Analogue, Digital and Semi-Digital Energy Reconstruction in the CALICE AHCAL

The CALICE Collaboration

Abstract

¹ In this note, different energy reconstruction methods for the Analogue Hadronic

² Calorimeter (AHCAL) are compared. These methods were developed for the ana-

³ logue, digital and semi-digital CALICE Hadronic Calorimeter physics prototypes and

⁴ were used in analyses of data taken at various test beams.

⁵ The analogue data can also provide digital information, thus the advantages and dis-

⁶ advantages of different energy reconstruction procedures can be studied in the same

⁷ data sample. In this work this comparison is done by applying these procedures to

⁸ AHCAL pion test beam data collected with the 1 m³ physics prototype in 2007 at

⁹ CERN. The results are compared to a GEANT4 based simulation.

10

¹¹ This note contains preliminary CALICE results, and is for the use of members of the CALICE Collaboration and others to whom permission has been given. [1](#page-0-0) 12

¹Corresponding authors:

Coralie Neubüser; coralie.neubueser@desv.de Katja Krüger; katja.krueger@desy.de

Contents

1 Introduction

 For a future linear electron-positron collider like ILC or CLIC, the desired jet energy 14 resolution of $3 - 4\%$ for a wide range of jet energies can be achieved by using Par- ticle Flow Algorithms for the jet reconstruction. Within the CALICE collaboration, several concepts for a hadron calorimeter (HCAL) optimised for Particle Flow are 17 studied and have been tested with large, $\sim 1 \text{ m}^3$ prototypes: the so-called analogue, digital and semi-digital HCAL concepts. The concepts differ in active material for the shower detection, granularity, readout technology and reconstruction method. This makes it difficult to disentangle the influence of each of these components to the energy resolution of jets as well as of individual particles. Since the analogue HCAL prototype has a larger cell size than the other two concepts, and the digital and semi-digital HCAL prototypes do not provide analogue hit size information, it is impossible to study all different aspects in test beam data. For the data taken with the analogue HCAL prototype, a direct comparison of the reconstruction methods is possible, albeit with a cell size not optimal for the digital and semi-digital methods. ₂₇ The effect of the other differences can only be studied directly in simulation, where every aspect can be changed separately. For reliable results from the simulation it is important to validate the simulation of hadronic showers in the detector prototypes by comparing them to the measured test beam data, especially for the quantities that are relevant for the energy reconstruction.

 In this note, pion test beam data taken with the prototype of the analogue HCAL are used to apply also the readout concept and reconstruction procedures developed ³⁴ for the digital and semi-digital HCAL. Thus, the three reconstruction methods can be compared based on the same data set, with identical active material and identi- cal granularity. The results are compared with a simulation based on the GEANT4 software package.

³⁸ 2 Energy reconstruction procedures

 For the three different CALICE Hadronic Calorimeters, which use different active material and readout, three different energy reconstruction procedures are developed, which will be discussed in detail in the following.

2.1 Analogue

 The Analogue HCAL is a scintillator tile calorimeter with individual Silicon Pho- tomultiplier (SiPM) read-out. Within the scintillating plastic the charged parti- cles excite the scintillator which emits photons. These photons are captured by a wavelength-shifting fiber that transports the light to the SiPM. During calibration the measured ADC counts of the SiPM are converted to the response of a muon or minimum-ionizing particle (MIP), see [\[1\]](#page-33-0).

⁴⁹ Within several test beam campaigns a 1 m^3 physics prototype was tested and its sin- gle particle resolution was validated [\[2\]](#page-33-1). This prototype consists of up to 38 HCAL $_{51}$ layers with the first 30 layers of three different tile sizes; 12x12, 6x6 and 3x3 cm² and the last 8 layers of only 6x6 and $12x12 \text{ cm}^2$ tiles.

 The visible signal for the energy reconstruct is calculated in units of MIP as a sum of cell signals above 0.5 MIP which are called hits. The 0.5 MIP threshold is used to re- ject noise. The MIP scale is converted to GeV scale using electromagnetic calibration 56 factors ω which was determined from the dedicated positron runs in [\[3\]](#page-33-2). The Sc-Fe AHCAL is a non-compensating calorimeter, as its response to electrons is by factor 58 of $e/\pi = 1.19$ higher than to pions of the same energy [\[2\]](#page-33-1). Then the reconstructed energy in the AHCAL for each pion event is calculated as follows:

$$
E_{rec, analogue} = \frac{e}{\pi} \cdot \omega \cdot E_{sum}
$$
 (1)

2.2 Digital

 The Digital HCAL is a sandwich calorimeter with Resistive Plate Chambers (RPCs) as active material. An RPC consists of glass and a 1.15 mm gas gap, read out by pad ϵ ³ electrodes of 1x1 cm² size placed on the back of the plates. The incoming particles traverse the gas, ionize it and the induced charges get amplified by the applied high voltage. The charge multiplication is quenched by the high resistivity of the glass.

 The measurement observable is the total number of hits in the HCAL. There is no σ information about the signal size. A calibration is done by equalizing the response to obtain an average multiplicity and efficiency for muons (MIP) in every layer. More sophisticated calibration procedures are under investigation, see [\[4\]](#page-33-3).

 Within the energy reconstruction a correction of the non-linearity is applied. The non- π linearity arises from multiple particles traversing the same pad, limited granularity and binary information. Several approaches have been developed to correct for this ⁷³ non-linearity. Here, a simple approach is followed by fitting the mean response versus ⁷⁴ beam energy with a power law as $\langle N_{hits} \rangle = a \cdot (E_{beam})^b$ and taking the extracted ⁷⁵ parameters a and b for the reconstruction on an event-by-event basis as follows:

$$
E_{rec, digital} = \sqrt[5]{\frac{N_{hits}}{a}} \tag{2}
$$

⁷⁶ 2.3 Semi-digital

 The principle of the semi-digital HCAL is similar to digital HCAL, but with a 2-bit read-out. A large SDHCAL prototype has been realised with RPCs. In addition several MICROMEGAS layers have been tested. The granularity of the read-out of so these devices was also $1x1 \text{ cm}^2$. The difference between both is the active material, while the calorimeter principle is the same. The 2-bit read-out codes the information of 3 thresholds. This additional information compared to the DHCAL has the goal to identify multiple particles contributing to the signal of a pad. First results of ⁸⁴ test beams of the RPC SDHCAL physics prototype are shown in [\[5\]](#page-33-4). We will follow the same way of energy reconstruction here: Reconstructing the energy as a sum of 86 the weighted number of hits for the 3 thresholds, $E_{rec,semi-digital}$ can be written as a function of N_1 , the number of hits above the first and below the second; N_2 , the $\frac{88}{100}$ number of hits above the second below the third; and N_3 , the number of hits above the third threshold:

$$
E_{rec,semi-digital} = \alpha N_1 + \beta N_2 + \gamma N_3,\tag{3}
$$

90 with the weights α, β and γ . Hadronic showers change their structure and evolution 91 with energy, which is taken into account by parameterizing α, β and γ as quadratic 92 polynomials of the total number of hits $N_{hits} = N_1 + N_2 + N_3$. To find the best 93 parameterization of these so called calibration coefficients, a χ^2 -like function of the ⁹⁴ form

$$
\chi^2 = \sum_{i=1}^{N} \frac{\left(E_{beam}^i - E_{rec,semi-digital}^i\right)^2}{E_{beam}^i},\tag{4}
$$

 $\frac{1}{95}$ is minimised, where i runs over all events.

3 Data and Simulations

 For this analysis the AHCAL test beam data from 2007 with steel absorber is cho- sen. The reason for this choice was the good understanding of the data, validated by several published CALICE analyses [\[1,](#page-33-0) [2,](#page-33-1) [6,](#page-33-5) [7\]](#page-33-6).

 The 2007 CERN test beam setup consisted of 30 layers of CALICE silicon-tungsten ECAL, 38 layers of the scintillator-steel analogue HCAL and 16 layers of the scintillator- steel tail catcher and muon tracker (TCMT). The absorber thickness for the ECAL 103 varied between 1.4, 2.8 and 4.2 mm and radiation lengths 0.4, 0.8 and $1.2 X_0$, the one of the HCAL was ∼ 2 cm. A detailed description of the test beam setup can be found $_{105}$ in [\[7\]](#page-33-6).

3.1 Run & event selection

107 The data samples are selected from π^- data in the range of 10 to 80 GeV. The run list and event selection follows the published software compensation analysis [\[2\]](#page-33-1) and is summarised in table [1.](#page-7-0) The events of runs with the same beam energy are merged 110 and undergo the same requirements for the π^- event selection.

The data sample is reconstructed with the newest calice soft version v04-08.

112 After the pre-selection information of π^- events using the Cherenkov counter and the reduction of noise by applying a threshold of 0.5 MIP on every cell, we reject

- muon and punch-through pion events by requiring more than 150 MIP deposited ¹¹⁵ in the AHCAL.
- multi-particle events by requiring less than 80 MIP and 13 hits in the first 5 ¹¹⁷ layers of the AHCAL.

 • empty events by requiring more than 25 hits in the ECAL and 50 hits in the 119 AHCAL.

120 For further sample purity, we select π^- events to

- start showering in the first 5 HCAL layers by the ShowerStartClusterProcessor, details can be found in [\[8\]](#page-33-7).
- be consistent with a MIP-like particle by requiring less than 50 hits in the 124 ECAL.

 The selected pion showers develop predominantly in the AHCAL while keeping the energy leakage into the TCMT as small as possible. Examples of the distributions of E_{sum} and N_{hits} after the pre-selection and after the full analysis selection are shown for two beam energies in Figure [1.](#page-6-1)

Figure 1: Distributions of the visible energy E_{sum} and number of hits N_{hits} in the AHCAL for 15 GeV in [1a,](#page-6-2) [1b](#page-6-3) and 40 GeV in [1c,](#page-6-4) [1d](#page-6-5) for the events preselected using Cherenkov counter (black points) and for the selected events (filled histograms).

¹³⁰ 3.2 Monte Carlo model

129

 The test beam runs are simulated using the software packages GEANT4 version 9.6 patch 1, Mokka v08 02 and ilcSoft v01 17 05, followed by digitisation using calice soft 133 v04-08 with the conversion coefficients $846 \,\text{keV/MIP}$ and $15\,\%$ optical crosstalk be- tween the AHCAL tiles. As the physics list FTFP BERT from GEANT4 9.6 shows best performance for hadrons, it was chosen for comparisons in this analysis. All

run	beam	pre-	selected	in $%$	selected	in $%$
number	energy	selection	pions in		pions in	
	[GeV]	data	data		MC	
330332,	10	587,793	111,133	18.9	81,974	$\overline{20.5}$
330643,						
330777,						
330850						
330328	15	140,441	28,024	20.0	21,063	21.1
330327	18	148,516	29,600	19.9	21,040	21.0
330649,	20	379,270	73,942	19.5	41,718	20.9
330771						
330325,	25	364,170	72,530	19.9	41,474	20.7
330650						
330551,	$\overline{35}$	404,309	70,438	17.4	40,868	20.4
330960						
330390,	$\overline{40}$	509,168	101,617	$\overline{20.0}$	61,394	20.5
330412,						
330560						
330550,	$\overline{45}$	$\overline{520,600}$	102,898	19.8	61,181	$\overline{20.4}$
330559,						
330961						
330391,	$\overline{50}$	384,581	76,855	$\overline{20.0}$	41,081	$\overline{20.5}$
330558						
331556,	$\overline{60}$	787,208	153,464	$19.5\,$	81,565	20.4
331568,						
331655,						
331664						
330392,	80	898,307	176,476	19.7	100,278	20.1
330962,						
331554,						
331567,						
331654						

Table 1: List of data runs used in the analysis and sample statistics. The size of each simulated sample is 100,000 events per run.

136 test beam runs listed in table [1](#page-7-0) were simulated with 100,000 π^- events, the noise ¹³⁷ being added to the digitised samples from the corresponding runs. Afterwards, the ¹³⁸ simulated samples of the same energy were merged and the same selection procedure ¹³⁹ was applied as to the data samples. The resulting number of pion events and the percentage of selected events are given in table [1.](#page-7-0)

Figure 2: Distributions of the visible energy E_{sum} and the number of hits N_{hits} for E_{beam} = 80 GeV for the pre-selection and the final π^- selection. The simulated FTFP BERT data is shown as black points while the data is given as colored and filled histograms.

140

 Figures [2](#page-8-0) and [3](#page-9-0) show the distributions of the visible energy and the number of hits in the AHCAL for data and MC for 10 and 80 GeV. For all other energies the differences between data and MC are smaller. In all pre-selection plots for the energy sum distri- butions (see Figure [2a,](#page-8-1) [3a\)](#page-9-1) and the corresponding number of hits (see Figure [2b,](#page-8-2)[3b\)](#page-9-2) a higher peak at 100 MIP, 40 hits respectively is seen in data than the FTFP BERT sample. This is due to the muon contamination in data, while in MC this peak arises only from punch-through pions. A second effect is in general an slight overestimation ¹⁴⁸ in the FTFP BERT samples for the number of hits. This can be seen in Figure [3d,](#page-9-3)

¹⁴⁹ where the FTFP BERT distribution ahows a slightly higher number of hits, while

- ¹⁵⁰ the energy sum of the FTFP BERT samples is consistent with data until 60 GeV.
- ¹⁵¹ The largest difference is seen in Figur[e2c.](#page-8-3)
- ¹⁵² This trend to an overestimation of the AHCAL response by FTFP BERT was already seen and studied in [\[9\]](#page-34-0).

Figure 3: E_{sum} and N_{hits} for $E_{beam} = 10 \,\text{GeV}$ for the pre-selection and the final $\pi^$ selection. The simulated FTFP BERT data is shown as black points while the data is given as colored and filled histograms.

153

3.3 Systematic uncertainties

 The systematic uncertainties are estimated following [\[2\]](#page-33-1) and [\[6\]](#page-33-5), which both use the detailed analysis of the electromagnetic response [\[3\]](#page-33-2). Thus, the uncertainty of the ¹⁵⁷ beam energy ΔE_{beam} is taken into account with

$$
\frac{\Delta E_{beam}}{E_{beam}} = \frac{12\%}{E_{beam}} \oplus 0.1\%.\tag{5}
$$

The method how to determine these values was first described in [\[10\]](#page-34-1).

 The uncertainty on the reconstructed energy is dominated by the MIP to GeV con-160 version, which is estimated to be 0.9% . The impact of the SiPM gain and saturation parameters are negligibly small [\[3\]](#page-33-2).

 In the following for the energies reconstructed from the energy sum the systematic uncertainty of the beam energy and the uncertainty from the MIP to GeV conversion are added in quadrature. For the energies reconstructed with the number of hits, the 0.9 % uncertainty from the MIP to GeV conversion is not taken into account.

166 4 Energy reconstruction and linearity

 The goal of this analysis is a direct comparison of the three reconstruction methods, analogue, semi-digital and digital, applied to the same AHCAL data. This includes using the same methods to extract the mean energy and the resolution. Since the distributions of the energy reconstructed from the number of hits are expected to show a non-gaussian tail, the procedure to fit the distributions and to extract the mean and the width will be discussed and compared to previous AHCAL analyses.

 $173 \quad 4.1 \quad$ Analogue

174 4.1.1 Comparison to previous analyses

 Earlier studies of this test beam data used the entire setup for the energy reconstruc- tion. The energy in the ECAL and the TCMT complemented the measurement of the HCAL, see [\[2\]](#page-33-1). The conversion factors from the visible to the deposited energy were estimated using simulations and data and were given for the three different sections of the ECAL with different sampling fractions and two sections of the TCMT. The values can be found in appendix [A.](#page-35-0)

 Here the goal is to study the details of the energy reconstruction in the HCAL. There- fore, to be independent on the reconstruction procedures of the other sub-detectors, the TCMT measurement is not used, while the ECAL measurement is only used for ¹⁸⁴ event selection. A fixed value of $0.3805 \pm 0.0003(stat.) \pm 0.0381(syst.)$ GeV is taken as contribution of the track in the ECAL to the total shower energy (see appendix [A\)](#page-35-0). The systematic error is estimated from the $∼ 10\%$ increasing deposited energy $_{187}$ in the ECAL with increasing beam energy from 10 to 80 GeV. Thus the analogue reconstructed energy is given by

$$
E_{rec, analogue} = 0.3805 \,\text{GeV} + \frac{e}{\pi} \left(\omega \cdot E_{sum} \right). \tag{6}
$$

189 The $E_{rec, analogue}$ distributions are usually fitted with a gaussian function within 2σ standard deviation, compare [\[2\]](#page-33-1). The goal of this analysis is to study the differences between the reconstruction methods, thus for consistency the analogue response will be treated in the same way as the digital and semi-digital. This means that we use the Novosibirsk function

$$
f(x) = A \cdot \exp\left(-\frac{1}{2} \cdot \left(\frac{\ln^2\left[1 + \Lambda \cdot \tau \cdot (x - \mu)\right]}{\tau}\right) + \tau^2\right) \tag{7}
$$

with $\Lambda = \frac{\sin(\tau \cdot \sqrt{\ln 4})}{\tau \tau \sqrt{\ln 4}}$ 194 with $\Lambda = \frac{\sin(\sqrt{N} \ln 4)}{\sigma \cdot \tau \cdot \sqrt{\ln 4}}$ to fit the $E_{rec, analogue}$ within $\mu \pm 3\sigma$ of a primarily Gaussian fit of 195 the distributions. The fit every time provides a χ^2/ndf better than 3, usually better than 2. In order to extract the mean and the width of this fit function, a histogram is filled with random values generated according to this function with the extracted fit 198 parameters σ, μ and τ . The range of this histogram is chosen to be from 0 to $\mu + 3\sigma$ of the fit function. The mean and RMS of the histogram are used as response and resolution for the studied energy. This procedure ensures that the extracted response and resolution are rather insensitive to single outliers, which could be caused e.g. by a remaining muon contamination of the pion sample, but it fully takes into account the possible asymmetry of the distribution.

²⁰⁴ In order to compare this procedure to the results of Gaussian fits in a $\pm 2\sigma$ range ²⁰⁵ as used in previous AHCAL analyses, the distributions are also fitted with Gaus-²⁰⁶ sians. The $E_{rec, analogue}$ distributions are shown in Figure [4.](#page-12-0) Here it is seen that the ²⁰⁷ $E_{rec, analogue}$ distributions show asymmetries for high energies, above 30 GeV, due to ²⁰⁸ longitudinal energy leakage. In the previous analyses, this effect is not present since ²⁰⁹ they take into account the energy deposited in the TCMT. Therefore, for the com210 parison with earlier results, we fitted a Gaussian in the range -1 and $+2$ standard ²¹¹ deviations. The response and the deviation from linearity of the two procedures are ²¹² compared in Figure [5.](#page-13-0) Both procedures show agreement with a linear behaviour 213 within $\pm 2\%$. As expected from the tails to the left, the values extracted with the ²¹⁴ Novosibirsk are slightly lower than the Gaussian values, with the effect increasing 215 with increasing beam energy up to $\sim 3\%$ at 80 GeV.

²¹⁶ The resulting energy resolutions are shown in Fig. [6.](#page-14-0) They are also compared with the ²¹⁷ parametrised resolution determined in a previous analysis [\[2\]](#page-33-1) with a stochastic term 218 $a = 57.6 \pm 0.4\%$, constant term $b = 1.6 \pm 0.2\%$ and the noise term of $c = 0.18 \,\text{GeV}$:

$$
\frac{\sigma_{rec}}{\langle E_{rec} \rangle} = \frac{a}{\sqrt{E_{beam}[GeV]}} \oplus b \oplus \frac{c}{E_{beam}[GeV]}
$$
\n(8)

Figure 4: Analogue reconstructed energy distributions for pions with initial energies 10-80 GeV. The black curves show the Gaussian fit between -1 and $+2\sigma$.

219

²²⁰ The energy resolution determined with the Gaussian fits is slightly worse by about $221 \t0.5 - 1\%$ in absolute values than the resolution in the previous analysis, probably ²²² because of the simplified treatment of the ECAL contribution and the removal of ²²³ the TCMT measurement from the energy reconstruction procedure. As expected, ²²⁴ including the tail of the distributions due to energy leakage by taking the mean and 225 RMS from the Novosibirsk function increases $\sigma_{rec}/\langle E_{rec}\rangle$. This effect is very small 226 at 10 GeV and increases up to absolute $\sim 3\%$ at 80 GeV. It should be noted here

Figure 5: Mean analogue reconstructed energy for pion showers, the black dots show the most probable value taken from the Gaussian fit compared to the blue squares that show mean of the Novosibirsk filled distribution. The bands indicate statistical and systematic uncertainty added in quadrature, the statistical error only is smaller than the markers.

Figure 6: Relative analogue energy resolution as a function of the beam energy, shown in black dots for σ and $\langle E_{rec,analogue} \rangle$ taken from the Gaussian fit, in blue squares the RMS and mean of the Novosibirsk filled distributions. For comparison the solid black line shows the AHCAL energy resolution with the whole test beam setup from [\[2\]](#page-33-1).

- ²²⁷ that this effect is visible in this analysis because we neglect the TCMT contribution,
- ²²⁸ contrary to the previous analysis. A slightly smaller effect was observed previously
- ²²⁹ [\[11\]](#page-34-2) when excluding the TCMT from the analysis of pion showers without a selection
- ²³⁰ of the shower start.

 The energy resolution as a function of the beam energy is fitted with equation [8.](#page-12-1) The results are summarised in table [2.](#page-14-1) The noise term c is fixed to the noise value for the ECAL and the AHCAL from [\[2\]](#page-33-1). Given the exclusion of the TCMT in the analyses, the "Gaussian fit" values are in reasonable agreement with the previous analysis [\[2\]](#page-33-1). For the "Novosibirsk hist" resolution, the degraded resolution at larger energies leads

to a much larger constant term b in the fit.

Table 2: Analogue energy resolution fit parameters from equation [8.](#page-12-1) The uncertainties are only statistical.

	$a\sqrt{2}$	$b\sqrt{2}$	c[GeV]	χ^2/ndf
Gaussian fit	62.38 ± 0.45	1.24 ± 0.50	0.01	1.53
Novosibirsk hist	55.75 ± 0.59 7.36 ± 0.12		(1) (1)	2.11
JINST 7 P09017	$1\quad 57.6 \pm 0.4$	1.6 ± 0.3	0.18	

²³⁶ 4.1.2 Comparison between data and MC

 The comparison of the analogue reconstructed energy distributions between data and simulation is shown in Figure [7.](#page-15-1) The response versus beam energy and the non- linearity is shown in Figure [8.](#page-16-0) Similar to the observations in the previous analysis [\[6\]](#page-33-5), the FTFP BERT predictions lie slightly below the data at low energies and exceed

the data by a few percent at large energies.

Figure 7: Analogue reconstructed energy distributions from 10-80 GeV for data and simulation. The filled and colored distributions show the data, the colored solid lines show the Novosibirsk fit to the data. The simulated FTFP BERT distributions are shown with black dots, and the corresponding Novosibirsk fits with black solid lines.

241

Figure 8: Mean analogue reconstructed energy for data in black dots and for simulated FTFP BERT data in open black dots. All values determined by the same method. The bands indicate statistical and systematic uncertainty added in quadrature, the statistical error only is smaller than the markers.

 242 Digital

 The digital response is reconstructed from the number of hits above a threshold of 0.5 MIP, which is the value usually taken for AHCAL analyses ensuring a minimum noise level. This value isn't optimised. Examples for the distribution of the number of hits as well as the histograms filled from the Novosibirsk fit function are shown in Figure [9.](#page-18-0) The corresponding response, taken as the mean value of the filled Novosi- birsk distribution, as a function of the beam energy is shown in Figure [10.](#page-19-0) The response is fitted with a power law $\langle N_{hits} \rangle = a \cdot (E_{beam})^b$ and the corresponding fit parameters are given in the caption. It shows a clear saturation behaviour. This is $_{251}$ expected since the AHCAL granularity of (at best) $3x3 \text{ cm}^2$ cells is not well adapted to the digital reconstruction method, where several traversing particles contribute the same information to the reconstructed energy as a single traversing particle. In the 254 bottom part of the Figure, the relative deviation of the reconstructed $\langle N_{hits} \rangle$ from the fit function is shown. For data and simulation, the point at 20 GeV deviates strongest from the fit curve. The non-linearity introduced by the saturation is corrected on an ²⁵⁷ event-by-event basis by assuming $E_{rec, digital} = E_{beam}$ and inverting the fit functions, leading to

$$
E_{rec, digital} = \sqrt[15]{\frac{N_{hits}}{a}}.\tag{9}
$$

²⁵⁹ In the following, the parameters a and b extracted from the fit to the data are used ²⁶⁰ to reconstruct the energy of the real and also for the simulated FTFP BERT data. ²⁶¹ The resulting $E_{rec,digital}$ distributions for data and simulation are compared in Fig-²⁶² ure [11.](#page-20-0) The histograms filled from the Novosibirsk fit function used to extract the ₂₆₃ the mean and the width of the $E_{rec, digital}$ distribution are also shown. After the cor-²⁶⁴ rection of the saturation behaviour, the data show agreement with a linear behaviour 265 within $\pm 4\%$ (Figure [12\)](#page-21-0). Since the simulation is corrected with the same function ²⁶⁶ and parameters as the data, it shows slightly larger deviations from linearity than 267 the data, with the largest deviation of $\sim 8\%$ at 20 GeV.

Figure 9: Total number of hits distributions for $E_{beam} = 20 \,\text{GeV}$ and 80 GeV, data (colored) compared to simulation (black) distributions and the filled Novosibirsk distributions, from which the mean and the RMS are extracted.

Figure 10: **Mean digital response** to pion showers, fitted with power law; data: $a =$ $30.06 \pm 0.06 \,\mathrm{GeV}^{-b},\, b = 0.710 \pm 0.001,\, \mathrm{MC}\colon a = 31.60 \pm 0.06 \,\mathrm{GeV}^{-b},\, b = 0.697 \pm 0.001.$ The plot on the bottom shows the deviation from power law fit. The bands indicate the statistical and systematic uncertainty added in quadrature, the statistical error only is smaller than the markers.

Figure 11: The digital reconstructed energy distributions are shown for all energies, data in colored filled histograms and FTFP BERT simulated data in black dots. The black and colored curves show Novosibirsk fits.

Figure 12: Mean digital reconstructed energy for pion showers, for data in black dots and for the FTFP BERT simulation in open black dots. The bands indicate the statistical and systematic uncertainty added in quadrature, the statistical error only is smaller than the markers.

²⁶⁸ 4.3 Semi-digital

²⁶⁹ The semi-digital energy reconstruction is done via equation [3,](#page-4-2) with $N_1 =$ the num-²⁷⁰ ber of hits below 5 MIP, N_2 =the number of hits above 5 MIP & below 15 MIP and 271 N_3 = the number of hits above 15 MIP. These threshold values are adopted from the ²⁷² MICROMEGAS SDHCAL analysis [\[12\]](#page-34-3). They were not optimised for the AHCAL ²⁷³ geometry which has a much larger cell size. The semi-digital response in terms of N_1 , N_2 and N_3 is shown in Figure [13.](#page-22-1) ²⁷⁵ For the determination of the calibration coefficients α , β and γ the first 25.000 events

276 of each energy data set are taken, and the χ^2 -like function given in equation [4](#page-4-3) is ₂₇₇ minimised. The resulting coefficients are shown in Figure [14.](#page-23-0)

Figure 13: Mean semi-digital response to pion showers for data (filled colored markers) and MC (open markers); for hits above the first, below the second threshold N_1 , hits above the second, below the third threshold N_2 and hits passing the third threshold N_3 . The straight lines represent fits with a power law and the very small bands the statistical and systematic uncertainty added in quadrature.

278

²⁷⁹ Compared to the digital energy reconstruction, the semi-digital reconstruction leads ²⁸⁰ to much smaller tails towards low energies. However, the non-linearity (Figure [15\)](#page-24-0) ²⁸¹ looks stronger for data and simulation with deviations of $+10\%$ at low energies and $_{282}$ -5% at large energies. This is an effect from the χ^2 -like function, which implicitly ²⁸³ assumes the uncertainty to scale with the square-root of the energy. An improved $_{284}$ linearity can be reached by either using a different χ^2 definition, or by an additional

Figure 14: Calibration coefficients in the semi-digital energy reconstruction. The shaded area shows the statistical error.

linearisation step.

Figure 15: Mean semi-digital reconstructed energy for pion showers, for data in black dots and for simulated FTFP BERT data in open black dots. The bands indicate the statistical and systematic uncertainty added in quadrature, the statistical error only is smaller than the markers.

285

²⁸⁶ In order to compare with the other reconstruction methods, we apply a simple func-²⁸⁷ tion to correct for this non-linearity. The resulting linearity is shown in Figure [16.](#page-25-0) ²⁸⁸ In the following the semi-digital reconstructed energy is given as

$$
E_{rec,SDcorr} = \sqrt[15]{\frac{E_{rec,semi-digital}}{a}} \tag{10}
$$

289 with $a = 1.254 \pm 0.011 \,\text{GeV}^{-b}$ and $b = 0.9377 \pm 0.0022$ taken from the fit to data. ²⁹⁰ In Figure [17](#page-26-1) the distributions of the semi-digital reconstructed energy for data and ²⁹¹ simulated FTFP BERT events are shown. A good agreement is observed for all

Figure 16: Mean semi-digital reconstructed energy after linearity correction for pion showers, for data before correction in blue triangles and after correction in red crosses. The bands indicate the statistical and systematic uncertainty added in quadrature, the statistical error only is smaller than the markers.

energies.

Figure 17: The semi-digital reconstructed energy distributions are shown for all energies, data in colored filled histograms and FTFP BERT simulated data in black dots. The black and colored curves show Novosibirsk fits.

 292

²⁹³ 5 Energy resolution

 Since all three reconstruction methods show a reasonable linearity, their resolutions can be compared. Since the AHCAL granularity is not optimised for the digital or semi-digital reconstruction method, large effects of the relatively large cell size on the resolution are expected at higher beam energies. The functional form usually em- ployed to fit the relative energy resolution, equation [8,](#page-12-1) which consists of a stochastic, a constant and a noise term, does not accomodate for a larger resolution at higher energies. Therefore, we introduce a fourth term with variable exponent for the energy dependence, similar to the approach in [\[13\]](#page-34-4):

$$
\frac{\sigma_{rec}}{\langle E_{rec} \rangle} = \frac{a}{\sqrt{E_{beam}[GeV]}} \oplus b \oplus \frac{c}{E_{beam}[GeV]} \oplus d\left(\frac{E_{beam}[GeV]}{100}\right)^{e}.
$$
 (11)

 The fourth term can account for leakage as well as saturation effects. For each re- construction method only those parameters are left free in the fit that are needed for a reasonable description of the data. A direct comparison of the extracted values between the different methods is therefore difficult, and the fits should mainly guide ³⁰⁶ the eye.

307

³⁰⁸ 5.1 Resolution of the analogue energy reconstruction

 The relative resolution for the analogue energy reconstruction of the AHCAL pion data and of the corresponding FTFP BERT simulation as a function of beam energy are shown in Figure [18.](#page-27-1) The simulation describes the data quite well for energies below 50 GeV. For higher energies the resolution of the simulated data lays about 0.5% in absolute values above the data due to its 1% better linearity (see Figure [8\)](#page-16-0). Both show a decreasing relative resolution with increasing energy, as expected if leakage or saturation play only a minor role. Therefore, the resolutions can be parametrised with equation [8.](#page-12-1)

Figure 18: Analogue energy resolution for data and FTFP BERT simulated events, both fitted with equation [11.](#page-26-2)

317 5.2 Resolution of the digital energy reconstruction

 In Figure [19,](#page-28-1) the relative energy resolutions of the digital reconstruction method applied to AHCAL pion data and FTFP BERT simulation are compared. Both data and simulation show a strong increase of the resolution towards large energies, and a minimum resolution of about 16% for energies around $20 \,\text{GeV}$, but the resolution curve in the simulation seems to be shifted to lower energies compared to the data. The strong rise at larger energies can be fitted when taking into account the fourth term in equation [11.](#page-26-2) Since the lowest beam energy used in this analysis is 10 GeV, the other terms decreasing with increasing energy in equation [11](#page-26-2) are not well constrained. For this reason the values for a and b are fixed to zero in the fit to data and simulation.

Figure 19: Digital energy resolution for data and FTFP_BERT simulated events, both fitted with equation [11.](#page-26-2)

327

328 5.3 Resolution of the semi-digital energy reconstruction

 Also for the relative resolution of the semi-digital reconstruction method an increase at large energies is observed (Figure [20\)](#page-29-1), but it is much less pronounced than for the digital reconstruction method. The resolution has a broad minimum in the energy μ ₃₃₂ range from about 25 GeV to 60 GeV with a minimum value of about 12 %. The simulation agrees well with the data in the whole analysed energy range. Similar to the fits to the digital energy resolution, the fourth term in equation [11](#page-26-2) is needed for a good fit to data and simulation, and the first three terms more relevant and smaller energies are not well constrained. Here, the best fit is found when fixing b and c to zero.

Figure 20: Semi-digital energy resolution for data and FTFP BERT simulated events, both fitted with equation [11.](#page-26-2)

337

5.4 Comparison between different reconstruction procedures

 The resolutions obtained with the different reconstruction methods applied to the same AHCAL data are compared directly in Figure [21.](#page-31-0) In addition, the best resolu- tion reached with AHCAL data, by applying software compensation techniques [\[2\]](#page-33-1), is indicated. For the comparison one should keep in mind that in the earlier analysis, the TCMT is fully included and the track in the ECAL considered in the energy re- construction, while here a simplified treatment of the ECAL is used and the TCMT contribution is neglected.

 The non-linearities of the three methods studied in this analysis are also shown in the lower part of Figure [21.](#page-31-0)

 For the lowest energy points, the analogue and the digital reconstruction procedures show rather similar resolutions. For larger energies, the resolution of the analogue reconstruction method continues to decrease, while the digital resolution increases dramatically. The best resolution of all three methods for low energies up to about 35 GeV is found for the semi-digital reconstruction. It is however not better than the resolution reached with software compensation techniques. The semi-digital recon- struction and the software compensation both apply weights to the energy depositions in a shower which depend on hit energy or effectively shower density. At large en- ergies, the analogue method shows the best resolution of the three reconstruction methods tested in this analysis.

 The results obtained in this analysis are expected to depend on the cell size of the calorimeter and are therefore not directly applicable to the other calorimeter proto- types. For example, for the DHCAL and the SDHCAL prototypes the saturation is expected to become relevant only at considerably larger energies because of the smaller cell size. This is consistent with the fact that in the analysis of SDHCAL data, the resolutions obtained with a digital and the semi-digital reconstruction method agree up to energies of about 40 GeV, and the semi-digital procedure improves the resolution only for larger energies [\[5\]](#page-33-4).

Figure 21: Energy dependence of the relative energy resolution of the AH-CAL obtained using different approaches of the energy reconstruction for pions: analogue (black), digital (green) and semi-digital (red). The dashed and dotted curve show the resolution achieved in [\[2\]](#page-33-1) with and without software compensation techniques, using the energy deposits in the TCMT (and of the track in the ECAL) in addition to the AHCAL. The bottom plot shows the residuals to beam energy with the bands indicating the systematic uncertainties and the statistical errors smaller than the markers.

6 Conclusions

 Within the CALICE Collaboration, several techniques for highly granular hadronic calorimeters have been developed and tested in test beams of large prototypes. Dif- ferent energy reconstruction methods are used for the different prototypes. The information measured by the analogue HCAL prototype can also be analysed with the reconstruction methods developed for the digital and the semi-digital HCAL, and thus allow a direct comparison of the three reconstruction methods by applying them to the same data sample. The methods are tested on pion test beam data collected in 2007 at CERN.

 All three methods provide a reasonable linearity. The cell size of the AHCAL is not optimised for the digital and semi-digital reconstruction methods, leading to large 377 saturation effects already below 30 GeV. The methods can correct for the shift of the mean number of hits due to the saturation, however the observed energy resolutions are significantly degraded. Of the three methods studied here, the semi-digital meth- ods shows the best resolution below 30 GeV, while the resolution of the analogue reconstruction is best at large energies. None of the methods competes favourable with software compensation techniques using the full analogue information.

 The results of this analysis are expected to depend significantly on the calorimeter cell size and thus are not directly applicable to the DHCAL or SDHCAL prototypes.

385 References

⁴³⁶ Appendix

437 A ECAL contribution to the energy reconstruc-⁴³⁸ tion

⁴³⁹ Usually the ECAL contribution to the reconstructed energy is calculated by

$$
E_{ECAL} = \sum_{k=1}^{3} \nu_k \cdot M_{ECAL,k}
$$
 (12)

440 with $M_{ECAL,k}$ is the energy sum in the ECAL layers with sampling fraction k. To $_{441}$ approximate an reasonable offset, the E_{ECAL} was reconstructed with an average con-version factor, taken from [\[2\]](#page-33-1), of $\sum_{k=1}^{3} \nu_k/3 = 0.005906$.

 $_{443}$ The resulting E_{ECAL} distribution for all selected pion events, thus with MIP like ⁴⁴⁴ tracks in the ECAL, summed up over all energies is shown in Figure [22.](#page-35-1)

⁴⁴⁵ For an estimate the mean value is taken as the average energy deposited in the ECAL ⁴⁴⁶ for the Analysis.

Figure 22: Average reconstructed energy in the ECAL for selected events with track in ECAL for all runs and energies.