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Abstract

We show that the low frequency, long wavelength dynamics for the phase of the pair �eld

for an BCS-type s-wave superconductor at T=0 is equivalent to that of a time-dependent

non-linear Schr�odinger Lagrangian (TDNLSL), when terms required by Galilean invariance

are included. If the modulus of the pair �eld is also allowed to vary, the system is equivalent

to two coupled TDNLSL's.
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The classic Ginzburg-Landau (GL) theory [1] is very successful[2,3] in describing a large

class of static superconducting phenomena near the critical temperature Tc, and its form

was established by Gorkov [4] shortly after the microscopic BCS theory [5]. Subsequently, a

number of attempts [2,3,6,7] were made to obtain a generalized GL theory for time-dependent

phenomena, and for temperatures well below Tc, but a consensus has still not been reached

on the form of such a theory at T=0. In this letter we shall show that the e�ective theory

at T=0 is equivalent to a time-dependent non-linear Schr�odinger Lagrangian (TDNLSL).

At �rst sight, this result might seem almost obvious: after all, the energy density in GL

theory looks formally like that of a non-linear Schr�odinger theory so that it seems natural

to extend it to the corresponding time-dependent theory as, indeed, Feynman assumed [8]

in his discussion of the dynamics of superconductors and of the Josephson e�ects. Yet

neither the earlier discussions[2,3,6], nor recent work based on the e�ective action formalism

of quantum �eld theory [7,9], appears to lead to this conclusion. This is in contrast to the

case of a Bose super
uid, such as 4He, which is well described by a TDNLSL near T=0[10].

Indeed, there is considerable current interest in probing the relationship and "crossover"

between BCS and Bose super
uidity[11]. Our result implies that both are fundamentally

the same, at least near T=0; in particular, the existence of the Magnus force for a vortex

line in a superconductor follows naturally. The last point is pertinent to the discussion of

vortex dynamics in superconductors within the e�ective theory formulation [12].

Three of the present authors have, in fact, recently shown [13] that the motion of the

condensate is described by a non-linear Schr�odinger equation at T=0, using a density matrix

approach. But this left open the question how this could be reconciled with the earlier

work [2,3,6,7,9], which was generally based on Green's function (or related) techniques, and

apparently led to a quite di�erent result. The solution of this problem is contained in the

present paper, and it is essentially very simple. We take the Goldstone mode Lagrangian

2



which has recently been derived from BCS theory [9], after being proposed on symmetry

grounds [14], and show that it is equivalent to a TDNLSL. This Lagrangian also corresponds

precisely to the early results of Kemoklidze and Pitaevskii [15], who started from Gorkov's

equations [5]. We also extend this to include variations in the modulus of the pair �elds,

and show that the dynamics is then that of two coupled TDNLSL's. The thread that unites

all these approaches is ultimately Galilean invariance. Since the microscopic starting point

is always Galilean invariant, one expects any e�ective theory to preserve this symmetry, a

point emphasized in Ref. 15, and the Schr�odinger Lagrangian is the simplest such available.

We begin by recalling brie
y the formalism and results of [9], the latter coinciding with

the proposal of [14]. The BCS Lagrangian, for s-wave pairing and in the absence of external

�elds, is

L =
X
�

 �
�
(x)

 
i@t +

r2

2m
+ �

!
 �(x) + g �

"
(x) �

#
(x) #(x) "(x) (1)

where  � describes electrons with spin � = ("; #), � = k2
F
=2m is the Fermi energy in the

normal state, and x = (x; t). Introducing the auxiliary(pair) �elds �(x) and ��(x), and

integrating out the electron �elds, one obtains the e�ective action

S[�;��] = �iT r lnG�1 � 1

g

Z
d4xj�(x)j2 (2)

where the Nambu Green function satis�es0
BB@ O1 �(x)

��(x) O2

1
CCAG(x; x0) = �(x� x0) (3)

with O1 = i@t + r2=2m + �, O2 = i@t � r2=2m � �, and Tr includes interval and space-

time indices. To obtain from (2) an e�ective Lagrangian in terms of the degrees of freedom

represented by �, a possible procedure [7] is to set �(x) = �0 + �0(x) where �0 is the

position of the minimum of S for space-time independent �, and where �0 is assumed to be

slowly varying in both space and time. One then expands Tr lnG�1 in powers of derivatives
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of �0. There are, however, two (related) objections to this. First, we are dealing with the

spontaneous breaking of a local U(1) phase invariance, which implies that at a temperature

far from the transition temperature, the most important degree of freedom is the phase of �,

which is the relevant Goldstone �eld. It is this �eld, rather than the real and/or imaginary

parts of �, which should carry the low frequency and long wavelength dynamics. Secondly,

the ansatz �(x) = �0+�
0(x) violates the Galilean invariance possessed by (1), which implies

[15] that

�(r � vt; t) exp(2imv � r � imv2t) (4)

should satisfy the same equation of motion as �(r; t). We shall return to the question of

Galilean invariance below.

We therefore set

�(x) = ei�(x)j�(x)j (5)

and j�(x)j = j�0j+�j�(x)j, where we are interested in the low frequency and long wavelength


uctuations of �(x) and �j�(x)j. However, although �j�(x)j=j�0j is expected to be small,

and a simple expansion of the sort mentioned above for Tr lnG�1 could easily be set up

in terms of derivatives of �j�(x)j if �(x) were zero, it is crucial to recognize that �(x) is

not small in general, so that the phase factor in (5) cannot be expanded, but must be

treated as a whole. This prevents a straightforward expansion of Tr lnG�1 when (5) is

substituted into (2). Fortunately, this di�cult can be easily circumvented [9,16]. De�ning

U(x) = exp(i�(x)�3=2), we can write

Tr lnG�1 = Tr lnG�1UU�1 = Tr lnU ~G�1U�1 = Tr ln ~G�1 (6)

where

~G�1 = G�1

0
(1 �G0�)
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G�1

0
=

0
BB@ O1 j�j

j�j O2

1
CCA (7)

and

� = ir2�=4m + ir� � r=2m+ ( _�=2 + (r�)2=4m)�3 � �j�j �1: (8)

Minimizing (2) with � = �j�j = 0 yields the usual gap equation for j�0j. The dynamics of

� and j�j is contained in

Seff [�; �j�j] = iT r
1X
n=1

1

n
(G0�)

n � 1

g

Z
j�j2d4x ; (9)

where we note that � contains just �j�(x)j and derivatives of �(x), in terms of which (as-

sumed small) quantities a useful expansion can be conducted, following standard techniques

[17].

We now concentrate on �(x), and set �j�j = 0 for the time being. The results of Ref.9

(see also[14]) then give

Leff (�) = �0( _� + (r�))2=4m)� 1

2
N(0)( _� + (r�)2=4m)2 (10)

where �0 = k3
F
=3�2 is the electron density at T=0, N(0) is the density of states ( for one

spin projection) at the Fermi surface and we have adopted a convenient normalization; note

that N(0) = �0=2mv
2

a
where va = vF=

p
3 is the velocity of propagation of the Bogoliubov-

Anderson mode. We proceed to our main result, which is the demonstration that (10) is

equivalent to a TDNLSL. The equation of motion which follows from (10) is

@�

@t
+r � j = 0 (11)

where

�� �0 = �N(0)( _� + (r�)2=4m) � �� (12)

and

j = �r�=2m: (13)
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Equations (11)-(13) are, in fact, precisely those obtained (to this order in derivatives, and

changing an overall sign) by putting �j�j = 0 in Eqns.(21)-(23) of Ref.15. Consider now the

non-linear Schr�odinger Lagrangian

L = i � _ � 1

4m
r � � r � V (14)

where the mass has been chosen to be 2m, and V will be assumed to be a function of j j

only. Our observation is that if we set

 =
p
� exp(i�) (15)

where � and � are as de�ned above, then the equations of motion that follow from L are

(up to the given order in derivatives) the same as (11)-(13). This is easy to verify: putting

(15) into (14) and discarding a total derivative we obtain

L = �� _� � �(r�)2=4m� (r�)2=16m� � V (�) (16)

leading to the equation of motion (11) with j given by (13), and

dV

d�
= �( _� + (r�)2=4m) � (r�)2=16m�2 +r2�=8m�2: (17)

We now choose

V = (� � �0)
2=2N(0) (18)

and solve (17) by expanding in derivatives. The lowest order solution is exactly (12), so that

all of (11)-(13) have been recovered. We have shown that the dynamics of the Goldstone

�eld �(x) is given (to the relevant order in derivatives) by the TDNLSL (14), where  is

given by (15), � by (12) and V by (18).

Before discussing the inclusion of the �eld �j�(x)j we comment further on (10)-(13). We

�rst note that the Galilean invariance requirement (see Eqn.(4)) implies that

�0(r0; t0) = �(r; t) +mv2t� 2mv � r (19)
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where r0 = r � vt, t0 = t. From (19) we easily �nd

��0(r; t0) = ��(r; t); j 0(r0; t0) = j(r; t)� v�(r; t) (20)

so that Leff is a Galilean scalar, as is the original L of (1), while �� and j transform

covariantly. Indeed, a simple alternative route to (10) is to start from a Lagrangian which

describes just the Bogoliubov-Anderson mode, viz

La =
1

2
_�2 � 1

2
v2
a
(r�)2: (21)

Now (21) is clearly not a scalar under (19), but it can be made so by adding terms of the

form � _�(r�)2 and �((r�)2)2. The requirement that the resulting L be a scalar under (19)

(up to constants and total derivatives) determines � and � uniquely to be 1=4m and 1=32m2

respectively, and the Lagrangian is then proportional to Leff (�). Further, simple linear

response theory (assuming, as always, a derivative expansion) gives[18]

�� � �N(0) _�; j � �0r�=2m: (22)

The �rst relation can be converted into (12) by requiring that �� is a Galilean scalar, while the

second has to be replaced by (13) to ensure that j transforms covariantly. The requirement

that the Galilean symmetry possessed by the original theory (1) should be respected by the

e�ective theory is a powerful constraint.

In view of its relative unfamiliarity, it maybe worth noting that Leff(�) (or equivalently

L ) embodies the usual phenomenology of super
uid dynamics at T=0 (see, for example

[19,20]). We identify r�=2m with the super
uid velocity vs, and multiply � and j of (12),

(13) by m to convert them to mass density and 
ux, �m and jm. Eq. (11) is then the law of

mass conservation, following from the fact that Leff does not depend explicitly on �. Eq.(12)

is equivalent [15] to Bernoulli's equation, if we make use of �� � 2N(0)�� and �p � �0��.
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Since Leff does not depend explicitly on t, we have the energy conservation relation

@E

@t
+r �Q = 0 (23)

where using the canonical de�nitions (with suitable normalization), one �nds

E � 1

2
�mv

2

s
; Q = jm

�
1

2
v2
s
+ ��

�
; (24)

and we have dropped a quantity of order �� �� in E. Finally, since Leff is translation

invariant we have the momentum conservation relation

@jm

@t
+r �� = 0 (25)

where the momentum 
ux density tensor is

�ij = �mvsivsj + �p �ij: (26)

Eq.(25) is equivalent to Euler's equation. In Ref.14, the proportionality between the mo-

mentum density and the number current j (de�ned by @L=@(r�)), which is included in (25),

was taken as a constraint on possible Lagrangians L. If L is a function solely of the Galilean

scalar g = _� + (r�)2=4m, then

@L

@ _�
=
@L

@g
;

@L

@(r�) =
@L

@g

r�
2m

: (27)

Since � is a phase variable, we can interpret @L=@ _� and @L=@(r�) as being proportional

to a conserved number density � and number current density j respectively, so that (27)

becomes just (13). The momentum density is then automatically proportional to j. Once

again, Galilean invariance is the essential principle.

We now turn to the inclusion of the �eld �j�(x)j. Leff (�; �j�j) can be extracted from

(9), up to a given order in derivatives, but calculations rapidly become laborious. For our

8



present purpose, we will simply use the result of Ref.15 which, using the normalization of

(10), gives

Leff (�; �) = �0

"
_� +

(r�)2
4m

+
(r�)2
4m

#
� N(0)

2

"
_� +

(r�)2
4m

+
(r�)2
4m

#
2

� N(0)

2

"
_�+

r� � r�
2m

#
2

+ 6N(0)j�0j2�2 (28)

where �(x) � �j�(x)j=(
p
3j�0j) and we have retained corresponding terms in � and �.

The quadratic terms in � yield the amplitude collective mode found in Ref.18 (and are also

in agreement with the result of Ref.7); we have omitted higher powers of �. The term in _� is

made Galilean invariant by the addition of r� � r�=2m, since �(x) is a scalar.

There are now clearly two independent degrees of freedom involved, and correspondingly

we �nd that (28) is equivalent to two TDNLSL's. That is, the equations of motion for � and

� which follow from (28) are identical to those arising from

L 1; 2 = i �
1
_ 1 �

1

4m
r �

1
� r 1 � (j 1j2 � �0=2)=N(0)

+ i �
2
_ 2 �

1

4m
r �

2
� r 2 � (j 2j2 � �0=2)=N(0) +

3

2
N(0)j�0j2[Im ln( 1= 2)]

2 (29)

where

 1 =
q
(�� + ��)=2 exp(i(� + �));  2 =

q
(�� � ��)=2 exp(i(� � �)): (30)

For example, corresponding to (12), we have

�� = �0 �N(0)

 
_� +

(r�)2
4m

+
(r�)2
4m

!
=
@Leff(�; �)

@ _�
(31)

and

�� = �N(0)

 
_�+

r� � r�
2m

!
=
@Leff(�; �)

@ _�
: (32)

Eqn.(29) represents a system of two TDNLSL's coupled via the "mass" term in (28). Ex-

pressions for all the conserved quantities can be found as before, and will include quantum

corrections to the semiclassical results of (23)-(26).
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The inclusion of electromagnetism in the above formalism is straightforward. Consider

the formulation in terms of Leff (�; �). Since � is the phase of a �eld with charge �2e,

gauge invariance implies that _� and r� must appear in the combinations _� � 2eA0 and

r� + 2eA (e > 0), where A0 and A are the electromagnetic potentials. The �eld �, on

the other hand, is electromagnetically neutral. The leading order electromagnetic charge

and current densities are obtained by multiplying �� and j in (22) by �e and making the

above replacements for _� and r�. One then obtains the usual results [7]. In terms of the

Schr�odinger formulation, one simply makes the expected minimal coupling substitutions:

i@t ! i@t + 2eA0 and �ir ! �ir+ 2eA in (14) or (29) (note from (30) that both  1 and

 2 have charge �2e).

When the above analysis is extended to higher order derivative terms, it is clear on

dimensional grounds that some characteristic scale must enter. In fact, such higher terms

enter in the form @t=j�0j and vFr=j�0j � �r (see for example Eqn.(35) of [9]), where � is

the coherence length. The basis of the expansion is therefore the usual assumption [15] that

the characteristic frequency !, and wavenumber k, of variations of �(x) satisfy ! � j�0j,

k � ��1. Indeed, (28) already yields a static solution for � which decays exponentially over

a characteristic distance �=6. Such a solution is of the type expected far from a vortex core.

Inclusion of appropriate higher derivative terms should make possible some predictions about

the vortex core structure.

The TDNLSL formulation provides, we believe, a simple and unifying framework for the

discussion of dynamical e�ects in BCS superconductors at T=0. Results which have been

known for many years [2,3,6,15], as well as those obtained by quite di�erent methods only

recently [9,14], are all seen to be in agreement with each other, and with the TDNLSL

formulation.
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