
A
TL

-D
A

Q
-P

R
O

C
-2

01
9-

00
3

09
M

ay
20

19

Performance evaluation of distributed file systems for

the phase-II upgrade of the ATLAS experiment at

CERN 1

Adam Abed Abud1, 2, Fabrice Le Goff2 and Giuseppe Avolio2

1 University of Pavia
2 CERN (Geneva, Switzerland)

E-mail: adam.abed.abud@cern.ch

Abstract.
Over the next few years, the LHC will prepare for the upcoming High-Luminosity upgrade in
which it is expected to deliver ten times more pp collisions. This will create a harsher radiation
environment and higher detector occupancy. In this context, the ATLAS experiment, one of
the general purpose experiments at the LHC, plans substantial upgrades to the detectors and to
the trigger system in order to efficiently select events. Similarly, the Data Acquisition System
(DAQ) will have to redesign the data-flow architecture to accommodate for the large increase
in event and data rates. The Phase-II DAQ design involves a large distributed storage system
that buffers data read out from the detector, while a computing farm (Event Filter) analyzes
and selects the most interesting events. This system will have to handle 5.2 TB/s of input data
for an event rate of 1 MHz and provide access to 3 TB/s of these data to the filtering farm.
A possible implementation for such a design is based on distributed file systems (DFS) which
are becoming ubiquitous among the big data industry. Features of DFS such as replication
strategies and smart placement policies match the distributed nature and the requirements of
the new data-flow system. This paper presents an up-to-date performance evaluation of some of
the DFS currently available: GlusterFS, HadoopFS and CephFS. After characterization of the
future data-flow systems workload, we report on small-scale raw performance and scalability
studies. Finally, we conclude on the suitability of such systems to the tight constraints expected
for the ATLAS experiment in phase-II and, in general, what benefits the HEP community can
take from these storage technologies.

KEYWORDS
Distributed file systems · storage technologies · software-defined storage · ATLAS Data
Acquisition · Dataflow

1. Introduction
The Large Hadron Collider (LHC) is a particle accelerator that collides proton bunches at a
design center-of-mass energy of 14 TeV and at a rate of 40 MHz. The ATLAS experiment at
CERN is one of the four major detectors at the LHC. Its goal is to record and analyze the
interactions produced by the pp collisions. The current ATLAS data acquisition(DAQ) system

1 Copyright 2019 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license

receives data at approximately 150 GB/s and saves only a fraction to permanent storage at rate
of 1.5 GB/s. Over the next few years, the LHC will prepare for the upcoming High-Luminosity
upgrade (HL-LHC) in which it is expected to deliver ten times more pp collisions. Therefore,
as a consequence of the harsher environment and the higher detector occupancy the ATLAS
experiment is going to upgrade the detectors and the trigger and data acquisition system in
order to efficiently select events.

2. Phase-II TDAQ Architecture
In order to take advantage of the full potential of the HL-LHC the trigger and data acquisition
systems of the ATLAS experiment will be completely redesigned. The baseline architecture
consists in a single-level hardware trigger operating at 1 MHz within a maximum latency of 10
µs. The Readout system will receive Front-End electronics data at the L0-trigger rate before
sending them to the Dataflow system for an estimated data traffic of 5.2 TB/s. The Dataflow
system is responsible for buffering, transporting and formatting the event data, acting as an
interface between the Readout and the trigger systems. A more refined selection is then applied
by the Event Filter (EF) which takes as input the L0 events stored in the Dataflow system. The
EF will access 10% of the data at 1 MHz and full event access at 400 kHz. This will lead to
a total read bandwidth of 2.6 TB/s. Finally, accepted events are then formatted and sent to
permanent storage at a rate of 10 kHz. Figure 1 shows a schematic representation of the main
functional blocks of the DAQ architecture for Phase-II [1].

2.1. Dataflow system
The Dataflow system is a key element of the DAQ architecture. It is divided into three
components: Event Builder, Storage Handler and Event Aggregator. The Event Builder is
the logical interface between the Readout and the Dataflow system. The Storage Handler is a
large buffering system which will need to sustain an aggregated I/O throughput of 7.8 TB/s
(5.2 TB/s of data input and 2.6 TB/s of data output). A large storage buffer will decouple
the Readout from the Event Filter, allowing a trade-off between processing power and storage
resources. In fact, the interfill time of the LHC can be can be exploited in order to process some
of the recorded events. Moreover, the buffering system can also provide robustness in the Event
Filter farm in case of varying operational parameters due to changes in the trigger configuration.
The last component of the Dataflow system is the Event Aggregator. This system formats and
groups the selected events from the EF before sending them to permanent storage.

Figure 1. Representation of the DAQ architecture for Phase-II [1].

3. Distributed file systems
Distributed file systems (DFS) represent a class of technologies whose features map the data
production and access patterns needed for the Dataflow system. A DFS is a system where files
are shared and distributed between multiple nodes in a hierarchical and unified view [2]. Clients
can then access the data as if it was stored on a local machine. In this paper, three different
DFSs have been tested: Gluster [3], Hadoop [4] and Ceph [5]. The following sections shortly
describe the architecture of the three distributed file systems.

3.1. Gluster
Gluster is an open-source software-defined file storage. It can be deployed on commodity
hardware and runs on top of a kernel file-system that supports extended attributes such as
xfs, ext4, btrfs. There is no metadata server in the Gluster architecture as the metadata
information is stored within the data. The intelligence of the file system resides in the way
the data is accessed and retrieved. In fact, Gluster locates files algorithmically using the Elastic
Hash Algorithm (EHA). The EHA takes as input the file-name and the file-path and it converts
them into a unique value of fixed length. File objects are then distributed across the system
based on the result of the EHA. Corner cases determine the complexity of Gluster. Events such
as addition of new storage devices, file replication or hardware failures are efficiently handled by
the system.

3.2. Hadoop
Apache Hadoop (HDFS) is a open-source centralized and distributed file system. This means
that metadata is managed by a single server (namenode) which is also the master node of the
cluster. Data is split into blocks with a configurable block size and distributed across several
storage nodes (datanodes). The master node is also responsible for managing the namespace
of the cluster and for mapping file-names with their corresponding file-blocks. However, a
centralized architecture is the limiting factor for file system growth. This is because the metadata
needs to be stored in memory and, therefore, the size of the RAM of the master node constitutes
a bottleneck. Finally, read and write file access are easily managed by HDFS. The namenode,
in fact, provides the location of the files to be read or to be written and clients perform I/O
operations directly with the responsible storage devices.

3.3. Ceph
Ceph is a distributed file system capable of providing an interface for object, block and file
storage [6]. The system is built on top of Rados (reliable autonomic distributed object store)
which is an object store designed to be reliable and scalable to thousands of nodes. Ceph is also
capable of saving block device images as objects within Rados which makes it particularly useful
for cloud-based computing systems. In addition, by adding a metadata server it is possible to
configure a Ceph cluster to act as a file system. The basic architecture consists of an object
storage device (OSD) and a monitoring node. The OSD is the node storing the data while the
monitoring node is responsible for handling the status of each OSD and to manage the overall
cluster health. Compared to the architecture of Gluster and Hadoop, Ceph sits in the middle.
In fact, it makes use of a metadata server which can be distributed across multiple nodes, each
responsible for a subset of the namespace. Finally, the placement strategy of Ceph is based
on the CRUSH (controlled replication under scalable hashing) algorithm [7]. CRUSH uses a
combination of hashing functions and metadata operations to distribute objects among storage
devices. It also take into account the replication factor in order to provide reliability to the
system.

4. Performance evaluation
The goals of the testing is to investigate how a DFS performs against a set of controllable
parameters such as block-size, access pattern or cluster size. The testing setup consists of
1 Gb/s ethernet network and 7200 RPM hard drives. The size of the cluster for each of the
DFS consisted of three nodes each with one storage device. Replication factors have not been
introduced and tests were done bypassing the cache as the objective is to understand the raw
performance of the systems. The main tool used for testing is the flexible-I/O software [8].

4.1. Results
In this section, the results of the testing are summarized. Figure 2 (left) shows the sequential
reading performance as a function of the I/O block-size for the three systems under investigation.
The DFSs have the same response for block-sizes ranging from 2 KB up to hundreds of MB. The
performance is limited by the maximum network throughput of 120 MB/s. Finally, it is worth
mentioning that Hadoop was not tested for block-sizes smaller than 256 KB as the system was
unstable.

Figure 2. Throughput as a function of I/O block-size for Gluster, Hadoop and Ceph. Sequential
reading (left) and sequential writing (right).

Figure 2 (right) shows the performance throughput as a function of the I/O block-size for
sequential writing. Gluster reaches the maximum performance for block-sizes in O(10 KB) while
Hadoop in O(10 MB) and ceph in O(100 MB). This suggests an advantage in implementing an
architecture which does not use any metadata server such as Gluster over architectures which
either have a centralized or a distributed metadata system. The impact of the metadata is, in
fact, a very important parameter to consider when designing a high-throughput storage system.

As in the case of sequential reading the throughput performance is constrained by the network.
For both sequential reading and sequential writing there is no limitation due to the performance
of the storage devices. This is because the testing is run on a distributed system where the
network is limited at 120 MB/s while the maximum performance of the storage devices are
respectively 160 MB/s for sequential reading and 180 MB/s for sequential writing (figure 3).

Figure 3. Sequential reading and sequential writing performance of 7200 rpm HDD.

5. Conclusions
In this paper we have shown the performance evaluation of three distributed file systems:
Gluster, Hadoop and Ceph. The results have shown that the throughput for sequential reading
is the same among the three systems. On the other hand, the Gluster file system shows an
exceptionally good performance for sequential writing as compared to both Hadoop and Ceph.
This suggests that one could profit from an architecture which does not employ metadata servers.
In fact, the workload expected for future HEP experiments is in the order of O(10 PB) in size
and O(10 TB/s) in throughput. Therefore, it is worth selecting technologies that do not use
dedicated metadata servers such as for example key-value stores.

References
[1] ATLAS Collaboration, “Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System,”

Tech. Rep. CERN-LHCC-2017-020. ATLAS-TDR-029, CERN, Geneva, Sep 2017.
[2] B. Depardon, G. L. Mahec, and C. Séguin, “Analysis of six distributed file systems,” 2013.
[3] Gluster, “https://www.gluster.org/.”
[4] Hadoop, “http://hadoop.apache.org.”
[5] Ceph, “http://ceph.com.”
[6] RedHat, “https://www.redhat.com/en/topics/data-storage.”
[7] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Crush: Controlled, scalable, decentralized placement

of replicated data,” in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06, (New
York, NY, USA), ACM, 2006.

[8] FIO, flexible I/O, [software]. Available from https://github.com/axboe/fio.

