that the Heisenberg uncertainty
principle is not violated by the model. Using antisymmetrized many-body trial
states automatically guarantees that the Pauli exclusion principle is respected
by the model. However, the ansatz of antisymmetrized wave packets does not
exclude the classical molecular dynamics picture. Actually the fermionic equa-
tions of motion given in section 2.5 go smoothly over into Newton’s classical
equations of motion when conditions a) and b) for classical motion are fulfilled.

Since in FMD the energy is the expectation value of a Hamilton operator calcu-
lated with an antisymmetric many-body trial state, the ground state is in a na-
tural way the state which has minimal energy with respect to variations in the
parameters. Hence it is stationary and all parameters are time-independent.
The momentum distributions of ground states displayed in section 3.1 show
that — besides the important effects of antisymmetrization — the Fermi motion
is essentially due to the width of the wave packets and not due to non-zero
mean momenta. Section 3.2 illustrates how antisymmetrization also introduces
shell effects and delocalization of the fermions. These quantum effects are cer-
tainly not in classical molecular dynamics models and are also not in models
which include effects of the Pauli principle only by blocking occupied states
in the collision term (QMD).

The FMD ground states have to be treated like intrinsically deformed Hartree-
Fock states. Section 3.5 defines an ensemble by adding coherently individual
events which differ in their initial orientations of the ground states. It is shown
that the final states can be averaged incoherently because they become ortho-
gonal due to the semi-quantal time evolution.

To simulate the effect of the antisymmetrization on the classical trajectories
many authors {2,11-14] add to the hamiltonian a two-body ”Pauli potential”



which is supposed to keep the fermions apart from each other in phase space.
Studying in section 3.3 the effect of antisymmetrization on the trajectories
renders doubts in this approximate treatment of fermionic dynamics. From
the FMD equations it is possible to define locally canonical pairs of variables.
Expressing the hamiltonian in terms of these canonical variables defines the
proper ”Pauli hamiltonian” which is not the classical hamiltonian plus a " Pauli
potential”. A canonical variable depends in general on all the variables of all
wave packets which makes it impossible to regard it as a coordinate of a single
nucleon. Only when the wave packets have no overlap classical and fermionic
canonical coordinates coincide.

Numerical solutions of the FMD equations show a rich variety of phenomena,
the most prominent being the observation of large fluctuations in the final
stage for collisions with identical impact parameter and beam energy but diffe-
rent initial orientations of the nuclei. On short time scales (100 fm/c) there are
promptly emitted particles, multifragmentation and incomplete fusion while
sequential decay and evaporation of nucleons from the excited fragments occur
on longer time scales (calculations have been done up to 2000 fm/c). Emission
of nucleons and intermediate mass fragments from the neck region are obser-
ved. Not all these phenomena are shown in sections 3.4 and 3.6. Instead of
displaying a few snap shots at different times of the one-body density a much
better understanding of the collisions can achieved by looking at the time evo-
lution in terms of a computer animation which displays the shape and positon
of each wave packet as a function of time. A diskette can be ordered from the
authors which runs on an IBM compatible personal computer and contains
more reactions than could be included in this paper.

2 The Fermionic Molecular Dynamics Model

The Fermionic Molecular Dynamics (FMD) model is built on three compo-
nents. The first is an antisymmetrized many-body trial state which contains
the essential degrees of freedom in the many fermion system. These are re-
presented by a manifold of parameters which specify the trial state uniquely.
The simplest case is a single Slater determinant but one could as well think
of a correlated many-body state which takes care of the repulsive core in the
interaction. Also mixed states are conceivable. In any case they should be
antisymmetric with respect to particle exchange in order to include the Pauli
principle from the very beginning. This accounts for the adjective ” Fermionic”.

The single particle states which enter into the many-body state are wave
packets localized in phase-space, therefore the attribute "Molecular”. They are
the closest analogue to classical mechanics without violating the uncertainty
principle.



For a chosen parametrization of the trial state the equations of motion for the
parameters are derived from the time-dependent quantum variational prin-
ciple. This principle constitutes the second building block, the ”Dynamics”.
Since there is a unique mapping of the parameter set on the quantum trial
state the dynamics of the parameters is actually the representation of the dy-
namics of the quantum many-body state. The derivation from a variational
principle guarantees the proper conservation laws and leads to a generalized
lagrangian dynamics on a symplectic manifold [15].

The third component is the hamiltonian of the system. The choice of the
trial state depends of course crucially on the properties of the hamiltonian. In
nuclear physics, the free two-body nucleon-nucleon interaction cannot be used
directly in the many-body system. There are genuine many-body forces due
to polarization of the nucleons and even more important, one needs effective
interactions which are tailored to make up for deficiencies in the model state.
Thus the choice of the trial state and the effective interaction are intimately
related.

In the following subsections the model will be exemplified with a Slater deter-
minant as trial state.

2.1 Time-dependent variational principle

The FMD model is based on the time-dependent variational principle

 fa(QU)I i~ B Q) = 0 1)

in which the trial state (Q(t)] is to be varied. This many-body state is spe-
cified by a set of parameters Q(t) = { ¢.(t) | v = 1,2,--- } which are the
generalized coordinates of the system.

The variation has to be performed with respect to each parameter ¢,(t) with
the end points kept fixed, i.e. 0g,(t1) = 8q.(t2) = 0. The operator H is the
total hamiltonian of the system. (Throughout the paper operators in Hilbert
space will be underlined with a twiddle, to distinguish them from parameters
or expectation values.)

The Euler-Lagange equations

4o o
dtdq, Oq,

=O y V:l,2,"',N (2)



which result from the variation (1) are written in terms of the Lagrange func-
tion

£(Q(®),00)=(QW 1 i~ H 1))
= Lo (Q(1), Q1)) — H(Q®)), (3)
with

0
dq,

£0 (@M1, Q1) = (@ 12 1Q(1) = T {QW | iz— 1Q®) &, (@)

in which Q(t) = {§, = dq./dt | v = 1,2, } is the set of generalized velocities
and H(Q(t)) is the Hamilton function defined as the expectation value of the
hamiltonian H:

HQ®) = (QMW) 1 H|Q(1)) - (5)

Different from classical mechanics the Lagrange function (3) is linear in the
velocities g, but at the same time the set Q(t) = {q.(t)} contains both, coor-
dinates and momenta.

Using the general structure (3) of the Lagrange function the Euler-Lagrange
equations (2) in their most general form can be written as

Y 4,.(Q) G, = —%H(Q) ' (6)

or, if A,, is not singular [16] the equations of motion are

0

=~ S AZQ) FH(Q) @
where
9*Lo 0%*Lo
A(@) = ~Auu(Q) = 5ot = gt Q

is a skew symmetric matrix, which depends in general on the variables Q(t) =
{q,(t)}. For details see section 2.5 and the appendix.



With help of the matrix A,, one can define generalized Poisson brackets [17)
as

oH oB
H,B} = — A} —, 9
0B} =22 By, A Ba, ©

2114
such that the time derivative of an expectation value

B(t)=(Q)|B|Q()) (10)

of a time-independent operator B calculated with the trial state |Q(t)) is
given by

. 0
B0 =7(QWIZIQW) = Ld 58
OH ,_, 9B _
=X 5y, 4 g = OB )

Equation (11) has the symplectic manifold structure of hamiltonian dynamics
[15], but in the general case the parameters g, cannot be grouped into pairs
of canonical variables. However, according to Darboux’s theorem canonical
variables exist locally. They are non-linear functions of the parameters ¢, and
have to be constructed such that A7} assumes the canonical form

) (0 —E)
A = , (12)
E 0

where F is the unit matrix. Their choice, however, is not unique.

2.2 (Conservation laws

After having solved the equations of motion (7) for the parameters Q(t) =
{q.(t) | v = 1,---,NA} the trial state | Q(t)) is known at all times. Thus one
can calculate the expectation value B(t) = (Q(t)| B|Q(t)) of an arbitrary
time-independent operator B. With the definition (9) for the Poisson brackets
the time derivative of this expectation value can be written as

d
=B = {M,B) . (13)



The expectation value is conserved in time if (18]

OH oB
H,BY= — A, —=0 14
{H,B} gaqu " Ba, (14)

Since A, is skew symmetric the energy H itself is always conserved by the
equations of motion, provided they are derived from the variational principle
(1). This is completely independent on the choice of the trial state .

In the following we show with quite general considerations what other con-
stants of motion are and how the trial state has to be chosen in order to ensure
the desired conservation laws .

For that we consider a unitary transformation with the hermitean generator

G

~

Q:exp(ieg) , € real. (15)

The following theorem is proven below.

Theorem: If U maps the set of trial states onto itself

uie)=1Q) € {l@)}, (16)

then, as a result of the equations of motion,

d
) -d—tg={H,Q}
= 2(QWIg1em)=(QW i [£.g] 10W) (17)

That means that for this class of generators the generalized Poisson bracket
is just the expectation value of the commutator with ¢ H.

Proof: Since U does not map out of the manifold of trial states a special
variation of the trial state can be defined by a small time-dependent (%)

1Q(t) +8Q(1)) =exp (ie(1)G) 1Q(1)) (18)
=(1+:()G) Q1)) + O(¢*) -

Inserting this into the variational principle yields



0=h/dt{(62(t) +6Q(t)|i% ~H|Q(t)+8Q(t)) — (Q@t) 1% ~ g|Q(t))}
= [a {1 [G.H] 10®) - (@) 140G 1 Q1))

= [ {tewiife. 2] QW) + FHewIgla)

t2

- [d@w1dnglem) . (19)

t;

The last intregral vanishes because €(t,) = €(¢2) = 0. But otherwise the varia-
tion €(t) is arbitrary so that the integral can be zero only if eq. (17) is fulfilled,
q.e.d.

Relation (17) is very useful for two reasons. First, if G commutes with the ha-

miltonian H and exp(icG) | Q) = | Q') then (Q(¢) |G| Q(t)) is automatically
a constant of motion.

Second, this relation is an important guidance for the choice of the trial state
| Q). If one wants the model to obey certain conservation laws then the set of
trial states should be invariant under the unitary transformations generated
by the constants of motion. For example total momentum conservation implies
that a translated trial state is again a valid trial state. This is fulfilled for the
trial states which will be specified in the following section 2.3. The gaussians
defined in eq. (23) can be translated or Galilei boosted, the latter taking care
of the conservation of the centre of gravity.

Conservation of total spin J = L + S is guaranteed when rotation of the
trial state in coordinate and spin space results again in a trial state. This
implies that the gaussian (23) has to have either a spherical shape or the width
parameter has to be replaced by a complete tensor with 12 real parameters.
It also means that all spin directions in |4, x ) have to be allowed.

Relation (17) establishes also a connection to Ehrenfest’s theorem and sheds
some light on the quality of the variational principle (1). It says that under
the premises that exp(icG) does not map out of the set of trial states the

expectation value of G develops for short times (¢ — to) like the exact solution.
From eq. (17) follows that

d
Et_(g(t) - gexact(t)) = 0 ’ (20)



where the exact solution with the initial state |Q(to)) is

Geran(t) = (Q(to) |t "W G it~ W) 5y (21)

The kinetic energy 7' is such a generator. Since our trial state (30) is the exact
solution of the Schrodinger equation without interactions it fulfills

exp(—irT) Q1)) = |Q(t + 7)) - (22)

With the two-body interaction included, | @Q(¢)) is not an exact solution any-
more, but the expectation value of the total kinetic energy, which then is not
a conserved quantity any longer, is well approximated in the sense of eq. (20).

2.8 Trial state

Classical molecular dynamics describes the physical system by Newton’s equa-
tions of motion for a set of centre-of-mass coordinates of molecules which
interact with each other via two-body interactions. These interactions are
usually repulsive at short and attractive at longer distances.

Instead of classical points in phase space FMD deals with wave packets which
are localized in phase space. For each nucleon (molecule) there is a gaussian
wave packet parametrized by the set q(t) = {r(¢), p(¢), a(t), x(t), #(t),{}

(latn=ex{ - EH 4 ipe 4 ino ] o 1x0. 0@ 16) (23

which in quantum mechanics is the closest analogue to a classical particle
described by a single point in phase-space. 7(t) is a complex parameter which
contains the phase and the norm.

In FMD the match to classical positions and momenta are the parameters
r(t) and p(t) which determine the mean values of the position and momentum
operator of the single particle state

(a1 1) (a0 k)
rO="TLol YT o)

(24)

Due to the quantum mechanical uncertainty relation the wave packet can be
either narrow in coordinate space and wide in momentum space or vice versa.
This non-classical degree of freedom is taken care of by the complex width

10



parameter a(t) = ag(t) + ia/(t). It determines via its real part ag(t) the
variance of the momentum distribution by the relation
3 (a@®)I(k —p(t)*|q(t))
2ar(t) (q(t) |q(t))

= 30%(t) . (25)

Since the wave packet is spherical the widths are equal in all three cartesian
directions. The imaginary part a;(t) appears in the expression for the spatial
width as

3ah(t) +aj(t) _ (4)](2 —r(t)le(t)) 2
2 w®) (a®la@) = oox® (26)

and determines in how far the wave packet is of minimal uncertainty. The
product of the variances

2 2 1 aj

shows that for a; = 0 one has the minimum-uncertainty packet where oxox =
%, while for a; # 0 the uncertainty can become arbitrarily large. This means
that the particle occupies more than (%/27)3 of phase space volume but at a
lower phase space density, such that other fermions can find place at the same
area in phase space.

Besides the parameters for the spatial part of the wave packet there are two
parameters x(t) and ¢(t) for the spin degree of freedom. If one parametrizes
the trial spin state by

(ma | x(®), 8(8)) = 4 2 ™= (28)
mg , = s
X sin —i—l"; et . m, = -1

the relation between the parameters and the corresponding spin operators is

(¢()| g lq(t))
(g(t)[q(®))

o(t) = (29)

where o(t) = (sin x(t) cos ¢(t), sin x(t) sin ¢(t), cos x(t)) is a vector in the 3-
dimensional real space and the quantization axis is the 3-axis. Thus o(t) can
be regarded as the “classical” spin direction just like r(t) or p(t), although
there is no classical spin degree of freedom which can vary only its direction
but not its magnitude as it is the case for o(t).

11



In principle the same parametrization can be chosen for the isospin part |¢).
A time-dependent isospin would mean that for example due to the exchange
of charged pions neutrons can dynamically transform into protons and vice
versa. In this paper we shall not consider rotations in isospin space but |¢)
is assumed to be independent of time and either |£) = |proton) or |¢) =
| neutron ).

To describe a system with A fermions we construct with these parametrized
single-particle states | gx(t)) a Slater determinant

(), (), 9a(8)) = Q) = ———— 1000)) (30)

(Q() Q)2

where the antisymmetrized but not normalized state |Q’(\t)) is given by

1Q(2)) = % %SEH(P) lap)(t)) ® 1gp@)(t)) ® -+ ® [gpay(t)) (31)

The sum runs over all permutations P and sgn(P) is the sign of the per-
mutation. It should be noted that g(t) = {ri(t), p(t), ar(t), x&(t), x(t), &k}
denotes the set of parameters specifying the single-particle state with number
k. The parameter set for the many-body state thus reads

Q) ={r1(t), p1(2), a1(t), x1(t), $1(2), &5 72(t), - - -3 73(t), - - -, €a}
={q,,(t)|U=1,---,NA}, (32)

where N is the number of real parameters per particle, in our case N=10.
Whenever ¢ carries a greek index it is a parameter, whereas a latin index
implies that g is the whole set for the state | gy ).

Due to antisymmetrization FMD is constrained to the antisymmetric subspace
of the Hilbert space and hence the Pauli principle is a priori incorporated.
Furthermore, the projection (31) from a product state onto the antisymmetric
subspace destroys for overlapping gaussians the localization of the particles
and introduces shell model states. This will be discussed and explicitly shown
in section 3.2. If the single-particle states |g;) are not overlapping, the an-
tisymmetrization has no effect anymore and the particles are localized in the
individual wave packets. In this limit we return to classical newtonian mecha-
nics for 74(t) and p,(t), which however can still be coupled to the non-classical
variables a(t) for the spin directions and the widths a;(t). Of course also in
this limit the particles are indistinguishable and it is not possible to decide
which particle occupies which gaussian packet.

12



2.4 Ezpectation values of one- and two-body operators

In the FMD model we encounter one- and two-body operators for which ex-
pectation values have to be calculated with the FMD trial states. Since the
single-particle states are not orthogonal the expressions involve overlap ma-
trices [23].

The norm of the many-body trial state is given by

(QWIQD) ={(a:(t)| ®- ® (g4} |00))
= det ({(au®)]a(®))) (3)

with the single particle overlaps (gi(t) | qi(t)) given in Appendix A.1.

The matrix Oy which will appear often in the following expressions is defined
as the inverse of the overlap matrix ( gi(t)|q(t))

(0 ® = (a@®la®); ki=1,- 4. (34)

In the following the time dependence will not always be indicated explicitly.

If the many-body trial state is a single Slater determinant all expectation
values can be calculated with the one-body density matrix

o= i | ) O (aul - (35)

k=1

It is easy to verify that ﬁ(l) is a projection operator

(ﬁ(l))f = £(1) and (,ﬂ(l))2 - ﬁ(l) , (36)

which implies that the occupation numbers are either 0 or 1. The non-orthogo-
nal gaussians |g,, ) are eigenstates of 4 M with eigenvalues 1. An orthonormal
set of eigenfunctions will be given in section 3.2 where the relation to the shell
model is discussed.

The expectation value of a one-body operator T is conveniently calculated
with g (1) as

A
(QITIQ) =t (W) = Y (aulLtla) On . (37)

k=1

13



Small letters underlined by a tilde, like t for the kinetic energy, denote ope-

rators in one-body space while capital letters, here T, represent the operators
in the A-body space.

For a single Slater determinant the two-body density £ ) can be expressed

solely in terms of ﬁ(l) as

A
Z IQk,QI )a Okmoln a(qm7Qn ' y (38)

kJlmn=1

|

p? —

where two-body states and antisymmetrized two-body states are denoted by

m)® |g.) and (39)

Iqm"In> = |
lgm) ® [¢n) = [gn) ® lgm) , (40)

'qm, qn )a =

respectively. Thus the expectation value of a two-body operator V is given by

(QIY1Q)=tr (6)
1 A
= 5 Z (qm’qn I }L I Gk, qI )a Okmoln . (41)

klmn=1

In the case of two-body operators small letters underlined by a tilde, like v,
denote operators in the two-body space, while capital letters represent the
same operators in A-body space.

2.5 FEquations of motion for FMD

In this section the more general discussion on the time-dependent variational
principle and the resulting equations of motion will be exemplified with the
trial state of FMD defined in section 2.3.

Since the hamiltonian H used in FMD contains the kinetic energy I and the
two-body interaction V the Lagrange function is split into three parts

£(Q,Q) = £o(Q.Q) - T(Q) - V(Q) (42)
where £o(Q, Q) is defined in eq. (4) and the hamilton function is according to

H =T +V decomposed into

14



H(Q) = (QW) H Q) =T(Q) +V(Q) (43)

with

T(Q):=(QM)IL|Q(t)) and (44)
V(@Q):=(Q®IXIe®) (45)

The time derivatives of the parameters ¢, appear only in Lo. Furthermore, Lo
is linear in ¢, so that the Euler-Lagrange equations (2) can be written as

d (0L, 0L T 3V
dt (a‘h) B 0q, - Z‘;Auv &= _a(ht B 0q, ’ (46)

where the skew symmetric matrix A,,, which takes care of the geometrical
properties of the manifold of trial states, is given by

azﬁo 62£0 a a
= — — — =21 —_— t ¢ 47
94,09, 04,09, m dq, Q)| dq, Q(t)) (47)

Ay

d d A 0 d

r,s=1

The greek subscripts g = {m,:} and v = {n,j} represent two indices; n and
m are the numbers of the wave packets, while 7 and j label the parameters for
each packet. The detailed derivation of A,, is given in appendix A.2.

Using the permutation symmetries and the hermiticity of T and V (as shown
in appendix A.1 and A.2) the generalized forces can be written as

Fo_ Oy 21 2y 18
» = " og, 90, 9, (48)
with
9 ap™
— T =tr | —= t 49
5a, 9g, ~ (49)
A d A d
=2Re) (——quLMk)—Z(——qmlqr)ors(qsl,ilqk) Okm -
k=1 aql‘ re=1 aq“

The contribution of the two-body interaction to the generalized force is given

15



A
0
=2Re E [(%“Qm,%u’,i%,m)a (50)
M

kln=1

A 7]
- E (%—qm|qr>0rs(qs7qﬂ|£|qk7ql>a Okmoln'
u

r,s=1

The derivative of a two-particle product state is defined by

7] d
A q9m s qn| = “qm ®(qn| , 51
Catmtal 5= (gtan ) @ (o (51)

where the derivative 8/9q, acts only on the state (¢, | . The derivatives of the
matrix elements are given in appendix A.3.

It should be noted that, due to the fact that the kinetic energy I is a generator
for a unitary transformation which does not map out of the manifold of the

. 13T : .
trial states, 3>, A, 5, Ssumes a very simple form:

AN o7 Pm/mny for v,
- Z A;.} = 1/mN for d[m 3 (52)
v=1 aq”

0 for all other velocities

my being the mass of the nucleons.
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3 Numerical results
3.1 Two-body interactions and ground states

Up to now the interaction ¥ contained in the hamiltonian was not speci-
fied. Since in this paper we shall only investigate nuclei with a few nucleons,
we adopt two-body potentials which have been successfully used for the de-
scription of small nuclei [19,20]. These interactions are repulsive at small and
attractive at larger distances. The repulsive core is, however, rather weak and
one should regard the potentials as a phenomenological ansatz for a G-matrix
rather than the free nucleon-nucleon interaction which has a very strong re-
pulsion for distances smaller than 0.5 fm. In this paper we are using potentials
of the form

V(i,5) = (s + (1 = wa) PY(,5)) ¥, (0.4)
+(w+ (1 —w) BYG,0)) ¥, 6,3) (53)

where P M(i, ) denotes the Majorana exchange of the spatial coordinates. The
radial dependences are of gaussian type given by

(2 1Y (L,2)|2e2) =

V,‘,, 53(2; - tk) 63($j - :'c() exp{—(—-afi—r:z—ai)z} 5 (54)

Ta

which allows to calculate all matrix elements and their derivatives analytically.
Altogether we used four interactions, denoted by Bl and C1 which are taken
from Brink and Boeker [20], and V1 and V2 taken from Volkov [19]. The
parameters are summarized in table 1.

Since this paper deals only with small nuclei the Coulomb interaction is not
included in the dynamics.

In FMD the ground state of a nucleus is the many-body state | Qgs ) in which
the total energy H = (Qecs | ],i | Qgs ) is an absolute minimum with respect
to variation of all parameters g,

0
dq,

H=0. (55)

This implies that the FMD ground state is completely time-independent (up
to an overall phase) and the time derivatives of all parameters vanish because,
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w, Va/MeV  r,/fm | w, V,/MeV r /fm
B1 || 0.5136 -140.6 1.4 1.529  389.5 0.7
Cl1 /0618 -117.4 14 | 2635 271.0 0.7
V1 0.4 -83.34 1.6 0.4 144.86 0.82
V2 04 -60.65 1.8 04 61.15 1.01

Table 1
Parameters of the two-body interaction taken from ref. [20] and [19]

by definition, all generalized forces 8H/dq, are zero and hence

Z Au,‘ a : (56)

Requirement (55) not only determines the positions r, and momenta p, but
also the complex widths ax and the spin directions (xx, éx).

Besides the ground state energy we calculate also the root-mean-square ra-
dius of the charge distribution. Before comparing with experimental data we
subtract from both the contribution of the centre-of-mass motion and add the
Coulomb energy

EGS:(QGSIQlQGS)—<QGS|2
A
Rime=% 3 (Qas|(X() = X, ()1 Qas) + R+ (58)

=1

1 2
1 NI,SCMlQGs)ﬂLEC (57)

where the total centre-of-mass momentum operator K oM is the sum of single
particle momenta

K =

K., =3 K() (59)

A
=1

i
and the centre-of-mass position operator is

_13 (60)

2> |

i=1

The operator Pp(z) projects on protons and R? = 0.876 fm takes the finite

proton
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‘He 6Li Li
Egs/MeV | R,,.,/fm Egs/MeV | R,,,/fm | Egs/MeV R, /fm
B1 -25.73 1.87 -14.61 2.52 -10.39 2.58
C1 -25.25 1.81 -11.88 2.50 -7.30 2.57
V1 -25.12 1.87 -15.65 2.45 -11.71 2.49
V2 -25.87 1.88 -17.30 2.47 -13.74 2.52
Exp. -28.30 1.67 -31.99 2.50 -39.24 2.39
8Be 120 160
Egs/MeV | Ry, /fm || Egs/MeV | R,,., /fm || Egs/MeV | R,,,,/fm
B1 -40.25 2.72 -57.43 2.84 -88.40 2.77
C1 -38.70 2.64 -54.91 2.78 -81.25 2.73
Vi -40.88 2.55 -65.28 2.47 -122.77 2.38
V2 -43.79 2.55 -71.86 2.46 -134.74 2.34
Exp. -56.50 -92.16 2.46 -127.62 2.73
Table 2

Groundstate energies and charge radii in FMD for various nuclei and different in-
teractions [23]. The experimental mass defects are taken from ref. [21] and the charge
radii from ref. [22]. All experimental errors are at most in the last digit.

charge radius of the proton into account. The Coulomb energy Ec is estimated
from the charge radius by

_ |3 Z(Z - 1)e?
fe = \/; Roms (61

which is appropriate for gaussian distributions.

We also determined the ground states by minimizing the expectation value of
the hamiltionian minus the centre-of-mass energy as defined in eq. (57). This
is preferable for the comparision with experimental ground state data. But the
so found states cannot be used in a dynamical evolution with the hamiltonian
H as they would not be stationary. Anyhow, the differences are not essential
and decrease with mass number A.

For the “He case our results should coincide with the original work of Volkov

(19] and Brink and Boeker [20] because our trial state is the same as the
ground state of an harmonic oscillator which they used. While the energies
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could be reproduced within three digits, the width parameter we obtained is
the same as in the Brink and Boeker publication but differs from the numbers
given by Volkov.

Since in the dynamical calculation we do not correct for the centre-of-mass
motion we also use the ground states of the hamiltonian without correction.

In table 2 we summarize the ground state binding energies and charge radii.
A surprising result was that for 8Be and !12C the FMD trial state gives more
binding then the Hartree-Fock state used by Brink and Boeker which was
a superposition of harmonic oscillator shells. This means that the localized
gaussians are closer to the exact Hartree-Fock ground state then the restricted
harmonic oscillator basis used by Brink and Boeker.

In fig. 1 and 2 we display for the V2 interaction, which compares most fa-
vourably with the measured masses, the density of different ground states in
coordinate and momentum space, respectively. They are defined as

po(x) = (x| gV |z) and pe(k) = (k|oD k), (62)

where ﬁ(l) is the one-body density matrix given in eq. (35). The crosses in-

5t ‘He + - TLi -
£ ©
€ 0F T T @ .
2 ©,

-5 - 4 4 s

y (fm)
o)
8

©

1 1l i 1 1 [l 1 i

x (fm) x (fm) x (fm)

Fig. 1. Contour plot of spatial densities integrated over z-direction for different
ground states. Crosses indicate centroids of wave packets. Contour lines are at 0.9,
0.5, 0.1 and 0.001 of maximum density.
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Fig. 2. Contour plot of momentum distributions integrated over z-direction for dif-
ferent ground states. Crosses indicate centroids of wave packets. Contour lines are
at 0.9, 0.5, 0.1 and 0.001 of maximum density.

dicate the centres r; and p, of the wave packets and the densities shown
are integrated over the z-direction. In *He all four wave-packets sit on top of
each other because the different spins and isospins of the four nucleons allow
a coordinate-space part of the four particle state which is symmetric under
permutations.

Adding a proton and a neutron leads to °Li in which now two proton and
two neutron wave-packets are moved a little out of the centre so that two
nucleons with equal spin do not occupy the same s-state anymore, rather a p-
state can be formed out of two neighbouring gaussians (see section 3.2). This
p-state, which is oriented along the z-axis, contains higher momenta as can
be seen in the corresponding momentum distribution which is elongated in
k, direction. Without antisymmetrization the momentum distribution would
be spherical since all mean momenta p, are at zero. The next neutron in "Li
arranges itself at zero in coordinate space, but at a non-zero mean momentum
(see fig. 2) shifting the mean positions of the other neutrons a little. The ®Be
nucleus turns out to be a loosely bound pair of a-particles (the barrier in the
FMD calculation is less than 6 MeV). In nature 8Be decays with a life time of
7-10~""s into two a-particles.

In 12C three a-particles are arranged in a triangle. The dominance of the a-
cluster structure is typical for the V2 interaction because it contains only a
Marojana exchange which makes an a-particle well bound and conserves the

a-symimetry.



Different from *2C the ground state of '®0 consists of 16 packets which are all
centred at ; = 0 and p, = 0. There is still a tiny displacement in cordinate
space which is a numerical effect because otherwise the antisymmetrization
would project onto zero. The reason is that '®0 is a doubly magic nucleus
which is spherical. Taking into account, that a Slater determinant, up to a
phase, is invariant under unitary transformations of the occupied states, it is
easy to realize that linear combinations of 16 gaussians sitting very close result
in a perfect shell model state, in which the s- and p-states are completely filled.
In the following section 3.2 we show with help of two examples how the shell
structure enters the FMD trial state.

In FMD the Fermi motion is a quantum mechanical zero-point motion which
resides to a large extent in the widths of the wave packets. But also the
antisymmetrization is essential as for example in 6Li or ®Be it builds deformed
distributions out of spherical packets. Fermi motion is not a random motion of
the packet centroids. In the ground state v, and p, and all other parameters
are time-independent otherwise it would be not the ground state of the system.

Models like QMD simulate the Fermi distribution by random motion of the
centroids [6] which represents actually an excited model state. Therefore, in
such models a special choice for initializing this motion must be found in order
to prepare a system which does not cool already by evaporating particles before
the collision takes place. For the same reason the study of outcoming fragments
is strongly handicapped in models which do not consider the Pauli principle
in the motion of the particles. Usually the Pauli principle is only dealt with
in the collision term. In how far a so called ”Pauli potential” can simulate the
fermionic dynamics will be discussed in section 3.3.

3.2 Shell structure in FMD

It is not immediately obvious that FMD includes shell-model features like the
nodal structure of single-particle orbits since the states are localized in coordi-
nate and momentum space. One should however keep in mind that any unitary
transformation among the occupied single-particle states leaves the antisym-
metrized many-body state invariant. Therefore, after antisymmetrization, any
set of single-particle states which is complete in the occupied phase space is
as good as any other. This applies also to non-orthogonal states. To illustrate
this we take four one-dimensional real gaussians with the same real width pa-
rameter a and zero mean momentum and displace them by d = 0.75/a (see

Lh.s. of fig. 3).

The one-body density, given in eq. (35), can be written in terms of orthonormal
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states |9, ) as

A A
£V =3 1) Ou (el = 2 19nNtml (63)

k=1

where the orthonormal eigenstates of £ () are given by
A i
|%m) =2 1) (O2)km - (64)
k=1

They are displayed on the right hand side of fig. 3 and compared to harmo-
nic oscillator eigenstates (dashed lines). One sees that the orthogonal basis
consists of an s-, p- ,d- and an {-state, all very close to harmonic oscillator sta-
tes. The difference between both sets can be made arbitrarily small by letting
d/\/a approach zero. This equivalence of gaussians, which have almost identi-
cal mean values, and the harmonic oscillator shell-model states is realized in
the ground state of 0 shown in section 3.1.

A second example is illustrated in fig. 4, where we consider 100 equally spaced
gaussians in one dimension [24]. Again all mean momenta are zero and the
width a is real. In the upper part of fig. 4 the width y/a is 0.2 of the mean
distance d so that the wave packets are well separated. Therefore the spatial
density p, and the momentum density pi are not changed by antisymmetri-
zation. In the lower part the width has been increased to y/a = d. Without
antisymmetrization (dash dotted line) the spatial density is uniform and the
momentum distribution is that of a single packet. After antisymmetrization
(full lines) one obtains the typical shell model oscillations in coordinate space
and a Fermi distribution in momentum space. It is amazing to see how in

Fig. 3. Antisymmetrization of the four gaussians on the left hand side leads to
harmonic oscillator states. Dashed lines are the exact eigenstates of the oscillator.
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Fig. 4. Upper part: section of spatial density of hundred gaussians (not overlapping
in coordinate space) and corresponding momentum distribution (same for all). An-
tisymmetrization does not change distributions. Lower part: same as above but for
overlapping gaussians. Full line with antisymmetrization, dash-dotted line without.
For details see text.

eq. (63) the superposition of gaussians by means of the inverse overlap ma-
trices can create a fully occupied momentum state, see for example in fig. 4
the lower right momentum distribution at & = 0.8kg, where the individual
gaussians give practically zero probability to measure this momentum. We
also calculated the eigenstates of the kinetic energy in the occupied space and
got perfect sinusoidal waves.

These two examples illustrate nicely that even localized single-particle states
with zero mean momentum build up FMD many-body trial states which de-
scribe the harmonic oscillator shell-model or even the Fermi motion of a gas
of fermions in which plane waves are occupied up to the Fermi momentum.

If one wants to simulate this effect by a "Pauli potential”, disregarding the mo--
mentum distribution in each wave packet, the resulting ground state momen-
tum-distribution is unsatisfactory [12].
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9.3 The effect of the Pauli principle on the trajectories

In this section we investigate the influence of the antisymmetrization on the
trajectories [23,24]. In FMD it is not possible to simply switch on or off the
Pauli principle because it is a genuine property of the trial state. The alterna-
tive to the antisymmetric state is a product state of distinguishable particles,
as has been used for example by Konopka et al. [26]. There is, however, no
direct comparison possible between FMD and a model which is based on a
many-body product state composed of the same single-particles wave packets.
The reason is that already the initial conditions, namely the ground states,
cannot be chosen to be the same. The FMD ground state would not be sta-
tionary in the product ansatz model and vice versa the ground state of the
product ansatz would be an excited state in FMD.

However, for nuclei which consist at most of two protons and two neutrons
one may freeze the spins and iospins in opposite directions and then the an-
tisymmetric state gives the same results as the product state. Therefore, we
study the time evolution of two colliding Helium nuclei and compare the FMD
results with those of the product state. As long as the Helium nuclei are sepa-
rated, the time evolution with and without Pauli principle is the same. When
two wave packets which belong to different 4He, but have the same spin and
isospin, begin to overlap the effect of the antisymmmetrization on the dyna-
mics sets in. In fig. 5 the time-dependence of various quantities is displayed
for a ‘He + *He central collision at 0.2 AMeV which leads to a long lived
vibrating ®Be. In the first row the decomposition of the total energy H = (H)

into kinetic energy (T) and potential (V) is shown as a function of time. The
second row contains the longitudinal quadrupole moment, the square root of
which can be regarded as a measure of the distance between the nuclei. The
following three rows depict the parameters rz(t), p=(t), ar(t) and ay(t) of wave
packet 1 (left hand nucleus) and 5 (right hand nucleus), which have the same
spin and isospin. In contrast to the quadrupole moment the parameters are in
general not measurable. The last row shows the overlap between |g¢,(t)) and
| gs()). Due to the symmetries in this collision and in the interaction all the

other parameters are either the same or have opposite sign.

The first column is the result of the FMD model. When the nuclei get close
they first accelerate due to the attraction but then the wave packets are repel-
led whenever the overlap grows (peaks in last row). Alltogether the parameters
of the system execute complicated nonlinear coupled oscillations. The second
column has been obtained by calculating the same collision but with a product
state as the trial state. The first prominent difference is that in this case the
wave packets pass through each other from one side to other. The measurable
quadrupol moment drops to zero which is not the case in FMD. Second, the
oscillations are much faster and more violent, see the width parameters. The
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is the same in both cases, leads to little excitation in the FMD case but to
a highly excited product state, see (V) in the first row. It is also interesting
to note that the overlaps remain rather small. Whenever the packets overlap

Symmetrization cannot be used as ap argument in favour of neglecting the
fermionic nature of the nucleons.
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Fig. 5. Effect of Pauli principle on trajectories illustrated by various observables
and parameters for a central *He + *He collision. From left to right: FMD; product
many-body state (distinguishable particles); product many-body state but exchange
terms in two-body interaction kept; forces —0H/dq, calculated in antisymmetric
fashion but classical A-matrix. For details see text.
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In the third column we put back one aspect of the Pauli principle, namely the
exchange term in the two-body matrix elements. The product trial state is still
kept but (V) is replaced by ¢ 1( q, a1 | ¥ | g @1 — q1s 95 )/ Gy 1| @k @0 — @15 01 )-
This is a situation somewhat similar to the treatment of the mean field part
in QMD where one uses the gaussian density packets of a product state toge-
ther with a phenomenological interaction, which originates from the Skyrme-
Hartree-Fock hamiltonian. In this picture the energy is regarded as a functional
of the density and exchange effects are contained in the functional so that the
expectation value of the energy is formally calculated in the Hartree approxi-
mation (product state). Again one sees much stronger oscillations and more
excitation in the fused system.

In the fourth column we investigate the influence of the Pauli principle via the
skew-symmetric A matrix. For that we calculate X and the forces —9H/0q,
in the fully antisymmentric fashion, but (i%) and the resulting A-matrix is
calculated with the product state. In that case the A-matrix assumes the
classical canonical form (12) for the following pairs of canonical variables:
(py , T&) for positions, (ax := —3/(4agrk), anx) for widths, and (¢x, sk =
1 cos xx) for spins. The equations of motion for p,(t) and r«(t) and also for
the other canonical variables have now the classical form

d oH d OH

i Pe(t) = ~or. and —ri(t) = ap,

d JH d oH

E't-alk(t) = —-a?k and a;ak(t) = aalk y (65)
d oH d IH

Et_Sk(t) = —Eﬁ and Egbk(t) = és_k y

but we are dealing with the wrong canonical variables.

From the numerical results in column 4 we see that the excitation of the system
is similar to FMD, but the time evolution is completely different. In FMD large
overlaps cause strong deviations of the fermionic A from the classical one and
the result is a repulsion of the wave packets. This is not seen with the classical
A where the overlap becomes large and stays large.

From this results it seems doubtful to incorporate the effects of the Pauli
principle by means of adding a Pauli-potential, H — H + Vpaui, while keeping
classical Hamilton’s equation of motion for p, and r; and regarding them as
the canonical variables [2,11,12].

To summarize, the Pauli principle enters the equation of motion for the para-

meters at two places. First, the energy (Hamilton function H(Q)) is modified
and gets additional momentum dependences. In addition it is not a two-body
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interaction any more, in the sense

H(Q) = H(q1, 92, 94) # 2. T V(q) + Vg, ) (66)
k

k<l

because due to the inverse overlap matrices Oy the hamiltonian H(Q) con-
tains A-body correlations between the parameters, c.f. eqs. (37) and (41).
Second, the nonclassical A matrix contains also A-body correlations in para-
meter space, because A, # 0 for v and y belonging to different wave packets
(particles).

It is important to realize that the Pauli principle influences the trajectories
through A(Q) like virtual forces which appear when one is using curved spaces.
A(Q) thus plays the role of a metric. One may argue that one is allowed to
choose a phenomenological H(Q), since the effective nucleon-nucleon interac-
tion is not known anyhow, but one has no freedom in choosing A(Q) because
this is a purely geometric quantity which depends only on the way the trial
state is parametrized and A(Q) does not depend on the interaction.

For fermions without interactions (H = T') the solution of the FMD equations
are (c.f. eq. (52))

. P . . R S i
rk—mapk_ovaRk—Oaalk—mNaXk—07¢lc—0’ (67)

and the resulting many-body state |Q(¢)) is the exact solution of the many-
body Schrodinger equation.

In the case of free motion there is no influence of the Pauli principle on the pa-
rameters, a product state results in the same solution (67) for the parameters.
The centroids of the packets move on straight lines while they are spreading
according to the imaginary part of the width: ay(t) = t/mn + as(to). Ne-
vertheless, the Pauli principle is present in the antisymmetric many-body state
| Q(t) ). If one asks for the probability of finding two identical fermions at the
same point in phase space the two-body density p(®) belonging to |Q(t)) (eq.
(38)) will give zero probability, even if the wave packets are strongly overlap-
ping. The product state would of course not give this answer.

If one freezes the width parameter as a dynamical variable virtual forces appear
through A(Q) and there is scattering even without any interaction [10]. For
this and other reasons, mentioned later, it is advisable to include the complex
widths a,(t) as dynamical variables in the trial state.
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8.4 SLi + *He collisions at Ejy = 4.7 A MeV

The density contour plots in fig. 6 display the collision of a (deformed) SLi
nucleus with a (spherical) *He at Ep4p = 4.7 AMeV and an impact parameter
b = 1.4 fm. The crosses indicate again the centroids of the wave packets. The
two nuclei touch, merge and the a-particle orbits around the 8Li. During the
reaction the 6Li gets highly excited and at t = 150 fm/c its density has drop-
ped to about half of the ground state density. The expansion is followed by
contraction of four wave packets to form an a-particle and the emission of a
proton and a neutron. The emitted particles occupy packets which have spread
dramatically in coordinate space and correspondingly shrunk in momentum
space. Only the outer most contour line, which is at 0.005 of the initial maxi-
mum density, and the cross reveal their presence (see t = 275 through ¢ = 325
fm/c). Finally after the collision one observes two a-particles with a scatte-
ring angle of about 90 degrees in the lab-frame, one more, the other one less
excited, and two free nucleons with the same mean position, therefore only
one cross is seen.

In fig. 7 the initial state differs from the one shown in fig. 6 by rotating
the 5Li nucleus by 90 degrees. The impact parameter and the energy remain
unchanged. In this reaction the final state consists again of two a-particles
and two promptly emitted nucleons but the reaction products are created in
a completely different way. Two wave packets of the initial a-particle pull
along two wave packets of the ®Li to form the final a-particle seen in the
lower left corner of the last frame at ¢ = 475 fm/c. The remaining two packets
of the initial a go together with the two packets which were originally in
the centre of the 6Li and build the final o on the right hand side. During
this exchange process the right most two nucleons of the 6Li get lost and form
during t = 300—400 fm/c a highly excited deuteron which decays subsequently
into a free proton and neutron. It should be mentioned that the V2 interaction
together with the gaussian packets gives only a very poor description of the
deuteron.

An important result of this application of FMD to colliding nuclei is that
the final channels are characterized by large fluctuations qualitatively in ac-
cordance with experimental findings. In the following section we discuss the
quantal interpretation of the different initial orientations in connection with
many-body correlations and the formation of fragments.
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Fig. 6. Contour plot of spatial density at z = 0 for “He + ®Li at Ep4p = 4.7 AMeV
and impact parameter b = 1.4 fm. Countour lines are at 0.005, 0.02, 0.08, 0.2, 0.5,

0.9 of maximum density at ¢t = 0.
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3.5 Definition of the ensemble and Aluctations therein

Although the hamiltonian is rotationally invariant the ground states are in
general not eigenstates of the total spin operator J ? and J: but are deformed
in coordinate and momentum space. The breaking of the rotational symmetry
is of course due to the restriction of the many-body trial state to a single Slater
determinant. The deformations reflect many-body correlations between the
nucleons in the sense that within the manifold a trial state with a special order
in the relative positions and momenta of the nucleons is lower in energy than
a spherically symmetric configuration. For example in '2C an arrangement
in which groups of four wave packets form three a-clusters in a triangle is
energetically preferred. Or, if one takes the 8Be ground state (see fig. 2) the
correlation between the two protons with spin up is such that if one proton
is in the left hand a-cluster the other one is in the right hand cluster. This
two-body correlation does not exist in a spherical Slater determinant which
contains only correlations due to the Pauli principle. Therefore, one may not
argue that by definition a single Slater determinant does not contain many-
body correlations. In some sense the variational principle tries to make up for
the deficiencies in the trial state by breaking the symmetry.

The FMD ground states introduced in section 3.1 have to be treated like intrin-
sically deformed Hartree Fock states. Ground states with good spin quantum
numbers are obtained with help of rotation matrices by projecting the FMD
ground states [27]. A J™= 07 state is constructed by

] N
|G5;07=0") = = [0 D%(Q) |Qas; ) , (68)
where
| Qasi ) := exp {~iJ } | Qgs) (69)

is the deformed FMD ground state rotated with the three Euler angles Q. If
the ground state is not a J™ = 0+ state the rotation matrix D(2) = 1 has
to be replaced by the appropriate Dy, ().

The initial state of a heavy-ion collision is therefore a coherent superposition
of all orientations of the two nuclei:

1 30y 13 — M.
I‘P(t:O))z NN /dQld 0, IQ(t—O),Ql,Qz), (70)
where
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|Q(t =0);21,922) = A(|Qcs1; ) ® |Qas2; 82 )) (71)

denotes the antisymmetrized product of the two boosted ground states with
orientations €, and 2, placed at a distance from each other and N,, N; are
the respective norms.

The exact time evolution of this state is given by the relation

| ¥(2) exact = ﬁ /d391d392 exp {—iH t}|Q(t = 0); 241, 2) (72)

which can be interpreted as follows. With a certain amplitude (here 1/1/N; N;)
the two nuclei collide while they are in their intrinsic states |Qgs1; ;) and
| Qgs2; S22 ), respectively. Because of the linearity of the time propagator at
any time ¢t throughout the collision the exact many-body state is always the
average over all initial orientations €2, and €2, weighted with the initial time-
independent amplitudes. The same holds of course for the finally measured
state.

In the spirit of a semi-classical approximation the exact solution for a given
pair of orientations £2; and €2, is replaced by the FMD solution

exp {—i t}|Q(t = 0); 21, Q2) — [Q(2); 2, 22) (73)

where | Q(t); £2,,82,) is evolved in time according to the FMD equations of
motion. The semiclassical state |¥(¢))rmp at time ¢ is herewith a coherent
superposition of FMD states at time ¢ which had the initial orientations £,
and .

1

[U(E)Yemace = |W(8) )rmp = —rmme

/ PP, |O); R, Q2) . (T4)

In fig. 8 a few initial orientations are selected and evolved in time with the
FMD equations. While the superposition of the left hand column represents
the initial state with the spherical ground states, the same superposition of the
right hand column is according to eq. (74) the final semiclassical many-body
state. Please note that one nucleus is *He which is already spherical so that
only the Q; of the deformed ®Li can be varied.

Figure 8 also shows that the final individual FMD channels have practically
no overlap anymore, i.e.

(Q(t - 00)1 9119‘2 | Q(t - OO), QII»Q’2> X 6919'1 6Q2Q’2 ‘ (75)
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This implies that for the expectation value of an arbitrary operator B the

coherent summation in eq. (74) turns into an incoherent average over the
weighted initial orientations

((B)(t—o00) ~ (76)
1 2
(é;a) JEUPB(Q( - 00); R, 0| BIQ(t - 00); R, s) .
Thus, |Q(t); 1,822 ) can be regarded as a member of an ensemble.

This is different from classical molecular dynamics or QMD where often ran-
dom initial positions and random initial momenta of the particles constitute
the ensemble. Since FMD has stationary ground states with the parameters
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Fig. 8. Initial ensemble of different orientations of the intrinsic deformed ground

states and final ensemble with large fluctuations. All collisions are *He + °Li at
Epap = 4.7 AMeV and b = 1.4 fm.
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given by the requirement of minimal total energy, the relative positions and
momenta between the wave packets cannot be chosen at random. The en-
semble in FMD consists of all orientations of the two deformed initial ground
states, in accordance with the quantal picture discussed above.

Actually, the ensemble consists also of the different possibilities to choose an
impact parameter. As in all other models for inelastic heavy-ion collisions we
have tacitly supposed that the assumption (76) of incoherence in the final
state applies also to the initial coherent superposition of impact parameters
or angular momenta which one needs to set up an incoming plane wave in
the relative motion of the centers of masses. The averaging over the initial
orientations has to be understood in the same way as the averaging over the
initial positions of the nuclei.

All collisions shown in fig. 8 are for the same impact parameter b = 1.4 fm and
the same beam energy Erap = 4.7 AMeV but differ in the initial orientation
£2; of the °Li. The first row is the initial and final state of fig. 7 where a proton
and a neutron are promptly emitted from the outer edge of the SLi. In the
second row °Li is rotated by 45° which leads again to two excited a-particles
but with the proton and neutron emitted from the neck. The cross indicates
that their centroids are almost at rest but nevertheless they fly in all directions
because the wave packets are spreading. The third row is taken from fig. 6 and
discussed there. For the initial orientation displayed in the last row, where the
orientation is out of the reaction plane, ®Li survives as a highly excited nucleus
without loosing particles before ¢t = 475 fm /c.

This example and many others for heavier systems [24] show that FMD is
capable of producing large fluctuations in the final channels. They originate
from quantal fluctuations in the orientation of the intrinsically deformed initial
ground state.

Each row in fig. 8 shows the expectation value

(£(2)) = (Q1); ™, R | £(2) | Q1); 2, )

of the spatial density. If one superimposes the different rows of the FMD re-
sults one obtains the ensemble averaged one-body density < < P (z)» according

to eq. (76) (B replaced by L(=)). It is obvious that for fragmentation reactions
mean-field theories like VUU or BUU [28-32] which are based on the ensemble
averaged one-body phase-space distribution can make sense only in the initial
stage of the collision up to the time when the system expands and decays
into clusters. The final <<£(m)>> is a highly diluted density smeared over a
large area without any resemblance of the outcoming clusters. In the expan-
sion phase of a fragmentation reaction many-body correlations which are not
contained in an ensemble averaged one-body density govern the dynamics.
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It is evident that the amount of fluctuation will depend on the size of the defor-
mation in the initial state. This effect has already been seen experimentally in
low energy fusion reactions where the orientations of the intrinsic deformation
leads to fluctuations of the fusion barrier (33,34].

3.6 The dynamical complex width parameter

In fig. 9 the coordinate space density of a collision between ’Li and 15N is
displayed for two energies, Er4p = 6.8 AMeV (upper part) and Ep,p =
28.7 AMeV (lower part). For identical initjal impact parameter (b = 0.5 fm)
and orientations of the two nuclei we compare the time evolution using the
complete set of parameters with the one where all complex width parameters
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Fig. 9. Comparison with frozen widths parameters. First and third row with a,(t)
time-dependent; second and fourth row a; = initial ground state values. Reaction
"Li + *N at b = 0.5 fm. Upper frame for E; 45 = 6.8 AMeV: lower frame for
Erap = 28.7 AMeV.
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ax have been kept fixed at their initial ground state values.

At Epsp = 6.8 AMeV the 7Li merges around ¢ = 152 fm/c with the 15N
and shrinks in size due to the attraction with the Nitrogen nucleons. But
around 302 fm/c it becomes obvious that the three weakly bound nucleons
in the p-shell are wiped off. The lowest density contour line, which extends
far out, indicates that the three wave packets, with their centroids (crosses)
already outside the fused !°F nucleus, are spreading fast while moving away.
One should however keep in mind that the V2 interaction gives only a very
poor description of the 7Lj ground state. As can be seen from table 2 the
binding energy is too little and the radius is too big. But even though the
ground state is not realistic the reaction shows that FMD is sensitve to the
structure of the initial state. The loosely bound proton and two neutrons are
behaving different than the s-shell nucleons which form a *He core.

The second row in the upper frame shows the same reaction but all width
parameters a; are removed from the set of dynamical variables. Here the
system fuses without emission of particles. The reason is that a fixed width
implies a zero-point energy in each packet of about g4, = 3/(4myag) =~
10 MeV. Inside the nucleus this energy is part of the kinetic energy in the
Fermi motion. Outside the nucleus the zero-point energy of an emitted particle
is determined by the amount of its localization at the end of the emission
process. If the width is kept fixed the nucleon carries besides its mean energy
always the additional 10 MeV.

Compared to that a wave packet with a dynamical width escapes from a
nucleus by first spreading, i.e. ap; and aj; become very large [24], which
has two effects: first, the large spatial extend leaves little overlap with the
other packets and the negative potential energy tends to zero, second, the
positive zero-point energy also becomes small so that the sum of both need
not change too much during the emission. Classically spoken, a particle leaving
the nucleus has to climb up the surface potential-wall loosing almost all of its
kinetic energy before escaping. FMD gives values of about 2 MeV for the
kinetic energy of evaporated particles in accord with experimental findings.
The emission of a wave packet with fixed width is very unprobable because
1t carries away at least its zero-point energy of 10 MeV leaving the residual
nucleus at lower excitation energy where the level density is much smaller.

These problems do not arise in QMD as the momentum distribution of the
packets is nowhere taken into account. In AMD a subtraction of spurious zero-
point oscillations is performed [9] which also takes care of the localization
energy in the center-of-mass motion of the fragments.

The lower frame in fig. 9 shows the same collision but for Epgp = 28.7 AMeV.
Here the 7Li is completely desintegrated. At t = 150 fm/c one sees that the
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three loosely bound nucleons in "Li are distached from the remaining *He-core
which however is so highly excited that it also finally decays. In the case of
fixed widths the 7L; remains intact after the collision and does not show any
sign of decay up to 200 fm/c. The reason is the same as discussed above.

The two examples show that the complex width parameter is an important
degree of freedom and should be included as a dynamical variable in the trial
state.

4 Outlook

The variety of phenomena seen in the reactions displayed in this paper and
elsewhere [24,25] promoted the idea to develop approximations to be able to
calculate enough events for a quantitative comparison with measured data.
Since most of the computer time is consumed in working out for each time
step A* (A = particle number) two-body matrix elements and there derivati-
ves which are multiplied with two inverse overlap matrices in a 3- and 4-fold
summation (c.f. eq. (50)), we first try to approximate the potential energy.
Without antisymmetrization the effort is propotional only to A2. But one »
should resist the temptation to neglect the antisymmetrization as it is essen-
tial for having the correct Fermi dynamics and shell structure of the initial
nuclei and the produced fragments, as shown in section 3.1 3.2, and 3.3. Ap-
proximations retaining the properties of antisymmetrization are being tested
know and they allow to do calculations up to about A4 = 40,

Besides the more technjca) questions how to speed up the computation there
is the quest for a successful effective interaction which not only gives correct
binding energies and radii for all nuclei from 2H to 238U but also includes the

reaction individual collisions between the particles occur which cannot be trea-
ted in an averaged way by a density dependence. In most models (like BUU,
QMD, AMD) one therefore introduces these collisions explicitly by a random
force which is changing the momenta of the nucleons from time to time in a
discontinuous way according to recipes based on a Boltzmann collision term.
Besides the conceptual problem how to divide the interaction into a mean-field
part and a collision term, the disadvantage of a random force is that it may
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A Appendix

It turns out that the all expressions can be written in a convenient way using
the parametrization

Gk = {bkab;7ak7a2a¢ka Xk } 3 (Al)

where the complex parameters bi and a; and their complex conjugate b} and
ay, are taken as independent variables. bi and a; consist of real and imaginary
parts, denoted by the the subscript R and 7, respectively. The relation with
the other parameters are

br = bpe +:by = (e —anpe)+i(arep;) (A.2)
Gk = apr +iay; . (A.3)

The single-particle states defined in eq. (23) written in terms of the parameters
(A.1) assume the form

_ (= be(t))?

2 ax(t) ) | xk(2), Pi(t)) ® [me(k)) (A.4)

(2l at)) =exp(

which we shall use in the following.

A.1  One-body matriz elements and their derivatives

The derivative of the expectation value of an one-body operator with respect to
one of the parameters can be expressed conveniently in terms of the derivative
of the one-body density (see eq. (35))

A
LY =3 |a) Ou (g (A.5)
k=1
as
op) A A P
= = A 9m Om q| + q O'm o 9m
aq, Elaun) t{q] kgllk) k <(’)qﬂ |
A A o d
- Z l‘]k> Z Okm< a—(]m ,(]n )0711 + Okn(‘]n l ahqm )OmlJ (QI ,
k=1 n=1 Iy qu
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destroy delicate many-body correlations important to describe the formation
of fragments.

We are not following the same route but rather preserve the spirit of the
FMD model: the choice of the parametrized antisymmetric trial state deter-
mines which physical phenomena are included while the equations of motion
for the parameters follow from the variational principle. Therefore, we are in-
corporating now short range repulsive correlations into the FMD trial state
by means of a Jastrow ansatz [35]. In this way one allows for hard collisions
more violent than those seen in this paper. A division into mean-field and
collisions is avoided and the time evolution of each event is still deterministic.
Unfortunately, the lagrangian cannot be calculated analytically anymore and
cunning approximations are needed.

First results indicate that the ground states up to *°Ca can be described well
without overbinding and in heavy-ion reactions rapid variations of the many-
body trial state occur, reflecting the collisions between the wave packets.
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1 L. proton
=2 (= +mk)m()) yme={ 2 ° (A.12)
4 1
—3 ‘ neutron
The derivatives of the spin overlaps (A.11) are given by
(ks 6 1, 1) = =i sin 5° sin 7+ e~ 4% (A.13)

Px
0 . . —i(bp—
o {Xks Bk | X1, 00) = 3 (— SmZ(Q—k COSXQ—I +cos2<é5 smge e "“)) . (A14)

The matrix elements of the Pauli spin matrices and their derivatives are

cos 2‘2‘1 sin %‘ei““ + sin X2‘i cos lee'iesk
(Xks @k | T | Xt 1) = | —i cos X sin Le'® + i sin X cos Xe~*%* (A.15)

cos X; cos X2L — sin XQ“ sin %‘e“'(d”"d")

—1 sin Xk cos X,‘,Le'w*
7]
2 (X6 e | T I xi, 1) = sin Xk cos e~k | (A.16)

O

¢ sin &k sin X2L6_i(¢“_¢’)

— sin X; sin 2‘2-‘6"”‘ + cos 2‘2“ cos Xz‘e_‘d"‘

0 . .
7 (XK Ok | T | X1, 01) = % ¢ sin 3k sin -’-‘216“1" + ¢ cos Xk cos Xzie“'d”‘ (A.17)

Oxk

— sin 2(21& cos 2(21 — cos 2(211 sin %‘e'i(d’*_‘f")

The parameter are all time-dependent and b, and a; are complex. For the
time derivative of the overlap matrix

d . 0 . d
(qr _dtq'> = bi(qx P qr) + @ gx |_8a, @)
. 0 d
il : - A.18
+ ¢1( gk 6¢"H)+Xl(‘1k|axl‘11> ( )

one needs the following partial derivatives
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A
—(1- L") Y. | pgn) Oms (as| + ha. . (A.6)
k=1 qu

Since the greek subscript 4 = {m, i} contains both, the number m of the wave
packet and i which labels the parameter within the packet only the state |gm )
contributes to the the differentiation with respect to g,:

d a
— | gn) =bom | 5 qm) - AT
aqulq ) Iaq“q ) (A.T)

Furthermore we used the relation

A
> Okn (gnlqt) = bu (A.8)

n=1

between the overlap matrix (gx |q:) and its inverse Oy to calculate the deri-
vative of the inverse overlap matrix as

_6_0 - i o _6_(( | )) O
6q“ kil — e kn aq# drn | Gn’ n'l
A a A a
="Zokm(5—_Qm|Qn>Onl—zokn<q'rzl5—qm)0ml' (Ag)
n=1 qu n=1 9

By taking the trace of eq. (A.6) with the desired one-body operator one obtains
the derivative as given in eq. (49).

The overlap matrix for the single particle states {A.4) is given by

* 3/2 * 2
a;ay (b — b))
= - A.10
(gx @) (ZWa; I al) exp{ CET) Skt T ( )

with the spin overlap

Skt ={ Xk, b | X1 D1)

= cos —X2—k cos % + sin % sin -é—l e~H#r—2) (A.11)

and the isospin overlap
T = (ma(k) | ma(0))
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) Xk . XD i (gl la)
—qr| t = —1i sin 2= sin 2"k~ ®) = , A.27
<3¢qu|~lql) 2 2 {Xks @k | X1, 1) ( )
J . Xk Xi
— t =1 (_ factal AL
(anqklN]qz) 5 sin 5 cos 5
: tlqi)
Xk in X! -1(¢k—¢:)) (el Lla
4+ cos =—sin =—e . (A.28
2 2 { Xk &k | X1, 1) ( )

A.2 A-matriz

The A-matrix defined in eq. (47) is expressed in terms of the inverse overlap
matrix and derivatives of the overlaps

0L, 0*Lo 0 0
v— - - T =21 ~ t
g aquaqu aqanu " < aQu Q( ) I dq,

Q) (A.29)

+ilm{<aq|q>ao} ZA:Im{( qlq)—a(’)}
m k km - n kn
k=1 9, dqy k=1 dq. '8 "
J 0
_QIm{Onm(auQm|a—:(In)
O 3 (Lgmla) Oulal ) b (AS0)
Ko 9 94,

In the following we write down explicitly the 25 matrix elements from which,
with help of relation (A.42), one can obtain all the others.

] 0 ( b (br; — bui) (D5, — bij)

<5bTth | 5—1;;%) = a; + a (az + 01)2

) <<1k|(It> (A-31)

for the three directions z,5 = 1,2, 3.

(8 I_a_ )= 1 _:_;__ 3 + bi — bi ’

aazqk 3a1ql 12 \e; et a a; + a

1 (3 3 (b;—zn)2
Sl = + 1=
2\a; ap+aq a; + q
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0 b, - b
<q’°|6_lnq')=a£+al(q"lq’)’ (A.19)
0 . 1(3 3 b; — b\’
(@] o) = 5 (a, -+ (552 e, (A20)
d Xk o XL (e (qe )
—qi) =1 sin 5= sin &= e (%~ %) , A.21
<lea¢l91) 2 2 { Xk S | X1, 1) (A.21)
g 1 Xk o XU, o Xk X i(de—)
(qklaXIq,)—2<—cos 5 smg+sm 5 Cos e )

(gxlqt)
(Xk,¢k|le¢l) ) (A22)

The matrix elements where the derivative is with respect to parameters in bra
can be simply obtained by complex conjugation

(62;41|qk) = ((le%q: )) , (A.23)

where r) is a member of the parameter set {b,b],a;,a}, d;, x:} in which the
parameters and their complex conjugate are taken as independent variables.

The one-body matrix element of the kinetic energy has the following form

2

t — ~J
(g |t lar) (leszlm)
1 (3 2 b — b\’
= 2 _ A.24
2mN(2 a; + a; (a;-i-al) )(quz), ( )

and its derivatives with respect to parameters in bra are

o 1 b:—b 5 b — b\°
(ab.qklilqz)=—— i, '( - ( . l) )(qquz), (A.25)
k

2moaj+a; \ af + a a; + a

d 3 1 1(3 5 b — b\’
(gmtltla)=|5—— 50> — = + | =
aj mag+a; 2\ af a; + a a; + aq
k 3

1 (b—b\"1 7 b, — b\’
- — — ,(A.26
2m (a;—’ra[) Q(a; a;+al+(a2+a, (qqu[) ( )




(=—— li ) _l i 3 + b': - b\’
BXk v da; @ 2 a; + q a; + aq
1 Xk X
3 ( sin 5 Cos 5
+ cos — sin = e A4l
2 2 ( Xk Ok | x1, 81 ) ( )

All other mixed second derivatives are obtained by

d d d 0 i
(37;‘11’67‘%) = (( %‘h'%‘]l)) ) (A.42)

where r) is a member of the parameter set {b;, b}, a;,a], ¢;,x;} in which the
parameters and their complex conjugate are taken as independent variables.

A.3  Two-body matrizelements

Analogue to the derivative of the one- body density given in eq. (A.6) one
calculates the derivative of the two-body density matrix

1 A
£ = i > ek at)e Ow Oy a{ Qs qu | (A.43)
Kok =1
as
ap® | 4

d
-~ m ' my QU h.a.
q 2“; | Gks @1 Yo Ok O <8 Gm,qv| + h.a

1 A lo)
+5 2 laear). Ow =t aq” o qrrqu| . (A.44)
H°

2 kKL =1

Inserting the derivative of the inverse overlap matrix given in (A.9) yields

0q, 2

0
|¢Ika<11) Okm Ou'a(a—qm,qz'l + h.a.
qu

E

0
[ 9k, @1 Ya Opir Ot ¢n | qu YOt o{ Gk qu| — h.a. (A.45)
n=1 H

t\)l'—‘

which explains eq. (50).
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In the following we present the radial integral and its derivatives:

2 Zkimn 3/2
Ritmn = (27)° (l—ki— exp { — €ximn }

Nklmn
Zklmn
Xexp{nkl (ﬂkm +131n)2}

kimn

2

X exp { 3 " (httmn Bl + hiknm BE) } (A.46)

Nklmn

where we have used the abbreviations

by by,
ﬂkrn Ca +—,
a; Ay,
*2 *2 2 2
€xi e bk bl + bm b'n.
™ 2ar 247 2an, 24,
Zkimn i= Q) Q] Ay Ay, (A.47)

hklmn :=a2am(a;+an)a
nklmn2=7‘f(az+am)(a7+an)+2aiam(a;'+an)+2a,"an(a;+am).

As already mentioned one needs only the derivatives with respect to the first
index k, because all others can be obtained by utilizing the symmetry proper-
ties.
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The partial derivatives of the above mentioned abbreviations are:
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