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ON THE NUMERICAL METHOD FOR ANALYSIS
OF THE DYNAMICS OF THE CLASSICAL
HAMILTONIAN SYSTEMS
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1L.INTRODUCTION

In the present paper the numerical analysis method for the dynamics of the clas-
sical Hamiltonian systems with pair potentials is described. The Hamiltonian H of
such a system of N particles has the form

N 9
Z% S Vul@-q)=T+U. (1)

i<

The need for the analysis of such systems often arises in investigations of models in
theoretical and experimental physics [1-5]. The problem is reduced to the solution of
the nonlinear equations of motion

dg, _oH  dp _ 0H )
dt — 95’ dt ~ g’ )

with the given initial conditions
@to) =g’ Filto) = B, 3)

the independent variable t varying within a sufficiently large interval, 0 < ¢ < T,
T » 1. Moreover, in a number of physical cases of interest it is necessary to know
with the given accuracy the asymptotic behavior of the solutions when 7' — oo.

Only in extremely rare cases it appears to be possible to find the analytical solution
of the Cauchy problem (2), (3). Therefore, the numerical methods are the main
tool for solving this problem. General methods of the Runge-Kutta type [6] and
corresponding programs, developed for a wide variety of equations, are often used
in this case without taking the specific features of the problem (2), (3) into account.
This results in the unjustifiable complication of the computations and sometimes even
in the loss of the accuracy [7,8].

In contrary to such an approach, we develop our numerical algorithm basing on
the Taylor decomposition of the solution to be found, supposing that the terms of this
series may be expressed analytically. This supposition is justified for some potentials
Vi; important in physics. This allows us to choose efficiently the integration step
depending on the behavior of the series truncation error, and also to carry out the
parallel analysis of the small perturbation dynamics, which, in turn, makes it possible
to reason about such properties of the system as the stability and the transition to
chaotic regime [9] .

In Section 2 the proposed method and algorithm are described. In Section 3 the
results of the calculations and the numerical analysis of the system dynamics are
presented for some classical potentials - Coulomb, Gaussian, Toda and Henon-Heiles
[2]. The analysis carried out shows that in some cases the so-called unstable regime
is a computational effect.



2.NUMERICAL INTEGRATION METHOD

To get an approximate solution of the Cauchy problem (2), (3) in this paper the
Taylor expansion of the solution in the vicinity of the point ¢ is used.

Suppose that at a certain moment ¢ of time the radius-vectors {g:(t)} and the
momenta {f;(t)} are known. Taking a derivative of Eq. (2) with respect to ¢ yields

&2(t) _i(aH(t) _i G*H_dp; | 0*H_dg,
a2~ d\ 9p 0p:0p; dt ~ 0p:0g; di |

= (4)

i=1

Making use of Eq. (2), one gets

=1

2 N 2 : 2
dq.(t)zz{ H 0H  O°H (’)H]’ N (5)

—e s Y s 5=
dt2 0p:0p; 0q;  0p:04; Op;

In a similar way the following expression for the second derivatives may be obtained

- N 2 2
FaG PR SO

t — L0q:0p; dq;  04:07; 9p;
Supposing that for the Hamiltonian considered it is possible to get analytical expres-
sions for the partial derivatives in all variables up to the order of n + 1 and using
the similar recursion procedure one can find n derivatives of {gi(t)} and {p:{t)} with
respect to t.

Note that for any vector function 7(t), differentiable n + 1 times in the interval
[¢,t + At], the following identity is valid

n Rl i 7 nt1) nt+1
e+ an -3 (t]_)!(m) - (Tfél(lA)!t) | -

=0

where 7)(#) is the j-th derivative of 7(¢) at the point ¢, and ¢ belongs to the interval
[t,t + At]. Replacing the right-hand side of equation (7) with zero we get an
approximate equation for 7t + At). Varying the integration step At, one can control
the error, contributed to Eq. (7). Supposing that the variation of #(t1(¢£) is small
within the interval [¢,¢+ At] and setting the accuracy ¢ for the local error, it is possible
to express the integration step in time as

a1y "
A= " ErEng) , (8)

Let us consider 7(t) = (@ (t), ..., qn(t), Ar(t), .- ,Pn(t))T as the vector function 7(t)
and make use of Egs. (7) and (8). Then the values {¢;} and {#:} at the point ¢ + At
may be found.



The additional control of accuracy may be realized lg‘y means of checking the
conservation laws for the energy E and the momentum P, which are valid for the
system (2), (3) with the Hamiltonian (1):

N N
H(t) = H(to) = E = const,  P(t) = Z,z(t) = Zﬁ,-(to) =P 9)

Within the framework of the approach considered the proposed algorithm may be
also applied to the analysis of the dynamics of small deviations {Ag;} and {Ap;} of the
coordinates {g;} and momenta {p;}. The linearized set of equations (2), describing
the propagation dynamics for small perturbations of the solution in time, has the
form

dAG N[ 8*H . H
=2 [ 84+ B5or; A”’] !
iU

@ T = |opag;

dag, K[ #*H H

O Af; — AR

i = 2 oo 5z o) o

Let us write this set in the matrix form
di _ () i - _ — —, =0
dt = ( —S'(t) () ) z = B(t)Z, Z(to) =z, (11)

where 7= (Aq,. .., Adn, APy, ... ,Apn)T is the complete set of small deviations, i}
and [ are the zero and unity matrices, respectively. The matrix S(¢) in (11) is a
symmetrical block-structure matrix composed of blocks

{Si'(t)}j:.:l

of the second derivatives of the total potential energy U = U(q1,...,qn) along the
trajectory of motion ¢; = G(t):

5 PU(q,. ... qn)

S;(t) = 9307, . (12)
It is known that the local stability of the solutions of the problem (2), (3) may
be controlled by means of the analysis of the spectrum of the matrix B(t) entering
Eq. (11). If the real part of the spectrum o(B) of the matrix B(t) is strictly negative,
the asymptotic stability of the solution with respect to small deviations takes place.
If the real part of the spectrum is positive, Re(a(B)) > 0, small deviations increase
exponentially in the vicinity of the point .

Being realized as the program BODYN, the algorithm described above allows one
to analyse both the dynamics of the trajectories in the phase space and their local
stability at a fixed point of the phase space. The program is written in FORTRAN-77
and installed on the EC-1066 (IBM) type of computer. In this particular program
the fourth order of the Taylor expansion in the time step At is used.



3.NUMERICAL STUDY OF SOME HAMILTONIAN SYSTEMS

In the present section we describe the peculiarities of the numerical analysis of the

dynamics of some Hamiltonian systems by means of the algorithm presented above.
A. Toda and Henon-Heiles models

Consider the Hamiltonian (1) for a system of three “one-dimensional” particles (N =
3), corresponding to the Toda and Henon-Heiles models [2]

1
H= §(P§+P§+P§)+U(‘117QL‘13)» (13)
where

Ulgr,92,93) = V(gn — ¢2) + V(ga — g3) + V(ga — q1) ~ 3

is the potential energy of the system. Here

V(q) = exp(q) (14)

is the pair interaction potential for the Toda model and
1, 154
Vig)=1+ 59 + 39 (15)

is the pair interaction potential for the Henon-Heiles model.
The generalization of the Henon-Heiles model is described by the following pair
interaction potential

M
Vigg=1+3 L. (154)
For these models the energy and momentum conservation laws hold
H(t) = H{to) = E = const

P(t) = pi(¢) + p2(t) + pa(t) = P(to) = P = const. (16)
Note that in the present algorithm the momentum conservation law is valid automat-

ically for pair potentials. Since the Toda model is a completely integrable system,
the third, additional, time-independent integral of motion exists for it, namely

I(t) = p1()p2()p3(2) — pr(t)sa(t) — pa(t)ss(t) — pa(t)si(t) = I(to) = I = const, (17)

where
si(t) = exp(qi(t) — q2(t)),  s2(t) = exp(ga(t) — g3(?)),
s3(t) = exp(gs(t) — qu(t)), (17)
are the pair interaction potentials.
It is known that for some initial data Hamiltonian systems like Henon-Heiles model
pass through unstable and chaotic regimes. One of the mechanisms responsible for

these regimes- in deterministic systems is the local instability which causes the
exponential divergence of initially close trajectories in the phase space [ 9].



Consider for the models studied a set of linearized equations ( 11 ) for the small
deviations Z(t) for N = 3. Remind that the local behaviour of £(¢) in the vicinity of
each t value is determined by the spectrum of the matrix B = B(t) This spectrum
may be expressed via the spectrum of the matrix $= S( ). The matrix Sis symmet-
rical, hence its spectrum o($ ) = {A }i., is real. Respectively, the spectrum of the
matrix B is o(B) = {£V-M\}2,. Then the solution Z(¢) in the vicinity of ¢ may be
presented as

3
=3 (et VTG, (18)
1=]

It follows from (18) that if at least one of {};}2_, is negative, we have the exponential
growth of the small deviation #(t). For the Toda model the matrix S looks as

A $1 + 83 $1 —33
S = —381 57 + So —392 N (19)
—33 =82 S+ 83

where s,, 55, 53 are defined in (17°). The eigenvalues of the symmetrical matrix S are

M=0, dgg= Vot /V2-3V,, (20)

where V5 = 81 + 83 + 53, Vo > 0. It follows that all the eigenvalues A; for the Toda
model are always non-negative for any initial data. Therefore, the chaotic regime
does not occur, since the exponents in (18) are either purely imaginary, or zero.

A different situation may  occure for the Henon-Heiles model. The eigenvalues
X; of the matrix § may appear to be negative, i.e.,the chaotic regime arises since the
exponents in (18) become positive. The explicit expression of the eigenvalues ); has
the form

)\1 = 0, /\2,3 = (Gl + G2 + Gg) :t \/(G1 + Gz + Gg)z - 3(G1G2 + G2G3 + G3G1),
(21)

where
Gi=1+2(¢2 — 1), G2 =1+2(¢3 — ¢2), Gy =1+2(q — g3)-

If the values of ¢; are such that (G1G; 4+ G2G3 + G3Gy) < 0, then one of the values );
is negative and the small deviations demonstratc the exponential growth. Therefore,
as a result of the long presence of the trajectory in this region, the motion becomes
chaotic.

Using the algorithm proposed the particle trajectories have been calculated for
the Toda model. The validity of the conservation laws for the energy (16) and the
additional integral /() (17), depending on the prescribed upper limit of the local
error € and the time ¢, is shown in Tables 1 and 2 , respectively. In the same tables
the mean step value At,, = (t —t,)/k, where (g, ) is the integration interval in time,
k is the number of the integration steps, is presented as one of the characteristics of
the algorithm. In Table 3 the dependence of the coordinates ¢;(t) and momenta p,(1)



upon the value of € is shown. This Table demonstrates the influence of the summary
error upon the results in all the integration interval ({o,t). Analogous results in case
of the stable regime were obtained for the Henon-Heiles model. They are illustrated
in Tables 4-6.

The 'results of calculations of unstable computational regime are shown in Tables
7-9 for the Henon-Heiles model . It may be seen from Table 9 that in case of un-
stable computational regime the coordinates ¢;(t) and the momenta p;(t) cannot be
determined with the prescribed accuracy. In Tables 10, 11 the dependence of minimal
eigenvalues {3} of the matrix § upon ¢ and ¢ is demonstrated for the Henon-Heiles
model in stable and unstable computational regimes. For comparison in Table 12 the
same dependence is shown for the Toda model.

Another mechanism responsible for the unstable calculational regime is the local
unstability which causes large deviations between positive eigenvalues {\;}. In Table
13 the dependence of deviations between eigenvalues {A3} and {)\;} of the matrix
S upon t and M is demonstrated for the generalized Henon-Heiles model. For odd
and even numbers of potential we have unstable and stable regimes correspondingly.
Unstability of calculations in the considered example is result of large magnitudes
of egenvalues {A;}and {)s} of the matrix $ upon ¢ (A} = 0). In this case the sup-
position about small variation of #{"+1)(¢) within the interval {t,¢ 4+ At] is not valid
for proposed method. It should be noted that the same situation holds in = another
approach like Runge-Kutta type methods. As it follows from our analysis the re-
sult obtained in unstable regime is rather a consequence of the computational effects
(error accumulation, the limited number of digits, etc.) than a reflection of the real
picture. The latter should be obtained by means of the specially designed algorithms,
analogous to those applied to the solution of the hard differential equation sets [ 6 ].

B. System of similar particles with Coulomb and Gaussian potentials

Test calculations for similar charged Coulomb particles having the unit masses
and charges have been also carried out to check up the accuracy of the method. At
the initial moment #o = 0 of time all the particles were considered to be placed in
the apexes of the rectilinear octagon inscribed in a unit circle, the velocities of the
particles being equal in absolute values and directed along the radius-vectors {¢:}
towards the center. It follows from the symmetry of the problem that at any moment
t of time each of the particles will move along the ray passing from the center via
the initial position of the particle. The results of checking up the validity of the
conservation laws are presented in Table 14. From this Table one can also see the
dependence of the energy E(t), coordinate ¢;(¢), momentum pi(t) and the mean step
value &t,, upon the value of the local error ¢ and stability of calculations up to the
time as large as ¢ = 1000 . The mean time of one calculation was from 0.1 to 4s
using the EC-1060 computer.

This configuration of material points has also been calculated for the potentials
V; having the Gaussian form

Vii(@ — §;) = aexp{~B% — I}



The corresponding results for a« = 1., B = 0.1 are shown in Table 15.

So, the calculation technique developed may be extended over the class of poten-
tials, for which it appears to be possible to write explicitly the partial derivatives of
the Hamiltonian with respect to the phase variables.

It should be noted that the program realizing the method proposed is included
into the system for modelling the events in the experimental setup “FOBOS” in the
Laboratory of Nuclear Reactions, JINR.

4.CONCLUSION

The algorithm proposed for the class of problems considered seems to be more
efficient compared to general methods of the Runge-Kutta type. This is confirmed
by the successful operation of the corresponding program included into the mod-
elling system of the experimental setup, where the mass calculations are realized. As
compared with the standard programs, the program based on this algorithm has the
advantage of the possibility to analyze the stability of the solutions, which permits
one to evaluate the reliability of the results. The latter is particularly important
in the studies of chaotic regimes in Hamiltonian systems and, in principle, makes it
possible to judge whether the chaotic regime is really the essence of the phenomena
considered or it is a computational effect.

The prospects of developing the algorithms, combining the calculations of the
system dynamics with the stability analysis, are promising in modelling the complex
behaviour of simple systems.
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Table 1:

The dependence of the energy E(t), the additional integral of motion I(¢) and the
mean step value &t,, = (t — &)/k (where (to,t) is the integration interval in time, k
is the number of the integration steps) upon the value of the local error ¢ (see
eq.(8)) in the Toda model for the value of time ¢ = 20

e | E®) | 1) 8tan
107 | 21.0702 | -1.24645 | 0.05958
10-° | 21.5681 | -0.89949 | 0.01888
10-° | 21,5883 | -0.88543 | 0.00598
10-1° | 21.5889 | -0.88494 | 0.00189




Table 2:

The dependence of the energy E(t) and the additional integral of motion I(t) upon
the value of time ¢ for the value of the local error ¢ = 10~° in the Toda model

EQ | 10
21.5889 | -0.88492
21.5856 | -0.88867
21,5820 | -0.89008
21.5739 | -0.89325
21.5702 | -0.89552
20. | 21.5681 | -0.89948

| b
o o PP 2| =+

Table 3:
The dependence of the coordinates ¢;(t) and momenta p;(t) upon the value of the
local error ¢ in the Toda model for the value of time ¢ = 20

€ a(t) | @@ | @) | plt) | pt) | pa(t)
10* | 11.992 | 15.396 | 14.010 | 3.9803 | -1.7722 | -0.1881
107% [12.190 | 15.259 | 13.949 | 4.4653 | -1.9611 | -0.4842
1078 [12.199 | 15.253 | 13.946 | 4.4835 | -1.9680 | -0.4954
10710 [ 12.200 | 15.253 | 13.946 | 4.4840 | -1.9682 | -0.4958

Table 4:
The dependence of the energy E(t) and the mean step value 8tq, = (t — to)/k upon
the value of the local error ¢ in the case of stable regime of the Henon-Heiles model
for the value of time ¢t = 2.5

€ E(t) Stay
1072 | 7.103314 | 0.13853
10~* | 7.100485 | 0.03510
1075 | 7.100033 | 0.00788
1078 | 7.100000 | 0.00171

Table 5:
The dependence of the energy E(¢) upon the value of time t and the value of the
local error € in the case of stable regime of the Henon-Heiles model

t=0.{t=05]t=1|t=15]|t=2
e =10"%17.1000 | 7.0613 | 7.0013 | 7.0903 | 7.0982
e=10"%}7.1000 | 7.0987 | 7.0960 | 7.0986 | 7.0996
e =10"%]7.1000 | 7.0999 | 7.0998 | 7.0999 | 7.0999
e=10"%{7.1000 | 7.0999 | 7.0999 | 7.0999 | 7.1000




Table 6:

The dependence of the coordinates ¢;(¢) and momenta p;(t) upon the value of the

local error ¢ in case of stable regime of the Henon-Heiles model for the value of time
t =2

£ a(t) q2(t) g(t) | pilt) | pa(t) ps(t)
1072 | 0.7894 [ 3.2704 | 2.0581 | 0.7273 | 1.5971 | -1.8772
10~* | 0.6977 | 3.3885 | 2.0316 | 0.5136 | 1.8126 | -1.8790
107° [ 0.6930 | 3.3946 | 2.0303 | 0.5020 | 1.8241 | -1.8789
107® [ 0.6928 | 3.3949 | 2.0302 | 0.5014 | 1.8246 | -1.8789

Table 7:

The dependence of the energy E(t) and the mean step value &t,, = (¢ — t5)/k upon
the value of the local error € in the case of chaotic regime of the Henon-Heiles model
for the value of time t = 4

€ E(t) 8tae

107% | 6.898651 { 0.0041072
1073 | 7.090661 | 0.0008849
1671 | 7.099567 | 0.0001907
10712 | 7.099980 | 0.0000410

Table 8:

The dependence of the energy F({) upon the value of time t and the value of the
local error € in the case of chaotic regime of the Henon-Heiles model

t=0. t=1. t =2 t=3.
€ =10"% | 7.10000 | 7.09982 | 7.09998 | 7.10005
e=10"% | 7.10000 | 7.09999 | 7.09999 | 7.10000
e =107 | 7.10000 | 7.10000 | 7.10000 | 7.10000

Table 9:

The dependence of the coordinates ¢;(t) and momenta p,(t) upon the value of the
local error € in case of chaotic regime of the Henon-Heiles model for the value of

timet =4
€ a(t) 92(1) g(t) piit) () pa(t)
10-% | -31.9552 | 36.7735 | 1.97060 | -278.981 | 278.188 | 1.24009
10-% | -32.0793 | 36.8971 | 1.97106 | -280.523 | 279.709 | 1.26143
10-70 | -32.0852 | 36.9029 | 1.97108 | -280.595 | 279.780 | 1.26245
10-12 | -32.0855 | 36.9030 | 1.97109 | -280.599 | 279.783 | 1.26250




Table 10:

The dependence of the minimal eigenvalue {A3} of the matrix § (see eq.(21)) upon ¢
and ¢ for the Henon-Heiles model

t=0 [t=05]¢t=1. |t=15|t=2 |t=23
e=10"2[-3.9282 | -1.6777 | -1.1034 | -1.7202 | -4.2363 | -4.4438
e=10"%]-3.9282 | -1.6701 | -1.1251 | -1.8539 | -4.4265 | -5.0724
e =10"%1-3.9282 [ -1.6699 | -1.1257 | -1.8601 | -4.4361 | -5.1049
e=10"%1-3.9282 [ -1.6699 | -1.1257 | -1.8604 | -4.4366 | -5.1065

Table 11:

The dependence of the minimal eigenvalue {A3} of the matrix S (see eq.(21)) upon ¢
and ¢ for the Henon-Heiles model

t=20. t=1. t=2. t=3. t=4.

e=107% |-3.9282 | -11.2574 | -4.4632 | -8.9556 | -203.191
e=10"% [-3.9282 | -11.2577 | -4.4366 | -8.9603 | -203.935
e=1071°|-3.9282 | -11.2577 | -4.4366 | -8.9606 | -203.970
e =10"121-3.9282 | -11.2577 | -4.4366 | -8.9606 | -203.971

Table 12:

The dependence of the minimal eigenvalue {A3} of the matrix $ (see eq.(20)) upon t
and ¢ for the Toda model

t=0. t=4. t=8 (t=12. | t=16. | t =20.
e=10"7 [ 0.75379 | 2.41311 | 8.66217 | 2.43797 | 1.62631 | 5.06550
e =10"% [ 0.75379 | 2.40225 | 8.60587 | 2.64877 | 1.72674 | 4.50984
e =10"% | 0.75379 | 2.40163 | 8.60291 | 2.65849 | 1.73120 | 4.48662
e =10"19 [ 0.75379 | 2.40160 | 8.60279 | 2.65883 [ 1.73128 | 4.48596

Table 13:

The dependence of deviations between eigenvalues {3} and {A;} of the matrix S
upon t and M (see eq.(20)) of potential for the generalized the Henon-Heiles model

t=02[t=04{t=06{t=08| t=1. t=12
1.178 1.865 | 1.799 | 5.708 | 26.327 157.857
1.354 | 1.692 | 3.455 | 10.314 | 12.203 2.952
1.493 | 1.737 | 4.896 | 30.475 | 2799.2 | > 10000.
1.603 | 1.867 | 6.098 | 17.115 | 4.633 1.369
1.666 | 1.957 | 7.164 | 48.395 | >10000. -
1.700 | 2.011 7.503 | 19.857 | 4.723 1.668
1.715 | 2.035 | 7.818 | 37.295 | >10000. -
1.721 2.046 | 7.856 | 23.443 7.573 2.643
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Table 14:

The dependence of the energy E(t), coordinate ¢;(t), momentum p;(t) and the
mean step value 6t,, upon the value of the local error ¢ for the system of the eight
similar charged Coulomb particles,the unit masses and charges at the moment
t = 1000 of time ~

€ E(t) q(t) pi(t) btgy
10-2 | 23.17997 | 2403.480 | 2.406794 | 76.769
1074 | 26.41664 | 2567.007 | 2.569431 | 23.039
107% | 26.43974 | 2568.152 | 2.570555 | 6.9891
1078 | 26.43897 | 2568.114 | 2.570517 | 2.1881
10710 | 26.43893 | 2568.112 | 2.570515 | 0.6892

= At the initial moment ¢, = 0 of time ali the particles were considered to be placed
in the apexes of the rectilinear octagon inscribed in unit circle, the velocities of
particles being equal in absolute values and directed along the radius-vectors (t)
towards the center.

Table 15:

The dependence of the energy E(t), coordinate ¢,(t), momentum p,(?) and the
mean step value é¢,, upon the value of the local error ¢ for the system of the eight
similar particles with pair Gaussian potentials(a = 1,4 = 0.1) at the moment t = 6

of time *

€ E() qlt) nit) 84y
1072 | 14.31632 | 8.71397 | 1.88565 | 1.83617
10~* | 23.75530 | 11.2764 | 2.43673 | 0.35703
1075 | 23.92727 | 11.3886 | 2.44557 | 0.10659
1078 | 23.92547 | 11.3898 | 2.44547 | 0.03354

*The configuration of particles at the initial moment of time was the same as in
previous example.
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Axnumnn I1.1. v ap. E11-94-140
O YHCJIEHHOM METOAC AHAIN3A JMHAMMKH FAMIJIbTOHOBBX CHCTEM

[Mpeanoxen UMCAEHHBIA AJTOPHTM AHATH3A AMHAMHKU KJIACCHYECKHX
FAMUJIbTOHOBhH X CHCTEM € MAPHBIMH TMMOTECHLHAJIAMH. B METOAC HCHOJIbSyeTCH
pasaoxenue pewenns B pan Teilzopa B NPEANOJIOXCHAH, YTO k03 duLHeHTH
psna Teiiopa MOXHO BbpaduTs aHanuTuuecku. CymecTByer psi MapHbIX
[OTCHIMAMOB V, TPUMEHAIOWMXCS B PU3AKE, A/151 KOTOPLIX 9TO NPEANIOIOKCHAE
cripasenuBo. Meron nossonset 3¢eKTUBHO BHOMPATDH LIAT HHTETPHPOBAHUS
B 3aBMCHMMOCTH OT OMOKM yccuenus psaga Tewnopa, a TaKXKe NapanncabHO
NnpoOBOAUTb dHAIN3 IBONMKOLUHHA MaAdblX BOSMymCHPIl?l PCLICHHUA H HCCAEA0BATH
TAKUE CBOICTBA CUCTEMBI, KAK YCTOMUMBOCTD U NEPEXO]] K XA0THUHOMY PEXHMY .
Co3aaHa nporpamMma, peainsyollas npeiioXeHHbi aaroputM. [Ipusoasgrcs
PC3YAbTATH YMCACHHBIX HCCICAOBAHMI HEKOTOPBIX FAMMJIBTOHOBBIX CHCTEM.

PabGora BbinoaHcHa B JIabopaTopuy BHIUHC/IWTE/NBHOM TEXHUKH M aBTO-
matusaunu OUAN.

Coodinehme OFbEAMHCHHON HHCTHTYTA S1¢PHBIX uecael0sanmnit. 1ybna, 1994

Akishin P.G. ct al. E11-94-140
On the Numerical Method for Analysis of the Dynamics
of the Classical Hamiltonian Systems

The numerical algorithm of analysis of the dynamics of the classical
Hamiltorian systems with pair potentials is proposed. The method uses the
Taylor cxpansions of solution. The main supposition is: the terms of this
Taylor's scrics may be expressed analytically. There are such potentials which
arc important in physics. The proposed algorithm allows one to choose
cfficiently the integration step depending on the behavior of the truncation error
of the series, and also to carry out the paraliel analysis of evaluation of the small
perturbation of solution. which, in turn, makes it possible to reason about such
propertics of thesystem as the stability and the transition to chaotic regime. The
codes realizing the proposed method have been created. The results of the
numerical calculations for some Hamiltonian systems are given.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.
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