Home > Tests of General Relativity and Fundamental Physics with Space-based Gravitational Wave Detectors |
Preprint | |
Report number | arXiv:1903.02781 |
Title | Tests of General Relativity and Fundamental Physics with Space-based Gravitational Wave Detectors |
Author(s) | Berti, Emanuele (Johns Hopkins U. ; Mississippi U.) ; Barausse, Enrico (Paris, Inst. Astrophys.) ; Cholis, Ilias (Oakland U.) ; García-Bellido, Juan (Madrid, IFT ; CERN) ; Holley-Bockelmann, Kelly (Vanderbilt U. ; Fisk U.) ; Hughes, Scott A. (MIT, MKI) ; Kelly, Bernard (NASA, Goddard ; CRESST, Greenbelt ; Maryland U., Baltimore County) ; Kovetz, Ely D. (Johns Hopkins U.) ; Littenberg, Tyson B. (NASA, Marshall) ; Livas, Jeffrey (NASA, Goddard) ; Mueller, Guido (Florida U.) ; Natarajan, Priya (Yale U.) ; Shoemaker, David H. (LIGO Lab., Caltech) ; Shoemaker, Deirdre (Georgia Tech) ; Schnittman, Jeremy D. (NASA, Goddard ; Maryland U., Baltimore County) ; Vallisneri, Michele (Caltech, JPL) ; Yunes, Nicolás (Montana State U.) |
Publication | 2019 |
Imprint | 2019-03-07 |
Number of pages | 10 |
Note | White Paper submitted on March 7, 2019 to Astro2020 (2020 Decadal Survey on Astronomy and Astrophysics) |
Subject category | gr-qc ; General Relativity and Cosmology ; astro-ph.HE ; Astrophysics and Astronomy |
Abstract | Low-frequency gravitational-wave astronomy can perform precision tests of general relativity and probe fundamental physics in a regime previously inaccessible. A space-based detector will be a formidable tool to explore gravity's role in the cosmos, potentially telling us if and where Einstein's theory fails and providing clues about some of the greatest mysteries in physics and astronomy, such as dark matter and the origin of the Universe. |
Other source | Inspire |
Copyright/License | preprint: (License: arXiv nonexclusive-distrib 1.0) |