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Abstract 

The electromagnetic fields generated by an electron cloud in the beam pipe of a particle 
accelerator introduce additional forces in the dynamics of the particle beams, which can 
be responsible of beam instabilities, beam losses and transverse emittance blow-up.  
These effects are studied mainly employing numerical simulations, using macroparticle 
sets to model the circulating beam and the e-cloud. The fields are computed using the 
Particle In Cell method (PIC). In most simulation codes, the electrodynamics equations 
are solved in the quasi-electrostatic approximation. 
To understand the validity of this approximation, we investigate analytically the full 
electromagnetic problem for a circular-symmetric case, identifying the structure of the 
electromagnetic fields. Expressions for the error introduced by the quasi-electrostatic 
approximation are derived, showing that this has no effects when calculating the 
transverse forces exerted by the e-cloud on the particle beam. 
The longitudinal component of the field is also investigated and it is related to the power 
transferred from the beam to the e-cloud.  



1 Introduction

To investigate the properties of the interaction of a high energy particle bunch inter-
acting with an electron cloud [1, 2], we consider a cylindrical perfectly conducting
pipe having radius R, filled with electrons initially at rest. We call z the longitudinal
axis of the pipe and we define a system of cylindrical coordinates (r, φ, z).
A circular-symmetric particle bunch is travelling at the speed of light inside the pipe.
The bunch generates a circular-symmetric electron pinch propagating at the speed of
light along z together with the bunch, with the electrons moving only in the transverse
direction:

ρ = ρ
(

r, t− z
c

)
(1)

J = Jr

(
r, t− z

c

)
îr (2)

The two distributions are related by the equation of continuity of charge:

∇ · J = −∂ρ

∂t
(3)

We want to study the properties of the electromagnetic fields generated by such a
source and, in particular, how these fields compare with the solution obtained in the
quasi-electrostatic approximation, which is usually made in macroparticle simulation
codes used for e-cloud studies [2].

2 The field equations

Due to the symmetry in the geometry of the defined problem, the solution will be
independent on φ. As the pipe is perfectly conducting and the source travels at the
speed of light, we expect the generated electromagnetic field to travel at the same
speed:

e = e
(

r, t− z
c

)
(4)

h = h
(

r, t− z
c

)
(5)

The fields are solutions of Maxwell’s equations [3]:

∇× e = −µ0
∂h
∂t

(6)

∇× h = ε0
∂e
∂t

+ J (7)

Using the expression of the curl in cylindrical coordinates we can write:

∇× e =

(
1
r

∂ez

∂φ
−

∂eφ

∂z

)
îr +

(
∂er

∂z
− ∂ez

∂r

)
îφ +

1
r

(
∂

∂r
(
reφ

)
− ∂er

∂φ

)
îz (8)
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As the fields do not depend on φ, all derivatives with respect to φ vanish:

∇× e = −
∂eφ

∂z
îr +

(
∂er

∂z
− ∂ez

∂r

)
îφ +

1
r

∂

∂r
(
reφ

)
îz (9)

Replacing Eq. 9 into Eq. 6 and comparing the individual components we obtain:

∂eφ

∂z
= µ0

∂hr

∂t
(10)

∂er

∂z
− ∂ez

∂r
= −µ0

∂hφ

∂t
(11)

1
r

∂

∂r
(
reφ

)
= −µ0

∂hz

∂t
(12)

Following the same procedure for Eq. 7, we obtain:

∂hφ

∂z
= −ε0

∂er

∂t
− Jr (13)

∂hr

∂z
− ∂hz

∂r
= ε0

∂eφ

∂t
(14)

1
r

∂

∂r
(
rhφ

)
= ε0

∂ez

∂t
(15)

Eqs. 10 - 15 constitute a system of six independent scalar partial differential equations
in the six unknowns

(
er, eφ, ez, hr, hφ, hz

)
.

We define an auxiliary variable τ as:

τ = t− z
c

(16)

For all electric and magnetic field components, remembering that we are assuming
that all our sources and fields depend on t and z in the form given by Eqs. 4 and 5 (i.e.
they travel at the speed of light along z), we can write:

∂

∂t
=

∂

∂τ
(17)

∂

∂z
= −1

c
∂

∂τ
(18)

Note that τ = t at z = 0, therefore the fields e(r, τ) and h(r, τ) are those observed at
the section z=0.
Using Eqs. 17 and 18, Eq. 10 becomes:

∂

∂τ

(
eφ + ζ0hr

)
= 0 (19)

where ζ0 =
√

µ0/ε0.
As the electrons are initially at rest at z = 0, we have

eφ(r, τ = −∞) = 0 (20)
hr(r, τ = −∞) = 0 (21)
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Combining Eq. 19, 20 and 21 we obtain:

eφ = −ζ0hr (22)

Using Eqs. 17, 18 and 22, Eq. 14 becomes:

∂hz

∂r
= 0 (23)

which means that hz must be uniform in r. Several considerations (for example the
fact that sending the radius of the pipe to infinity, the total magnetic energy would
diverge) suggest that in fact have :

hz(r, τ) = 0 (24)

Using Eqs. 17, 18, 22 and 24, one can similarly simplify Eqs.12 and 14 to obtain:

eφ(r, τ) = 0 (25)
hr(r, τ) = 0 (26)

Equations 24, 25 and 26 mean that the electromagnetic field has the following form:

e = er

(
r, t− z

c

)
îr + ez

(
r, t− z

c

)
îz (27)

h = hφ

(
r, t− z

c

)
îφ (28)

i.e. the electromagnetic field has a Transverse Magnetic (TM) structure.
A field in this form automatically satisfies Eqs. 10, 12 and 14. The remaing three
unknowns

(
er, ez, hφ

)
will have to be found by solving Eqs. 11, 13 and 15, which can

be rewritten as:

1
c

∂er

∂τ
+

∂ez

∂r
= µ0

∂hφ

∂τ
(29)

1
c

∂hφ

∂τ
= ε0

∂er

∂τ
+ Jr (30)

1
r

∂

∂r
(
rhφ

)
= ε0

∂ez

∂τ
(31)

3 Equation of the magnetic field

Equation 30 can be rewritten as:

∂er

∂τ
= − Jr

ε0
+ ζ0

∂hφ

∂τ
(32)

Replacing Eq. 32 into Eq. 29 we obtain:

∂ez

∂r
= ζ0 Jr (33)
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This equation relates the longitudinal electric field generated by the electrons and the
speed of the electron themselves (we will use this in Sec. 5 for some energy consider-
ation).
Now, we derive both sides of Eq. 31 with respect to r:

∂

∂r

(
1
r

∂

∂r
(
rhφ

))
= ε0

∂2ez

∂r∂τ
(34)

Using Schwatz’s theorem to swap the derivatives and Eq. 33, we obtain a second
order differential equation relating directly the magnetic field with the assigned
electron current distribution:

∂

∂r

(
1
r

∂

∂r
(
rhφ

))
=

1
c

∂Jr

∂τ
(35)

4 Comparison against quasi-electrostatic solution

Most simulation codes compute the electric field using a quasi-electrostatic 2D method,
which assume that time variations are slow enough to neglect time derivatives [2].
Assuming the pinch is travelling rigidly along z, as done in the previous section, this
means:

∂

∂t
=

∂

∂τ
' 0 (36)

∂

∂z
= −1

c
∂

∂τ
' 0 (37)

It is possible to investigate the impact of this approximation without solving explicitly
Eq. 35.
We call eqes the transverse component of the electric field calculated in this approx-
imation. With the assumption in Eq. 36, the Faraday-Neumann’s equation (Eq. 7)
becomes:

∇× eqes = 0 (38)

which, projected along z, gives:

∂eqes
y

∂x
− ∂eqes

x

∂y
= 0 (39)

This means (Stokes’s theorem) that for any chosen values t0 and z0 the 2D field:

eqes(x, y, z0, t0) = eqes
x (x, y, z0, t0)îx + eqes

y (x, y, z0, t0)îy (40)

can be written as the gradient of a scalar potential φz0,t0 (x, y):

eqes
x (x, y, z0, t0) =

∂φz0,t0

∂x
(41)

eqes
y (x, y, z0, t0) =

∂φz0,t0

∂y
(42)
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In the approximation given by Eq. 37, Gauss’s law becomes:

∂eqes
x

∂x
+

∂eqes
y

∂y
=

ρ (x, y, z, t)
ε0

(43)

We evaluate Eq. 43 in the plane z = z0, at t = t0:

∂

∂x
eqes

x (x, y, z0, t0) +
∂

∂y
eqes

y (x, y, z0, t0) =
ρ (x, y, z0, t0)

ε0
(44)

Replacing Eqs. 41 and 42 into into Eq. 44 we obtain a 2D Poisson equation, which
provides the electric potential in the plane z = z0 at time t = t0:

∂2φz0,t0

∂x2 +
∂2φz0,t0

∂y2 =
ρ (x, y, z0, t0)

ε0
(45)

In simulation codes (e.g. PyECLOUD) this equation is solved at each time-step to
compute the field generated by the e-cloud at a given section of the machine.
For our circular-symmetric case as defined in Sec. 1 we can rewrite Eq. 45 in cylindrical
coordinates:

1
r

d
dr

(
r

d
dr

φz0,t0 (r)
)
=

ρ (r, z0, t0)

ε0
(46)

with:
eqes

r (r, z0, t0) =
dφz0,t0

dr
(47)

By replacing Eq. 47 into Eq. 46 and integrating with respect to r we obtain:

eqes(r, z0, t0) =
1

2πε0

Q(r, z0, t0)

r
îr (48)

where Q(r, z0, t0) is the charge in a circle of radius r :

Q(r, z0, t0) =
∫ r

0
ρ(r′, z0, t0)2πr′dr′ (49)

As ρ does not depend independently on z0 and t0 but only on τ0 = t0 − z0/c, also Q
and eqes depends only on τ0. As z0 and t0 can be arbitrarily chosen, Eqs. 48 and 49 can
be written for any value of τ:

eqes(r, τ) =
1

2πε0

Q(r, τ)

r
îr (50)

Q(r, τ) =
∫ r

0
ρ(r′, τ)2πr′dr′ (51)

Using the charge continuity equation (Eq. 3) integrating over as circle of radius r, we
obtain:

Jr =
∂

∂τ

(
Q(r, τ)

2πr

)
(52)
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Comparing Eq. 52 against Eq. 50 we obtain:

∂eqes
r

∂τ
= − Jr

ε0
(53)

We call δer the error introduced by the quasi-electrostatic approximation with respect
to the solution of the complete set of Maxwell’s equations:

er(r, τ) = eqes
r + δer (54)

Replacing Eq. 54 into Eq. 30 we obtain:

1
c

∂hφ

∂τ
= ε0

∂δer

∂τ
+ ε0

∂eqes
r

∂τ
+ Jr (55)

The sum of the last two terms on the r.h.s. is zero from Eq. 53. Therefore Eq. 55 simply
becomes:

∂

∂τ

(
hφ −

1
ζ0

δer

)
= 0 (56)

Assuming that the electrons were initially at rest (at that point stationary equations
were exact) we can write:

hφ(r, τ = −∞) = 0 (57)
δer(r, τ = −∞) = 0 (58)

Using these initial conditions Eq. 56 becomes:

hφ =
1
ζ0

δer (59)

which shows that the magnetic field is proportional to the error on the transverse
electric field introduced by the quasi-electrostatic approximation.
Now we want to compute the effect on the Lorentz force acting on a beam particle
travelling at the speed of light along the z direction:

F = qpart
(
e + µ0vpart × h

)
= qpart

(
eqes

r îr + δer îr + ez îz + µ0vpart × h
)

(60)

We can easily compute:

µ0vpart × h = µ0
(
cîz
)
×
(
hφ îφ

)
= −ζ0hφ îr (61)

Then Eq. 60 can be rewritten as:

F = qpart
(
eqes

r îr + ez îz + δer îr − ζ0hφ îr
)

(62)

Using Eq. 59 we can see that the last two terms, i.e. the force introduced by the elec-
tric field correction and the force introduced by the magnetic field, exactly cancel
each other, leaving us with:

F = qpart
(
eqes

r îr + ez îz
)

(63)

i.e in the ultrarelativistic assumption, the transverse kick computed with the quasi-
electrostatic approximation is exact.
A longitudinal component of the Lorentz force is also present, which introduces an
acceleration/deceleration on the beam particle.
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5 Energy balance

The instantaneous power per unit path length transferred by the electric field gener-
ated by the electrons to an ultrarelativistic beam travelling along z is given by:

dP
dz

=
∫∫

S
eele

z Jbeam
z dS (64)

where S is the section of the pipe.
Jbeam
z is the beam current density and, as all beam particles travel at the speed of light

along z, it is related to the beam charge density by:

ρbeam (r, τ) =
Jbeam
z (r, τ)

c
(65)

The electric field generated by the beam has only the radial component, which is given
by:

ebeam
r =

1
2πε0

1
r

∫ r

0
ρ
(
r′, τ

)
2πr′dr′ (66)

Using Eq. 65, we can write:∫∫
S

eele
z Jbeam

z dS = c
∫ R

0
eele

z
(
r′, τ

)
ρbeam (r′, τ

)
2πr′dr′ (67)

This integral can be computed by parts taking into account that a primitive of (ρ (r′, τ) 2πr′)
is provided by Eq. 66:

∫∫
S

eele
z Jbeam

z dS = 2πε0c
[
reele

z ebeam
r

]R

0
− ε0c

∫ R

0

∂eele
z (r′, τ)

∂r′
ebeam

r
(
r′, τ

)
2πr′dr′ (68)

Taking in into account that due to the perfectly conducting pipe

eele
z (r = R, τ) = 0 (69)

the first term on the r.h.s of Eq. 68 vanishes. The second term can be rewritten using
Eq. 33 obtaining: ∫∫

S
eele

z Jbeam
z dS = −

∫ R

0
Jele
r ebeam

r 2πr′dr′ (70)

which can be read as:

−
∫∫

S
eele

z Jbeam
z dS =

∫∫
S

ebeam
r Jele

r dS (71)

This proves that the power subtracted from the beam by the electric field generated
by the electrons is equal to the power provided to the electrons by the electric field
generated by the beam.
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6 Conclusions

In a circular-symmetric geometry, the electromagnetic field generated by an e-cloud
pinch following an ultrarelativistic bunch has a Transverse Magnetic (TM) structure.
A second order partial differential equation can be derived, which relates directly the
magnetic field to the electron current distribution.
The magnetic field is found to be proportional to the error introduced by the quasi-
electrostatic approximation on the transverse component of the electric field. When
computing the Lorentz force on an ultrarelativistic particle, these two terms cancel
each other. For this reason the transverse force computed with the quasi-electrostatic
approximation turns out to be exact.
The longitudinal component of the field is also investigated and it is related to the
power transferred from the beam to the e-cloud.
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