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Abstract

CERN'’s work-line is deeply related to harsh environments where radiation is its main
concern towards the people working there. Therefore, a robotics team was founded
to find solutions to situation where the environment is too dangerous for people to
intervene. The purpose of this work is to achieve an autonomous system capable of
performing repetitive tasks in structured environments that are considered harsh for
humans to perform activities. Furthermore, the equipment in the surroundings are of
high importance and cost, which requires the system to be complaint so that none of the
equipment are damaged in case of unexpected circumstances. The integration of an online
modifiable trajectory generation system known as Dynamic Movement Primitives (DMP)
is used to perform specific tasks. Kinematic demonstrations along with locally weighted
regression (LWR) are used to learn the trajectories and implemented in the system. A
compliant behaviour is achieved through the modification of the DMPs canonical system
and use of an impedance controller.
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Chapter 1

Introduction

In this chapter, an introduction to the CERN’s tunnels working environment is going
to be presented, in particular the area where robot systems need to be used. Furthermore,
based on a project undergoing at the organization, a description of the motivation
behind this work is given. How the current situation is in its state and the work to
be accomplished. Additionally, a small showcase of the current robot systems at CERN
are introduced as well. Finally, the structure of this thesis is presented.

1.1 CERN and robot interventions

This work was developed in the FEuropean Organization for Nuclear Research most
commonly known as CERN. One of the biggest international organization dedicated to the
research of particle physics located in the north-west suburb on the Franco-Swiss border,
where currently 22 member countries contribute to the high-energy physics research.

Figure 1.1: CERN’s Logo

An important workplace at CERN is the tunnels that contain the different accelerators
systems, such as LHC; one of the biggest accelerators known to man. These places are
considered harsh environments, where radiation can reach high levels making human
intervention very limited due to the negative effects it can produce in the workers’ health.

For that reason, the robotics team is involved in projects were robots are used instead of
humans to perform tasks at the tunnels. These are known as interventions and are usually
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CHAPTER 1. INTRODUCTION

Figure 1.2: LHC’s tunnel environment

performed in a tele-operated way with supervision of human operators. This proves to be
a challenge since the tunnel’s environment is not structured for robotic solutions and its
possible to affect the high-performance devices that surround the area.

The different tasks that are performed by the remotely operated robots in the CERN’s
acceleration tunnels can be separated into three main lines.

e Remote visual inspection: By using visual feedback near the radioactive areas, the
devices and tunnel are assessed by operators and to check if everything is not out
of the ordinary.

e Remote inspection through sensors: By using specific robotic systems designed at
CERN, the tunnels are inspected by measurements of radiation, temperature, and
other signals which can give an overview of the environment in the area.

e Remote tools manipulation: Tasks that are in need of direct physical intervention
and tools are used for manipulating devices or structures in the tunnels.

1.2 Thesis Motivation

In these harsh condition environments, robots are expected to assists operators in the
best possible way to accomplish a defined task. Nevertheless, the robot and operator’s
performance can be affected due to unexpected structures in the area. Therefore it is
highly desirable to have a versatile system which can adapt to these events and accomplish
an specified objective.

In order to create an adaptable system, machine learning is an important component
to take into account. Pre-programming a robot so it can learn different skills in an ever
changing environment is impractical, since it is not easy to predict every possible scenario.
Therefore, learning algorithms are tools that can be used to imitate skills and adapt to
changing situations.

Furthermore, it is desirable to explore and incorporate an autonomous trajectory
generation framework to perform specific tasks that can also be assimilated with different
projects being developed at CERN; involving tele-robotics and computer vision. A system
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Learning system for compliant autonomous tasks in harsh environments

to use with robots which can be robust, adaptable and capable of imitating paths through
simple, yet effective, learning methods.

An approach to obtain information and learn new skills for an autonomous system can
often be done by other software. Simulations are applicable in many different cases but as
various conditions arise, the complexity becomes unmeasurable and it might not be the
most adaptable approach. In our case, an operator familiar with the desired task is the
best candidate to obtain information for learning. Therefore, an approach which involves
an interaction with the operator is a suitable method for a robotic system to learn from.

Furthermore, due to the many conditions in which every task is subject to, it is not
unforeseen that a robot task can fail in its execution. This can result in collisions with
obstacles and devices or equipment which can create costly damages. Mistakes can happen
due to unexpected events. Let it be an obstacle which was not considered in the task
planning or a misjudgement of the structure near the robot’s working area. Therefore, it
is desirable to minimize the reaction if this were to happen.

From these points, two main elements are desired to be accomplished in this work. One
is the incorporation of a learning framework that imitates desired trajectories for specific
tasks. An element which will be addressed in this proposed learning framework by using
kinesthetic training method through the defined hand-guidance mode. And to explore an
adaptable path generation architecture that can perform automated tasks under harsh
environments without damaging equipment that may come in contact with the robot. A
feature achievable with the use of Dynamic Movement Primitives (DMP) framework in
the proposed autonomous mode.

1.2.1 Remote Handling in Harsh Environments

In a simple and straightforward sense, the accelerator’s purpose is to study the
behaviour of particles when they collide into each other or into a stationary target.
When this occurs, the reaction of such collision generates radiation in the environment.
As a consequence, the surrounding objects are inflicted with these particles and they
become radioactive. These areas cannot be approached without the proper gears and
measurements for safety reasons.

High magnetic fields, oxygen deficiency and radiation are the main core hazards which
create the harsh environment in the accelerator’s tunnels. Nevertheless, in order to have a
the best results of the measurements needed for the different types of research, the devices
in which the CERN relies on must be maintained. This means that even though they are
located in harsh environment, the devices need to be accessed in a safe way.

In the accelerators, an important device that needs to be used, are the collimators.
Their design was meant to protect the integrity of the accelerators and their purpose is
to constrain the high-energy particles (Burkart (2012)). They serve as a beam ”cleaner”,
where all the stray particles are disposed for the accelerator’s safety. This is due to the
high energy that is involved in the experiments which requires high precision and control.

The maintenance of a collimator is not trivial as it is located in a very radioactive area.
Furthermore, the full collimation system is extremely vast, as it consist of 84 two-sided
movable collimators of different designs and materials with over 390 degrees-of-freedom.
Some of the responsibility in maintaining these devices fall into the robotics team, which
uses a tele-operated robot system near the radioactive sources.
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Figure 1.5: Beam pipe and disconnecting
device

Figure 1.4: Disconnecting device

1.2.2 Collimator Disconnection Task

One specific activity for maintaining the collimators is the disconnection task of the
beam pipe. As the name suggest its purpose is to disconnect part of the accelerators
ring, also known as the beam pipe, in order to perform other works; whether on the
collimator or on adjacent devices. This task will be a motivation in which this work is
developed. The automation of this activity can reduce the stress and time consumption
of the operators which in return will provide better efficiency in the long run due to its
repetitive nature.

The following is a mock-up test done by the robotics’ team in one of the laboratories to
perform the before-mentioned task. A disconnection system device is shown in Figure 1.4.
It is meant to be put on top of the beam pipe near the collimator and both pieces are shown
in Figure 1.5. After following a procedure of screwing several parts of the disconnecting
device, the beam pipe can be separated from the main beam line.

By screwing the locations shown in Figure 1.6, the disconnection device is properly set
and the beam pipe can be removed. To do so, the Figure 1.7 shows how the robot should
move for this task. Care to note that even though several parts just need to be screwed,
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Figure 1.7: Robot screwing in the disconnection device

they must be done in a specific order.

Once the disconnected device has been set and the screws have been tighten, the beam
pipe can be removed (Figure 1.7)and other maintenance tasks can be performed.

Nevertheless, the environment can not always be predicted precisely. Other operators
do work around the area which might have left some undesirable obstacles, or a new
equipment was installed and not taken into consideration during the mock-up simulations.
Also, since the device are structurally highly complex it is possible that there might be
some unforeseen parts in the vicinity. If this was the case, it is possible for the robotic
system to cause damage in the workplace if any mistake were to be made. The proposed
system is implemented to avoid this kind of outcome and to mitigate any damage that
could happen.

1.2.3 Robots at CERN

CERN has a specialized unit for robotic interventions in the accelerator tunnels. As
previously mentioned, the robots are used to substitute human actions near radioactive
sources and allow a safer working environment.

The system framework for the robotic development is known as CERNTAURO, the
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Figure 1.8: Disconnected beam pipe from the accelerator (mock-up)

CERN Telemanipulation semi-Autonomous Unit for Robot Operations. It is a software
library for performing tele-operation tasks with semi-autonomous robots. It allows to work
in hazardous environment by using different robot systems and devices, either developed
at CERN or by other companies, e.g. KUKA or Schunk, and perform research in robotic
solutions.

Figure 1.9: Kuka iiwa robot arm Figure 1.10: Schunk robot arm

In this framework, different modules are developed to perform a variety of functions.
Wire-less communication between different robot arms, world mapping through sensor
fusion, visual tracking and location identification with vision systems are just a few
modules which comprise the framework as a whole. All of which are done to improve
the performance of robotic interventions at CERN.
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1.3 Master thesis organization

This thesis work is presented in the following structure. Chapter 2 is an overview of
robot learning. Different algorithm and the challenges that arise from using this approach
schemes.

Chapter 3 is the definition and explanation of dynamical movement primitives, a path
planning framework for trajectory generation, and the locally weighted regression learning
algorithm used for this work. The basic structure of the framework is presented and the
proposed modifications are explained to understand the underlying work of the system.

Chapter 4 is the implementation structure of the system. A more detailed explanation
of the logic in each part of the proposed solution. Here the learning and control phase
are explained to understand the system’s algorithms.

Chapter 5 are the results obtained through the proposed solution for this work. The
explanation of different test are done, and the validation of this work’s proposal.

Finally, Chapter 6 are the conclusions and future work of this thesis. A summary of the
results are explained, future improvement and possible new implementations are pointed
out.

Santiago Andres Solis Paiva 7



Chapter 2

Robot Learning

In this chapter an introduction to robot learning is presented, and the challenges for
this field when using this approach in modern robotic systems.

In recent years, developments have been on demand to learn from demonstration
due to an easier way of programming robots. Algorithms to expand the capabilities
of robot systems through interactive teaching has become an attractive method for future
developers Chernova and Thomaz (2012). These methods are also known as imitation
learning. The process for capturing skills to learn from, is done through different methods
and various elements are used to learn a policy which is closely related to mimicking a
behaviour.

2.1 Robot Learning Challenges

Robot learning has a wide range of disciplines which are involved. For this reason,
many challenges appear when approaching this kind of solutions. In this section these are
presented and briefly described.

Learner and Teacher Correspondence

A concerning issue when dealing in robot learning is the correspondence problem. Here
it is important to know how can the several input of actions can be translated into the
working space of the learning system. A difference between body structure of the teacher
and robot can be problematic in the learning algorithms frameworks. The structures
dissimilarity needs to be compensated during training. Many cases are that the learning
robot acquires the shape of a desired trajectory and then through trial and error it achieves
its goal by compensating the dissimilarities performed, similar to reinforcement learning
algorithms.

When talking about correspondence, the user needs to account for the difference
between kinematic structures in learner and teacher. That is one of the reasons why using
kinesthetic learning method helps to bypass this problematic situation. The teacher can
use the robots body to make it learn a skill and does not rely on other body structures
or components for generating the demonstration for a specific behaviour.

Machine Learning and Scalability

To map the relationship between input and output is not an easy task. One needs
to consider what is the behaviour that a system should imitate. What are the actions
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needed to encapsulate the desired pattern to be imitated. Solving this problem, often it
is used machine learning techniques. An indispensable element in pattern replication by
demonstration.

Machine learning is a field that explores the link in patterns and its relationship between
an input and output state. It is meant to construct models that can predict a specific
behaviour from a set of information, an important element when trying to learn a specific
behaviour.

Even though machine learning has been widely used in the current literature of robot
learning, there is always two great disadvantages which are intertwined; scalability and
computational load. When learning methods are used in a robotics application, there
is always problems in the robots that contain high degrees of freedoms, because the
solutions can be intractable in a finite time (Kober and Peters (2010)). In real-time
applications, this is a very limiting condition since the algorithm is constrained by the
system’s hardware; as it is also the memory and processing power. However, in our
system this restriction is not highly restrictive, because real-time learning processing
is not needed and the hardware specifications of the robot allows heavy computational
loads in the system. Furthermore, this load is highly dependent on the specific type of
learning method that is used. In this work, the pattern learning is done off-line and uses
a fast-learning approach which does not require very high resources.

2.2 Robotic trajectory-planning

Trajectory-planning is a problem that considers commands needed to perform motions
through the passage of time. In the field of robotics, a trajectory-planning algorithm
starts with a problem formulation and defines the path needed to arrive at the solution,
considering any restrictions there might by on the system. It will then formulate a series
of desired points in time for the system to accomplish.

In literature, there are many different kinds of trajectory planning methods to reach
a solution to the problem at hand. Otte (2015) presents an overview of the different
trajectory-planning algorithms that can be used in the robotics field. For example, there
is the potential field methods, depth-first search, Dijkstra’s algorithm, random trees and
many more. Nevertheless, all these methods rely in an important element which is
how the world is modelled. For very structured and repetitive situations in which the
environment will not change, these algorithms are very efficient and different can reach
to optimal solutions. In a situation when the environment is constantly changing and
the circumstances are not always the same, a reliance in the model can become very
time-consuming and even impractical for applications.

It is desirable to use a learning model that does not rely heavily on the definition of
environmental constrains or on the world’s representation to find a solution. The system
that can use the knowledge of an expert, in this case an operator, which can decide what
actions should be taken. A trajectory planning algorithm that generates a stream of
desired data-points for a specific path, that can react to deviations and adapt instantly
with the use of global parameters. All these elements are incorporated in the proposed
framework based on dynamical movement primitives and various modifications which will
be described more in depth later in this work.
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2.3 Learning Motion’s Patterns

Learning motions patterns is the equivalent to performing a specific action that the
pattern can relate to. This process begins with an acquisition of a demonstration. To
obtain data is the essence of capturing a desired skill to be learned, but depending on the
system, it is prone to having noise and sensor error. Noisy signals can result in unexpected
and undesirable behaviour even if the proposed model is properly trained (Argall et al.
(2009)). Nevertheless, it is possible to obtain good data measurements through the use of
good sensors, and the application of algorithms can further reduced error in the training
data if required.

Learning from demonstration also brings to consider the needed method that is required
to accomplish this action. The training information can come from different sources,
which can be separated by into two branches; demonstrations or experience. The former
gets data from other systems, yet the latter receives training from its own system. The
most important difference between these two is that demonstration can provide, but
not necessarily is, an optimal action for a given situation, while the experience comes
from different trial and error scenarios in which the system finds a solution by its own.
What this means is that using demonstrations is more closely related to a supervised
learning method. On the other hand, information taken by experience is more suited for
reinforcement learning methods where there is a reward function that the system would
like to maximize, or minimize depending on the function’s definition. In this work, using
supervised learning methods is useful since demonstrations will come from an expert on
the task at hand. The pattern can be extracted from this information, so the robot can
then replicate the learned dynamics.

In literature, there are many kinds of learning algorithms to can be used and has been
extensively researched. The most common methods to accomplish this, in supervised
learning, are classification, regression and neural networks.

Classification methods are usually related to high level abstraction in decision making
Chernova and Thomaz (2012). Even though they can be useful in this work, the purpose
is not to use a classify data obtained from a robot but to generate a stream of predictions
that can replicate a continuous signal from a dataset. The more suitable approach is to
use a supervised learning algorithm such as a regression method.

Artificial neural networks are also considered candidates as a learning algorithm to
imitate a signal, but they demand a high amount of training-sets and time Hussein et al.
(2017). This makes them unsuitable in a framework where fast learning is considered an
advantage and desired path are un-predictable and constantly changing.

With regression methods, the input and output relationship is established by a function
which takes an input and links it directly to an output. This relationship is not necessarily
linear and it is continuous space. Therefore, regression algorithms are ideal candidates to
receive information from a learned behaviour and use it to feed the control system in this
work.

2.3.1 Regression

In the literature, regression methods have been extensibility researched in many
different fields over the years. Furthermore, learning actions in a continuous space are
very suitable for low level robot control which makes it advantageous in replicating paths.
This is because the input is linked directly to the output, and an action can be represented
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as a path in continuous values, as opposed to classification methods which uses classes
and labelling. Regression algorithms are suitable in path learning since it can directly
relate inputs and outputs for controlling a robot system.

Works done by Miilling et al. (2013) use Linear Bayesian Regression to teach a robot
play table tennis. This method uses a statistical analysis related to Bayesian inference.
Gaussian processes make use of a likelihood function to capture the existing relationship
between input and outputs in a Bayesian setting. Even though this method can be very
precise and robust, it falls deeply in the curse of dimensionality. Thereof a higher degrees
of freedom a robot will need a more computational load which might become infeasible
(Meier et al. (2014)).

On the other hand, there is a common method known as the locally weighted regression
(LWR). This algorithm captures a pattern suitable for trajectories where motions are
continuous signal .Furthermore, LWR uses several local models to capture the essence of
a pattern, resulting in a computational efficient algorithm. However, to obtain accurate
and precise results, several tuning parameters must be set. Works like Schaal et al. (2003)
and Ijspeert et al. (2013) uses locally weighted regression methods to encode various
trajectories into dynamic movement primitives. Lauretti et al. (2017), uses this algorithm
to learn rehabilitation motions for a robotic arm. LWR is widely used in many different
applications and have proven good results in other works, therefore this method will be
chosen for implementation.

2.4 Policy Representation

A policy is a mapping function that describes the state of a system. It is an element
that the robot uses to execute different actions. These functions can be learned with
various methods. It maps the continuous state of vector z in the control system and the
environment, in a time dependent way, to a continuous output vector u (Equation 2.1).

u=m(zr,0,t) (2.1)

A parameter © is a vector closely related to a specific situation. The model will be the
source of behaviour that a system will take given the different inputs in a given situation.

Using non-linear dynamics as a policy is an idea coming from motor pattern generators
(MPG) in neurobiology (Schaal (2003)). This idea got used as a base for the formulation
known as Dynamic Movement Primitives which encodes a desired kinematic state of
acceleration, velocities and position. For each movement there is a primitive that
represents it, and therefore the motor primitives concept is introduced.

2.4.1 Motor Primitives in Robot systems

The concept of motor primitives was presented by Ijspeert et al. (2002) as a form of
representing a control policy for basic movements in humanoid robots. Complex motions
can be composed of sets of primitive actions and can be executed either in series or parallel.
It provides several benefits of stability for singular, or rhythmical, movements and presents
features of re-scalability. The representation for this policy is lineally dependent on its
parameters which can make the learning very fast in robotic applications.

Other works involve task-parametrized movement learnings which uses automatic
adaptations when new situations are encountered. Task parameters take landmark points
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that the robot should pass and encodes a task-adaptive motion into the system Calinon
(2016). Nevertheless, the use of this method is presented on pattern representation
through Gaussian mixture models. Algorithms that rely on the prediction by Bayesian
inference are very computationally expensive which makes them time-consuming to use.

The framework in which this work is going to be developed is using the dynamic
movement primitives. A framework which relies on its own set of dynamics, and brings
several benefits in its use.

An adaptability to bring in new situations and the linearity of the parameters ©
that can define a policy during specific situations are benefits for using this framework.
Additionally, its functionality extension through coupling terms, which will be explained
later in this work, make it a very powerful policy representation. Furthermore, fast
learning algorithms are applicable to define specific patterns which is very useful during
implementation.

The dynamic movement primitives framework allows coordination of many several
degrees of freedom through the coupling of many non-linear equations. All these elements
are taken into account for the further implementation of such framework.
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Chapter 3

Dynamic Movement Primitives

It has become common practice in science to model natural phenomena with systems of
coupled non-linear differential equations Ijspeert et al. (2013). This approach allows using
systems that can provide rich and complex behaviours to obtain known results without
the need to specify details of the generation of such behaviours. Dynamical systems offer
an alternative to the standard generation of trajectories since motion is produced through
differential equations.

The dynamic movement primitives (DMP) is a generic model system that uses
multidimensional systems of weakly non-linear equations to generate patterns according
to the parameters that are defined in its core equations. It’s base functionality is based
on the creation of a landscape using the commonly known point attractor spring-damper
dynamic equations, which can be used for accomplishing a task in a more complex system.
In other words, it produces a flow field from a dynamical equation which has an encoded
desired trajectory which can represent kinematic motor behaviour which can also be
further extended to multiple degrees of freedom. This by no means implies the needs
to have an increasingly high complexity in order to create complex behaviour. On the
contrary, due to its simple form, it is feasible to create very complex systems from a simple
dynamic.

There are various benefits in using this generic system known as DMP and it can be
summarized in the following points.

e Learn smooth and complex trajectories that can represent a task or at least the
motion that involves performing it.

e Has no direct dependence of the time variable.

e Provides stability in the coordination of multidimensional systems. The differential
equations converge to a point in space and automatically adapts to perturbations
of the system’s state.

e Learning open parameters can be done through non-complicated algorithms.

e Functionality can be extended with the use of new coupling terms.

e The trajectory’s scale can be automatically adapted without the need to re-learn
parameters.

Santiago Andres Solis Paiva 13
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Figure 3.1: Spring-damper model representation
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3.1 Transformation System

Dynamic movement primitive is originally based on differential equation which is very
well known and has several properties that are advantageous. This is defined as the
transformation system of the DMP, and it is a fundamental base where all motion will be
generated from. The simplest attractor system that can be used is based on the dynamic
formulation of the damped-spring model as shown in figure 3.1.

The differential equation that represents a one dimensional spring-damper system
disturbed by an external force is the following equation as indicated by Glatz (2012):

Tﬁ:K(g—x)—Dfl—f—i—(g—a:o)f(t) (3.1)
dx
T =Y (3.2)

The system’s state variable is given by x, which is usually defined as a position and its
respective derivatives. The parameters that can modify the behaviour are K the stiffness
constant, D the damping parameter, g the destination (goal), x( the starting point and 7
the temporal scaling factor. Finally, there is the f(¢) term, which is the non-linear forcing
function that determines system’s path to reach the goal position.

Notice there exists a factor term next to the non-linear forcing term defined as (g — o).
This value is a modulating parameter which eliminates the forcing signal once the goal
has been reached by the system and it becomes an useful element to gain stability when
reaching a goal position. It also brings scaling properties to the system which will be
useful when adapting to new conditions.

The spring-damper dynamic’s response is presented in Figure 3.2. One of the main
issues of this dynamics is the high accelerations that are present in the motion’s beginning.
This will be addressed in the modified transformation system which will be explained later
on.

In this work, the forcing term is defined in such a manner that it is active only during
a finite time frame until the system reaches its goal. However, if it is needed, it can be
chosen as a periodic function. The latter will work in a similar way as initially stated,
but with repeating motions.
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Figure 3.2: Spring-Damper graphical response in time without any external force. (f(t) =
0), K=50,D =125 7=10, 29=0, g =2.0

Using the point attractor dynamics guarantees reaching the goal position due to the
spring-damper behaviour. The parameters of K and D are chosen so the system is
critically damped and converges monotonically towards the goal without oscillating Gams
et al. (2014). Otherwise, the system will make a bouncing motion when reaching the goal
position which it is not desirable.

To apply this kind of dynamical differential equations (3.1) in the definition of motor
primitives| will require information about the position, velocity, and acceleration. These
state variables will be provided by the demonstration done by an operator. And further
integration methods will be used to obtain all the state variables, this will be explained
further in the implementation chapter of this work. For now, it is assumed to get the
signals as they are from a demonstration data.

3.2 Non-Linear Forcing Term and Canonical System

In the transformation system, it is of high importance to define the forcing term (f)
found in the differential equation of the spring-damper model. This function will provide
the property of changing the point attractor landscape, a desirable feature for performing
complex paths. Therefore, it will define the specified pattern in the system.

A point attractor landscape is referred to the field flow that will outline how the system’s
state will operate throughout its duration. In this landscape, it is possible to encode
complex movements that represent the desired movement behaviour.

The initial dynamics is to have a state variable that begins in a starting point that
continuously move towards another final point in a linear path. When the state variable
reaches the goal position, the system does not move from there. Adding the feature of
"landscape” results in the state variable to move in a non-linear path. The changes of
the landscape will change therefore the pathway and allow a more complex pattern to be
reflected in the dynamical system.

Notice in Figure 3.3, the arrows represent a forcing value that change the shape of a
non-linear function. The red line identifies the linear direction of the system if there were
no forcing term involved. By specific moments the value will change and create variation
in the differential equations which will in return change the function’s shape, resulting in
an different shape as shown.

In order to achieve this feature, the base of forcing term function will be chosen as a
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Figure 3.3: Landscape field flow representation for a non-linear trajectory

non-linear defined as the following equation Ijspeert et al. (2013).

N
f(r) = iz V0w (3.3)
2z (1)

The forcing function is based on the normalization of linear combinations of a fixed
basis function 9, also known as the kernel function. The w; are adjustable weights which
can be learned through different methods of machine learning and N is the number of
functions defined previously.

In this work, a simplified squared exponential function is used as a fixed basis function.
Which has proven to give good results like in the works done by Gams et al. (2014),
Samant et al. (2016) and Hoffmann et al. (2009).

W(t) = e hilt=e)? (3.4)

The kernel function parameters are ¢ which is the current time of the system, h
a parameter which defines the bandwidth and ¢ the centre location. Its graphical
representation is presented in Figure 3.4. Both the combination of Equations 3.4 and
3.3 create a non-linear forcing signal that is dependent on the activation kernel function.
This means that there must be a distribution alongside the sampling signal in order to
obtain the desired non-linearity, and depending on the number of kernel functions, the
system will be able to represent more complex behaviours.

The forcing term, defined as Equation 3.4, is a good candidate to encode a pattern
into the dynamical equations. Nevertheless, there exist a direct time dependency of
the time variable which will not allow a straightforward coupling with other dynamical
systems Ijspeert et al. (2013). This is because, by definition, every system is not coupled
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Figure 3.4: Squared exponential kernel function (h = 1.0, ¢ = 1.0)

with each other and therefore its time duration might be different between each other.
Furthermore, any variation in the system will be reflected in different timestamps which
can create undesirable behaviours. To solve this problem, the DMP framework presents
a new differential equation known as the canonical system.

ds

Tt

In this new system, the state variable is defined as s and the parameters are as

a decaying constant and 7 a temporal scaling parameter. The purpose of using

this formulation is to change the time dependency of the DMP, in particular, of the

forcing term f. By replacing the time (¢) with the new state of the canonical system
(Equation 3.6).

= —Q,S (3.5)

fit— s (3.6)

Now that the new state variable is implemented, it is important to take into
consideration that now, the state of s converges monotonically to zero and the point
where s = 0 is a stable fixed point.

As a result, we reformulate our forcing term so the new parameter s is taken into the
equations and therefore will change accordingly and avoid the time dependency of the
time parameter in our forcing equation term 3.7.

N
f(s) = —Ziz}vws)w’s (3.7)

i1 ¥(s)
Moreover, due to the time dependency change, the kernel function needs represent the
same modification shown in Equation 3.8. Therefore, the kernel function is changed to

adapt to the new changes.
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h(s) = e tilsme)? (3.8)

From the canonical dynamics point of view, the system can start at some arbitrary value
(e.g. start at 1) and will always converge monotonically towards zero. Consequently, it
will, like the forcing term, be active only during a finite time. By removing the time
dependency through this formulation, the system will be capable of coupling with other
dynamical systems while also featuring an online modulation which will be mentioned
later in this chapter.

The canonical system brings the functionality of synchronization with other dynamical
systems. Normally, the transformation system is used to represent a single degree of
freedom and is limited by the state in which it is defined. Meaning that to depict a more
complex system, several different transformation systems have to be used altogether.

Different systems running separately can cause unexpected behaviour since it is the
group of every state that is desirable to learn. Therefore the system must be bounded by
a singular entity that can control the flow of different states simultaneously. The canonical
system’s equation can work like an anchor that feeds each transformation system and keeps
the different degrees of freedom in synchronization between each other (Figure 3.5).

Transformation Positipn
—> > Velocity

System 1 Acceleration

Transformation Positipn
—> —> Velocity

System 2 Acceleration

Canonical
System

Transformation Positipn
—> —> Velocity

System N Acceleration

Figure 3.5: Diagram of canonical system use for synchronization in N multiple degrees of
freedom

3.3 Modified Transformation System

One of the main important elements in Dynamic Movement Primitives is when defining
the transformation system differential equations. Initially, it presents good behaviours but
under certain conditions, the system can behave erratically which can be very undesirable.
This is especially the case when handling high sensitive tasks and use high-cost types of
equipment.

The transformation system expressed in Equation 3.1 has several drawbacks that have
been pinpointed by Pastor et al. (2009).
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1. When the starting point () is the same as the goal (g), it will generate no movement
because the acceleration for this case will be zero.

2. If the goal is close to the starting point then a small change of the variable will
create high accelerations that can go beyond the limits of the physical system.

3. There is a high dependence of the system’s reference axis. If the goal position is
changed across the zero point of the reference axis, then the whole movement can
invert its shape.

These before-mentioned drawbacks can generate undesirable behaviours. Therefore, to
create movements without singularities and high accelerations there is a need to choose
a differential equation that will be invariant under invertible affine transformations. A
new formulation, inspired by findings in neurophysiology, of the differential equations was
presented by Hoffmann et al. (2009) with the following structure.

2
T%:K(g—x)—DZ—j—K(g—xo)—ka (3.9)

The parameters are the same as in Equation 3.1. Under this new formulation, the
movement is improved and the system is not highly dependent on the coordinate system
where it was initially defined in.

An independent equation of the coordinate system is very important since the robot’s
position can be changed depending on the task needs and space constrictions. If the
learned movement changes orientation during the task, it might become a source of
problems during operation.

3.4 Learning Dynamic Movement Primitives

Dynamic movement primitives rely on properly learning of parameters that define the
desired trajectory. In order to learn a custom path, the algorithm can be divided in two
parts. First, the global parameters must be stored and defined from the demonstration
data, such as initial position (xg), final position or goal (g), decay values (o), stiffness
and damping coefficients (K, D), and learning hyper-parameters of kernel number and
bandwidth (k). Second, to accomplish a mapping of the data, a supervised learning
algorithm is used to compute the weight parameters (w) of the non-linear forcing term
(f).

Initially, there is a reference trajectory that will represent the desired values of position,
velocity and acceleration respectively ([z, &, %] € Training Sample) given by any kind of
demonstration to the system. From these signals, the data will be encoded by computing
the non-linear forcing function target. The encoding Equation 3.10 is used which results
of manipulating the Equation 3.9.

T d*’z Ddx
ftarget = 75 159 + == (

K dt K dt
Depending on the system’s sensors, the values for velocity or acceleration may need to
be computed if needed. Normally, it may appear troublesome to use numerical methods
for the differentiation of the position signal since the calculation will create a lot of noise
in the resulting signal. It could cause problems which can generate sudden unwanted
high accelerations in the system, however, if a low-pass filter is used then the noise will

g—x)+ (g —xp)s (3.10)
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Figure 3.6: Locally Weighted Regression example

be mitigated to a certain degree and the resulting signal will be smoother. Furthermore,
by using differential equations, the system will have a smooth response. In a sense, the
transformation system will work as a filter as well.

3.4.1 Locally Weighted Regression

To map the reference of a provided dataset, a piece-wise linear model of the kernel
function is going to be used. This will be known as the non-linear forcing term, and the
different weights that define this function needs to be computed.

In this work, the Locally Weighted Regression will be used (Figure 3.6). Nevertheless,
the learning algorithm can be changed according to the needs of the system and other
supervised learning methods are also applicable (e.g. Gaussian Mixture Regression).

There are several benefits to using LWR in this work. The algorithm is not overly
complicated, its implementation is very straightforward and the fitting of the curve has
presented in other works good results. Moreover, its computational speed is faster in
comparison with other algorithms like the Gaussian Mixture Model Regression which
requires the dataset to be accessible at all times in order to generate predictions through
the Bayesian formulation. This is a greatly desirable treat when looking to create
various dynamical movement primitives as it reduces the computational load and time
consumption as a one-shot motion learning algorithm.

Locally weighted regression is a non-parametric statistic algorithm useful for learning
complex behaviours in autonomous robotics systems. It uses several local models and
finds the line of best fit. It creates the best function that can represent a relationship
between the input and output variables.

In this work, the non-linear function will be based on the equation 3.7, where there will
be several kernel functions that will be activated only between a defined range like shown
in figure 3.7.

The formulation will then be able to represent non-linearities through the activation
of several kernel functions . For each one of them, the value of w; is calculated by
minimizing the locally weighted quadratic error of Equation 3.11.
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Figure 3.7: Kernel activation functions example

P
Ty =Y w(O)(f(t) —wi(1)” (3.11)
t=1
The parameter of £(t) is defined as the equivalence of time into the canonical system’s
values. In other words, it is the result of fitting the trajectory’s time variable into the

canonical system equation’s response. A visualization of this is shown in Figure 3.8.

Time Reference . Canonical System response

Figure 3.8: Time reference and canonical system response

The algorithm as in any other supervised learning method is essentially to minimize
the error that exists between the original data and the predictor’s output. To accomplish
this, there are two main steps that are normally employed.

1. Choose a base value for prediction. This means to select the value of the weights
(ws).

2. Calculate cost (J;) and update value to reduce its value to a minimum.

This working principle is used mostly in any kind of gradient descent method to find
the best solution. Nevertheless, these methods need a selection of the hyper-parameters
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Figure 3.9: Gradient Descent graph solution representation Wikipedia contributors (2018)

such as the learning rate and iteration number. It is not an autonomous method unless
some cross-validation is developed in order to select the best hyper-parameters and might
become computationally expensive to perform; e.g. using a high number of iteration in
order to get the best minimization of the cost function or changing the learning rate
iteratively to optimize the weight parameters. With large datasets, this can become
time-consuming as the algorithm uses many of the system’s resources.

To solve the minimization of the locally weighted quadratic error as expressed by
Equation 3.11, besides using a gradient descent method, it is possible to use other
techniques. A fast algorithm that can obtain the same results is the normal method
employed in the linear regression methods. In this case, there is no need to perform
several iterations to obtain the most optimal solution.

A downside for using this method is that the number of data points is correlated
to the solution’s accuracy and the computational cost. Due to the nature of inverting
matrices, the solution might not be found or depending on the computation it might
become numerically unstable. Nevertheless, this can be mitigated when using the locally
weighted regression method since the dataset is split into many different local models. The
number of data is reduced by the selected kernel function’s bandwidth (h;) and therefore
the normal method can result in an numerically accurate solution independently of having
a dataset with a high number of data points.

The normal equation used in this work and is based on the paper presented by [jspeert
et al. (2013) shown in Equation 3.12.

Wi — STFiftarget
’ STT; S

The parameters of S,I';, and fiq,4e¢ are all matrices that represent the function’s input,
kernel function values and force target signal respectively; i refers to the selected kernel
function. They are defined in the following way, where P denotes the maximum number
of data points in each local model.

(3.12)
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This is known as batch regression and as its name suggest, the solution is calculated
from each batch which will result in the corresponding weight value for the predictor
function.

3.5 Canonical Coupling Term

One of the greatest benefits of using differential equations is the capability of
functionality expansion through coupling terms. It directly relates to the system’s
maintainability as it is of ease to expand the basic performance of the defined primitive.
This means it is possible to incorporate new features in the trajectory generation algorithm
to improve the system’s performance in a simple manner and achieve more complex
behaviours.

The capacity of these coupling terms is not fully taken advantage of this work, yet is
important to know that the system can be further improved in future works. An example
of coupling terms use in other projects is the integration of a collision avoidance signal
into the differential equations done by Ijspeert et al. (2013) and Stavridis et al. (2017).
Also, synchronization between robot arms done by enhancing the second order equations
as accomplished by Umlauft et al. (2014), or realization of bi-manual tasks through an
existing dynamical movement primitive framework extension with the use of force feedback
signals by Gams et al. (2014).

In this work, the coupling term is used to accomplish the task of stopping the system
trajectory generation if there is a high deviation between the generated movement and
the actual robot’s position. The resulting behaviour will allow for the system to halt
safely when there might be some unexpected obstacle that was not taken into account
when training the system, minimizing any damage to the robot and environment. This
method allows for the system to monitor every degree of freedom with little to no effort,
and without the need of using other external sensors to detect the collision. This method
is based on the work done by Umlauft et al. (2014), where the canonical system’s velocity
is enhanced by the inclusion of an error as it is shown in Equation 3.14.

ds Qg8
T— =
dt 1 + 787‘7'01"(':2. - $)2

The parameters of a new enhanced canonical system are 7., the error constant,
actual position of the manipulator, the x value of the transformation system and 7 time
constant. Care to note, that the manipulator’s position and the transformation system
will be points in a task space denoted by the end-effector’s coordinates in the world. Hence
an error value obtained with this formulation will be the quadratic euclidean distance from
one point to another.

The modification done in the canonical system will generate a decrease of the decaying
rate which will depend on the parameter 7..... In consequence, a low decay rate will
affect all the transformation systems that are linked and generate points at a slower rate,
creating a small transition to stop the robot. When an error increases towards infinity,

(3.14)
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the system will come to a halt since the system’s decay rate will tend to 0 as shown in

Equation 3.15. When halting the system, it automatically saves the last position which
can be used then as a reference to restart the system.

S
li u =0 3.15
o 1+ Yerror (T — x)? ( )

On the other hand, if the system has no errors (Equation 3.16) then there is no change
in the canonical system and all the transformation systems will work normally.

QS

_ = (s
720 1 4+ Yerror (T — )2

(3.16)

Nevertheless, these equations cause the system to slow down but never to stop. As the

value only reaches 0 by having an infinity error. Therefore, a new equation is proposed
based on the logarithmic function and is presented in Equation 3.17.

o, = —Alog(B(% — z)* + C) (3.17)
By modifying values of the decay rate directly, we can change the speed generation of
data. It is even possible to have a negative speed and, instead of computing forward in

time, it can compute backwards. This is especially useful in the detection of an obstacle in
the system’s path. Because when the error is detected, the system can retake the already
performed path.
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Figure 3.10: Logarithmic decay of function 3.17

The values of A, B and C' are chosen following the rules presented by Equation 3.18

A<=10;B>0;C=0.1

(3.18)
Using these values presents the behaviour demonstrated by Figure 3.10. The maximum

decay rate that the system can have is 1.0. This also means, that the error will decrease
24
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the value at a maximum of -1.0, with certain point where the value become negative.
The decreasing speed is linked to the value of B and it can be chosen depending on the
needs, and it will define the location for the sign change of the logarithmic function.
In Figure 3.10, B was chosen 0.1 and the value for reaching 0 is 9, which makes it a
good candidate for the tests further in this work. Nevertheless, these values were chosen
empirically and they can be tuned as needed.

3.6 Point to Point Modulation

Another feature that lies in using dynamic systems in motion planning is the possibility
to modify the learned trajectory without re-learning the path. This can be done either
during the system’s initialization by just changing some of the parameters or done during
the trajectory’s execution (online).

Changing the parameters will result in an automatic adaptation to the new conditions
and the transformation system will generate a new path without the need to deeply modify
the system’s structure. What’s more, the computational load for modifying to the new
adaptation will be low and therefore is acceptable an online trajectory change that does
not disrupt the initial executed motion.

An example of such modulation is to change the goal position, either at the trajectory’s
starting point or during execution of the motion. Online trajectory changes can result in
a sudden differential of positions which is an undesirable element in the current dynamical
system since it can generate very high velocities and accelerations. Therefore, to create a
smooth transition between goal positions a dynamic change based on another differential
equation is introduced (Equation 3.19). This will result in a smooth change from one
value to another and it will avoid having high accelerations due to the sudden change of
the goal position.

dg

T = ag9(90 — 9) (3.19)

The state of the system will be the goal values g. The parameters represent the time
scale 7, the constant rate of change «, and the initial goal position go.

3.7 Primitive Motions Library

Performing repetitive tasks is of great value in any robotics application and its
organization is an important aspect when dealing with several movement primitives. The
concept of using motion primitives library is very simple and has been presented by other
researcher such as Hoffmann et al. (2009) and Pastor et al. (2009). Every DMP can
represent a basic movement, from these it is possible to build more complex motions to
accomplish new and different tasks. Like creating building blocks and then used together
in different combinations to achieve a new goal.

The library construction would begin with the teacher demonstrating a set of motions.
These are then labelled and stored in the library. Each movement can be named depending
on the task or motion, e.g. reach-object can move the robot arm from the start to goal
position in an ellipsoidal trajectory.

From the labelling, it is now possible to use the library to perform a task that was not
initially defined with each independent DMP. Yet to know which motion block to use,

Santiago Andres Solis Paiva 25



CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

it is needed a high-level interpretation of what they do. The use of this library is still
dependent on the task which needs to be done, and the block usage will depend on every
different task that needs to be performed.

Every motion block represents a basic movement, therefore primitive, and will require
from the teacher a high consumption of time in order to label each block appropriately.
Nevertheless, with high-level abstraction, it is possible to use the blocks to perform new
and complex movements without the need to re-learn new motions.
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Chapter 4

Implementation of Learning
Framework

To make use of the Dynamic Movement Primitive framework in a robotic system, it is
important to define a structure on which the system is built upon. It must be able to
learn demonstrated trajectories and make use of them. The system will make use of an
impedance controller, a dynamic movement primitive library, a locally weighted regression
algorithm and an enhanced canonical system which all of them will be explained further
in this chapter. To start, the framework will be implemented in two phases.

The work-flow overview shown in Figure 4.1 presents the before-mentioned phases
named as learning and control respectively. In the learning phase, the system will learn the
DMP parameters through a demonstration done by a teacher in Hand-Guidance Mode;
the latter will be explained later in this chapter. These learnt DMPs will be stored in
a primitive motion library. Afterwards, the control phase comes into play. The system,
supervised by the user, will select the DMP from the library according to the desired
task. Thereupon, an autonomous mode will use the chosen primitives and the robot
control system altogether with the path generator is executed. On the side, there will
also be presented a robot-guidance mode which as the name suggest it guides the user
through primitive motions.

Learning Phase Control Phase
Locally
Weighted
Regression
Hand- .
Guidance DMP. DMP Selection —> TraJectqry
Generation Generation
Mode
Save Global
Parameters
Y
DMP Library [-{----==-====mmmmmm oot

Figure 4.1: System schematic work-flow
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4.1 Learning Phase

To make use of the operators working knowledge in a task, trajectories needs to be
taught to the robot system. To do so, the learning phase is presented. In this phase, the
system needs to be given a demonstration done by a teacher. This information will be
stored and properly processed so the new primitive can be generated, after which it will
be stored in a library for future use.

The chosen method to perform the demonstration will be through kinematic guidance,
known as Hand-Guidance Mode. A user friendly mode where the robot can be guided
physically through any trajectory, and with the use of its sensors to record relevant data.

4.1.1 Hand-Guidance Mode

For the current learning system, it is important to receive the teacher’s input in order
to learn the trajectory to accomplish specific tasks. Therefore, is important to have a
method in which it is possible to obtain the robots sensors data that properly represents
the teacher’s intention; since it is directly related to the good performance of the system.
For that reason, in this work, the Hand-Guidance Mode is presented. A human-robot
interaction mode which will be a starting point in the learning system. Resulting in a
capacity to receive specific data from the teacher and store it for further processing in the
learning algorithm.

Hand-Guidance Mode

Human-Robot
Interaction

v * Teacher
:
i
|
.4

Training Data

Figure 4.2: Hand-Guidance Mode representation

The hand guidance mode’s basic principle is to use an impedance control to move
the robot through different motions using the teachers guidance. Normally, but not
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Figure 4.3: Robot end-effector position change with impedance control loop and human
interaction

exclusively, the teacher’s hand will be used to generate robot motion into its body and
therefore the name of hand-guidance mode.

This approach allows a dynamic interaction between the environment and robot
structure. The controller will generate a dynamic relationship between force and position
through a spring-damper behaviour of the teacher’s input force and the robot structure.
These will be regulated through the parameters of stiffness and damping which play an
important role in the hand-guidance mode.

The teacher will provide the motion generation input for the robotic system which will
create a difference between the robots current and a desired position. The purpose of
using the impedance control in the hand-guidance mode is to have a low resistance for the
movements applied, so the teacher does not feel a strong repelling force coming from the
robots mass and inertia while teaching a specific movement. Thus creating a minimum
force interaction between the teacher and robot (Figure 4.3).

The impedance control scheme is used in joint space and it will allow to use the robot
in any position configuration that is possible. First, the system is initialized and the
impedance dynamics are applied to every joint of the robot arm in the initial pose.
Stiffness and damping parameters are set at a minimum possible which will result in
a very compliant robot arm. The teacher will move the arm as desired with very little
resistance and at every instance of the control loop, the desired position is constantly
updated according to the current position of the arm. This way, the robot pose will be
changed according to the teachers desired motion.

For the whole process, the system will save all the data necessary to use in the learning
algorithm (Figure 4.4). It is of interest to use the Cartesians position of the tool center
point (TCP) with its orientation in Euler form (z,y, z, o, 3,7), and the joint configuration
of the robot arm (qy, ..., q,). All the data will be processed later on in order to learn the
systems position in joint and task (Cartesian) space.

The impedance control is a pathway to new positions that are provided by the teacher.
Nonetheless, due to the nature of a very compliant robot arm, it is of ease to reach
the robot arm joints limits. This becomes a problem that can damage the robot arm and
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Figure 4.4: Data training set taken from robot motion

block its movement completely. Thus, this will be addressed by manipulating the teachers
motion with the impedance control during the learning phase.

Through a slight modification of the impedance control’s parameters it is possible to
obtain different levels of compliant systems. In the specific range of values that are close
to the limits of each joint, there will be an increase of the stiffness parameter for the
impedance dynamics. The robot will no longer update the values of the desired position
and, in return, it will generate a less compliant behaviour that creates a repellent force
near the robot’s. When the teacher puts the robot in an unfavourable pose for one of
the joints, it is possible to feel a force which will not allow the system to go further and
therefore avoid reaching the system’s.

There are 3 different ranges that are defined to avoid going over the limits of the joints
in the robot arm as shown in Figure 4.5.

e The free movement zone: Is where the teacher has complete freedom in moving the
robot arm. Here the impedance parameters are set at a possible minimum so the
teacher can move the robot in any way possible with little force feedback.

e The restricted movement zone: It is 2%-10% the robot limit’s value which depends
on the axis. In this mode, the stiffness parameter is increased according to how far
the joint is with respect of the end-effector. This is done so the joints which are
closer to the base have a higher impedance compared to ones near the end effector.
Most of the times, a force is applied at the end effector for guidance, therefore, the
robot joints will receive a higher torque when they are closer to the base.

e Blocking zone: Is the values less than 2% the limit’s value. Here, the hand-guidance
mode will stop all movement of the robot arm. This last feature is included as

30 Escuela Técnica Superior de Ingenieros Industriales (UPM)



Learning system for compliant autonomous tasks in harsh environments

180
Blocking
Restricted Movement
a
=
-
=T
= Free Movement
=
Restricted Movement
BlocKking
-180

Figure 4.5: Joint’s zones in hand-guidance mode

a safety measure of the robot so it doesn’t reach under any circumstance the set
limits.

As explained before, most of the workspace for use to the teacher is in the free
movement zone as it has a minimum force interaction. On the other hand, inside the
restricted movement zone, the teacher will feel a repelling force in the joint whenever it is
getting close to its limits and can act accordingly to avoid blocking the robot’s movement
completely.

Using this mode can bring comfort to the user when trying to teach a specific trajectory
and it has a safety measure to detect a bad configuration of the robot. It is a method for
accomplishing kinesthetic learning and mitigates any discomfort that the user may have
when trying to move a robot which can be heavy.

4.1.2 Data Processing

When working with learning algorithms, initially the signals need to be manipulated
in different ways to obtain good representation of the patterns that are embedded in the
data samples.

This section will be focused on explaining the steps taken to process the hand-guidance
training data in a structure to learn trajectories through dynamic movement primitives.
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In this sub-section the Figure 4.6 gives an overview of the flow-chart to do all the
computations and achieve a learning system of dynamic movement primitives.

PROCESSING

Time
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Figure 4.6: Data Processing Flow-Chart

4.1.2.1 Pre-Processing

Initially an interface is developed to create a preprocessing module. The raw data is
initially saved with a structure of a matrix, where every column represents one degree of
freedom and every row is a data value at each step. This does not mean it needs to be such
but normally its interpretation is done like this throughout the work for simplicity. Once
every column is identified as a degree of freedom, the global parameters are extracted for
each one of them. These include, final and initial position, time duration, step size in
between data-points and maximum-minimum values.

Once the global variables are extracted, the data needs to be adapted for the supervised
learning algorithm. In pre-processing, a mean normalization is applied by using the
Equation 4.1. This, for the most part, is a precondition to decrease the condition number
of the matrix.

In numerical analysis, the condition number represents the output’s sensitivity to
changes in the input. It is of interest the computation of a normal equation (3.12) with a
high number of data-points to obtain the weights that can best represent the trajectory.
Nevertheless, due to the non-triviality of the computational process for solving the normal
equation, the numerical stability needs to be taken into consideration in order to have a
good numerical precision.

Computing big matrix solutions inside a real system can have some unwanted results if
not treated correctly. Numbers are represented by the size of its memory allocation in the
system and therefore errors are introduced. This is known as the foaling point numerical
error. If a matrix is well conditioned then the precision will be good due to the condition
number being low. A good precondition to get a well conditioned matrix is by using a
normalizing factor into the values of the matrix (Hartley (1997)). This is because the
numbers’ representation can be more precise when removing pre-existing conditions that
are already known. Take for example the offset in a dataset, this value will be constant
throughout the signal which normally will occupy memory in its representation. If the
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value can be removed then the computation of matrices will increase in its numerical
precision.

. X -X
X=—""= (4.1)

Tmaz — Tmin

Here the value of X represents the normalized signal, X the raw values, X the mean,
Xinar maximum and X,,;, minimum values. The data signals are then normalized to a zero
mean and scaled to the unit value. Afterwards, the actual derivatives need to be obtained
through a finite-difference approximation so it is possible to encode the trajectory into a
primitive.

The forward and backwards formulations are common ways of computing derivatives
in discrete signals. These are known to be a first order accurate approximation which
means that the error’s magnitude is roughly proportional to the step size. On the other
hand, there is a centred approximation formula which is known to be a second order
accurate. This states that the error is proportional to the step sizes’ square value(LeVeque
(2007)). Therefore, using a centred formulation will reduce the error from a computational
approximation to a less degree in comparison with a first order accuracy equations.

The first derivative is calculated with the known symmetric difference quotient which
is shown in Equation 4.2.

X(t+1)—X(t—-1)
2h

Where X’ is the derivative, ¢ is the time input and A is the step size. Similarly to
compute a second derivative, the Equation 4.3 is used.

X' = (4.2)

X(t+1) —2X(8) + X(t 1)

X// — h2

(4.3)

4.1.2.2 Processing

Once all the signals’ derivatives are computed, the implemented supervised learning
algorithm can be used. First, each the degrees of freedoms are separated and the
equation 3.10 is used in each one of them to encode the trajectory into the dynamic
primitive through equations 3.12 and 3.13. In order to obtain the encoded trajectory
some parameters must be pre-defined initially such as the stiffness (K) and damping (D)
values. These can be chosen so the system can be critically damped, as done in many
different works such as Samant et al. (2016), Schaal et al. (2003) and Karlsson (2017). In
this work, due to the use of a modified transformation system, the stiffness and damping
values were selected through empirical observations of the resulting learning algorithm.

Furthermore, the time signal needs to be transformed into the exponential canonical
system’s state variable. This is done through mapping of the linear time signal into a
response of an exponential decaying function as shown at Figure 3.8. In this step, the
parameters such as starting point (normally chosen as 1) and decaying parameter needs
to be defined so the time signal is properly adapted into the canonical system.

Once the signal is encoded and the canonical system’s input state variable is mapped,
the locally weighted regression can be employed to compute the weights through the
normal equation. Depending on the chosen amount of desired kernel functions, the weights
are computed iteratively throughout of the encoded trajectory for the non-linear forcing
function.
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As a result, the system at this point is capable of generating the weights which will
define the trajectory to be performed and the non-linear forcing function will be able to
represent a specific movement.

4.1.2.3 TCP’s Orientation Signal Continuity Algorithm

Initially, the values in Euler form will be taken from the robot system. This obtained
by the forward kinematics from the robot structure. As a consequence there TCP’s
orientation values create a problem due to the representation needed for Cartesian space.
The data values are taken initially in Euler form and they are constrained in the range of
-180 to 180 degrees. Resulting in an undesired singularity near the plus/minus 180 degree
position.

The value will abruptly change near the singularity, creating instantaneous jumps in
the signal. As a consequence, the learning algorithm will fail to represent the data since
it is imperative that the signal be continuous in time. To avoid this complication, the
orientation must be modified to have a uninterrupted waveform.

The transformation will be done through the quaternion representation, the reason lies
in its capacity of representing a continuous orientation signal through simple mathematical
manipulation. The Equation 4.4 defines the transformation between Euler angles to
quaternions.

Qu cos(%)cos(g)cos(%) + sm(%)sm(g)sm(%)

G| _ cos(%)sm(g)cos(%) - n(%)cos(g)sm(%) (4.4)
Qy cos(%)cos(%)sz’n(%) + sm(%)sm(g)cos(%) '
qz sin(§)cos(5)cos(3) — cos(§)sin(5)sin(3)

The vector ¢ = [qu, Gz, Gy, ¢-)* represents the quaternion and parameters of «, 3,y define
the robot’s TCP orientation. Furthermore, in order to obtain once again Euler angles from
quaternion the Equation 4.5 needs to be used.

o atan2(2(quwds + ¢:qy), 1 — 2(q; + ¢2))
ﬁ = CLSin(z(Qwa - q,z%:)) (45)
ot atan2(2(Qme + Qsz>> - 2((]3 + qz))

One advantage taken from the quaternion definition, which this work makes use of,
is that the orientation of a quaternion is the same if multiplied by a scalar as long as
the unit length constrain is maintained. Thus, if the quaternion is multiplied by -1 the
orientation does not change. This becomes an important element that will be used to
create a continuous signal that can represent the TCP’s direction.

When all the Euler orientation signal is transformed by the quaternion expressions
shown in Equation 4.4, the resulting signal will also have unwanted jumps. Therefore, it
is important to find when does the jump in signal occurs. This is done by observing the
time location when the sign changes.

When the signal changes sign in Euler representation, the values in quaternion will
change sign as well and it will be shown as well when transforming the orientation space.
Nevertheless, in the quaternion space, all its parameters (g, qs,¢y,q.) change by its
negative counterpart. Knowing this, the quaternion can be multiplied by -1 in these
specific moments where there is a sign change and a continuous signal can be obtained.

The process to find the unwanted sign change can be identified by multiplying two
adjacent values in time of the Euler orientation signal. If the value is negative and its
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Figure 4.7: Euler angles transformation into quaternions processing algorithm

magnitude is high then there is an unwanted signal jump. The magnitude is important
to consider since there can be changes in orientation near the 0 value which are by any
means desired to keep. Figure 4.7 shows the flow-chart of how the logic of this process is
done to get the quaternion signal.

4.2 Control Phase

The system, as mentioned before, initially learns a trajectory. It goes through the
learning phase until all the parameters needed to run the primitives are computed and
stored in a library. Once this happens, the operator can use the control phase to make
use of the dynamic movement primitives.

In this section, an overview of the implementation architecture is explored. The different
control modes of the current framework are presented and explained. These modes
are selectable by the operator depending on its needs; named as robot-guidance and
autonomous mode.

When working on robot system, there is a need to consider the architecture needed for
the path planning. In the current robotic system, the control laws are already designed so
delving too much will not be part of this work. Nevertheless, an overview will be provided
to understand how the robotic system uses dynamic primitives.

The dynamic movement primitives are normally used as a trajectory generator in the
control loop (Figure 4.8). Continuously creating desired points of positions, velocities or
accelerations throughout the task’s duration to accomplish a goal. The signal of desired
positions will be fed to the different modes and then into the robot system. Furthermore
the error is taken into account and fed to the path generation block to accomplish a
stopping compliant behaviour. Furthermore, other inputs can be added into the DMP
generator which can be discussed in future works.

Initially, the operator needs to select a control mode for the operation of the robot.
These are defined as either the experimental robot-guidance or the autonomous mode.
Afterwards, a selection of primitives must be done from the library. These can involve
just one or several different ones, depending on the user’s needs. Once this is done and all
the parameters are set, the system can be started in its control loop and the trajectory
generator will start to feed the robot system of desired values.
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Figure 4.8: General structure of the control phase

4.2.1 DMP trajectory Generator

The trajectory generator is defined as the system which, from an input and parameters,
will create the desired points for the robot control laws. Learnt dynamic movement
primitives play an important role and its generation will be explained in more detail.

A block diagram of the DMP generator is shown in figure 4.9. In the beginning, some
parameters have to be set. These can be the starting position, goal, decaying rates
or weights. They can be chosen and changed depending on the task’s needs or taken
automatically from the learnt primitives. If they are changed, the system will adapt the
outcome to match the new parameters, otherwise it will repeat the same dynamic as it
was initially learnt.

The system then starts with the canonical values. They are fed to the transformation
system’s non-linear forcing term which will generate the desired kinematics for the robot.

The dynamical movement primitives depend on various differential equations known
as the transformation and canonical system. Therefore, a numerical method is used to
compute the values at each instance of time. For this work, an Euler method was chosen
as it uses a simple finite difference approximation to compute the different values in time.
The forward Euler method uses an initial value, already known, to find the next value in
time (Equation 4.6).

Tpi1 & Ty + ha' (tn, ) (4.6)

The function of 2'(t,, x,) is the derivative of x at the time n and h is a time step. The
benefit of using this method is the fast computation and simple operations. Furthermore,
it can be used for higher-order ODE by introducing extra variables. For example, in
our case, the second-order equation of the transformation system (Equation 3.9) can be
rewritten as two first-order equations. Hence, it is possible to redefine the state variables
to Equation 4.7.
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Figure 4.9: Block diagram for the DMP generator
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&z _
W (4.7)

dt

Once again, we rewrite our transformation system with the new variable definition and
make use of the forward Euler method for numerical integration in Equations 4.8.
v,= K(g—x)—Dv—K(g—x,)s+ Kf
Upt1 = Up+ LR (4.8)
Tpi1 = Tp+vnh

The h will normally be chosen of low magnitude to allow a good numerical computation.
If it were to be chosen of high value then there will be a big divergence from the actual
dynamics and give wrong results. This value will also be closely related to the time
dependency of the system, since it is from this computation that the time is also defined.

Additionally, as shown in the Figure 4.9, there are external inputs to take into
consideration. These are the dynamic changes in the parameters of the goal position,
provided by Equation 3.19, and the error between actual robot response to desired
trajectory values. The latter is taken to the o, parameter to change the canonical system’s
dynamics through the Equation 3.17 and provide an enhanced compliance. However, there
will be slight difference on its use depending on the selected operation mode.

4.2.2 Robot-Guidance Mode

This mode was inspired by works done in assistive and rehabilitation robotics such
as done by Lauretti et al. (2017) and Chen et al. (2017). In this mode, the system
becomes compliant with the human operator’s input and is capable of reproducing learnt
trajectories through human-robot interaction only.

The general purpose of this mode is to test the dynamic movement primitives
through human-robot cooperation and familiarize the operator with learnt trajectories
to perform specific tasks with the robot arm. For that reason, it is possible to test the
developed path planning and the several different implementations done for this work
(e.g. dynamic stopping mechanism) in a constantly running control loop. Furthermore,
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Figure 4.10: Logic flow-chart of robot-guidance mode

this mode represents the implementation of known primitives framework into other kinds
of applications to test its adaptability into new projects.

Hand-Guidance and Robot-Guidance Mode

Robot-guidance mode is developed based on the hand-guidance mode presented earlier
in subsection 4.1.1 which was used as a teaching method. The latter is done through the
use of a joint impedance control architecture which allows the user to perform smooth
motions with the robot’s body. In the control phase, the idea will be used as a base
structure but with some modifications to adapt for the purpose of robot-guidance mode.

Initially, in the hand-guidance mode, the input of the impedance control relies only on
the interaction between the operator and robot. Basically, it just follows the operators
motion. On the other hand, the robot-guidance mode takes into consideration the dynamic
movement primitive generator (DMP generator) in the control architecture to create a
more complex behaviour.
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Mode Architecture

The working logic of this mode is implemented as shown in Figure 4.10. There are two
elements which allows the creation of points from the DMP generator. One is the detection
of an input force. In this case, the force will be detected in the robot’s end-effector.
Second, there is no deviation between robot and the last command sent from the system.
As a result, the robot can only move if the user applies a force and there is no high
deviation values.

The use of impedance control can provide a very compliant behaviour depending on
the parameters of stiffness and damping that are used. Nonetheless, it also allows for
the user to move the robot in unwanted directions. It is desired that the robot follows a
learnt trajectory, therefore an error that relates the robot’s actual position and the path’s
points is considered .

To compute an error value that comes from the robot’s movement and the DMP
generator, a coupling term will be implemented. This value will be fed to the canonical
system through the Equation 3.17 and will decrease the generation of points by modifying
the decaying rate of the canonical function. Additionally a limit of the value 0 is set so
the decaying rate does not become negative 4.11. As a result, the generation of desired
points will be linked by the current robot actual position and user interaction with the
system.

This mode’s outcome is a behaviour that will move the robot depending on its learnt
trajectory and the operators input force. The desired positions will come as the user
interacts with the robot, nevertheless if the operator deviates from the original form of
the primitive, a decaying parameter (canonical) will tend to zero and the generation of
points will quickly slow-down until it halts. The transformation equation’s values will
be set to no longer update new points and the robot will try to force itself into its last
known position. However, due to the impedance control and the compliance it brings to
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the touch of environmental forces (the operator’s touch), the motion to move back into
the original path does not feel harsh and it can be very intuitive.

If the operator moves with the robot, it will follow the initial learnt trajectory, otherwise
it will not move and stay put in the last known position.The operator will then be able
to familiarize with the learnt primitive through its motions and also will be capable of
assessing if the learnt trajectory is optimal for the task at hand.

4.2.3 Autonomous Mode

This mode was developed to accomplish tasks by setting parameters and using learnt
behaviours. The system will run selected dynamic movement primitives in a continuous
loop until it achieves its goal. Furthermore, it also uses the capabilities of the implemented
framework such as goal dynamic change and compliant behaviour based on the impedance
controller and the enhanced canonical system.

Task Initialization

For accomplishing a task in the current proposed system, first a task must be set
and defined. This means, that several primitives must be developed first and then used
accordingly to achieve a goal. To do so, the learning phase is used as necessary to get the
needed primitives to perform the desired activity.

To begin using the autonomous mode, there is a initialization phase that must take
place. Here the task is defined and the trajectories are selected. It is important to know
that the task can be a result of using several different sub-tasks that need to be achieved
in certain order, e.g. moving the TCP up and then down.

Using the DMP library allows that every primitive can be repeated, or even used in
different conditions. Thus, changing global parameters, such as goal or starting position
will result in an adaptation of the primitive. This adaptability, as it was already explained,
comes from the transformation system. Additionally, the pattern will be similar due to
the modified properties of the differential equations.

From the DMP library the parameters should be identified and modified accordingly
to achieve a desired behaviour. This process is demonstrated at Figure 4.12 in general
terms.

In the example figure, the desired pattern will be formed of three sub-tasks defined by
DMP A and C. The initial global parameters for the first sub-task (DMP A) are found ok
with the initial desired path. However, C’s learnt parameters do not match the current
criteria in the wanted sub-task. Therefore, C’s goal position are modified to adapt for the
new circumstances (DMP C*). Furthermore, the third sub-task is just a repetition of the
first one (DMP A), but the goal position has been changed to achieve the new desired
path (DMP A*).

Task Control Algorithm

Once the task structure has been defined, the program can take this data and start the
robot’s control algorithm . The system has been initialized, now the DMP generator will
be started from the parameters taken in the task structure and commands are created from
the transformation system. These are then fed into the control law of the robot system
which will work with an impedance control. A block diagram description is presented in
Figure 4.13.
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Figure 4.12: Example diagram for task structure definition using a DMP library

The system will repeatedly perform a the DMP control loop to generate the trajectory
and constantly use a function that outputs the success of a sub-task. In this case,
the euclidean distance between current position in every degree of freedom (6,,) and its
corresponding goal value (Equation 4.9) is used to find if the sub-task has been achieved
or not . When all have reached a distance less than a threshold, the task or sub-task can
be considered a success (4.10).

The function that defines the accomplishment of a sub-task, or task, doesn’t necessarily
have to be a distance function. It can also use different parameters such as feeling a force
with the TCP force sensor or when an object has been detected by a camera.

dist, =

(0,, — goal,)? (4.9)

if (dist,, < Threshold) — Goal Achieved (4.10)

Once the sub-task goal has been reached, the algorithm will move on to the next
sub-task in the task loop. It uses the last robot’s position to update the starting point of
the next DMP parameters. Once this is done, the DMP control loop will start its cycle
again. This is repeatedly done until all the selected primitives are performed.

The control system is done through an impedance controller to add a compliant
behaviour when there is some sort of disturbance coming from the environment. It allows
for an error to be introduced to the DMP generator and it minimize any kind of damage
it might come from obstacle contact by using the canonical coupling term.

Based on the equation 3.17, variations of ag will be dependent on the error. This
will be usually taken by the difference between the position of the robot and primitive.
However, due to the use of an impedance controller, an error will constantly reduce the
transformation system’s velocity. To avoid this behaviour, we take into consideration a
force threshold that the system must feel before activating the decaying function variation.
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Figure 4.13: Task control loop and DMP control loop block diagram

This will consider the forces on the system and therefore, if nothing is felt, even if there
is an error between primitive and robot, the system does not try to slow down.

Figure 4.14 describes the logic flow-chart when a force is detected by the sensor. If it is
identified a force and deviation, the parameter will be changed according to the defined
dynamics. In the beginning it will slow down the system. When an error manages to
cross the logarithmic function’s 0 point a collision has been detected by the system.

During collision, the a, will be defined as negative and will be used to start the robot’s
return movement. This means, a retracing of the motions already performed by the
robot. Once a certain time has passed, the system will stop entirely, and the operator can
intervene in the situation. Either by moving the robot into a different place, actuating
on the obstacle or even changing the primitive to use for this particular task.

Additionally, for the DMP generator there’s an input that allows the change of goal
position for each running primitives. The DMP generator will use the dynamics explained
in Equation 3.19 and create a smooth transition between goal values. This will avoid any
high differential changes in the transformation system equations and will create a transient
without high accelerations or spikes.
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Figure 4.14: Autonomous mode decay rate variation logic flow-chart
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Experimental Results

In following chapter the proposed learning framework’s validity is tested. First an
overview of the working environment will be described. Test with simulations are also
done to view the relationship between learned trajectories and executed ones. Following,
the framework is used in a real robotic system. the following are the tests that are
presented with no relevant order.

e [orce interaction in Hand-Guidance’s mode.

e Changing goal parameter through the DMP Generator’s.

Human-robot interaction in robot-guidance mode.

Single primitives tests in autonomous mode.

Obstacle collision response in autonomous mode.

Unscrewing a connector through high level task selection in autonomous mode.

5.1 Workspace environment

In order to achieve the objective of this work, the proposed learning framework will be
implemented through the use of a robotic arm that can fully perform the desired tasks.
In this section an overview of the robotic system will be presented with its characteristics
and capabilities.

5.1.1 Kuka LWR Iliwa 14 R820

For this work, the Kuka LWR Iiwa 14 R820 robotic arm is presented (Figure 5.1).
The system is classified as a lightweight robot by KUKA Roboter GmbH (2016a) with 7
different axis as shown in Figure 5.2 and its structure is arranged as an in-line wrist, join
modules and a base frame.

Its design focus is to obtain a safe Human-Robot collaboration robotic system that
is most commonly used in an industrial setting. Signals of positioning, torque and
temperature with many different locking mechanism to assure safety in its operation.

Kuka offers its own system software with a pre-built library which has several different
functions ready to use (KUKA Roboter GmbH (2016b)). Its custom made operating
system is known as Sunrise and is designed for fast application development in an
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TR

Figure 5.1: Kuka LWR liwa 14 R820 Figure 5.2: Joints location

industrial setting. Additionally, the interface’s language is based on Java Runtime
Environment.

Joint Limits

As shown in Figure 5.2, 7 joints are used in this robot arm. They are identified by
the letter A following the joint number. These work in a limited range of angles which
is defined by the Table 5.1, where the highest rotational range is 340 degrees, and the
lowest is 240 degrees.

Joint No. | Limits (°)
Al £170
A2 £120
A3 +170
A4 +120
A5 +170
A6 +120
AT +175

Table 5.1: Joint Limits For Kuka Iiwa r&20

This is an important information to consider, since beyond these ranges the robot
internal software will force a stop to avoid damaging the joints.

Robot’s task space and joint impedance control

The impedance control for this system is used in joint space, where it takes the joints’
position to create a spring-damper dynamic interaction with the environment. It is used
to obtain compliant system and make it safer to detect obstacles in the robot’s path that
are can come in direct contact with the robot.

It is vital to use joint space for this control scheme since it will allow more flexibility in
the robot arm. Resulting in a safer motion due to a compliant behaviour in each of the
joint and not only in the end-effector as it is done for the impedance control using task
space.

The task space describes the end-effector’s position and orientation in world coordinates
([x,y, 2, a, 8,7]). And the DMP generator can make use of these coordinates to learn more
intuitive trajectories that can be modified. Knowing a world coordinate position can be
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useful when coupling other systems and makes it easier to understand the data. Therefore,
in order to use both joint impedance control and task space, the inverse kinematics (IK)
of the robot needs to be computed.

The solution of a high degree robot arm’s IK is complex and not trivial since there are
infinite solutions to a specific robot arm pose. In this work, the implementation of an IK
algorithm is not needed since the robot’s software already has a pre-built library which
uses its own algorithm. The already used IK is based on the redundancy angle of the
robot (A3 axis) and the wrist position (interjection of joint’s axis A6 and AT).

5.1.2 TCP’s orientation to quaternion

To obtain good results in the learning algorithm, the signals must be always continuous.
Otherwise, the relationship between input and output will be lost. In order to avoid
this, the orientation of the TCP which is in Euler form, must go through the algorithm
demonstrated at Figure 4.7 in chapter 4. The representation with quaternions will help
in generating a smooth signal for the controller.

4 T T T T T T

Alpha
ar Beta i
Zamma

Angle({rad)
=
|

0 2 4 6 8 10 12 14
Time(s)
Figure 5.3: Robot’s TCP Euler’s Orientation trajectory
It is possible to visualize the jumps in the gamma (vy) orientation between 7 and —m
radians in Figure 5.3. When the values are transformed in quaternions, these jumps are

also apparent in the new orientation space as shown in Figure 5.4, and as expected all
the parameters (qy, ¢z, ¢y, ¢-) jump as well.
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Figure 5.4: Quaternion’s Orientation trajectory transformation before applying the
continuity algorithm

Now the algorithm in sub-section 4.1.2 is used for these demonstrations, and the
resulting signal becomes the one shown in Figure 5.5.
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Figure 5.5: Quaternion Transformation with signal continuity algorithm

In the new orientation space, the signals are all continuous as expected. The data is

now usable in the learning algorithm which will allow the use of task space in the robot
arm.

5.2 Hand-Guidance Mode low force interaction

When using Hand-Guidance Mode, due to the use of a very low stiffness and damping
coefficients in the impedance control it is possible to have a low force interaction with the
robot. The parameters were selected very low and they are presented in the Table 5.2.
Axis Al to A4 present a higher stiffness because the force that can be exerted in these
joints can be higher. This because the operator usually moves the TCP, which is the
farthest part of the robot arm and will create a higher torque on the joints close to the
base. Therefore, to avoid involuntary movements from the operator into a these axis,
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the impedance values of these are slightly higher than the others. As a side note, the
parameter for the damping is related to the Lehr’s damping ratio. In these tests an
operator uses the presented mode to move the robot in different directions. The position
values of joints were recorded and the force in the TCP, which is the point of contact
between the robot and operator, as well.

Joint # | Stiffness (Nm/radian) | Damping(unit-less)
Al 2 0.9
A2 2 0.9
A3 2 0.9
A4 2 0.9
A5 1 0.9
A6 0.5 0.9
A7 0.5 0.9

Table 5.2: Hand-Guidance Impedance Control Parameters

A trajectory is presented in Figure 5.6. Altogether, the force magnitude was recorded
as well and is shown in Figure 5.7. A force applied to the TCP as it is the location where
an operator can constantly apply the motion.

The robot-operator interaction in this test has a duration of 20.85 seconds and the
mean force reflected on the TCP is of 3.8921 Newtons.

Several other tests were executed and are presented as the Table 5.3. As an average,
there is a force of 5.2219N to move the robot by using its TCP. This mode results in an
easier way for the operator to teach a specific motion through its body. It is important
to note that the operator could also move the robot on its joints directly, which can make
the TCP force lower than expected.

Most movements were done with no difficulty in the presented hand-guidance mode,
however, there were small exceptions when trying to move from specific poses. These were
near singularities where the robot could not move a joint to achieve a desired motion’s
direction. In these cases, the operator had to do a different kind of movement to leave
the singularity. It was noticeable the most in demonstration # 7, where the operator was

presented with a robot pose near a singularity. Resulting in a higher force applied to the
TCP.

Demonstration (#) | Mean TCP Force (N) | Duration (s)
1 2.8512 12.10
2 4.6584 2.45
3 3.6004 4.84
4 7.6220 3.12
5t 5.1200 10.56
6 2.1340 15.77
7 10.2253 16.64
8 4.2546 8.21
9 3.4568 9.01
10 8.2983 4.98

Table 5.3: Mean TCP Forces in various demonstrations
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Figure 5.6: Joint’s Motion in Hand-Guidance mode. In decreasing order, each graph is a
respective axis of the robot arm (A1-A7)
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Figure 5.7: Hand-Guidance mode force magnitude on TCP during learning phase’s
kinesthetic teaching

5.3 Learning Dynamic Movement Primitives from
demonstration

In this section, the hand-guidance mode will be used to learn a desired trajectory. A
primitive will be created from the demonstrated data and its results will be presented.

Stiffness (K') | Damping (D) | No.Kernel | Kernel Bandwidth (h)
20 80 50 1.0

Table 5.4: Parameters for learning DMP

The following are results obtained from creating a primitive using 13 degrees of freedom
with a duration of 6.75 seconds. The variables correspond to the position in world
coordinates of the TCP and robot’s arm joint configuration. The parameters used to
learn this primitive are shown in Table 5.4. These values were chosen empirically through
observation of data and behaviour of the system. They are selected due to the good
results that were obtained, given by having no oscillations in the response and low error.

The signals errors were computed with the root mean squared error (RMSE), which
can give an overview of how different is the signal between each other. The data comes
from a robot demonstration as previously mentioned and the results are obtained by the
dynamic movement primitives transformation systems output.

In Figure 5.8, the RMSE mean is 0.0351 between all the joint parameters. Nevertheless,
there are some cases where the demonstration had very small movements which was not
properly learnt (A3). Because of the system’s smoothing property through both the kernel
functions and differential equations, these small movements are filtered out which results
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Figure 5.8: Joint Demonstration and predicted signals. From top to bottom, the left side
are odd number of the robot’s axis (Al, A3, A5, A7), and the right side are the even
number (A2, A4, A6)

in the observer behaviour. On the other hand, the other joint predictions have small
errors and they also smoothed the demonstrated trajectories.

The Figures 5.9,5.10 and 5.11 show the TCP’s position world coordinates (X, Y and 7).
And Figures 5.12, 5.13 and 5.14 are orientations. The starting points in world coordinates
are [266.3mm, —184.8mm, 823.3mm| and the goals are [435.6mm, —520mm, 557.1mm].

The mean RMSE altogether is 3.3690, which makes it a precise motion, in Cartesian
space, of the primitive. It can also be seen that the demonstrated signals have small
oscillating motion un some parts. These are due to the operator’s teaching movements
and is an expected element when performing any kind of kinesthetic learning with a very
low stiffness robot. Nevertheless, the predicted signals are all smoothed out due to the
dynamic movement primitives’ properties (kernel functions and differential equations),
and these oscillations are not noticeable in the predictions. Furthermore, the canonical
system links all degrees of freedom and each signals reaches their destination.

The Kuka Iiwa robot can store data for up to 1 ms, and depending on the systems
computational load, the value can increase up to 40 ms. This needs to be taken into
consideration when choosing the number of kernel functions and the bandwidth. If the
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Figure 5.15: Variation of goal position with single primitive in 3D coordinates system

system’s data logging frequency is high and precise then a high amount of kernel functions
can be used with a low bandwidth. This way, the pattern can be reflected by the kernel’s
weights and the predictive signal will be smooth as well.

5.4 Dynamic goal change in DMP Generator

Using primitives allows to change dynamically the goal values of the system. This test
will be using already known DMPs and apply two different changes. First the global
parameter of the goal (g) will be changed to different values. Second, the goal change will
be done while the system is executing the DMP generator.

For the tests, the DMP will use 3 degrees of freedom that represent [X,Y,Z]. This
way it can be observe with more ease the behaviour of the DMP generator when running.
Furthermore, the goal change will be done along the X axis with steps of 200 mm each.

For the first test shown in Figure 5.15, the original goal value is defined in
[435.4mm, —519.7mm, 556.8mm]. The goal values for each prediction is defined by the
black points and the system starts at the same position, denoted by a red point. The
affected axis is shown in Figure 5.16. Here is more visible the dynamic adaptation to the
new goal conditions and the error it implies.

The Table 5.5 shows the values set for the goal and the resulting prediction from
the primitive at time of 6.75 seconds. It shows that the further away from the original
primitive, the slower it takes the system to reach. Eventually, the DMP generator will
generate the set value due to the transformation system’s convergence property, but
further in time. The maximum error was of 9.66 mm from a 400 mm change of the
original goal’s trajectory.

In Figure 5.17, a single primitive is executed in the DMP generator. Each path starts
on the same position [-31.76 mm, 67.53 mm, 829.38 mm]|, denoted by a red square, and
its original goal is the position [707.07 mm, 327.29 mm, 389.11 mm]|. The system, in this
case, will present a sudden change of the goal position while performing the DMP, and it
will be indicated with a black arrow in the figure. The variation of the goal position is
done along the X-axis in steps of 200 mm.
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Figure 5.16: Variation of goal position with single primitive in X-axis

Prediction | Set Goal (mm) | Reached Value (mm) | Error (mm)
A 836.06 826.4 9.66
B 636.06 631 5.06
Original 436.06 435.6 0.46
C 236.06 240.2 4.14
D 36.06 44.82 8.76

Table 5.5: Goal changes values and their errors at the expected finishing time

It is observable how each sudden transition is done for each prediction and the
adaptation of new conditions is not erratic or unstable. By using the dynamic change of
goal presented in Equation 3.19, the trajectory’s generation is smooth and it adapts to
the initially learned shape which has some sort of ”s” shape. Nevertheless, as mentioned
before, there are two elements which must be taken into account with the new adaptations.
When adapting to new conditions using a high-degree of freedom robot like the Kuka
liwa r820, it is possible to compute an unreachable position. For example it can be a
singularity location or a position out of reach by the robot’s structure. Therefore, the
real applicable adaptability of the primitives is reduced by the robot’s kinematics in this
current framework. To avoid this problem, several dynamic movement primitives must
be trained to take into account these specific locations.
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Figure 5.17: Goal position change online modulation

5.5 Robot-Guidance Mode

The experimental compliant mode was developed to further utilize the capabilities of
the proposed framework and to test the replication of dynamic primitives through the
human-robot interaction. Mostly performed as an experimental mode for testing new
dynamics and behaviours.

This test will consist of using the before mentioned guidance mode. The system is
initialized with a learned dynamic movement primitive. The beginning of the guidance
begins when an user touches the robot’s TCP. It will indicate that the guidance can
begin and therefore, the DMP generator will start producing command set-points to the
controller.

Figure 5.18 is the force signals in the duration of the test. First the user will apply
a force and try to feel where it should go. The robots impedance force altogether with
the DMP generator interacts with the user and it "pulls” towards the used primitive’s
direction. In the before mentioned figure, it is indicated by the normal guidance force.

Then the user will start to move away from the expected primitive direction and force
it away. The system will detect this deviation and stop the point generation halting the
movement of the robot. Nevertheless, due to the impedance control, the user can move
the robot around but will feel a force that pulls towards the desired direction. In other
words, the robot stops and tries to force the user to go back to the original direction. In
Figure 5.18 this moment can be seen as the highest peaks of force in the signal.

After pulling the user will not move the robot and it will stay in place as long as the user
doesn’t interact with it. Afterwards, there will be another pull away from the direction
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Figure 5.18: TCP Force during robot-guidance mode

of the primitive and the robot will not generate points away from its position. Following,
the user will apply a slight force which the system will detect and start generating the

next points to follow.
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Figure 5.19: TCP Force during robot-guidance mode
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Figure 5.19 shows the position of the TCP in world coordinates and it is visible how
the DMP generator behaves and how it interacts with the user. It is important to note
that the path generation is done by the use of the enhanced canonical system. If there is
an error detected between the actual robot system and the desired points, the system will
stop creating new points and wait until the position of the robot is closer to the primitives
path. It differs than in autonomous where the value of o, does not become negative, it is
saturated at the value 0.

In the showed positions graph 5.19 it can be seen that during the robot’s guidance
there’s always an offset from the DMP generator’s commands. This is due to the
impedance controller compliance which has low stiffness. As a result, the user doesn’t feel
a high force pulling but just a slight drag from the robot. Even though there is an offset,
the path pattern is very similar to the desired one, which is represented by the learned
primitive.

This test presents the robot-guidance mode as an application of the present dynamic
movement primitives with the use of an enhanced canonical system to stop the generation
of points when there is a high deviation. Showcasing the current framework’s adaptability
into other situations that might be useful.

5.6 Autonomous mode DMP test

The robot system will be used to perform a specific trajectory. Here, the user will
teach the robot motion and the system will learn this motion and replicated through the
autonomous mode. After the trajectories are performed in the learning phase, and the
parameters are properly set. A new primitive is created. From here, the autonomous
mode comes into play to use the parameters and perform the trajectory in the robot
system.

This test was used on the Kuka Iiwa robot arm under the implemented autonomous
mode. As mentioned before, the joint impedance control is used and the parameters of
the controller were chosen as presented by the Table 5.6.

Joint # | Stiffness (Nm/rad) | Damping(unit-less)
Al 300 0.9
A2 150 0.9
A3 150 0.9
A4 150 0.9
A5 150 0.9
A6 150 0.9
A7 150 0.9

Table 5.6: Joint Impedance Controller’s Parameters

The trajectories were taught before-hand through the hand-guidance mode, and the
primitive was executed by the robot arm. The presented degrees of freedom are the
world’s coordinate at the TCP and its quaternion representation [X,Y, Z, qu, ¢z, gy, ¢:)-
Starting from position [136.8,292.7,821,0.2362,0.09794,0.8349, —0.4877] and reaching
the goal at [593.6, —222.2,368.8, —0.03794,0.1293,0.8711,0.1293]. The duration of this
particular primitive is 15.93 seconds.

It is observable how the controller is following the DMP generator’s output in
Figure 5.20 and 5.21. Nevertheless there is slight offset after a couple of seconds, in
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particular with the orientation. Due to the impedance controller, there is a tolerance of
the position that needs to be defined by the system. This tolerance lets the robot have
some leeway in the positioning response. If the stiffness were to increase then the position
control can be more precise, but it also reduces the robot arm’s compliance. Hence there
is a relationship between the robot’s precision and its compliance with the environment.

By using the impedance controller defined in Table 5.6, the resulting precision is very
high as shown in Table 5.7.If the impedance parameter is reduced by 50% of the initial
used value, to have a more compliant behaviour, the resulting precision is reduced as
shown in Table 5.8.

State Variable | RMSE
X 0.9849
Y 1.4880
Z 5.3165
G 0.0046
0 0.0172
Qy 0.0094
q. 0.0061

Table 5.7: RMSE of Dynamic Movement Primitive and actual Robot’s position. Normal
Impedance Values

State Variable | RMSE
X 2.1954
Y 3.2185
Z 3.2137
G 0.0060
0 0.0129
% 0.0152
q. 0.0094

Table 5.8: RMSE of Dynamic Movement Primitive and actual Robot’s position. Low
Impedance Stiffness

Using the autonomous mode allows the system to perform specific primitives.
Nevertheless, due to the Kuka’s designed controller, the DMP Generator needed to slightly
changes how the system should generate points. In this case, to create desired set-points
at a reasonable rate, there was a time delay added in the program which allowed the robot
to perform the desired commands. If this delay had not been added, the robot creates
commands at an extremely high rate and jumps almost instantly to the trajectory’s end.
This time delay was added during generation of the command and constantly checks if
the robot has reached the desired command or not.

5.7 Enhanced Canonical System stopping
mechanism

This test is done to validate an enhance canonical system to stop the robot system
during a short collision. The stopping mechanism was designed to make use of two
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Figure 5.24: TCP’s Z position change inFigure 5.25: TCP’s Qw orientation change
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elements. One is a modification of the canonical equation that takes into account the
error between DMP generator and robot response, and second is force detection through
the sensors. This test is done by putting an obstacle in the robot’s path and observing
the behaviour it produces when detected.

The test consist to initially let the system run normally with a specific primitive. Here
the behaviour is that the robot moves from an upper. After approximately 3 seconds,
an obstacle, which will be a stopping hand, will be put in the robot’s TCP path and the
behaviour will be observed. The system will have a force threshold that detects a collision
condition and will activate the a; parameter variation.

Figure 5.22 to 5.28 shows 7 graphs which contain each world coordinates of the TCP,
both in XYZ and quaternions. The red line shows the DMP generator behaviour and the
blue line is the actual TCP’s robot position. At around 3.76 seconds the contact with a
hand is detected and is indicated by a black circle in the graph.

There is a rapid deviation from the robot’s position away from the expected DMP
values, noticeable by the small bump in the TCP position. Most visible between
coordinates X (Figure 5.22) and Z (Figure 5.24). This is due to the obstacle position
in space and the direction in which the robot is moving to.

60 Escuela Técnica Superior de Ingenieros Industriales (UPM)



Learning system for compliant autonomous tasks in harsh environments

0.105 T T T T

T T 0.865 T . T . T T
Qx-Axis TCP Orientation .
01r P — — —DMP Generator Output | /Q‘nl ~ 1
e \t_‘ O Obstacle Contact Instant 0.86F A / ~a_ :
0.095 | N\ 1 A =~
W ~
0.09 \\ 1 0.855 7 v —— Qy-Axis TCP Orientalion
o i\ o - — — —DMP Generator Output
S 0.085 F \ 1 ‘5 Vi O Obstacle Contact Instant
g N E 085 / 1
@ L AR 1 o] /
2 o008 \ 2 )
N -
0.075 1 0.845 J
3\ - A i
NV
0.07 [ ) % 1
\ 4 084 1
N4
0.065 1 )
N /’_/
0.06 - : - - : - 0.835 == -
0 1 2 3 4 5 6 7 0 1 2 3 4 5 & 7
Time (s) Time (s)
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Figure 5.28: TCP’s Qz orientation change inFigure 5.29: Joint A7 orientation change in
collision collision
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Figure 5.31: Joint A2 change in collision
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Figure 5.32: Joint A3 change in collision  Figure 5.33: Joint A4 change in collision

It can be seen that in some axis even though the collision has happened, the DMP and
robot response is moving without deviation. This behaviour is due to the robot being able
to move in a position that the obstacle is not obstructing according to his learned path.
Nevertheless, when using several positions to detect the collision, it creates a redundant
detection where if several are failing, then everything will stop and try to move backwards.

The force detector is activated by a threshold and the DMP detects a collision. Using
the dynamic equation presented before, the system takes a turn and stops. Notice how
the DMP generator output in the graphs all change the direction they were going the
moment the collision has been detected.

From Figure 5.29 to 5.30 the joint coordinates are shown. There are some deviation
before the obstacle’s contact, but it is expected due to the impedance controller’s
compliance. Similar than in Cartesian space, every joint-axis detects the collision and
therefore the system starts to deviate from the desired position. The DMP generator
responds accordingly and redirects the path to a different way.

When the obstacle is detected initially a force is felt by the sensor and an error rapidly
increases. This affects the canonical system, and it slows it down until it stops generating
new points. The error then becomes negative and the canonical system begins to move
the transformation equation in the opposite direction due to the negative decaying rate.

It is important to note that when the robot starts to move backwards, the decay rate
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Figure 5.34: Joint A5 change in collision  Figure 5.35: Joint A6 change in collision

must be latched into a negative value. Based on the Equation 3.17, when the error starts
to decrease the decay value will start to be of positive sign. Then the system will begin
moving forwards colliding once again with the obstacle. This is an undesired behaviour
and therefore by latching the value into a negative sign, the system will just return to its
original position.

The retreat is shown in Figures 5.22 to 5.29 in all coordinate systems. Notice after
the collision point, that the movement is slower and hence the change in direction of
the DMP generator signal is less steep. This comes from the lack of symmetry in the
returning path and the negative change of the decay rate. Furthermore, the observed
primitive shows that the path is not entirely the same as before. This is because of the
modified transformation dynamics, which causes the shape to change.

After the robot has done some retreat, the system is then stopped by detecting a small
time lapse after the collision and halting all computation of new points from the DMP
generator.

Another element that must be noticed is that the generated path when in contact
is not diminished immediately and therefore the offset force is only mitigated by the
working impedance controller. The contact with an object lasted around 0.9 seconds.
This proposed method might not be the best with fast moving robots, since the differential
trajectory can be high during a short time and the current parameters of the impedance
controller might not give a good enough compliance with the object. Tables 5.9 and 5.10
gives a look of the maximum error detected between the DMP generator command and
the actual position of the robot.

The error between DMP and robot system is at its highest when «, reaches 0 and the
canonical system starts to increase in value. This moment can be seen in Figure 77 at
the maximum drop near the 0.3 value. Nevertheless, if the parameter of stiffness in the
controller is lowered, even though the robot precision drops and a compliance can become
much better.

The drop of the parameter must be done quickly, otherwise the time of contact with
the collided object will be too long. This is accomplished by creating a fast negative drop
in the canonical decay rate.

Changing rapidly the decay rate comes with the cost of losing precision in the differential
equations. The decaying rate is directly linked to the step size that the exponential system
can perform. By creating big steps, the systems acceleration will increase as well, and the
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actual position of the differential equations will start to diverge from the computed ones.
This error affects the robot’s position and can cause it to reach undesirable poses and is
one of the biggest downside when trying to recover from a collision with the proposed

modifications.

Coordinate | Error (mm) | Coordinate | Error (unit-less)
X 15.3611 T 0.0139
% 2.3297 @ 0.0107
7 16.7684 % 0.0044
q- 0.0150

Table 5.9: XYZs and Quaternions Maximum Errors detected during collision

Joint # | Error (degrees)
Al 0.8568
A2 6.2442
A3 0.8112
A4 6.1200
A5 0.8205
A6 1.7434
A7 1.3739

Table 5.10: Joint Maximum Errors detected during collision

Due to the transformation system’s properties, the retreating path can go through a
singularity which can be detrimental. This is due to the pattern that has been learned
and will be reproduced in the system. Nevertheless, in this test after detecting a collision,
the robot successfully retreated into another position and stopped. Derived not having
high velocities and the proposed canonical system’s response to the collision.

5.8 Multiple DMP task - Unscrewing a burndy
connector

Initially, it was mentioned about the Collimator’s disconnection task that is performed
at the CERN’s accelerators. A disconnecting device is set on top of the beam pipe to
remove it. To accomplish this task, several repetitive tasks must be followed and each
one of them is described in the pattern explained next.

1. Robot needs to reach close near the screw’s or object’s area.
2. The end-effector needs to slowly move towards the screw in order to fit in the tool.
3. Use the tool (e.g. grab).

4. Move away the end-effector from the area.

To validate the presented framework, this task will be done in autonomous mode and
different primitives will be learned to do steps 1,2 and 4. Step 3 will be done separately by
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Position X (mm) | Y (mm) | Z (mm)
Start 268.7 180.5 809.3
Original Goal | 682.14 | -268.03 | 293.06
New Goal 519.89 | 576.94 | 281.24

Table 5.11: Position values for the Reach-Object-Vicinity primitive

another device which is going to be the gripping of an object. The object will be a circular
burndy connector (Figure 5.36). Additionally, an additional action will be included in step
4 which is turning the tool. This is done to unscrew the burndy connector.

Initially three primitives will be learned by the system. They are going to be stored in
the library and will be chosen to perform this task. For the first part of the task, that
is to reach the objects area, the primitive will be defined as ”reach-object-vicinity”. To
test the dynamic adaptability of the framework, this particular primitive, will be taught
with a different goal location. The action will be to reach the area, but not specific to
the task’s object.

Figure 5.38 illustrates the change of the robot’s TCP path using the old primitive with
a goal position set to the new one. The Table 5.11 indicates the original values of the
goal position and the new one. For the orientation, no values were changed since both
had the desired orientation at the path’s end (TCP aimed down).

A second primitive will be name as ” go-down-extended-pose”. The robot will normally
be extended in this primitive, but not near the singularity zone. Then the end-effector
will move slowly towards the burndy connector and be in position to grasp it with the
tool.Finally, the third primitive will be the "turn-and-pull” action. In this part, the
end-effector will slowly turn to the desired direction to unscrew the connector, and pull
once the rotation is finished.

The path for all the primitives performed is illustrated by the response of the robot
system in Figure 5.41. Each color represents a dynamic primitive. The time duration for
each one of them is presented in the Table 5.12.

The primitive for go-down-extended-pose, presents a movement not entirely straight as
it can be seen in Figure 5.41 by the cyan color. This was due to how the primitive was
learned, which was near the position and moving the robot arm down. The movement
does not go down in a straight line but it does reach the destination. These kind of

Figure 5.36: Burndy connector for DMP task
execution test

Figure 5.37: Kuka robot in starting position
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Figure 5.38: Robot response to goal change in Reach-Object-Vicinity primitive

Figure 5.39: Kuka robot finishingFigure 5.40: Kuka robot finishing
Reach-Object-Vicinity Primitive Go-Down-Extended Primitive
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Figure 5.41: Full path of TCP performed by KUKA robot with 3 primitives for task
completion

Primitive Duration (s)
Reach-Object-Vicinity 12.40
Go-Down-Extended-Pose 8.31
Turn-and-Pull 21.27

Table 5.12: Duration for each Reach-Object-Vicinity primitive

behaviour is expected when using kinesthetic learning to accomplish very precise task
that can be difficult for an operator to perform on a robot. Nevertheless, the gripper
reached the burndy connector properly.

Once the gripper grabs a burndy connector, the third primitive comes into play. Turning
and pulling can be a dangerous primitive since it does not guarantee that the turn
completely unscrew the connector. Nevertheless, in this test the learned trajectory is
done successfully. The pull was done as well and the robot managed to pull the burndy
connector out of its socket.

The completed task’s duration took around 45 seconds including the time to grasp the
object. The longest was on the turn-and-pull action, due to the level of carefulness that
the robot needs to have. This is reflected in the learned primitive since the operator
teaches this task slowly to have more precision in its moves.

This test shows the usefulness of an autonomous mode altogether with a library of
primitives. Its versatility is due to the capacity of adapting to new situations from
already learned information. Nevertheless, parts of the task took several tries as the
robot configuration managed to pass through singularities and did not perform well in
these cases. Particularly the turn and pull presented problems since the action pulling
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Figure 5.42: Kuka robot during turningFigure 5.43: Kuka robot pulling action of
action of primitive primitive

in an very extended position caused the robot to reach a singularity easily. This kind of
problem can be solved using only joint positioning for the robot’s control, but the task
space manipulation is lost in the way and therefore also part of the frameworks desired

functionality.
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Chapter 6

Conclusions & Future Work

In this work, the dynamic movement primitives framework was implemented in a real
high redundancy robotic system. The compliant behaviour was achieved through the
use of an impedance controller with an enhanced canonical system which gives extra
functionality to an already existing primitives framework. The following are several points
taken from these studies which are conclusions coming from this work.

e Teaching through kinesthetic learning is very useful to create complex motions
without the need to simulate kinematics. The hand-guidance mode uses a low
stiffness impedance controller which makes the robot arm easy to move.

e The used learned primitives are highly dependable on the demonstration because
of the Locally Weighted Regression algorithm, and teaching through human-robot
interaction. If the demonstration is badly performed, the system will response badly
as well. Nevertheless, these methods of learning are very fast and can be constantly
repeated.

e Automated tasks, such as unscrewing, can be done through dynamic movement
primitives due to their simple and flexible nature. The framework is adaptable to
changes in parameters which makes them versatile in different kinds of situations,
such as goal variation, without becoming unstable. Furthermore, many different
primitives can be used for accomplishing a complex task.

e The compliant behaviour implemented can stop robot motion by using both the
enhanced canonical system and an impedance controller. It can also retreat to a
position out of collision. However, the path is not always the most optimal and it
can even put the robot in an undesired pose or location.

e Singularities are extremely dangerous in a high-dimensionality robots when
performing demonstrations that come from kinesthetic teaching. The user can
unknowingly pass through a bad position, or singularities, which result in primitives
not usable in task space.

e Controlling a robot in world coordinates through the autonomous mode can be both
beneficial and detrimental. Its representation in world space is highly desirable
which makes the adaptation of primitives simpler and easier to use in other works.
However, the inverse kinematics dependency to control the robot system creates
high accelerations near singularities.
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e A compliant behaviour is achieved with the use of both joint impedance control and
the proposed enhanced canonical system. The decay’s rate dynamics allows for the
generation points to slow down, and it can also be used to create a retreating path
when a collision is detected. Nevertheless, the path is not guaranteed to be the most
optimal and can cause undesirable robot poses.

e The system is able to learn and smooth complex trajectories through the use
of locally weighted regression for non-linear estimations and ordinary differential
equation. The mixture of canonical and transformation systems allows robot
learning with high degrees of freedom.

e Dynamic Movement Primitives are adaptable to various applications. Such as the
proposed experimental robot-guidance mode, where the operator can use a primitive
and be guided by the robot.

6.1 Future Work

Much more work can be added in this implemented framework which can be expanded
and improved further. Its adaptability to new elements is one of the fortes in this system
and the addition of different functionalities can extend its working range and applications.

The use of primitive libraries is very useful in the successful completion of tasks. But
in this work, the user needs to select the primitives separately, which takes extra work
especially in an automated task. Miilling et al. (2013) uses a mixture of motor primitives
(MoMP) to select and generalize among primitives, where they are weighted by their
suitability in a given task or context. Its work is used to teach table tennis to a robot
arm, where it automatically selects the best primitive depending on sensor inputs.

Using a fixed value for the hyper-parameters, such as number of kernel functions and
bandwidth, can give a good representation of the demonstrated data. Nevertheless, if
these are not selected correctly then approximation errors can appear. A promising
algorithm to solve this issue is the Receptive Field Weighted Regression (RFWR) Schaal
and Atkeson (1998). Depending on the trajectory’s shape, the algorithm can select
learning hyper-parameters automatically. It can also be used to handle redundant data to
fuse new demonstrations into an already existing one and create a single primitive from
several different demonstrations. Schaal et al. (2002) is another source where various
non-parametric techniques are used in real-time robot learning and might be useful to
apply.

An integration with a vision system to handle position parameter changes by means of
a perceptual coupling is a highly desired feature in this work. Works such as Pastor et al.
(2009) and Samant et al. (2016) use vision algorithms to communicate with the dynamic
movement primitives and accomplish different task. Variations of primitive parameters
through sensors brings high adaptability to new situations and allows to test real-time
modulation.

Robot task space control is accomplished in this work through kinesthetic learning and
inverse kinematics computation to an impedance controller. However, singularities are
always problem when using high redundancy robots which can make certain primitives
not work in specific situations. Due to the adaptable nature of the primitives and freedom
of teaching through the hand-guidance mode, it is possible to cross singularities in the
robot’s path very easily. A solution of this problem could be to include an obstacle
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avoidance motion generation system such as the ones presented by works of Stavridis
et al. (2017) and Hoffmann et al. (2009) to avoid singularities. It will allows the robot
to perform paths while dodging specific spots which are considered beforehand through
some method of simulation or computation as a singularity spot, and therefore improve
the robotic system path planning. Promising as it is, the implication of implementing
this method still needs to be studied further.

Furthermore, the experimental compliant mode can be extended to tele-operated tasks.
The general purpose of this mode is to use learned dynamic movement primitives to
perform a specific task while the user is moving the robot arm. It will assist the operator
in performing the task, but will not function automatically. Coupled with vision and
force feedback the system can be an addition to reduce an operators stress in high-risk
tele-operated activities. The implementation of such work will require a bi-lateral control
scheme between dissimilar robot structures and the coupling of different systems using the
same primitives. Work like the one presented by Umlauft et al. (2014) make use DMPs for
cooperative manipulation between two arms, and can be useful for tele-operated activities
if further researched and tested.

The current enhanced canonical system can be used to detect collisions through errors
in the primitives and actual status of the robot. Even though it generates a path to retreat
collisions, the modification should also be extended to the transformation system. Due to
time restrictions, this implementation was developed to just move backwards, and it brings
errors from its original path. This means that is possible to reach undesirable poses or
locations. Changing the behaviour of a primitives’ transformation system when detecting
a collision would be an interesting approach for further development in dynamically
retracing a path.
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