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Abstract: The CALICE Semi-digital Hadronic CALorimeter (SDHCAL) prototype using

Glass Resistive Plate Chambers as a sensitive medium is the �rst technological prototype in

a family of high-granularity calorimeters developed by the CALICE Collaboration to equip

the experiments of future leptonic colliders. It was exposed to beams of hadrons, electrons

and muons several times on the CERN PS and SPS beamlines in 2012, 2015 and 2016. We

present here a new method of particle identi�cation within the SDHCAL using the Boosted

Decision Tree (BDT) method applied to the data collected in 2015. The performance of the

method is tested �rst with GEANT4-based simulated events and then on the data collected

in the SDHCAL in the energy range between 10 and 80GeV with 10GeV energy step. The

BDT method is then used to reject the electrons and muons that contaminate the SPS

hadron beams.
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1 Introduction1

The Semi-digital Hadronic CALorimeter (SDHCAL) is the �rst [1] of a series of techno-2

logical high-granularity prototypes developed by the CALICE collaboration. These tech-3

nological prototypes have their readout electronics embedded in the detector and they are4

power-pulsed to reduce the power consumption in future ILC experiments. The mechanical5

structure of these prototypes is a part of their absorbers. All these aspects increase the6

compactness of the calorimeter and improve its ability to apply the Particle Flow Algo-7

rithms (PFA) techniques. It is made of 48 active layers each of them is equipped by a 1m ×8

1m Glass Resistive Plate Chamber (GRPC) and an Active Sensor Unit (ASU) of the same9

size hosting on one face (the one in contact with the GRPC) pickup pads of 1cm × 1cm and10

144 HARDROC2 ASICs [2] on the the other face. The GRPC and the ASU are assembled11

within a cassette made of two plates, 2.5mm thick, made of stainless steel. The 48 cassettes12

are inserted in a self-supporting mechanical structure made of 51 plates, 1.5cm thick each,13

of the same material as the cassette. The empty space between two consecutive plates is14

13mm to allow the insertion of one cassette. The HARDROC2 ASIC has 64 channels to15

read out 64 pads of the GRPC. They have three parallel digital circuits whose parameters16

could be con�gured to provide 2-bit encoded information indicating if the charge seen by17

each pad has reached any of the three di�erent thresholds associated to each digital cir-18

cuit. This multi-threshold readout is intended to improve on the energy reconstruction of19

hadronic showers at high energy (> 30GeV) with respect to the binary readout mode as20

explained in ref. [3].21
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The SDHCAL was exposed to beams of hadrons, electrons and muons several times22

on the CERN PS and SPS beamlines in 2012, 2015 and 2016. The energy reconstruction23

of hadronic showers within SDHCAL using the associated number of �red pads with their24

multi-threshold readout content is presented in ref. [3]. The contamination of the SPS25

hadron beams by electrons and muons and the absence of Cerenkov counters during the26

data taking requires the use of the events topology to select the hadronic events before27

reconstructing their energy. Although the rejection of muons based on the average number28

of hits per crossed layer is e�cient, the rejection of electrons is more di�cult because some29

hadronic showers behave as the electromagnetic ones in particular at low energy. To reject30

the electron events, the shower is required to start not before the �fth layer. Almost all of31

the electrons are expected to start showering before crossing the equivalent of 6 radiation32

lengths (X0)
1. Although this selection should not a�ect the hadronic energy reconstruction33

it reduces the amount of the hadronic showers to be studied leading to reduced statistics.34

In this note we propose to use another method to reject the electron and muon contam-35

inations without using the shower start requirement and thus to avoid losing statistics. The36

new method is based on exploiting the Boosted Decision Trees(BDT) technique [4, 5]. This37

technique is a part of the so called MutiVariate Analysis(MVA) Techniques [6]. The method38

developed in this note is similar to the one developed in ref. [7] where another technique is39

used, namely the Arti�cial Neural Network (ANN). In both the BDT and ANN, di�erent40

variables associated to the topology of the event are exploited in order to distinguish be-41

tween the hadronic and the electromagnetic showers, and also to identify muons including42

radiative ones that may feature a shower shape. Once the hadronic showers are selected,43

the standard method mentioned in ref. [3] is used to estimate their energy.44

2 Particle identi�cation using Boosted Decision Trees45

The SDHCAL prototype was exposed to pions, muons and electrons in the SPS of CERN in46

October 2015. In order to avoid GRPC saturation problems at high particle rate, only runs47

with a particle rate smaller than 1000 particles/spill are selected for the analysis. In this48

condition, pion events with several energy points (10, 20, 30, 40, 50, 60, 70, 80GeV) were49

collected as well as electron events of 10, 15, 20, 25, 30, 40, 50GeV. Although the electron50

beam is rather pure, the pion beam presents two main contaminations. One is the electron51

contamination despite the use of a lead �lter to reduce the number of electrons. The52

other is the muon contamination which includes cosmic muons and those resulting from53

pions decaying before reaching the prototype. To apply the BDT method, six variables54

are selected and used in the Toolkit for Multivariate Data Analysis with Root (TMVA)55

package [6] to build the decision tree.56

To study the performance of the BDT method, we used the Geant4.9.6 Toolkit package57

[8] associated to the FTF-BIC physics list to generate pion, electron and muon events in58

the same conditions as in the beam test at CERN-SPS beamline. For the training of the59

BDT, 10000 events for each energy point from 10GeV to 80GeV with a step of 10GeV for60

1The longitudinal depth of the SDHCAL prototype layer is about 1.2X0.
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pions, muons and electrons were produced. The same amount of events of each specie were61

produced and then used to test the BDT method.62

In order to render the particle identi�cation independent as much as possible on the63

energy, the pion samples of di�erent energies are mixed before using the BDT technique.64

The same procedure is applied for muon and electron samples.65

2.1 BDT input variables66

The six variables we use to distinguish the hadronic showers from the electromagnetic ones67

and from muons are described below. The beam direction is parallel to Z-axis and each68

layer of SDHCAL is perpendicular to the Z-axis.69

• First layer of the shower (Begin) : to de�ne the �rst layer in which the shower70

starts we look for the �rst layer along the incoming particle direction which contains71

at least 4 �red pads. To eliminate fake shower starts due to accidental noise or a72

locally high multiplicity, the following 3 layers after the �rst layer are also required73

to have more than 4 �red pads for each of them. If no layer ful�lls this, a value of74

48 is assigned to the variable. As mentioned earlier, electromagnetic showers start75

developing in the �rst layers. The one associated to muons will be 48 except for the76

radiative muons. For pions one expects to see an exponential decrease of exp (− z
λI
)77

where λI is the interaction length. Fig. 1 shows the distribution of the �rst layer78

of the shower in the SDHCAL prototype for pions, electrons and muons as obtained79

from the simulation and data.80

• Number of tracks segments in the shower (TrackMultiplicity): applying the81

Hough Transform(HT) technique to single out the tracks in each event as described in82

ref. [9] we estimate the number of tracks segments in the hadron, electron and muon83

events. A HT-based segment candidate is considered as a track segment if there are84

more than 6 aligned hits with not more than one layer separating two consecutive85

hits. Electron showers feature almost no track segment while most of the hadronic86

showers have at least one. For muons, except for some radiatdive muons, only one87

track is expected as can be seen in Fig. 288

• Ratio of shower layers over total �red layers (NinteractingLayers/NLayers):89

this is the ratio between the number of layers in which the Root Mean Square (RMS)90

of the hits' position in the x-y plane exceeds 5 cm in both x and y directions and the91

total number of layers with at least one �red hit. Although this variable is correlated92

with the shower start one, it allows, as can be seen in Fig. 3, an easy discrimination93

of muons (even the radiative ones) from pions and electrons. It allows also a slight94

separation between pions and electrons.95

• Shower density (Density): this is the average number of the neighbouring hits96

located in the 3 × 3 pads around one of the hits including the hit itself in the given97

event. Fig. 4 shows clearly that electromagnetic shower is more compact than the98

hadronic one as expected.99
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Figure 1. Distribution of the �rst layer of the shower(Begin). Layer 0 refers to the �rst layer of

the prototype. Continuous lines refer to data while dashed ones to the simulation.

• Shower radius (Radius): this is the RMS of hits distance with respect to the event100

axis. To estimate the event axis, the average positions of the hits in each of the101

ten �rst �red layers of an event are used to �t a straight line. The straight line is102

then used as the event axis. The electromagnetic shower being more compact than103

the hadronic shower, its radius is expected to be smaller as can be seen in Fig. 5 It104

is worth mentioning here that the event axis is used to eliminate cosmic muons by105

requesting the angle of the axis to be compatible within a few degrees(θ < 10◦) with106

the beam axis which is almost perpendicular to the SDHCAL layers.107

• Maximum shower position (Length): This is the distance between the shower108

start and the layer of the maximum radius of the shower. The later is determined as109

the maximum RMS of those of the interaction layers. As can be seen in Fig. 6 the110

position of maximum radius of electromagnetic and hadronic shower is di�erent even111

though the electron samples is limited to 50GeV.112

2.2 Simulation and data comparison113

Before using the variables listed above as input to the BDT, we check that the variables114

distributions in the simulation are in agreement with those in data for what concerns the115

muon and electron beams which are quite pure. Figs 1 - 6 show that there is globally a116

good agreement for the six variables of the two species even though the agreement is not117

perfect.118

2.3 The methods to build the classi�er of BDT119

In order to make full study and cross check for particle identi�cation using BDT, we adopt120

two di�erent methods to build the classi�er. The �rst method, referred to as MC Training,121

uses simulation samples of pion, electron and muon to train. The second, referred to as122
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Figure 2. Distribution of number of the tracks in the shower(TrackMultiplicity). Continuous

lines refer to data while dashed ones to the simulation.

Figure 3. Distribution of ratio of the number of layers with more than 4 hits over the total

number of �red layers(NinteractingLayers/NLayers). Continuous lines refer to data while dashed

ones to the simulation.

Data Training, uses simulation samples of pions but electron and muon samples taken from123

data to train. For these two approach, events are chosen in alternating turns for the training124

and test samples as they occur in the source trees until the desired numbers of training and125

test events are selected. The training and test samples should contain the same number of126

events for each event class. The ratio between number of events of sinal and background is127

1 for training and test samples.128
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Figure 4. Distribution of the average number of neighbouring hits surrounding one hit(Density).

Continuous lines refer to data while dashed ones to the simulation.

Figure 5. Distribution of the average radius of the shower(Radius). Continuous lines refer to

data while dashed ones to the simulation.

2.3.1 MC Training Approach129

The six variables of the simulated pion, muon and electron events described in section 2.1130

are used to train the classi�er. After the training, the BDT provides the relative weight131

of each variable which represents its capability to distinguish the signal (pion events) from132

the background (electron and muon events). The procedure is applied �rst considering133

the muons as the background and then repeated with the electrons as the background.134

Table 1 shows the variables ranking according to their separation power in the case of muon135

background while Table 2 gives their separation power in the case of electron background.136
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Figure 6. Distribution of the position of the layer with the maximum radius(Length). Continuous

lines refer to data while dashed ones to the simulation.

Table 1. Variable ranking of separation power in the case of pion signal versus muon background.

Rank : Variable Variable relative weight

1 : Length 0.233

2 : Density 0.225

3 : NInteractinglayer/Nlayer 0.163

4 : Radius 0.160

5 : Begin 0.139

6 : TrackMultiplicity 0.080

Table 2. Variable ranking of separation power in the case of pion signal versus electron back-

ground.

Rank : Variable Variable relative weight

1 : Radius 0.204

2 : NInteractinglayer/Nlayer 0.203

3 : Density 0.194

4 : Length 0.151

5 : Begin 0.145

6 : TrackMultiplicity 0.101

The BDT algorithm using the variables and their respective weights is then applied to the137

test samples. The output of the BDT applied to each of the test sample events is a variable138

belonging to the [-1,1] interval with the positive value representing more signal-like events139

and the negative to be more background-like events.140
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Figure 7. BDT output of the pions-muons sample(left) and of the pions-electrons one(right).

The left plot of Fig. 7 shows the output of the BDT for a test sample made of pions141

and muons while the right plot of the same �gure shows the output for a test sample made142

of pions and electrons. It is clear that the separation power of the BDT method is very143

high. The pion selection e�ciency and the the muon(electron) rejection rateas a function of144

BDT output of the test sample is shown in the left (right) plot of Fig. 8. The pion selection145

e�ciency versus the muon(electron) rejection of the test sample is shown in the left(right)146

plot of Fig. 9. Seen from this �gure, a pion selection e�ciency exceeding 99% with a muon147

and electron rejection of the same level (> 99%) can be achieved.148

In order to check the validity of these two classi�ers, we use the puri�ed beam sam-149

ples of muons and electrons. Fig. 10(left) shows the BDT output of pion-muon classi�er150

and Fig. 10(right) shows the pion-electron one. The response of beam muons shows good151

agreement with respect to the simulated events. A slight shift of the beam electron shape is152

observed with respect to the one obtained from the simulated events. This di�erence could153

be due to the fact that the distribution of some variables in data and in the simulation are154

not identical. Next, as a �rst step of purifying the collected hadronic data events we apply155

the pion-muon classi�er. Fig. 10 (left) shows the BDT response applied to the collected156

hadron events in the SDHCAL. We can clearly see there are two peaks. One peak in the157

muon range corresponds to the muon contamination of pion data and another one in the158

pion range. So, to ensure the rejection of the muons in the sample, the BDT variable is159

required to be > 0.1 corresponding to the maximum value separating the signal side from160

the background side with negligible loss of pion events. The second step is to apply the161

pion-electron classi�er to the remaining of the pion sample. Fig. 10 (right) shows the new162

BDT output. In order to eliminate as much as possible the contamination by electrons we163

apply to the pion samples a BDT cut of 0.05 to get almost a pure pion sample without164

losing so many pion events(<2%).165

2.3.2 DATA Training Approach166

We also use the same variables of the MC Training approach on the data samples of muons167

and electrons but still on the simulated pion samples to build two classi�ers. Then we168
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Figure 8. Pion e�ciency and muon rejection (left) and pion e�ciency and electron rejection(right)

as a function of the BDT output.

Figure 9. Pion e�ciency versus muon rejection (left) and pion e�ciency versus electron rejec-

tion(right).

apply the same procedure for the MC Training approach. Table 3 and Table 4 show the169

corresponding variables ranking for pion-muon and pion-electron classi�er according to their170

power separation importance. Fig. 12 left (right) gives the results of pion e�ciency and171

muon(electron) rejection rate. This shows that these two classi�ers have very good pion172

e�ciency and high background rejection rate. Left(right) plot of Fig. 11 shows the BDT173

output of pion-muon classi�er (pion-electron classi�er). Clearly these two classi�ers have174

very good separation power. We apply these classi�ers to the raw pion beam samples. The175

results can be seen in the Fig. 13. We apply the BDT cut value 0.2 in the pion-muon176

separation stage and then BDT cut value 0.05 in the pion-electron separation stage.177

3 Hadron events selection and hadronic energy reconstruction178

After applying the BDT output value cut, we show the distributions of di�erent variables179

for the electron, muon but also the pion data and simulation events in Fig. 14. As can180
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Figure 10. The BDT output using the pion-muon classi�er on the data hadron sample (left) and

the BDT output using the pion-electron classi�er on the same sample(right).

Table 3. Variable ranking of separation importance in the case of pion signal versus muon

background.

Rank : Variable Variable relative weight

1 : Length 0.300

2 : Radius 0.230

3 : Density 0.227

4 : Begin 0.103

5 : NInteractinglayer/Nlayer 0.080

6 : TrackMultiplicity 0.060

Table 4. Variable ranking of separation importance in the case of pion signal versus electron

background

Rank : Variable Variable relative weight

1 : Radius 0.195

2 : NInteractinglayer/Nlayer 0.191

3 : Density 0.189

4 : Length 0.151

5 : Begin 0.141

6 : TrackMultiplicity 0.131

be seen, there is a good agreement between the data and simulation events for the pion181

as well. This con�rms the power of BDT method. The rejection of muons and electrons182

present in the hadron data sample using the BDT allows us to have more statistics and183

a rather pure hadron sample as explained in the previous section. As can be seen in184

Fig. 15, Fig. 16 and Fig. 17, using BDT we can get more statistics than standard selection185

especially for simulation at low energies. From Fig. 18, Fig. 19 and Fig. 20 we can observe186
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Figure 11. BDT output of the pions-muons classi�er (left) and of the pions-electrons one(right)

Figure 12. Pion e�ciency versus muon rejection (left) and pion e�ciency versus electron rejec-

tion(right). All of samples are used by simulation.

Figure 13. The BDT output using the pion-muon classi�er on the data hadron sample (left) and

the BDT output using the pion-electron classi�er on the same sample(right).
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Figure 14. Distributions of six input variables of electron, muon and pion. Continuous lines refer

to data while dashed ones to the simulation.

the same phenomenon in pion data samples. The selected sample is then compared to the187

one obtained applying the standard selection of ref. [3]. In order to check the validity of the188

new method, the same energy reconstruction technique presented in ref. [3] is applied to189

the pion samples selected with the MVA method as well as to the one selected following the190

requirements of ref. [3]. The same parametrization is used to estimate the pion energy of the191

three samples selected by the three methods. As in ref. [3], the reconstructed energy and192

associated energy resolution are obtained by �tting the energy distribution using Crystal193

Ball function that takes into account the tail due to shower leakage. Fig.21 (left) shows the194

energy reconstructed as well as the deviation with respect to the beam energy using the195

BDT method as well as the standard selection. In the Fig.21 (right), it is the comparison196

of energy resolution between standard selection and BDT method. Similar results are197

obtained with the three methods but using BDT we can get results with smaller statistical198

uncertainties than standard selection of ref. [3].199

4 Uncertainties estimation200

The linearity and energy resolution results presented previously include statistical and sys-201

tematic uncertainties. We present here after the main contributions to the systematic202

uncertainties:203

• The di�erence of the estimated energy before and after applying the selection criteria204

(BDT or standard selection) is evaluated using simulation samples of pions from205

10GeV to 80GeV with 10GeV energy step. The di�erence is used as one source of the206

systematic uncertainties.207

� 12 �



Figure 15. The comparison of reconstructed energy between BDT and standard selection using

simulation samples for 10GeV. The �t function is Crystal Ball.

Figure 16. The comparison of reconstructed energy between BDT and standard selection using

simulation samples for 40GeV. The �t function is Crystal Ball.

• To account for the di�erence in shape of the hadronic showers that are found to be208

sparser in the data than in the simulation [10], the di�erence of reconstructed energy209

estimated using data samples on the one hand and the simulation samples on the210

other hand is considered as another source of systematic uncertainties. It is worth211

mentioning here that this uncertainty contribution is the main contribution to the212

large uncertainty observed at 10GeV.213

• For the standard selection, using all energy points data simples, each of the di�erent214

selection criteria is varied by an arbitrary 5% in both directions with respect to the215

nominal values when this is possible. The maximum deviation with respect to the216

nominal value is used as the third source of systematic uncertainties in the case of the217
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Figure 17. The comparison of reconstructed energy between BDT and standard selection using

simulation samples for 80GeV. The �t function is Crystal Ball.

Figure 18. The comparison of reconstructed energy between BDT and standard selection using

beam data samples for 10GeV. The �t function is Crystal Ball.

standard selection. For the BDT using MC training method, the BDT cut value is218

changed from 0.10 to 0.0 in pion-muon separation step and from 0.05 to 0.0 in pion-219

electron separation. The di�erence in energy of these two steps is added quadratically220

and taken as the third source of systematic uncertainties. For the BDT using data221

training, the same procedure is applied.222

By applying the BDT cut one may eliminate some of the pions that have an electron-223

like shape. To estimate such a possible bias, the energy of the simulated pion events224

is reconstructed without any selection and then by applying several values of the225

BDT cut. Figure 22 shows the reconstructed energies and the relative resolutions are226

not impacted except at 10GeV where the energy resolution is slightly improved by227
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Figure 19. The comparison of reconstructed energy between BDT and standard selection using

beam data samples for 40GeV. The �t function is Crystal Ball.

Figure 20. The comparison of reconstructed energy between BDT and standard selection using

beam data samples for 80GeV. The �t function is Crystal Ball.

applying the BDT cut. Since the electron-like pions are not limited to low energy, one228

may conclude that the BDT selection does not disfavor, in principle, the electron-like229

pions even though there is a slight di�erence at 10GeV. The latter is duly included in230

the systematic uncertainties.231

Although the statistical uncertainties are found to be negligible for almost all the232

runs with respect to systematic uncertainties, their contributions as well as the systematic233

uncertainties previously discussed are added quadratically to obtain the �nal uncertainties.234

The results are summarized in Table 5 and in Table 6.235
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Figure 21. Mean reconstructed energy for pion showers as a function of the beam energy as well

as relative deviation of the pion mean reconstructed energy with respect to the beam energy (left)

and resolution of the reconstructed hadron energy as a function of the beam energy (right). Both

statistical and systematic uncertainties are included in the error bars.

Table 5. List of ∆E
E observed and associated uncertainties.

Energy(GeV) MC training Data training Standard selection

10 −0.006± 0.013 0.002± 0.016 0.013± 0.047

20 0.041± 0.011 0.044± 0.018 0.032± 0.013

30 0.049± 0.013 0.049± 0.015 0.043± 0.011

40 0.029± 0.004 0.030± 0.006 0.028± 0.006

50 0.014± 0.008 0.014± 0.008 0.017± 0.010

60 −0.009± 0.015 −0.011± 0.016 −0.005± 0.015

70 −0.017± 0.006 −0.019± 0.008 −0.012± 0.007

80 −0.027± 0.011 −0.027± 0.011 −0.028± 0.010

5 Conclusion236

A new particle identi�cation method based on the BDT MVA technique is used to purify237

the hadron events collected at the SPS H2 beamline in 2015 by the SDHCAL prototype.238

The new method uses the topological shape of events associated to muons, electrons and239

hadrons in the SDHCAL to reject the two �rst species. A signi�cant statistical gain is240

obtained with respect to the method used in the work presented in ref [3] as can be seen in241

Tab. 7. This statistical gain is obvious at energies up to 40GeV and can be explained by242

the absence in the new method of the requirement on the start of the showers to be in the243
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Figure 22. Mean reconstructed energy for simulated pion showers as a function of the simulated

energy as well as relative deviation of the pion mean reconstructed energy with respect to the

simulated energy (left) and resolution of the reconstructed hadron energy as a function of the

simualted energy (right) in di�erent BDT cut value.

Table 6. List of energy resolution observed and associated uncertainties.

Energy(GeV) MC training Data training Standard selection

10 0.221± 0.021 0.225± 0.031 0.210± 0.031

20 0.157± 0.011 0.160± 0.015 0.158± 0.013

30 0.125± 0.013 0.127± 0.006 0.129± 0.011

40 0.114± 0.004 0.115± 0.003 0.116± 0.006

50 0.104± 0.004 0.103± 0.004 0.103± 0.010

60 0.097± 0.003 0.097± 0.003 0.095± 0.015

70 0.091± 0.004 0.092± 0.005 0.086± 0.007

80 0.080± 0.007 0.080± 0.007 0.075± 0.010

�fth layer and further as far as the number of �red layers is less than 30.244

The reconstructed energy of the events selected in the new method shows similar dis-245

tribution to the one obtained with events selected by the previous method. However the246

uncertainties in the low energy part especially at 10GeV are signi�cantly reduced.247

The particle identi�cation using Boosted Decision Tree is a robust and a reliable248

method. The gain in statistics is an important result of this method with respect to the249

one used in ref. [3]. The results shown here con�rm that the results obtained in the pre-250

vious paper are not biased by the selection made in absence of appropriate discrimination251
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Table 7. List of remaining number of data events after applying corresponding method(BDT MC

training, BDT Data training and standard selection).

Energy(GeV) Before cut MC training Data training Standard selection

10 28091 16756 16449 10995

20 18277 12321 12558 9776

30 11417 8381 8572 7356

40 47182 34206 34742 31519

50 21512 16022 16177 15170

60 19805 15338 15483 14761

70 17977 13047 13146 12645

80 39309 22357 22627 21886

detectors.252
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