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Abstract

In this thesis I present a phenomenological study of the Higgs boson anoma-

lous couplings to weak bosons and fermions. I focus on Higgs bosons pro-

duced in association with a weak boson (V → VH (V = W±, Z)) at hadron

and lepton colliders, and direct production via proton-proton scattering fol-

lowed by weak boson decay (pp→ H → VV). The V → VH interactions as

well as the interaction between the Higgs boson and fermions (H f f ) are inves-

tigated along with the construction of event generators for the e−e+ → ZH

and qq̄→ VH processes. Within the framework of JHUGEN, I discuss numer-

ical simulation code that calculates the amplitude for the qq̄→ VH process,

including the anomalous HVV and H f f couplings, to next-to-leading or-

der precision in Quantum Chromodynamics (QCD). The gg → ZH process

is also included due to its sizable contribution. The construction of event

generators at leading and next-to-leading order are presented in detail. The

pp→ H → VV processes are calculated using modified event generators of

MADGRAPH and MCFM with up to next-to-next-to-leading order QCD and

NLO Quantum Electrodynamics effects taken into account. I also develop a

method for constraining the anomalous Higgs boson (Yukawa) coupling to

quarks in the first two generations, and I study the method using early data
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from the Large Hadron Collider.
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Chapter 1

Introduction

The Higgs boson was discovered in 2012 first in the its decay to a pair of

electroweak bosons (H → ZZ, H → W+W− and H → γγ), with a mass

of about 125 GeV by the ATLAS and CMS experiments at the Large Hadron

Collider (LHC) [1, 2]. In the following years and until recently, almost all of the

production mechanisms and the decay modes of the Higgs boson predicted

by the Standard Model (SM) have been observed by the ATLAS and CMS

experiments. These observations include the production of the Higgs boson

in association with a top quark pair (tt̄H) [3, 4], the Higgs boson decaying to a

pair of bottom quarks (H → bb̄) [5, 6], as well as the Higgs boson decaying to a

pair of τ leptons (H → τ−τ+) [7, 8]. The notable exception is the Higgs boson

production via vector boson fusion (HVBF), whose discovery is expected

when more LHC data becomes available. During Run I (2009-2013) and II

(2015-2018) of the LHC operations, extensive searches and measurements

by the ATLAS [9, 10, 11, 12, 13, 14] and CMS [15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25] have so far shown consistency with SM expectations within the

uncertainties. With the analysis of the LHC Run II data, as well as the planning
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of future lepton colliders as "Higgs factory" well on the way, the study of the

Higgs boson has gradually transitioned from "discovery mode" to "precision

mode", where precision measurement of the properties of the Higgs boson are

made and constraints of beyond Stand Model (BSM) physics involving the

Higgs boson are placed. It is therefore necessary to supply these efforts with

beyond leading order (LO) calculations. These calculations should include

the anomalous couplings of the Higgs boson, and tools that interface these

experimental data with these calculations should be made available.

1.1 Higgs Mechanism

The Higgs mechanism was theorized by R. Brout, F. Englert [26], P. Higgs [27,

28], G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble [29], through which

massless vector boson can acquire mass via spontaneous symmetry break-

ing. The Glashow-Weinberg-Salam theory [30, 31, 32], which unifies the

electromagnetic interaction and weak interaction, sees the application of the

Higgs mechanism. While the unified electroweak theory has a symmetry of

SU(2)×U(1), corresponding to 4 massless vector bosons; after the sponta-

neous breaking of the SU(2) gauge symmetry, the degrees of freedom of the

4 massless vector bosons become the massive W±, Z bosons, the massless

photon, as well as the scalar Higgs boson.

To illustrate the Higgs mechanism, the theory of scalar quantum electrody-

namics suffices as an example [33, 34]. The Lagrangian of the massless U(1)

2



gauge boson (photon) is

L = −1
4

FµνFµν, (1.1)

where

Fµν = ∂µ Aν − ∂ν Aµ, (1.2)

and it observes the U(1) gauge symmetry. That is, this Lagrangian is invariant

under the transformation of

Aµ(x)→ Aµ(x) + ∂µη(x) (1.3)

for any η and x. A naive addition of the mass term to the Lagrangian

L = −1
4

FµνFµν +
1
2

m2Aµ Aµ (1.4)

would violate the local gauge symmetry. Now rather than adding a naive

mass term to the Lagrangian, I introduce a complex scalar field ϕ with charge

g that couples both to the photon A and to ϕ itself,

L = −1
4

FµνFµν + (Dµϕ)†(Dµϕ)−V(ϕ), (1.5)

where D is the covariant derivative,

Dµ = ∂µ + igAµ, (1.6)

and V(ϕ) the Higgs potential,

V(ϕ) = −µ2ϕ†ϕ + λ(ϕ†ϕ)2. (1.7)
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The new Lagrangian is now invariant under the gauge transformations,

Aµ(x)→ Aµ(x) + ∂µη(x) (1.8)

ϕ(x)→ ie−igη(x)ϕ(x) (1.9)

If µ2 < 0, ϕ = 0 is the state with minimal energy, and the potential V(ϕ)

preserves the symmetries of the Lagrangian. If µ2 > 0, however, the ϕ field

acquires a vacuum expectation value (VEV)

⟨ϕ⟩ =

√︄
µ2

2λ
≡ v

2
(1.10)

and the global U(1) gauge symmetry is spontaneously broken. The field can

be expressed with respect to the VEV,

ϕ =
v + h

2
exp

(︃
i
χ

v

)︃
, (1.11)

where h can be referred to as the Higgs boson and χ the Goldstone boson. The

complex scalar field ϕ with non-zero VEV has now been expressed in terms of

two real scalar fields with no VEVs. The Lagrangian can then be rewritten as

L =− 1
4

FµνFµν + gvAµ∂µχ +
g2v2

2
Aµ Aµ +

1
2

(︃
∂µh∂µh− 2µ2h2

)︃
+

(︁
interaction terms

)︁
. (1.12)

The mixing of Aµ and ∂µχ in the second term can be removed with the choice

of unitary gauge,

Aµ → Aµ +
1

gv
∂µχ, (1.13)
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and the Lagrangian becomes

L =− 1
4

FµνFµν +
g2v2

2
Aµ Aµ +

1
2

(︃
∂µh∂µh− 2µ2h2

)︃
+

(︁
interaction terms

)︁
. (1.14)

The Goldstone boson χ has completely disappeared. The Lagrangian now

describes a theory of a U(1) gauge boson A with mass

mA = gv, (1.15)

and the Higgs boson with mass

mh =
√

2µ =
√

2λv. (1.16)

Notice that before the spontaneously breaking of the U(1) symmetry, there

are 2 degrees of freedom from the massless U(1) gauge boson A and 2 from

the complex scalar boson ϕ before; and after the spontaneously symmetry

breaking there are 3 from the now massive U(1) gauge boson A and 1 from

the real scalar Higgs boson h. Therefore the total degrees of freedom in the

theory is conserved before and after the symmetry breaking.

In the Standard Model, the SU(2)×U(1) symmetry is associated with 4

massless vector fields called W1,2,3 and B, and a complex scalar field in the

representation of SU(2) 2-component spinor

ϕ =

⎛⎜⎜⎝ϕ+

ϕ0

⎞⎟⎟⎠ , (1.17)

which amount to 12 degrees of freedom (2 from each massless vector field and
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4 from the complex doublet). After the spontaneously breaking of the U(2)

symmetry, linear combinations of the massless W1,2 fields become the massive

W± fields; and that of the massless W3 and B fields become the massive Z

field and the massless γ field, which correspond to the massive weak bosons

of W± and Z and the massless photon. The theory is also left with a real scalar

Higgs boson H. With a longitudinal degree of freedom added to each massive

boson, the total degrees of freedom remains 12. While a more comprehensive

review of the Standard Model can be found in, e.g. Ref. [33, 34], but it is worth

pointing out that the interactions among the Higgs boson and the vector

bosons can be derived from the covariant derivative of the scalar field ϕ

Dµϕ =
(︁
∂µ + igTiW i

µ + i
1
2

g′Bµ

)︁
ϕ (1.18)

and the Higgs potential

V(ϕ) = −µ2ϕ†ϕ + λ(ϕ†ϕ)2, (1.19)

and that the interaction strengths are related to the masses in the theory, which

allows the Higgs sector of the Standard Model to be tested experimentally.

Among all the Higgs boson interactions, I will focus mainly on those be-

tween the Higgs boson and the weak bosons, denoted as HVV, V = W±, Z; as

well as those between the Higgs boson and the quarks, denoted as H f f . I will

take the effective field theory approach in studying the Higgs physics beyond

the Standard Model, which extends each individual interaction Lagrangian

with gauge-invariant operators with higher mass dimensions, and explores

the experimental effect of each operator.
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1.2 HVV Interaction in the Higgs Boson Produc-
tion in Association with a Weak Boson

One way to organize the terms in the Lagrangian of an effective field theory is

by mass dimension. While in natural unit the overall dimension of a quantum

field theory Lagrangian is mass, and equivalently momentum or energy to

the forth power, the dimension of each term refers to the total power of mass

associated with the involving field strengths as well as their derivatives. The

effective HVV interaction Lagrangian with the lowest mass dimensions is1

LHVV = gHVV
1

m2
V

v
HVµVµ + gHVV

2
1
v

HVµνVµν + gHVV
4

1
v

HVµα
˜︃Vµβ (1.20)

where the superscript of HVV indicates that the dimensionless gi coefficients

are not necessarily identical for different V bosons (I will omit it when un-

necessary for simplicity), v ≈ 246 GeV is the Higgs field vacuum expectation

value, Λ denotes the scale where new physics could appear, Vµ is the field

vector, Vµν is the field tensor, and ˜︃Vµβ = 1
2 ϵρσµβVρσ, with ϵρσµβ being the

rank-4 antisymmetric tensor, is the dual field tensor.

For SM Higgs boson coupling to massive vector bosons, Z or W, gHZZ
1 =

gHWW
1 = 2, and gHVV

2 = gHVV
4 = 0. A small value of g2 ∼ O(αElectroweak) ∼

10−2 is generated in the SM by electroweak radiative corrections. The CP-

violating constant g4 is tiny in the SM since it appears only at two-loop level

for HWW and three-loop level for HZZ [36]. The SM Hγγ, HZγ, or Hgg

1The g3 term gHVV
3

1
v

1
Λ2 VµαVµβ[∂β∂αH] from Ref. [35] is omitted in this study because it is

high-dimensional and suppressed by a factor of
1

Λ2 where Λ is the energy scale where new
physics could appear.
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couplings are loop-induced and thus g2 ̸= 0 while the other coefficients are

zero [37]. Allowing for effective couplings generated with loops of light parti-

cles as well as for beyond the SM scenarios, the gi couplings can take complex

values. Thus the contributions due to different couplings may interfere with a

relative phase that is left to be resolved. This will be discussed in Section 2.6.3

and 3.2.6.

To apply Eq. (1.20) to the e−e+/pp → V∗ → VH processes, I start by

considering the amplitude of the V∗ → VH decay2, and applying the corre-

spondence

L = gHVV
1

m2
V

v
HVµVµ ⇒ iM = gHVV

1
m2

V
v

ϵµ(pV∗)ϵ
µ∗(pV), (1.21)

L = gHVV
2

1
v

HVµνVµν ⇒ iM = gHVV
2

1
v

fµν(pV∗) f µν∗(pV), (1.22)

L = gHVV
4

1
v

HVµν ˜︁Vµν ⇒ iM = gHVV
4

1
v

fµν(pV∗) ˜︁f µν∗(pV), (1.23)

with fµν(pV) = ϵµ(pV)pV,ν − ϵν(pV)pV,µ, (1.24)

and ˜︁fµν(pV) =
1
2

ϵµναβ f αβ(pV) = ϵαβµνϵα pβ
V . (1.25)

Because different momentum dependences in the scattering amplitude lead

to different kinematic distributions measured experimentally, it is useful to

collect terms with the same tensor structure in Eq. (1.21-1.25) and define the

2While the superscript of * indicates the offshellness of a particle, here it is also used to
distinguish the V bosons as parent and child particles.
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dimensionless coefficients

a1 = g1
m2

V
m2

H
+ g2
−pV∗ .pV

m2
H

, (1.26)

a2 = −g2, (1.27)

a3 = −2g4. (1.28)

The V∗ → VH amplitude is then expressed in terms of the ai coefficients,

iMV∗→VH =
1
v

ϵµ(pV∗)ϵ
ν∗(pV)

(︂
a1m2

V gµν − a2pV,µ pV∗,ν − a3ϵµναβ pα
V∗ p

β
V

)︂
.

(1.29)

The the a2 and a3 terms take a minus sign rather than a plus sign as in Eq. (11)

of Ref. [37] because the H → VV vertex is considered in the latter, and turning

an outgoing V into an incoming V∗ results in a minus sign associated with

the V∗ momentum. While the ai coefficients correspond to different tensor

structure of the HVV vertices, in this thesis, theoretical scenarios are defined

in terms of the gi constants.

After the electroweak symmetry breaking, the generic Lagrangian for the

H f f interaction of the Higgs boson to fermion is

LH f f =
m f

v
f̄ (κ + iκ̃γ5) f H (1.30)

where κ and κ̃ are scaling factors of the scalar and pseudoscalar couplings

respectively, and for SM, κ = 1 and κ̃ = 0.
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1.3 Higgs Boson Production in Association with a
Weak Boson in the JHUGEN Event Generator

The study of the Higgs boson in the association production process I am

carrying out is with the construction of Monte Carlo event generators for the

VH processes, within the JHUGEN [38, 37, 35] framework. JHUGEN is an

analysis framework to investigate the Higgs boson. It consists of Monte Carlo

event generators and matrix element tools for optimal analysis of anomalous

Higgs boson interactions.

All of the HVV and H f f interactions introduced in Section 1.2 are imple-

mented in the relevant vertices in the VH production and subsequent decay

of the Higgs boson. The first results from the VH study with JHUGEN is in

Ref. [35]. Since then, I have implemented the VH production in gluon fusion,

as well as the next-to-leading order (NLO) correction in quantum chromo-

dynamics (QCD) to the quark-initiated VH production process. Although

JHUGEN accomodates the Higgs boson decay to any SM particles, in this the-

sis the focus is given to the decay to to a pair of bottom quarks because it is the

dominant decay channel in SM. In addition, while JHUGEN can accomodate

V as a photon, and the Hγγ and HZγ interactions can be switched on, in this

thesis I focus on the cases where V = W±, Z.
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Figure 1.1: Feynman diagram of the qq̄/e+e− → V∗ → VH → f f̄ ′bb̄ processes. The
shaded blob indicates the HVV interactions with anomalous couplings.

At leading order, the geometry of each event from the qq̄/e+e− → V∗ →

VH → f f̄ ′bb̄ processes3 have 8 degrees of freedom: one invariant mass for

each of the V and H bosons, and 6 angular degrees of freedom. One of such

angular degree of freedom is the rotation of an event around the colliding

beam axis, and is trivial. The rest of the angles are illustrated in Fig. 1.2 in two

different reference frames. It is necessary to specify the reference frames in

Figure 1.2: Geometry of the qq̄/e+e− → Z∗ → ZH → ℓ−ℓ+bb̄ processes, shown in
the Z∗ (left) and H (right) rest frames. Graphs are from Ref. [35].

which the angles are defined. cos θ1 is defined in the rest frame of Z∗. cos θ2

3In this thesis, qq̄, qq̄′, q̄q′, and q̄q′ will often be collectively referred to as qq̄′; and f f̄ , f f̄ ′,
f̄ f ′, and f̄ f ′ as f f̄ ′.
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is defined in the rest frame of Z. cos θ∗, Φ, and Φ1 are all defined in the rest

frame of H. In such choice of the reference frame, the distributions of Φ1 and

cos θ∗ are trivially flat because of the Higgs boson being a scalar particle.

Notice that some of the angles defined above are LO in nature, and addi-

tional particles radiated from anywhere in the process may require redefinition

of some of these angles. The NLO kinematics will be discussed in Chapter 4.

1.4 Constraining the Higgs Boson Coupling to Light
Quarks in the H → ZZ Final States

First published in Ref. [39], I proposed a method of constraining the Higgs

boson (Yukawa) coupling to quarks in the first two generations in the H → ZZ

final states. Deviation of these couplings from the Standard Model values

(by varying κ in Eq. (1.30) leads to change in the Higgs boson width and

in the cross sections of relevant processes. In the Higgs boson resonance

region, an increased light Yukawa coupling leads to an increased Higgs boson

width, which in turn leads to a decreased cross section. In the off-shell region,

increased Yukawa couplings result in an enhancement of the Higgs boson

signal through qq̄ annihilation. With the assumption of scaling one Yukawa

coupling at a time, this study is conceptually simple and yields results with the

same order of magnitude as the tightest in the literature. The study is based on

results published by the CMS experiment at the LHC in 2014, corresponding

to integrated luminosities of 5.1 fb−1 at a centre-of-mass energy
√

s = 7 TeV

and 19.7 fb−1 at 8 TeV.
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The rest of this thesis is organized as follows. In Chapter 2, I will take

the qq̄/e+e− → V∗ → VH processes as an example and introduce in detail

the construction of an event generator at leading order, as well as some of its

collider-phenomenological results. In Chapter 3, I will present the extension

of the generator to include the gluon-initiated gg → ZH process, which

is at one-loop induced leading order. In particular, the construction of the

one-loop gg → ZH amplitudes will be presented in detail. The collider-

phenomenological results will also be presented. In Chapter 4, I will present

the extension of the generator to include the next-to-leading order correction

to the qq̄→ V∗ → VH process, as well as its phenomenological implication.

In Chapter 5, I will present one method of constraining of the Higgs boson

(Yukawa) coupling to quarks in the first two generations in the H → ZZ final

states. Finally I will conclude and present outlooks in Chapter 6.
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Chapter 2

An Event Generator for ZH/WH
Production at Leading Order

An event generator is a Monte Carlo integration program that calculates the

differential cross section of a scattering process in quantum field theory. In the

process, events, i.e. 4-momenta of the relevant particles are returned with their

given probability. Random numbers are used to perform the Monte Carlo

phase space integration of the cross section. The events with non-uniform

weight are called weighted events, and weighted events can be unweighted

by keeping an event with a probability equal to its weight divided by the

maximum weight among all the events. The result is that all of the retained

events have weight one, but are distributed according their probabilities. The

unweighted events closely resemble the hard process in high energy collisions,

and can be further processed for detector simulation and analysis to predict

the outcome of a given theory.

Motivated by the discovery of a new boson by the LHC experiments

in 2012 [1, 2], the JHUGEN event generator generates both weighted and

unweighted events for processes that involve XVV and X f f interactions,
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where X is a boson of spin-0, 1, or 2, and f is a SM fermion of any applicable

flavor. With the determination of H being the Higgs boson in the Standard

Model within uncertainties, later development of the generator gave focus on

the processes involving spin-0VV interactions so that experimental effects of

the deviations from the SM HVV interactions can be studied. Two versions of

the qq̄/e+e− → V∗ → VH processes have been implemented, in PROCESS=50

and 51 respectively. For the qq̄/e+e− → V∗ → VH processes, the main

difference between PROC=50 and 51 is the formulation of their matrix elements.

In addition, the gg → ZH and the next-to-leading order correction to the

qq̄ → V → VH process is implemented in PROC=51 which are presented in

Chapter 3 and 4 respectively.

At leading order in quantum chromodynamics, the hadronic cross section

for a proton-proton scattering process is

σpp = ∑
a,b

∫︂ 1
2ŝ

dx1dx2PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

dPS|Mab, LO|2Θ(x1x2s− ŝ)Θcut({p}) (2.1)

where the sum is performed over all possible parton combinations, s is the

square of the center-of-mass energy, or invariant mass, of the colliding hadrons,

x1,2 are the momentum fractions carried by each parton, PDFa(x1; µ2
Fac) is the

parton distribution function of parton species a at energy scale µFac, dPS is the

differential phase space, and MLO,ab is the leading order matrix element, or

scattering amplitude of the process with initial-state parton a and b1. If the

1The subscript LO will be omitted for the remaining of this Chapter for simplicity.
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one or both of the scattering hadron is replaced by a lepton, the corresponding

summation over its parton species and the integration over the corresponding

momentum fraction is dropped. In the case of electron-positron scattering, the

cross section is

σe+e− =
∫︂ 1

2s
dPS|M|2Θcut({p}) (2.2)

The phase space integration is over the four-momenta {p} of the final-state

particles. The first step function Θ(x1x2s− ŝ) dictates that the invariant mass

of initial-state parton combination is sufficient for an event with invariant mass
√

s to occur. The second step function Θcut({p}) specifies the phase space cuts,

which dictates that the final-state momenta {p} pass certain selection criteria

that are usually determined by the collider experiment. In the following

sections, I will present the implementation of the above elements in an event

generator.

2.1 Phase Space

Including the final-state particles, the qq̄/e+e− → V∗ → VH → f f̄ ′bb̄ pro-

cesses, where f f̄ ′ is the fermion pair decayed from the V boson and bb̄ is the

bottom quark pair decayed from the Higgs boson, is a 2→ 1→ 2→ 4 process,

as shown in Fig. 1.1. On the left of Fig. 2.1, the diagram without specifying

the particle identities is shown.
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Figure 2.1: Schematic diagrams of a four-body decay process (left) and a two-body
decay process (right).

The left of Fig. 2.1 can be seen as three 1→ 2 diagrams, shown on the right,

connecting to one another.

2.1.1 2-Particle Phase Space

With invariant mass√sij, the phase space integral for the the 1→ 2, or ij→ i, j

diagram without phase space cuts is

∫︂
dPSij→i,j =

∫︂ d3pi

(2π)32Ei

∫︂ d3pj

(2π)32Ej
(2π)4δ(4)(pij − pi − pj). (2.3)

Let the 4-momenta p take the familiar form of

p = (E, p) = (E, px, py, pz)

= (E, |p| sin θ cos ϕ, |p| sin θ sin ϕ, |p| cos θ). (2.4)

The above expression becomes

∫︂
dPSij→i,j =

∫︂ |p|2i d|p|id cos θidϕi

(2π)32Ei

∫︂ |p|2j d|p|jd cos θjdϕj

(2π)32Ej

× (2π)δ(Eij − Ei − Ej)(2π)3δ(3)(pij − pi − pj). (2.5)
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In the center-of-mass frame, E2
ij = sij, and the second Dirac delta function can

be eliminated,

∫︂
dPSij→i,j =

∫︂ |p|2i d|p|id cos θidϕi

(2π)32Ei2Ej
(2π)δ(Eij − Ei − Ej), (2.6)

with pj = −pi. (2.7)

Applying the identity for Dirac delta function

δ(g(x)) =
δ(x− x0)

dg(x0)/dx
, (2.8)

and

|p|2d|p| = |p|2d
√︁

E2 −m2 = |p|EdE, (2.9)

the two-particle phase space integral is finally

∫︂
dPSij→i,j =

∫︂ |pi|d cos θidϕi

(2π)24Eij
, (2.10)

with Ei =
E2

ij + m2
i −mj

2

2Eij
, (2.11)

and |pi| =

√︂
E4

ij + (m2
i −m2

j )
2 − 2(m2

i + m2
j )E2

ij

2Eij
. (2.12)

In the limit where all of the final-state particles are (treated as) massless,

∫︂
dPSij→i,j =

1
8π2 . (2.13)

While Monte Carlo integration for the somewhat trivial 1 → 2 phase space

seems unnecessary, uniformly distributed random numbers xcos θ,ϕ between,
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say, 0 and 1 can be mapped according to

xcos θ → cos θ = 2xcos θ − 1 ∈ [−1, 1], and xϕ → ϕ = 2πxϕ ∈ [0, 2π],

(2.14)

which can be then applied to Eq. (2.11, 2.12, and 2.4) to generate events with

particles of momenta pi and pj. Of course, these momenta are generated in

the center-of-mass frame, and can be boosted to another reference frame as

needed.

2.1.2 4-Particle Phase Space

With the 1 → 2 phase space understood, the 1 → 4 phase space integral

without cuts,

∫︂
dPS1234→1,2,3,4 =

4

∏
i=1

∫︂ d3pi

(2π)32Ei
(2π)4δ(4)(p1234 − p1 − p2 − p3 − p4),

(2.15)

as needed for the qq̄/e+e− → V∗ → VH → f f̄ ′bb̄ processes can be assembled

to reflect the three ij→ i, j splittings,

∫︂
dPS1234→1,2,3,4

=
∫︂

dPS1234→12,34→1,2,3,4 (2.16)

=
∫︂

dPS1234→12,34

∫︂ ds12

2π

∫︂
dPS12→1,2

∫︂ ds34

2π

∫︂
dPS34→3,4 (2.17)

=
∫︂ |p12|d cos θ12dϕ12

(2π)24E12

∫︂ ds12

2π

∫︂ |p1|d cos θ1dϕ1

(2π)24E1

∫︂ ds34

2π

∫︂ |p3|d cos θ3dϕ3

(2π)24E3
.

(2.18)
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The limits of the ds12 and ds34 integrals satisfy

(
√

s−m1 −m2)
2 ≥ s34, (2.19)

s ≥ (
√

s12 +
√

s34)
2, (2.20)

s12 ≥ (m1 + m2)
2, (2.21)

s34 ≥ (m3 + m4)
2, (2.22)

where
√

s is the invariant mass of the event, and mi is the mass of the i-th

particle. It needs to be stressed that each set of Ei, |p|i, cos θi, and ϕi in Eq. (2.18)

are defined in the rest frame of the mother particle.

It should be noted that the same phase space integration can be done with

different splittings, for example,

∫︂
dPS1234→1,2,3,4

=
∫︂

dPS1234→123,4→12,3,4→1,2,3,4 (2.23)

=
∫︂ dPS123

2π

∫︂
dPS1234→123,4

∫︂ dPS12

2π

∫︂
dPS123→12,3

∫︂
dPS12→1,2. (2.24)

In any case, the 4-particle final state has 8 degrees of freedom – 2 angles at

each of the 3 splittings and 2 invariant masses. The splittings can be chosen

according to the decaying chain so that the invariant masses can be generated

efficiently, which is further discussed below.
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2.1.3 Importance Sampling

In the qq̄/e+e− → V∗ → VH → f f̄ ′bb̄ processes, the invariant mass of the

first intermediate vector boson V∗ is determined by the scattering partons,

and is usually off-shell. The other vector boson V and the Higgs boson H tend

to be produced on-shell, and hence their invariant masses follow the Breit-

Wigner distributions, which is a consequence of the Feynman propagators, as

those appeared in Eq. (2.50),

|M|2 ∼ 1⃓⃓
p2

V −m2
V + imVΓV

⃓⃓2 1⃓⃓
p2

H −m2
H + imHΓH

⃓⃓2
=

1
(p2

V −m2
V)

2 + m2
VΓ2

V

1
(p2

H −m2
H)

2 + m2
HΓ2

H
, (2.25)

where Γ is the decay width. Unless V is massless, these distributions have

sharp peaks around the masses of the boson, shown in Fig. 2.2, and uniformly

distributed random numbers cannot efficiently sample their invariant masses.
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Figure 2.2: Invariant mass distribution of the lepton pair for simulated qq̄→ ZH →
ℓ−ℓ+bb̄ events, and that of the lepton-neutrino pair for simulated qq̄′ →WH → lνlbb̄
events.

To improve the sampling efficiency, a change of variable is performed on
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the corresponding random number, so that the transformed random num-

ber (approximately) follows the Breit-Wigner distribution, and the invariant

masses with higher weights are sampled much more often. The Breit-Wigner

distribution can be generated using the technique of importance sampling

analytically. Starting with the probability distribution,

Prob.(s) ∼ |M|2 ∼ 1
(s−m2)2 + m2Γ2 , (2.26)

the cumulative distribution function (CDF) is

CDF(s) =
1

NORM

∫︂ s≤smax

smin

ds′

(s′ −m2)2 + m2Γ2 (2.27)

=
1

NORM
1

mΓ

[︂
tan−1

(︂ s−m2

mΓ

)︂
− tan−1

(︂ smin −m2

mΓ

)︂]︂
, (2.28)

where the factor of

NORM =
1

mΓ

[︂
tan−1

(︂ smax −m2

mΓ

)︂
− tan−1

(︂ smin −m2

mΓ

)︂]︂
(2.29)

dictates that

CDF(smin) = 0, (2.30)

and that CDF(smax) = 1. (2.31)

Drawing the uniformly distributed random number

xs ∈ [CDF(smin), CDF(smax)] = [0, 1] (2.32)
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and apply it to the inverse function of CDF(s), the squared invariant mass

s = CDF−1(xs) (2.33)

= m2 + mΓ tan
(︂

tan−1
(︂ smin −m2

mΓ

)︂
+ NORM xsmΓ

)︂
(2.34)

is generated following the Breit-Wigner distribution. The change of variable

from ds to dxs is associated with a Jacobian

Js = ds/dxs

= (mΓ)2(1 + (tan(x′smΓ))2)(x′s,max − x′s,min), (2.35)

with x′ = x(x′s,max − x′s,min) + x′s,min, (2.36)

x′s,min = − 1
mΓ

tan−1(
m
Γ
), (2.37)

and x′s,max = − 1
mΓ

tan−1(
m2 − smax

mΓ
). (2.38)

Applying all the changes of variables to Eq. (2.18), the phase space integral

of the qq̄/e+e− → V∗ → VH → f f̄ ′bb̄ processes is

∫︂
dPSqq̄/e+e−→V∗→VH→ f f̄ ′bb̄

=
∫︂

dPSV∗→VH→ f f̄ ′bb̄ (2.39)

=
∫︂

dPSV∗→VH

∫︂ dsV

2π

∫︂
dPSV→ f f̄ ′

∫︂ dsH

2π

∫︂
dPSH→bb̄ (2.40)
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=
∫︂ (
√

ŝ−2mb)
2

(m f +m f̄ ′+2mb)2

dsV

2π

∫︂ (
√

ŝ−√sV)
2

(2mb)2

dsH

2π

∫︂ 1

−1
d cos θV

∫︂ 2π

0
dϕV

|pV |
(2π)24EV

×
∫︂ 1

−1
d cos θ f

∫︂ 2π

0
dϕ f

|p f |
(2π)24E f

∫︂ 1

−1
d cos θb

∫︂ 2π

0
dϕb

|pb|
(2π)24Eb

(2.41)

=
∫︂ 1

0
JsV

dxsV

2π

∫︂ 1

0
JsH

dxsH

2π

∫︂ 1

0
Jcos θV dxcos θV

∫︂ 1

0
JϕV dxϕV

|pV |
(2π)24EV

×
∫︂ 1

0
Jcos θ f dxcos θ f

∫︂ 1

0
Jϕ f dxϕ f

|p f |
(2π)24E f

∫︂ 1

0
Jcos θbdxcos θb

∫︂ 1

0
Jϕbdxϕb

|pb|
(2π)24Eb

,

(2.42)

where

Jy ≡ dy/dxy (2.43)

is the Jacobian for the change of variable. Specifically,

Jcos θ = 2, Jϕ = 2π, (2.44)

and Js is given by Eq. (2.35-2.38). The limits of the ds integrals in Eq. (2.41) are

such that the sum of the invariant masses of V and H does not exceed the total

available invariant mass
√

ŝ of that event, and that each of them is sufficient

for the subsequent decay to take place, as stated in Eq. (2.19-2.22).

In Monte Carlo simulation, the
∫︁ 1

0 dx integrals are approximated by a

weighted average. Defining phase space weight

PSV∗→VH→ f f̄ ′bb̄
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=PSV∗→VH→ f f̄ ′bb̄(xsV , xsH , xcos θV , xϕV , xcos θ f , xϕ f , xcos θb , xϕb ; s) (2.45)

≡PS(x; s) (2.46)

≡ JsV (xsV ; s)
2π

JsH(xsH ; s)
2π

Jcos θV (xcos θV )JϕV (xϕV )
|pV(s)|

(2π)24EV(s)

×Jcos θ f (xcos θ f )Jϕ f (xϕ f )
|p f (xsV )|

(2π)24E f (xsV )
Jcos θb(xcos θb)Jϕb(xϕb)

|pb(xsH)|
(2π)24Eb(xsH)

,

(2.47)

The phase space integral becomes

∫︂
dPSV∗→VH→ f f̄ ′bb̄ =

V
N

N

∑
i=1

PS(xi; s) + σ, (2.48)

where V is the volume of the integrated x space, and conveniently V = 1 be-

cause all of the components in x have been chosen to be uniformly distributed

random numbers in [0, 1]. The estimation of the variance of the integral can

be derived from Ref. [40],

σ2 ≈ 1
N − 1

(︃
1
N

N

∑
i=1

PS(xi; s)− 1
N2

N

∑
i=1

PS2(xi; s)
)︃

. (2.49)

Again, an event can be generated with each set of x. Specifically, four-

momenta of the intermediate and final-state particles can be calculated in the

rest frames of the mother particles by Eq. (2.4, 2.11, 2.12, and 2.14); invariant

masses of the intermediate particles can be determined by Eq. (2.34); and

E2
ij = sij in the rest frame of particle ij. Before an event is written down (see

Section 2.5.2) for analysis or is processed to produce statical distributions,

the four-momenta of all of the particles involved are boosted to the reference

frame of the laboratory (see Section 2.5.1), where kinematic selection can be
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properly applied.

The phase space weight of an event PS(x; s) is further multiplied by the

squared matrix element of the process and other factors seen in Eq. (2.1 or 2.2)

to form the weight of the event (see Eq. (2.116-2.117)), as well as to evaluate the

cross section of the process. The construction of the leading order amplitudes

is presented in the next section.

The numerical integration in JHUGEN is implemented with the VEGAS

algorithm [40], which supplies all of the random numbers, as well as applies

additional importance sampling during the numerical integration. As a result,

an additional Jacobian due to VEGAS is supplied and multiplied to the event

weights.

2.2 Matrix Elements

For definiteness and without loss of too much generality, in this section I am

mostly treating the e+e− → Z∗ → ZH → ℓ−ℓ+bb̄ process, whose leading

order matrix element with anomalous couplings is

iMe+e−→Z∗→ZH→ℓ−ℓ+bb̄, LO

=ψ̄(pe+ , he+)
(︁
i
2MZ

v
γµ(gZee

V − gZee
A γ5)

)︁
ψ(pe− , he−)

×ψ̄(pℓ− , hℓ−)
(︁
i
2MZ

v
γν(gZll

V − gZll
A γ5)

)︁
ψ(pℓ+ , hℓ+)

×ψ̄(pb, hb)
(︁
− i

mb
v
(κ + iκ̃γ5)

)︁
ψ(pb̄, hb̄)
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×
i(−gµα + pµ

Z∗ p
α
Z∗/m2

Z)

p2
Z∗ −m2

Z + imZΓZ

i(−gβν + pβ
Z pν

Z/m2
Z)

p2
Z −m2

Z + imZΓZ

i
p2

H −m2
H + imHΓH

× i
v
(a1gαβm2

H − a2pV,α pV∗,β − a3ϵαβρσ pρ
Z∗ p

σ
Z), (2.50)

where (p, h) denotes the momentum and helicity dependencies of fermion

spinors, v ≈ 246 GeV is the vacuum expectation value of the Higgs field,

gZ f f
V and gZ f f

A are the vector and axial couplings between the Z boson and

f -fermion current, κ (κ̃) is the scaling factor of the Higgs boson (pseudo-)scalar

coupling to fermions with κ = 1 (κ̃ = 0) being SM, and the coefficients a1, a2

and a3 are defined in Eq. (1.26-1.28). Notice that the a2 and a3 terms receive

minus signs because in Eq. (11) of Ref. [37] it was defined in the H → VV

decay, and here one of the outgoing Z has been replaced by an incoming Z∗.

The values of gZ f f
V and gZ f f

A in the Standard Model are

gZ f f
V =

1
2

T3
f −Q f sin2 θW, (2.51)

gZ f f
A =

1
2

T3
f , (2.52)

where

T3
lL
= T3

dL
= −1

2
, (2.53)

T3
νL

= T3
uL

=
1
2

, (2.54)

T3
lR
= T3

uR
= 0, (2.55)

Q f is the electric charge of the particle species f , and θW is the weak mixing

angle with cos θW = mW/mZ at LO.
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2.3 Calculating Matrix Elements with Feynman Rules
in the Traditional Manner

The first implementation of the qq̄/e+e− → V∗ → VH → f f̄ ′bb̄ matrix el-

ements in the JHUGEN event generator is with PROCESS=50. In Eq. (2.50),

the matrix element consists of fermion spinors, polarization vectors for ex-

ternal vector bosons, propagators for intermediate particles, and interaction

vertices. In this implementation, inner product of fermion spinors (with γ5

"sandwiched" in between) have been taken to form Lorentz-invariant

(pseudo-)scalars. Fermion spinors are also combined with γµ and γµγ5 to

form vector and axial currents.

Since the energy scale of the VH production is sufficiently high, I have

taken the limit where the spinors of external fermions are massless. This

not only greatly simplifies the scalar, pseudoscalar, vector, and axial vectors

formed by the spinors; but also eliminates the pµ
Z∗ p

α
Z∗/m2

Z and pβ
Z pν

Z/m2
Z

tensors in the numerators of the vector boson propagators, via the massless

Dirac equation,

or, pµγµψ(p, h) =0

ψ̄(p, h)pµγµ =0, (2.56)

and thus allowing the fermion currents to directly Lorentz-contract with the

HVV interaction tensor.
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2.3.1 Spinor Products

Some of the expressions, conventions, and derivations in this and the next

subsection were adopted from Appendix B of Ref. [41]. I adopt the γ-matrices

γ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, γ1 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

γ2 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, γ3 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.57)

and, additionally, γ5 ≡ iγ0γ1γ2γ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.58)
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The left and right projection operators are defined as

PL ≡
1
2
(1− γ5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, PR ≡

1
2
(1 + γ5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(2.59)

which, when operating on a generic spinor, will project out its left (lower) or

right (upper) component. With the fermion momentum defined in Eq. (2.4),

the solutions of the massless Dirac equation Eq. (2.56) in the left and right

basis are

ψ(p, h = L) = u−(p) = v+(p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

px − ipy√︁
E + pz

−
√︁

E + pz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.60)

ψ(p, h = R) = u+(p) = v−(p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√︁
E + pz

px + ipy√︁
E + pz

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.61)
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and

ψ̄(p, h = L) = ψ†(p, h = L)γ0 = u−(p) = v+(p)

= (
px + ipy√︁

E + pz
,−

√︁
E + pz, 0, 0), (2.62)

ψ̄(p, h = R) = ψ†(p, h = R)γ0 = u+(p) = v−(p)

= (0, 0,
√︁

E + pz,
px − ipy√︁

E + pz
). (2.63)

Notice the degeneracy between the particle and antiparticle states with oppo-

site spins. The non-zero spinor products are

⟨ij⟩ ≡ ψ̄(pi, h = L)ψ(pj, h = R)

=
(pi,x + ipi,y)

√︁
Ej + pj,z√︁

Ei + pi,z
−

(pj,x + ipj,y)
√︁

Ei + pi,z√︁
Ej + pj,z

(2.64)

and [ij] ≡ ψ̄(pi, h = R)ψ(pj, h = L)

=
(pi,x − ipi,y)

√︁
Ej + pj,z√︁

Ej + pj,z
−

(pj,x − ipj,y)
√︁

Ei + pi,z√︁
Ei + pi,z

. (2.65)

In addition, the non-zero spinor products with a γ5 matrix sandwiched in

between are

iψ̄(pi, h = L)γ5ψ(pj, h = R)

=
i(pi,x + ipi,y)

√︁
Ej + pj,z√︁

Ei + pi,z
−

i(pj,x + ipj,y)
√︁

Ei + pi,z√︁
Ej + pj,z

(2.66)

=i⟨ij⟩ (2.67)
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and iψ̄(pi, h = R)γ5ψ(pj, h = L)

=−
i(pi,x − ipi,y)

√︁
Ej + pj,z√︁

Ej + pj,z
+

i(pj,x − ipj,y)
√︁

Ei + pi,z√︁
Ei + pi,z

(2.68)

=− i[ij]. (2.69)

It is worth pointing out that the spinor products above do not contain sin-

gularities as pz approaches −E, since at the same time both px and py are

approaching 0 as well. In these limits,

lim
pz→−E

ψ(p, h = L) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

√
2E

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, lim

pz→−E
ψ(p, h = R) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

√
2E

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.70)

and the expressions of the spinor products do not have numerical instability,

which can be implemented when E + pz approaches the machine precision

ϵmachine. An alternative implementation is to add a small quantity slightly

above the machine precision to the square root in the denominator so that

dividing by zero does not occur. For example,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

px − ipy√︁
E + pz

−
√︁

E + pz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

px − ipy√︁
E + pz + ϵmachine

−
√︁

E + pz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.71)
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2.3.2 Fermion Currents

Spinors can sandwich γµ and γµγ5 to form fermion vector and axial currents.

In the limit where fermions are massless, the currents are either left- or right-

handed. With the expressions from Section 2.3.1, the non-zero vector currents

JV are

Jµ
V,L(pi, pj) = ψ̄(pi, h = L)γµψ(pj, h = L)

=u−(pi)γ
µu−(pj) = u−(pi)γ

µv+(pj) = v+(pi)γ
µu−(pj) = v+(pi)γ

µv+(pj)

(2.72)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(pi,x + ipi,y)(pj,x − ipj,y)√︁
Ei + pi,z

√︁
Ej + pj,z

+
√︁

Ei + pi,z
√︁

Ej + pj,z√︁
Ei + pi,z(pj,x − ipj,y)√︁

Ej + pj,z
+

√︁
Ej + pj,z(pi,x + ipi,y)√︁

Ei + pi,z
i
√︁

Ei + pi,z(pj,x − ipj,y)√︁
Ej + pj,z

−
i
√︁

Ej + pj,z(pi,x + ipi,y)√︁
Ei + pi,z

−
(pi,x + ipi,y)(pj,x − ipj,y)√︁

Ei + pi,z
√︁

Ej + pj,z
+

√︁
Ei + pi,z

√︁
Ej + pj,z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, (2.73)

Jµ
V,R(pi, pj) = ψ̄(pi, h = R)γµψ(pj, h = R)

=u+(pi)γ
µu+(pj) = u+(pi)γ

µv−(pj) = v−(pi)γ
µu+(pj) = v−(pi)γ

µv−(pj)

(2.74)
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(pi,x − ipi,y)(pj,x + ipj,y)√︁
Ei + pi,z

√︁
Ej + pj,z

+
√︁

Ei + pi,z
√︁

Ej + pj,z√︁
Ei + pi,z(pj,x + ipj,y)√︁

Ej + pj,z
+

√︁
Ej + pj,z(pi,x − ipi,y)√︁

Ei + pi,z

−
i
√︁

Ei + pi,z(pj,x + ipj,y)√︁
Ej + pj,z

+
i
√︁

Ej + pj,z(pi,x − ipi,y)√︁
Ei + pi,z

−
(pi,x − ipi,y)(pj,x + ipj,y)√︁

Ei + pi,z
√︁

Ej + pj,z
+

√︁
Ei + pi,z

√︁
Ej + pj,z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

; (2.75)

and the non-zero axial currents JA are

Jµ
A,L(pi, pj) = ψ̄(pi, h = L)γµγ5ψ(pj, h = L)

=u−(pi)γ
µγ5u−(pj) = u−(pi)γ

µγ5v+(pj)

=v+(pi)γ
µγ5u−(pj) = v+(pi)γ

µγ5v+(pj) (2.76)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(pi,x + ipi,y)(pj,x − ipj,y)√︁

Ei + pi,z
√︁

Ej + pj,z
−

√︁
Ei + pi,z

√︁
Ej + pj,z

−
√︁

Ei + pi,z(pj,x − ipj,y)√︁
Ej + pj,z

−
√︁

Ej + pj,z(pi,x + ipi,y)√︁
Ei + pi,z

−
i
√︁

Ei + pi,z(pj,x − ipj,y)√︁
Ej + pj,z

+
i
√︁

Ej + pj,z(pi,x + ipi,y)√︁
Ei + pi,z

(pi,x + ipi,y)(pj,x − ipj,y)√︁
Ei + pi,z

√︁
Ej + pj,z

+
√︁

Ei + pi,z
√︁

Ej + pj,z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, (2.77)

Jµ
A,R(pi, pj) = ψ̄(pi, h = R)γµγ5ψ(pj, h = R)

=u+(pi)γ
µγ5u+(pj) = u+(pi)γ

µγ5v−(pj)
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=v−(pi)γ
µγ5u+(pj) = v−(pi)γ

µγ5v−(pj) (2.78)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(pi,x − ipi,y)(pj,x + ipj,y)√︁
Ei + pi,z

√︁
Ej + pj,z

+
√︁

Ei + pi,z
√︁

Ej + pj,z√︁
Ei + pi,z(pj,x + ipj,y)√︁

Ej + pj,z
+

√︁
Ej + pj,z(pi,x − ipi,y)√︁

Ei + pi,z

−
i
√︁

Ei + pi,z(pj,x + ipj,y)√︁
Ej + pj,z

+
i
√︁

Ej + pj,z(pi,x − ipi,y)√︁
Ei + pi,z

−
(pi,x − ipi,y)(pj,x + ipj,y)√︁

Ei + pi,z
√︁

Ej + pj,z
+

√︁
Ei + pi,z

√︁
Ej + pj,z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

. (2.79)

Again, in the limit of E + pz approaching 0, special care needs to be taken, and

either treatment in Eq. (2.70) or Eq. (2.71) may be applied.

2.3.3 Polarization Vectors and Propagators

Up to gauge redundancy, a massive vector boson with momentum

p = (E, 0, 0, |p|), (2.80)

has two transverse polarization vectors

ε± = (0,∓ 1√
2

,− i√
2

, 0), (2.81)

and one longitudinal polarization vector

ε0 = (
|p|
m

, 0, 0,
E
m
). (2.82)

If the vector boson is massless, as in the case of gluon or photon, the longi-

tudinal polarization vector does not exist. For a vector boson with generic
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momentum

p = (E, p) = (E, px, py, pz)

= (E, |p| sin θ cos ϕ, |p| sin θ sin ϕ, |p| cos θ), (2.83)

which is rotated from Eq. (2.80) by the rotation operator

R(θ, ϕ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 cos ϕ cos θ − sin ϕ cos ϕ sin θ

0 sin ϕ cos θ cos ϕ sin ϕ sin θ

0 − sin θ 0 cos θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.84)

the polarization vectors can be rotated from Eq. (2.81 and 2.82) by the same

operator,

ε±(p) =
(︁
0,
∓ cos θ cos ϕ + i sin θ√

2
,
∓ cos θ sin ϕ− i cos ϕ√

2
,
± sin θ√

2

)︁
(2.85)

ε0(p) =
(︁ |p|

m
,

E sin θ cos ϕ

m
,

E sin θ sin ϕ

m
,

E cos θ

m
)︁
. (2.86)

The numerator of the propagator of a vector boson is a rank-2 tensor, as

appeared in Eq. (2.50). It is an option to decompose the rank-2 tensor in the

vector boson propagator into the sum of outer products of the polarization

vectors,

−gµν +
pµ pν

m2
V

= ∑
λ=±,0

ε
µ
λ(p)εν∗

λ (p) (2.87)
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and to have the polarization vectors Lorentz-contract with the external cur-

rents and the tensor of the HVV interaction that the propagator connects,

iM ∼Jµ(propagator)µα(Z∗ZH vertex)αβ(propagator)βν Jν

∼ ∑
λ1=±,0

∑
λ2=±,0

(Jµε
µ
λ1
)
(︁
ε

µ∗
λ1
(Z∗ZH vertex)µνεν

λ2

)︁
(ε

µ∗
λ2

Jµ). (2.88)

For the qq̄/e+e− → V∗ → VH → f f̄ ′bb̄ processes, however, this is not

necessary, because when the pµ(∗)
Z pν(∗)

Z /m2
Z terms Lorentz-contract with the

massless fermion currents, Dirac equation would guarantee an outcome of

zero. For example,

ψ̄(pe+)γµψ(pe−)pµ
Z = ψ̄(pe+)γµψ(pe−)(pµ

e+ + pµ
e−)

=ψ̄(pe+)γµψ(pe−)pµ
e+ + ψ̄(pe+)γµψ(pe−)pµ

e− = 0. (2.89)

Therefore the non-vanishing term in the propagator is proportional to the

metric tensor gµν, which will allow the current to directly Lorentz-contract

with the HVV interaction tensor. When a propagator is attached to other than

a massless current, as occurs in the gg → ZH amplitudes (see Fig. 3.1), the

full tensor structure of the vector boson propagator must be preserved.

The denominator of propagators as part of an event generator has been

discussed in Section 2.1.3.
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2.3.4 Interaction Vertices and Assembling of the Matrix Ele-
ments

Vector and axial currents can be either left- and right-handed, and the current

of each fermion flavor couple to the Z boson with its own strength,

gZlLlL
V = sin2 θW , gZlRlR

V = sin2 θW −
1
4

,

gZlLlL
A =0, gZlRlR

A =− 1
4

,

gZuLuL
V =− 2

3
sin2 θW gZuRuR

V =
1
4
− 2

3
sin2 θW ,

gZuLuL
A =0, gZuRuR

A =
1
4

,

gZdLdL
V =

1
3

sin2 θW , gZdRdR
V =− 1

4
+

1
3

sin2 θW ,

gZdLdL
A =0, gZdRdR

A =− 1
4

. (2.90)

Because γ5 can always be treated as part of the left or right projection operator,

currents do not need to be considered vector or axial, but only left or right,

and the couplings (gZ f f
V − gZ f f

A γ5) may therefore be reduced to gZ f f
L

1− γ5

2
+

gZ f f
R

1 + γ5

2
, with

gZll
L = sin2 θW −

1
2

, gZll
R = sin2 θW ,

gZuu
L =− 2

3
sin2 θW +

1
2

, gZuu
R =− 2

3
sin2 θW ,

gZdd
L =

1
3

sin2 θW −
1
2

, gZdd
R =+

1
3

sin2 θW . (2.91)
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It is also useful to define

gZll
V =gZlLlL

V + gZlRlR
V , gZll

A =gZlLlL
A + gZlRlR

A ,

gZuu
V =gZuLuL

V + gZuRuR
V , gZuu

A =gZuLuL
A + gZuRuR

A ,

gZdd
V =gZdLdL

V + gZdRdR
V , gZdd

A =gZdLdL
A + gZdRdR

A , (2.92)

which will be useful in Chapter 3.

The tensor of HVV interaction is rank-2. The a1 and a2 terms are easy to

obtain, and the rank-4 antisymmetric tensor in the a3 term can take a compact

form,

ϵαβµν =
1

12
[︁
(α− β)(α− µ)(α− ν)(β− µ)(β− ν)(µ− ν)

]︁
, (2.93)

with ϵ0123 =1, (2.94)

which allows ϵαβρσ pρ
Z∗ p

σ
Z to be easily implemented.

Putting everything together, the helicity amplitude for the e+e− → Z∗ →

ZH → ℓ−ℓ+bb̄ process at leading order is

iMe+e−→Z∗→ZH→ℓ−ℓ+bb̄, LO

=i
2MZ

v
gZll

L/R Jµ
L/R(pe+ , pe−) i

2MZ

v
gZll

L/R Jν
L/R(pℓ− , pℓ+)

×i
Mb
v
×

{︄[︁
κ⟨bb̄⟩+ iκ̃(i⟨bb̄⟩)

]︁
if b is left-handed[︁

κ[bb̄] + iκ̃(−i[bb̄])
]︁

if b is right-handed
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× i
v
(a1gµνm2

H − a2pV,µ pV∗,ν − a3ϵαβµν pα
Z∗ p

β
Z)

× −i
p2

Z∗ −m2
Z + imZΓZ

−i
p2

Z −m2
Z + imZΓZ

i
p2

H −m2
H + imHΓH

. (2.95)

2.4 Calculating Matrix Elements using Spinor-Helicity
Formalism

One compact way to express matrix element is the spinor-helicity formalism,

whose review can be found in, e.g. Ref.[34, 41, 42]. In this formalism, the entire

structure involving spinors and Lorentz indices of a helicity amplitude can be

expressed as a rational expression of only the spinor products as defined in

Eqs. (2.64) and (2.65).

The notations of spinors in the spinor-helicity formalism are consistent

with those of the spinor products defined in Eqs. (2.64) and (2.65) – breaking

the spinor products apart,

ψ(p, h = L) = u−(p) = v+(p) ≡|p] (2.96)

ψ(p, h = R) = u+(p) = v−(p) ≡|p⟩ (2.97)

ψ̄(p, h = L) = u−(p) = v+(p) ≡⟨p| (2.98)

ψ̄(p, h = R) = u+(p) = v−(p) ≡[p| . (2.99)
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Similarly, the currents can be written with Lorentz indices sandwiched be-

tween spinors.

Jµ
V,L(pi, pj) ≡ ⟨pi|γµ|pj] , (2.100)

Jµ
V,R(pi, pj) ≡ [pi|γµ|pj⟩ , (2.101)

Jµ
A,L(pi, pj) ≡ ⟨pi|γµ|5|pj] , (2.102)

Jµ
A,R(pi, pj) ≡ [pi|γµ|5|pj⟩ (2.103)

Of course, an arbitrary number of γ-matrices can be sandwiched between a

pair of spinors to form the Dirac structure of a fermion line in a matrix element

with certain helicities.

The polarization vectors for massless vector bosons are

ε
µ
+(k) =−

⟨q|γµ|k]√
2⟨qk⟩

, (2.104)

ε
µ
−(k) =−

[q|γµ|k⟩√
2[qk]

, (2.105)

where q is an arbitrary massless reference momentum as long as ⟨qk⟩ ̸= 0 and

[qk] ̸= 0.

The algebra for Dirac matrices can be found in, e.g. Appendix A3 and A4

of Ref. [43], and commonly used identities in the spinor-helicity formalism can

be found in, e.g. Chapter 50 and 60 of Ref.[34]. The matrix elements of the VH

processes expressed in the spinor-helicity formalism are constructed in the

symbolic manipulation language FORM [44] with the SPINNEY package [45].
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2.5 Other Technical Aspects

2.5.1 Regarding Incoming Particle Beams

I have so far omitted the discussion on the incoming particle beams. For

proton-proton collisions, whose cross section is expressed in Eq. (2.1), parton

distribution functions (PDF’s) need to be invoked. For each incoming proton

beam, its PDF determines the probability for finding a parton with certain

flavor and certain momentum fraction at given energy scale (called factoriza-

tion scale, or µ2
Fac). The PDF is measured experimentally, and is supplied by

various groups worldwide in the form of data tables. For the collision with

two proton beams, as taking place on the LHC, the center of mass energy of

the colling protons
√

s is known. µ2
Fac is set in the event generator, usually

at or near the energy scale of the concerned scattering process. For the VH

production, µFac = mVH as adopted, which is the invariant mass of the V

boson and the Higgs boson system, which is also the total invariant mass of

the decay products of the V boson and the Higgs boson. Other options of

µ2
Fac are also available in the JHUGEN event generator. The only two degrees

of freedom are then the momentum fractions x1,2 of the incoming partons.

x1,2 can usually be sampled simply by two uniformly distributed random

numbers y1,2 ∈ [0, 1], but can also be sampled using importance sampling (see

Section 2.1.3) so that the resulted invariant mass of the entire event roughly

follows the expected distribution of the process, allowing the event generation

to be slightly more efficient. For example, in the VH production, the cross

section grows from 0 rapidly as mVH =
√

ŝ =
√

sx1x2 approaches the sum of

V mass and H mass mV + mH (called threshold energy of the process), and
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then is expected to decrease roughly as
1√

ŝ
, as the example shown in Fig. 2.3.
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Figure 2.3: Distribution of mZH for simulated qq̄→ ZH → ℓ−ℓ+bb̄ events at 14 TeV,
and that of mWH for simulated qq̄′ →WH → lνlbb̄ events.

Define

ηmin =
mH + mV − 5ΓV√

s
, (2.106)

which is the minimum fraction of collider energy considered for the ZH

production. The factor of 5 is arbitrary, which controls how far short of the

threshold be considered due to finite width of the Z boson. Further define

z =
1

1− ηmin
, (2.107)

Ymin = ln | z− 1
z− y1

| (2.108)

Ymax =− ln | z− 1
z− y1

| (2.109)

and Y =Ymin + y2(Ymax −Ymin). (2.110)
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x1,2 can be generated via the transform

y1 → x1 =
z− 1
z− y1

eY (2.111)

y2 → x2 =
z− 1
z− y1

e−Y. (2.112)

The Jacobian facilitating the transform

dx1dx2 = Jx1,2(y1, y2)dy1dy2 (2.113)

is

Jx1,2(y1, y2) =

⎛⎜⎜⎜⎝
∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

⎞⎟⎟⎟⎠ = 2
(z− 1)2

(z− y1)3 (Ymax −Ymin). (2.114)

Once x1,2 are generated, they can be fed, along with µ2
Fac, to a PDF data table

and obtain its value for each of the proton beams. In JHUGEN, LHAPDF

6 [46] is used to interface the event generator with different PDF sets.

Furthermore, x1,2 can be used to produce the Lorentz transformation along

the beam (z) axis that boosts the event momenta from the center-of-mass frame

to the laboratory frame with

β =
x2 − x1

x2 + x1
and γ =

x2 + x1

2
√

x1x2
. (2.115)

All of the initial- and final-state helicities in the VH production in JHUGEN

are determined by random numbers. Although the helicities are usually not

directly observable, electron and positron beams can be polarized by certain

amount at proposed lepton colliders such as the International Linear Collider
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(ILC) [47] and the Circular Electron-positron Collider (CepC) [48]. In JHUGEN,

each of the colliding beams can be polarized by any percentage to certain

helicity.

2.5.2 Writing Weighted and Unweighted Events

For proton-proton collisions, once the momentum fractions, four-momenta,

helicities, and flavors2 of an event is generated, and assuming that the mo-

menta pass the kinematic selection, they can be applied to the integrand of

Eq. (2.1) and obtain the weight of the event

Weightpp =
1
ŝ

PDFaPDFb|Mab|2PS. (2.116)

For electron-positron collisions, the above expression simplifies to

Weighte−e+ =
1
s
|M|2PS. (2.117)

JHUGEN presents the results of a simulation in two forms – histograms,

and Les Houches event files [49].

The histograms are produced by feeding the final-state momenta, which

are observed, to a subroutine that computes the kinematic variables, and by

adding the associated weight into the bins where the values of the kinematic

variables belong. Other than those in Chapter 5, the kinematic distributions in

this thesis are presented with histograms created by JHUGEN. For the VH

production, the built-in histograms in JHUGEN are for mVH, mV , mH, pT
V , pH

T ,

cos θ1, cos θ2, ϕ, among which the angles are defined in Fig. 1.2.

2In the case where multiple decay channels are considered, a random number is used to
decide which channel takes place in a certain event.
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The Les Houches event files store events out of a simulation in a list. Each

event in the list contains the particle identities, their associated four-momenta,

weight of the event, and other relevant information such as helicities QCD

colors, etc. While the weighted events are an immediate product of the event

generator, unweighted events better resemble the hard process in high energy

collisions, and are easier to be further processed for detector simulation and

analysis to predict the outcome of a given theory. All of the unweighted events

have the same weight= 1, but they occur according to the distribution of their

weight. To generate unweighted events for proton-proton collisions,

• a first run of the event generator surveys the entire phase space and search

for the maximum weight among all the events. This maximum weight

can then be multiplied by a factor slightly greater than 1, so that no

weight in the simulated process will exceed this value. As a result, one

maximum weight for each of the incoming parton combination is stored.

• In the second run of the generator, one uniformly distributed random num-

ber will be used to select the parton combination, and each combination

will be selected with the probability proportional to its maximum weight.

• Then the generator will generate an event with the selected parton combi-

nation.

• At last, another uniformly distributed random number between 0 and 1 will

be compared to the ratio of the event weight and the maximum weight

stored. If the former is greater than the latter, the event is discarded;

and otherwise the event is written down or fed to the histograms with
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weight = 1. By doing this, whether an event is kept is randomly decided,

and the probability of the event being kept is proportional to its weight.

For electron-positron collisions, the steps regarding parton combination is

omitted.

It is usually an option to treat multiple events as one and average or sum

their weights. This is almost always done treating QCD colors, as they are

not observable. In doing so, the average of the initial-state and the sum over

the final-state are taken. Although not implemented for the VH processes in

JHUGEN, helicities are usually treated in the same way, where the helicities of

the incoming partons are averaged and those of the outgoing are summed. The

combinations of incoming partons are often summed as well, as implemented

for the weighted events in JHUGEN.

2.5.3 Event Selection

During event generation, event selection (also called kinematic cuts, or sim-

ply cuts) are performed each time when a set of four-momenta of an event

is generated. The momenta are fed into a subroutine which computes the

kinematic variables based on which the cuts are performed. If the selection

criteria are not met, the set of momenta is discarded. The most common kine-

matic cuts are performed on the invariant masses of certain final-state particle

combinations, the transverse momenta pT of the final-state particles, as well

as that of certain combination of two or more final-state particles, and the

pseudorapidity η of the final-state particles. The pT and η cuts are usually due

to the energy resolution and geometry of the particle detector of the colliding
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experiment. For example, when |η| is beyond certain value, the particle would

travel too close to the beamline and thus miss the component of the detector

designed for its type. Another reason for kinematic cuts is to improve the

physics analysis at the cost of utilizing less available event. For example, if

the signal of a physical process and its background tend to be separated by an

invariant mass, as in the case of Section 3.2.2, events with an invariant mass

greater or smaller than certain cut value can be selected so that the selected

events enjoy a greater signal-to-background ratio.

When the number of event of certain process is scarce, the utilization of all

the available event is desired, and the method of matrix element likelihood ap-

proach (MELA) can be employed. Although beyond the scope of this chapter,

JHUGEN provides the MELA tools for each of the processes it simulates. Some

of the applications of MELA are presented in Ref. [35]. In Section 3.2.2 and

Section 3.2.6, some of the applications of the matrix-element-based kinematic

variables will be presented.

2.6 Collider Phenomenology

Many of the results of ZH at leading order have been presented in Ref. [35].

These results were produced by the event generator with PROCESS = 50

and the MELA tools of JHUGEN. In this section I present the validation

of the ZH production simulated with with PROCESS = 51, as well as a

few results not presented in Ref. [35]. The validation is done by overlaying

the same distributions produced by PROCESS = 50 and 51 in the same

figure, and having them adjusted to the same normalization according to the
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cross sections calculated by PROCESS = 51. The distributions produced by

PROCESS = 50 were taken from Ref. [35] with the tool EASYNDATA [50].

2.6.1 qq̄→ ZH at Leading Order

In Fig. 2.4, the theoretical uncertainties of the qq̄→ ZH simulation at leading

order is presented. The theoretical uncertainty mainly consists of that from dif-

ferent PDF sets, and that from the varying energy scale of the calculation. The

PDF sets used in this evaluation are CT14NNLO [51], MSTW2008LO90CL [52],

and NNPDF31_LO_AS_0118 [53]. The energy scale most relevant to this

simulation is the factorization scale µ2
Fac used by the PDF, and has been set to

µFac = mZH. To evaluate the uncertainty due to this scale, the simulation is

repeated with µFac = 2mZH and µFac = mZH/2. The cross section varies by
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Figure 2.4: mZH distribution for simulated qq̄ → Z∗ → ZH → ℓ−ℓ+bb̄ events at
14 TeV with SM, created with three PDF sets (left) as well as using three factorization
scales (right).

approximately 13% with the selected PDF sets, and 3% with the scale.

In Fig. 2.5, the distributions of mZH, cos θ1, cos θ2 and Φ from proton-

proton collision at
√

s = 14 TeV assuming Standard Model (SM) and pseu-

doscalar are presented on top of those presented in Ref. [35].
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Figure 2.5: Selected kinematic distributions for simulated qq̄→ Z∗ → ZH → ℓ−ℓ+bb̄
events at 14 TeV with SM or with H being a pseudoscalar, in comparison with Ref.
[35].

The discussion of the VH production involving anomalous couplings in

proton-proton scattering is left to Chapter 3, where the gg→ ZH contribution

is included. The phenomenological results of the qq̄→ Z∗ → ZH process can

be found in Ref. [35].

2.6.2 e−e+ → ZH → ℓ−ℓ+bb̄ with Anomalous Couplings

When selecting the representative values of anomalous couplings to study,

the combinations of g1, g2, and g4 for the HVV couplings, as well as the κ

and κ̃ for the Htt and Hbb couplings are chosen such that the cross section at
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√
s = 250 GeV is maintained at the SM value, and that

|κ|2 + |κ̃|2 = 1. (2.118)

In the Table 2.1, the theoretical scenarios considered are listed with the

corresponding coupling constants.

Scenario g1 g2 g4 κ κ̃ Λ

Standard Model 2 0 0 1 0 −

g2(s) 0 ≈ 0.364 0 1 0 1 TeV

Pseudoscalar 0 0 ≈ 0.751 0 1 1 TeV

50% pseudoscalar
√

2 0 ≈ 0.751√
2

1√
2

1√
2

1 TeV

50% pseudoscalar, with π/2

relative phase with SM

√
2 0 ≈ 0.751 i√

2
1√
2

i√
2

1 TeV

Table 2.1: Coupling constants of theoretical scenarios considered in this section.

Because of the non-renormalizable nature of the operators g2HZµνZµν and

g4HZµνZ̃µν, the coupling "constants" g2 and g4 cannot remain constant at

arbitrary high energy, and these "constants" should eventually become energy-

dependent form factors. To account for this, the simple ad hoc prescriptions

g2 → g2(s) = g2
Λ2

Λ2 + s
, (2.119)

and g4 → g4(s) = g4
Λ2

Λ2 + s
(2.120)
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are introduced, both of which have been implemented in JHUGEN. The choice

of cutoff energy scale Λ = 1 TeV, where beyond-SM physics may emerge, is

arbitrary. These prescriptions are introduced in consistence with those in

Chapter 3. However, because the electron-positron scattering takes place at

constant s, these prescriptions do not alter any kinematic distribution of the

scattering process.

In Fig. 2.6, the distributions of cos θ1, cos θ2 and Φ from simulated events of

unpolarized electron-positron collisions at
√

s = 250 GeV assuming Standard

Model and pseudoscalar are presented on top of those presented in Ref. [35].

In addition, these distributions with 100% polarized beams are also produced

and presented in the same figures.
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Figure 2.6: Selected kinematic distributions for simulated e+e− → Z∗ → ZH →
ℓ−ℓ+bb̄ events at 250 GeV with SM or with H being a pseudoscalar, in comparison
with Ref. [35]. In addition, the distributions resulted by 100% polarized electron and
positron beams are also shown.

The distributions of cos θ1 and cos θ2 appear identical, because of the cross-

ing symmetry in the incoming electron current and the outgoing lepton cur-

rent. For both SM and with pseudoscalar, the effect of the bean polarizations is

scaling the cross sections up from the unpolarized collisions. The left-handed

current is associated with a larger cross section than the right-handed one,

which reflects the fact that the left current couples to the Z boson stronger. The

distributions of Φ receive different enhancement from the beam polarizations

in SM and with pseudoscalar. In SM, beam polarizations not only increase
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the cross section, but also distort the distribution, making the difference be-

tween the peaks at Φ = 0 and Φ = π greater. With pesudoscalar, the beam

polarizations improve the cross section, but do not change the shape of the

distribution.

In Fig. 2.7, the kinematic distributions for simulated e−e+ → ZH →

ℓ−ℓ+bb̄ events are presented for selected theoretical scenarios. Among the

shown angular distributions, other than that of Φ1, which is expected to be

flat, all are capable of resolving the chosen theoretical scenarios. It is also

worth noting that the Higgs boson, which will be produced predominantly

via the Z → ZH vertex on the electron-positron colliders, will travel in the

region with low pseudorapidity, giving the detector better chance of detecting

its decay product.

2.6.3 Matrix-Element-Based Kinematic Discriminants

Before turning to the chapters of VH production at hadron colliders, it is

beneficial to introduce here the matrix-element-based kinematic variables

called discriminants, and demonstrate their applications to the e−e+ → ZH →

ℓ−ℓ+bb̄ process.

When data is scarce or there is not sufficient data to populate the his-

tograms of the presented kinematic distributions to a desired precision, it is

desired to find a single or a smaller set of kinematic variables that are sensi-

tive to specific theoretical scenarios. Fortunately, discriminants are the most

optimal observables to separate theoretical scenarios [54]. By directly relating

to probabilities, matrix element can be taken advantaged of in constructing
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Figure 2.7: Selected kinematic distributions for simulated e−e+ → ZH → ℓ−ℓ+bb̄
events at 250 GeV with selected theoretical scenarios, the coupling constants are listed
in Table 2.1.
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such variables. Define

DA/B, (e−e+({p}) = 1

1 +
(︂ σB

σA

)︂PA, e−e+({p})
PB, (e−e+({p})

, (2.121)

where A and B denotes the theoretical scenarios to be resolved, PA({p}) and

PB({p}) are the weights of a set of final-state four-momenta {p} belonging

to an event of the A or B scenario, and the subscripts of e−e+ indicates that

the discriminant is for e−e+ → ZH events. In fact,

PA, e−e+({p}) = ∑
helicities

1
s
|MA, e−e+({p})|2PS({p}). (2.122)

Because of the shared phase space weight,
1
s

and PS({p}) get canceled in the

fraction. The ratio of the cross sections
σB

σA
serves as a normalization such that

A and B have the same total area filling the histograms of the discriminant. In

resolving the theoretical scenarios listed in Table 2.1 the cross section ratio can

be set to 1. Therefore the discriminant simplifies to

DA/B, e−e+({p}) =
|MB, e−e+({p})|2

|MA, e−e+({p})|2 + |MB, e−e+({p})|2 ∈ [0, 1]. (2.123)

In Fig. 2.8, the distributions of DSM/g2, e−e+ are presented for simulated

e−e+ → ZH → ℓ−ℓ+bb̄ events assuming SM and pure g2. As will be shown

in Section 3.2.6, the discriminant DSM/g2, pp, which is applied to events of

proton scattering, will provide even better separation between the SM and g2

contributions.

On the left of Fig. 2.9, the distributions of DSM/Pseudoscalar, e−e+ are pre-

sented for simulated e−e+ → ZH → ℓ−ℓ+bb̄ events at 250 GeV assuming SM
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Figure 2.8: DSM/g2, e−e+ for simulated e−e+ → ZH → ℓ−ℓ+bb̄ events at 250 GeV with
SM and with pure g2.

and a few theoretical scenarios involving pseudoscalar.
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Figure 2.9: DSM/Pseudoscalar, e−e+ for simulated e−e+ → ZH → ℓ−ℓ+bb̄ events with SM
and relevant theoretical scenarios. The coupling constants are listed in Table 2.1.

As shown on the left of Fig. 2.9, most of the scenarios can be separated from

one another using the DSM/Pseudoscalar, e−e+ discriminant. However, it has no

sensitivity to the relative phase between SM and pseudoscalar contributions.

In attempt to gain some sensitivity of the relative phase, the DCP discriminant

was introduced in Ref. [35], and I am applying it here as

DPhase, e−e+({p}) ∼
PInterference, e−e+({p})

PPseudoscalar, e−e+({p}) +PSM, e−e+({p}) , (2.124)
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where

PInterference({p}) ∼ 2ℜ
(︁
M∗

Pseudoscalar({p})MSM({p})
)︁
. (2.125)

The distributions of DSM/Pseudoscalar Phase, e−e+ are presented on the right of

Fig. 2.9 for simulated e−e+ → ZH → ℓ−ℓ+bb̄ events with the same theoretical

scenarios, and one can observe the difference between 50% pseudoscalar with

and without π/2 relative phase between the SM and pseudoscalar contribu-

tions.
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Chapter 3

Event Generation and Collider
Phenomenology of the gg→ ZH
Production

Higgs boson production in association with a Z boson also takes place in

gluon fusion, whose leading order Feynman diagrams are shown in the figure

below.

Figure 3.1: Leading order Feynman diagrams of the gg → ZH → ℓ−ℓ+bb̄ process.
The solid shaded bulb indicates the HZZ interaction with anomalous couplings, and
the shaded bulbs with dashed contour indicate the Hqq interactions with anomalous
couplings.

Although the leading order matrix element of the gg → ZH process is
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proportional to g2
S, making it the next-to-next-to-leading order in the proton-

proton process; as Ref. [55] pointed out, the large gluon-gluon parton lumi-

nosity makes the gg→ ZH production numerically relevant in the study of

qq̄→ ZH even at leading order. Ref. [55] also pointed out that with suitable

kinematic requirements, e.g. at high mZH or pH
T , the relative contribution of

gg→ ZH can be enhanced. Furthermore, as I will demonstrate, the anoma-

lous couplings considered in this thesis have different effects in the qq̄- and

gg-initiated processes, and the study of both simultaneously can provide

additional means of determining these anomalous couplings.

The left diagram of Fig. 3.1 is commonly referred as the triangle diagram,

and the right diagram as the box diagram. Each "diagram" refers to the sum of

diagrams with the same shape of fermion loop – in both the triangle and box

diagrams, the loop momentum can be either clockwise or counterclockwise;

and in the box diagram, two gluons, one Z boson and one Higgs boson can be

attached to the fermion loop with different permutations. The non-vanishing

box diagrams of the gg→ ZH processes are listed in Fig. 3.2.

As shown in Fig. 3.1, the bosonic anomalous couplings can be present

only in the triangle diagram, and the fermionic anomalous coupling can be

present in both the triangle and the box diagrams. Four more key features of

the triangle diagrams will be found out:

i. The vector coupling of the triangular fermion loop to the Z boson leads to

zero contribution to the amplitude, and only the axial-vector coupling

makes nonzero contribution, a consequence of Furry’s Theorem [56]. As

a result, a off-shell photon cannot be coupled to the triangular fermion
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Non-vanishing box diagrams of the gg→ ZH processes.
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loop.

ii. The triangle diagram is nonzero only when both gluons have the same

polarization, namely, when the expressions of both gluon polarization

vectors take Eq. (2.104) or (2.105) at the same time, each with the refer-

ence momentum being that of the other gluon.

iii. The g2 coupling leads to zero contribution to the triangle diagram, which

is due to the cancellation of the a1 and a2 tensor structures in Eq. (1.29).

iv. The g4 coupling leads to zero contribution to the triangle diagram, which

is solely due to the tensor structure of the a3 term in Eq. (1.29).

The leading order Feynman diagrams of gg→ ZH processes are one-loop

induced, and their sum expected to be finite. Therefore all of the techniques

of constructing a leading order event generator introduced in Chapter 2 apply,

with the exception of the calculation in the one-loop amplitudes.

3.1 Calculating One-Loop Matrix Elements

Working with dimensional regularization in dimension Dim = 4− 2ϵ, the

amplitude of a triangle diagram with the loop momentum in one direction is

iM▷ = εα
λ1
(pg1) εβλ2(pg2)

(︁
M

µ

Z∗→ZH→ℓ−ℓ+bb̄

)︁
µ2ϵ

Ren(−1)

×
∫︂ dDimk

(4π)Dim Tr
[︂
(igStb)γβ

i(/k − /pg2
+ m f )

(k− pg2)
2 −m2

f

(︁
i
2mZ

v
γµ(gZ f f

V − gZ f f
A γ5)

)︁

×
i(/k + /pg1

+ m f )

(k + pg1)
2 −m2

f
(igSta)γα

i(/k + m f )

k2 −m2
f

]︂
(3.1)
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= 4παS
2mZ

v
Tr[tatb] εα

λ1
(pg1) εβλ2(pg2)

(︁
M

µ

Z∗→ZH→ℓ−ℓ+bb̄

)︁
µ2ϵ

Ren

×
∫︂ dDimk

(4π)Dim
1

(k− pg2)
2 −m2

f

1
(k + pg1)

2 −m2
f

1
k2 −m2

f

×
(︂

gZ f f
V Tr

[︁
γβ(/k − /pg2)γµ(/k + /pg1)γα/k

]︁
− gZ f f

A Tr
[︁
/k − /pg2)γµγ5(/k + /pg1)γα/k

]︁)︂
, (3.2)

where g1,2 denotes the two scattering gluons with λ1,2 being their polariza-

tions; Mµ

Z∗→ZH→ℓ−ℓ+bb̄ is the decay chain of the Z∗ boson with its Lorentz

index µ, which is shared with the qq̄→ ZH process (see Fig. 1.1); µRen is the

renormalization scale; (−1) is for the fermion loop; f = b, t; and gZ f f
V and

gZ f f
A are the vector and axial-vector coupling constants respectively of the Z

boson to fermion f , defined in Eq. (2.92). The integral of loop momentum k is

over its entire phase space, which takes into account all the path the virtual

gluon can take.

The representative amplitude of Fig. 3.2(a) is

iM□ = εα
λ1
(pg1) εβλ2(pg2)

(︁
M

µ

Z∗→ZH→ℓ−ℓ+bb̄

)︁
µ2ϵ

Ren(−1)

×
∫︂ dDimk

(4π)Dim Tr
[︂
(igStb)γβ

i(/k − /pg2
+ m f )

(k− pg2)
2 −m2

f
(−i

m f

v
)

i(/k + /pg1
− /pZ + m f )

(k + pg1 − pZ)2 −m2
f

×
(︁
i
2mZ

v
γµ(gZ f f

V − gZ f f
A γ5)

)︁ i(/k + /pg1
+ m f )

(k + pg1)
2 −m2

f
(igSta)γα

i(/k + m f )

k2 −m2
f

]︂
(3.3)

= 4παS
m f

v
2mZ

v
Tr[tatb] εα

λ1
(pg1) εβλ2(pg2)

(︁
M

µ

Z∗→ZH→ℓ−ℓ+bb̄

)︁
µ2ϵ

Ren
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×
∫︂ dDimk

(4π)Dim
1

(k− pg2)
2 −m2

f

1
(k + pg1 − pZ)2 −m2

f

1
(k + pg1)

2 −m2
f

× 1
k2 −m2

f

(︂
gZ f f

V Tr
[︁
γβ(/k − /pg2)(/k + /pg1

− /pZ + m f )γµ(/k + /pg1)γα/k
]︁

− gZ f f
A Tr

[︁
/k − /pg2)(/k + /pg1

− /pZ + m f )γµγ5(/k + /pg1)γα/k
]︁)︂

, (3.4)

in which the notations of Eq. (3.2) still apply.

3.1.1 Passarino-Veltman Tensor Integral Reduction

In calculating the amplitudes in Eq. (3.2) and (3.4), tensor integrals of the form

TIµ1µ2...µN(m0, m1, ..., mn; p1, ..., pn; Dim)

≡ µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

kµ1kµ2 ...kµN

D(m0)D(m1, p1)D(m2, p2)...D(mn, pn)
, (3.5)

where 0 < N < n, need to be evaluated. This is achieved by the Passarino-

Veltman reduction [57], reviewed in, e.g. Ref. [58], which expresses tensor

integrals as the sum of the products of external momentum variables pi, the

metric gµν, and some readily calculated scalar integrals, listed as follows1:

A0(m0; Dim) = µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

1
D(m0)

, (3.6)

B0(m0, m1; p1; Dim) = µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

1
D(m0)D(m1, p1)

, (3.7)

1Note that the tensor and scalar integrals in Ref. [58], as well as those in many other
references, have omitted a factor of iπ2/(2π)4, which is not omitted in this thesis.

64



C0(m0, m1, m2; p1, p2; Dim) = µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

1
D(m0)D(m1, p1)D(m2, p2)

,

(3.8)

D0(m0, m1, m2, m3; p1, p2, p3; Dim)

=µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

1
D(m0)D(m1, p1)D(m2, p2)D(m3, p3)

, (3.9)

where

D(m0) ≡ k2 −m2
0 + iϵ, and D(mi, pi) ≡ (k + pi)

2 −m2
i + iϵ (3.10)

are the denominators of propagators in a loop. It should be noted that the pi

variables are defined in Fig. 4.1 of Ref. [58], and I will later identify them with

the momenta involved in the gg→ ZH → ℓ−ℓ+bb̄ process.

The highest rank tensor integral with the most propagators for the gg→

ZH amplitude is

TIµνρ(m0, m1, m2, m3; p1, p2, p3; Dim)

≡ µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

kµkνkρ

D(m0)D(m1, p1)D(m2, p2)D(m3, p3)
(3.11)

because of the four propagators in the fermion loop and the three Lorentz

indices associated with two gluons and one Z boson. Consequently, with A,

B, C, ... denoting TI with 1, 2, 3, ... propagators respectively, all of the tensor

integrals needed for the gg→ ZH process are

Bµ(m0, m1; p1; Dim) = µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

kµ

D(m0)D(m1, p1)
, (3.12)
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Bµν(m0, m1; p1; Dim) = µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

kµkν

D(m0)D(m1, p1)
, (3.13)

Cµ(m0, m1, m2; p1, p2; Dim) = µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

kµ

D(m0)D(m1, p1)D(m2, p2)
,

(3.14)

Cµν(m0, m1, m2; p1, p2; Dim) = µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

kµkν

D(m0)D(m1, p1)D(m2, p2)
,

(3.15)

Cµνρ(m0, m1, m2; p1, p2; Dim) = µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

kµkνkρ

D(m0)D(m1, p1)D(m2, p2)
,

(3.16)

Dµ(m0, m1, m2, m3; p1, p2, p3; Dim)

=µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

kµ

D(m0)D(m1, p1)D(m2, p2)D(m3, p3)
, (3.17)

Dµν(m0, m1, m2, m3; p1, p2, p3; Dim)

=µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

kµkν

D(m0)D(m1, p1)D(m2, p2)D(m3, p3)
, (3.18)

Dµνρ(m0, m1, m2, m3; p1, p2, p3; Dim)

=µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

kµkνkρ

D(m0)D(m1, p1)D(m2, p2)D(m3, p3)
. (3.19)

The reductions of the tensor integrals above read

Bµ = pµ
1 B1, (3.20)

Bµν = gµνB00 + pµ
1 pν

1B11, (3.21)

Cµ = pµ
1 C1 + pµ

2 C2, (3.22)
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Cµν = gµνC00 +
2

∑
i,j=1

pµ
i pν

j Cij, (3.23)

Cµνρ =
2

∑
i=1

(gµν pρ
i + gµρ pν

i + gρν pµ
i )C00i +

2

∑
i,j,k=1

pµ
i pν

j pρ
kCijk, (3.24)

Dµ =
3

∑
i=1

pµ
i Di, (3.25)

Dµν = gµνD00 +
3

∑
i,j=1

pµ
i pν

j Dij, (3.26)

Dµνρ =
3

∑
i=1

(gµν pρ
i + gµρ pν

i + gρν pµ
i )D00i +

3

∑
i,j,k=1

pµ
i pν

j pρ
k Dijk, , (3.27)

where the scalar coefficients can be expressed in terms of scalar products

of momenta, squared masses, and scalar integrals defined in Eq. (3.9). In

determining the scalar coefficients, the following identities will be useful,

kpi =
1
2
[︁
D(mi, pi)−D(m0)− fi

]︁
, with fi ≡ p2

i −m2
i + m2

0, (3.28)

and gµνkµkν = k2 = D(m0) + m2
0 . (3.29)

As an example, to determine B1, p1µ is multiplied on both sides of Eq. (3.20),

p1µBµ = p1µ pµ
1 B1, (3.30)

⇒ µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

p1k
D(m0)D(m1, p1)

= p2B1, (3.31)

⇒ µ2ϵ
Ren

∫︂ dDimk
(4π)Dim

1
2
[︁
D(m1, p1)−D(m0)− f1

]︁
D(m0)D(m1, p1)

= p2B1, (3.32)
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⇒ 1
2
[︁
A0(m0)− A0(m1)− f1B0(m0, m1, p1)

]︁
= p2B1, (3.33)

⇒ B1(m0, m1, p1) =
A0(m0)− A0(m1)− f1B0(m0, m1, p1)

2p2 . (3.34)

Similarly, contracting Eq. (3.20)-(3.27) with external momenta and the metric

tensor, and solving a linear system of equations for the scalar coefficients, a

library for tensor integral reduction can be built. The analytical expressions

of the scalar integrals A0, B0, C0, and D0 are listed in Section 4.3 of Ref. [58],

and are implemented in FORTRAN libraries QCDLOOP [59] and COLLIER [60].

It is worth noting that some of the scalar integrals and scalar coefficients

carry ultraviolet and/or inferred divergences. The former are listed in Section

4.5 of Ref. [58] and those needed for this thesis can be found in Appendix

B of Ref. [61]. For the one-loop gg → ZH amplitudes, these divergences

are expected to cancel and thus do not need any treatment. However, their

cancellation can be used to check if mistakes exist in the calculation.

Once the tensor integrals are fully reduced, they can be combined with the

Dirac structures to form amplitudes.

3.1.2 Assembling One-Loop Matrix Elements

The amplitudes of the gg → ZH → ℓ−ℓ+bb̄ process are implemented in the

following steps.

• The fermion triangle and box loops with Lorentz indices for the two gluon

and one Z boson uncontracted are first expressed in FORM [44], and

their traces are taken in Dim= 4 dimension.
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• Then the terms from the above step are grouped according to the power of

loop momentum k, with each group of terms being proportional to one

of the tensor integrals listed in Eqs. (3.12)-(3.19). At this stage, k does not

make explicit appearance in the expression.

• Eqs. (3.20)-(3.27) are then applied and the the tensor integrals are substituted

by linear combinations of scalar coefficients.

• The fermion loops with open Lorentz indices are then contracted with the

rest parts of the amplitude, namely the polarization vectors of the gluons,

the decay chain of Z∗ → ZH → ℓ−ℓ+bb̄ from the triangle diagrams, and

Z → ℓ−ℓ+ and H → bb̄ from the box diagrams.

• The SPINNEY package [45] of FORM is used expressed the gg→ (triangle→

Z∗)/box→ ZH → ℓ−ℓ+bb̄ amplitudes in spinor-helicity formalism, in

which the polarization vectors of the gluons are expressed by Eqs. (2.104)

and (2.105), the ℓ−ℓ+ current by Eqs. (2.100) and (2.101), and the spinor

product of bb̄ by Eqs. (2.64)-(2.69). SPINNEY is also used to contract any

Lorentz indices sandwiched between spinors. In the end, no Lorentz

index makes appearance in the expressions of the amplitudes.

• Because in the Dirac structure there is no correlation between the decay

chain of H → bb̄ and the rest of the amplitudes, it is multiplied to the

amplitudes as an option if the Higgs boson is set to decay to b-quark

pair in JHUGEN2. Otherwise, one helicity amplitude is needed for each

helicity combination of the external particles, each (SM or anomalous)

2JHUGEN allows the Higgs boson be produced on-shell, and can have it decay to a pair of
vector bosons and their subsequent decay products or a pair of fermions
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coupling, and each Feynman diagram (for "the triangle diagram", the

loop momentum can be clockwise or counterclockwise, and for "the box

diagram", there are six diagrams listed in Fig. 3.2).

• By this stage, all of the pi momenta appeared in the discussion above

have been expressed in terms of momenta of the gg → (triangle →

Z∗)/box → ZH → ℓ−ℓ+bb̄ process according to the convention speci-

fied in Figure 4.1 of Ref. [58]. For the triangle amplitude in Eq. (3.2),

p1 = pg1 , and p2 = pg2 , (3.35)

and for the other triangle amplitude,

p1 = pg2 , and p2 = pg1 . (3.36)

Because all momenta in the spinor-helicity formalism need to be mass-

less, the momenta of the Z∗ and Z bosons, appearing in the propagators

and anomalous couplings, are expressed as the sum of the massless

momenta they attach to,

pZ∗ = pg1 + pg2 and pZ = pℓ− + pℓ+ . (3.37)

For each box diagram in Fig. 3.2, the pi momenta are expressed as

(a): p1 = pg1 , p2 = pg1 − pℓ− − pℓ+ , p3 = −pg2 ; (3.38)

(b): p1 = pg2 , p2 = pℓ− + pℓ+ − pg1 , p3 = −pg1 ; (3.39)

(c): p1 = pg1 , p2 = pℓ− + pℓ+ − pg2 , p3 = −pg2 ; (3.40)
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(d): p1 = pg2 , p2 = pg2 − pℓ− − pℓ+ , p3 = −pg1 ; (3.41)

(e): p1 = −pℓ− − pℓ+ , p2 = pg1 − pℓ− − pℓ+ , p3 = −pg2 ; (3.42)

(f): p1 = pg2 , p2 = pℓ− + pℓ+ − pg1 , p3 = pℓ− + pℓ+ . (3.43)

• The triangle amplitudes are then exported in the format of MATHEMAT-

ICA [62], in which the scalar coefficients are further reduced to linear

combinations of scalar integrals. When the sum over bottom and top

quarks, as well as over the direction of loop momentum, is taken, the

the b quark part of the amplitude, where the b quark is treated massless,

cancels with the massless terms from the t quark part of the amplitude;

and only terms proportional to m2
t survive. Here I arrive at the conclu-

sions listed in the first, second, and fourth bullet points at the beginning

of this Chapter.

• It is noticed that each pair of amplitudes in Fig. 3.2(a and b), (c and d), and

(e and f) shares the same scalar coefficients with the same arguments

(expressed as an equivalent set of Mandelstam variables), and thus can

be combined and further simplified in FORM.

• Both triangle and box amplitudes are exported in the format of the FORTRAN

language, in which JHUGEN is written. While QCDLOOP and COLLIER

have both been used to provide and crosscheck the numerical values

of the tensor integrals, in the final implementation of the generator,

COLLIER is used to supply the generator with the numerical values of

both the scalar integrals (for the triangle amplitudes) as well as the scalar
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coefficients (for the box amplitudes).

• At last, the sum of the two triangle amplitudes and that of the six box

amplitudes are checked to be gauge-invariant explicitly by replacing the

polarization vectors of the gluons with the corresponding momentum;

and the numerical values of the amplitudes at a few phase space points

are crosschecked to machine precision (10-12 digits for double precision)

with the values independently calculated by Dr. Markus C. Schulze,

another collaborator of the JHUGEN project.

3.2 Collider Phenomenology

3.2.1 gg→ ZH in the Standard Model

The simulation of gg → ZH by JHUGEN within the Standard Model is

validated against existing publication [55], as shown in Fig. 3.3.
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Figure 3.3: The mZH distribution for simulated gg→ ZH → ℓ−ℓ+bb̄ events at 14 TeV
in SM, in comparison with Ref. [55]. The distributions for the individual diagrams of
triangle and box are also shown.
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A significant destructive interference between the triangle and box dia-

grams can be seen. Both contributions from the triangle and the box diagrams

peak at around 2mt ≈ 345 GeV, due to the top quark in the fermion loop.

The slight deviation at low mZH in the comparison may be attributed to the

fact that the bottom quark in the loop in Ref. [55] is treated massive while in

JHUGEN massless so far. Ref. [55] also studied the effect due to the finite top

quark width, which was found negligible. As a result, the finite top quark

width was not implemented in JHUGEN.

In Fig. 3.4, the theoretical uncertainties of the gg → ZH simulation at

leading order are presented. The theoretical uncertainty mainly consists

of that from different PDF sets, and that from the varying energy scale of

the calculation. The PDF sets used in this evaluation are CT14NNLO [51],

MSTW2008LO90CL [52], and NNPDF31_LO_AS_0118 [53]. The energy scale

most relevant to this simulation is the factorization scale µ2
Fac used by the PDF,

and has been set to µFac = mZH. To evaluate the uncertainty due to this scale,

the simulation is repeated with µFac = 2mZH and µFac = mZH/2.
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The cross section varies by approximately 4% with the selected PDF sets,

and 21% with the scale.

More kinematic distributions of the gg → ZH → ℓ−ℓ+bb̄ process are

shown in Fig. 3.5, among which the angles are defined in the same way as in

Fig. 1.2.
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events at 14 TeV.
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The trivial flatness in Φ1 and cos θ∗ (defined in Fig. 1.2 but not shown in

Fig. 3.5) is a shared feature with the qq̄ → ZH processes and an outcome of

the Higgs boson being a scalar particle. While the destructive interference

between the triangle and the box diagrams are apparent in the figures above,

the interplay between the interference and kinematic distributions may be

exploited. For instance, the distribution of cos θ1 is nearly flat for the triangle

diagram alone as shown in the top left of Fig. 3.5, and it remains so across

the entire range of mZH. This distribution for the box diagram, however,

varies with mZH, which is shown on the left plot of Fig. 3.6. As a result, the

cos θ1 distribution of the total gg-initiated process varies with different mZH

requirements, shown in the right of Fig. 3.6.
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Figure 3.6: Distribution of cos θ1 for simulated gg→ ZH → ℓ−ℓ+bb̄ events at 14 TeV
with SM. The left plot is the distribution for the box diagram alone, and the right is
that for the total gg-initiated process. All of the histograms have been normalized to
an area of 1.

Notice that although the cos θ1 distribution for the box diagram remains

similar before and after the requirement of mZH > 1000 TeV, the distribution

changes noticeably for the total gg-initiated process. In addition, while the

distribution for the box diagram is somewhat flat with a requirement of mZH >
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3000 TeV, the distribution becomes curved after interference. Of course,

the mZH requirements made in Fig. 3.6 would reduce the cross sections too

small to observe (4.32× 10−3 fb for mZH > 1000 TeV and 9.98× 10−7 fb for

mZH > 3000 TeV), and only serve to show the level of interference changing

against mZH. In Fig. 3.7, the same plots are made with more values of mZH

requirements. The discussion of the cos θ1 distribution is inspired by that

around Fig. 4 of Ref [55].
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3.2.2 Isolating gg→ ZH from qq̄→ ZH

To put the gg-initiated process in the context of the pp scattering, in Fig. 3.8, I

present the distributions of mZH and pH
T for the qq̄-, gg-initiated ZH processes,

as well as their sum. These plots not only show the relative contribution

of gg- and qq̄-initiated process to the total pp → ZH process, but also have

suggested possibilities to suppress the contribution of qq̄ and boost the ratio

of number of events of gg → ZH to that of qq̄ → ZH. From the left plot of
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Figure 3.8: Distributions of mZH and pH
T for simulated ZH → ℓ−ℓ+bb̄ SM events at

14 TeV.

Fig. 3.8, it can be expect that a requirement of mZH > 2mt, where the gg→ ZH

cross section peaks, can significantly reduce the relative contribution of the

qq̄-initiated process. Likewise, from the right plot of Fig. 3.8, it can be expect

that a requirement of pH
T ≳ 100 GeV can do the same. In Figs. 3.9 and 3.10,

the non-flat kinematic distributions in Fig. 3.5 are shown with these kinematic

requirements applied respectively. In Fig. 3.8, where requirements were

not applied to suppress qq̄ → ZH contribution, the gg → ZH production

contributes about 8% to the total ZH cross section, or

σgg

σgg+qq̄
≡

σgg

σpp
≈ 8%, with no cuts. (3.44)

After the requirement of mZH > 2mt is applied,

σgg

σpp
≈ 22%, with mZH > 2mt. (3.45)
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Figure 3.9: Selected kinematic distributions for simulated gg→ Z∗ → ZH → ℓ−ℓ+bb̄
SM events at 14 TeV, with requirements of mZH ≳ 2mt.
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Figure 3.10: Selected kinematic distributions for simulated gg → Z∗ → ZH →
ℓ−ℓ+bb̄ SM events at 14 TeV, with requirements of pH

T > 100 GeV.
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The price paid was a reduction by about 27% of the gg → ZH cross section.

Similarly, a cut of pH
T > 100 GeV achieves

σgg

σpp
≈ 17%, with pH

T > 100 GeV, (3.46)

with a reduction by about 32% of the gg→ ZH cross section.

A stronger option to suppress the qq̄-initiated events is to apply a require-

ment on the matrix-element-based kinematic variable

Dgg/qq̄({p}) = 1

1 +
(︂ σqq̄

σgg

)︂Pgg({p})
Pqq̄({p})

∈ [0, 1], (3.47)

where Pgg({p}) and Pqq̄({p}) are the weights of a set of final-state four-

momenta {p} belonging to an event of the gg- or qq̄-initiated process,

Pgg({p}) = ∑
helicities

1
ŝ

PDFg(x1)PDFg(x2)|Mgg({p})|2PS({p}), (3.48)

Pqq̄({p}) = ∑
helicities

∑
q

1
ŝ

PDFq(x1)PDFq̄(x2)|Mqq̄({p})|2PS({p}), (3.49)

in which
1
ŝ

and PS({p}) gets canceled in the fraction and x1,2 can be deduced

from ({p}). The ratio of the cross sections
σqq̄

σgg
is there to mitigate that Pqq̄({p})

is typically much larger than Pgg({p}), and can be tuned to other reasonable

factors such that a value of Dgg/qq̄ not too close to 0 or 1 can be used to

separate gg- and qq̄-initiated events. The distribution of Dgg/qq̄ for the gg- or

qq̄-initiated processes are shown in Fig. 3.11.
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As shown in Fig. 3.11, the gg-initiated events gather in the region of

Dgg/qq̄ ≳ 0.8, while the region of Dgg/qq̄ ≲ 0.8 keeps the majority of the qq̄-

initiated events. To compare the performance of Dgg/qq̄ to those of the require-

ments of mZH and pH
T (see Eq. (3.44,3.45,3.46)), a requirement of Dgg/qq̄ ≳ 0.81

is applied on both gg and qq̄ to achieve the same effect of improving the ratio

of
σgg

σpp
from 8% to 28% as with the requirement of mZH > 2mt. The price

paid was a reduction of σgg by 20%, which is smaller compared to that of the

mZH > 2mt requirement (27%).

3.2.3 A Note on cos θ1

Unless the gluon-initiated events are isolated for analysis, all of the events

produced in proton-proton scattering will be utilized in studying the ZH

processes. Therefore it is natural to include both gg- and qq̄-initiated processes

in the analysis. Before doing so, the kinematic variable of cos θ1 shall be

revisited.

As defined in Chapter 1 and applied in Section 2.6, θ1 is the angle between
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the Z boson and one of the scattering fermions. At the electron-positron col-

lider, electron and positron each travel in a fixed and known direction, so the

directions of both rays of θ1 are known. At a proton-proton collider, however,

the scattering parton flavors are unknown, and, a parton of any flavor has

the same probability of traveling to the +z or −z direction. Therefore up to

now, as done in Ref. [35], +z or −z direction has been chosen randomly when

computing θ1. As a result, cos θ1 will always be symmetric about 0, no matter

the theoretical scenario. However, in proton-proton scattering, the overall

boost of an event can be correlated with the direction of the scattering quark,

as opposed to antiquark. In fact, when the hard process is quark-antiquark-

initiated, the quark is more likely to carry a larger momentum fraction of

its constituting proton. One can thus take advantage of this and redefine θ1

to be the angle between the Z boson and the direction of the boost of the

Z∗ → ZH → ℓ−ℓ+bb̄ system:

cos θ1 ≡ cos∠pZ, pZ∗ ≡
pZ · pZ∗

|pZ||pZ∗ |
. (3.50)

In Fig. 3.12, the distribution of cos θ1 is presented in 3 different definitions

for simulated qq̄→ ZH → ℓ−ℓ+bb̄ events at 14 TeV assuming the theoretical

scenario of 50% pseudoscalar with π/2 relative phase between the SM and

pseudoscalar contributions. In Fig. 3.12, the symmetric distribution is for the

definition of cos θ1 that identifies one of its rays fixed with one direction of

the scattering beam. This is the definition used in Ref. [35]. The definition

which identifies one ray of the θ1 angle with the boost of the event produces

an asymmetric cos θ1, which would be observable. The last definition assumes
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knowledge of the scattering parton flavor, and identifies one ray of the θ1

angle with the direction of the quark. This results in an even more pronounced

asymmetry in cos θ1, which is of course possible only in a simulation where

flavors of the scattering partons are known. In the remaining of the chapter,

the second definition, or that in Eq. (3.50), will be used.

3.2.4 gg→ ZH with Anomalous Couplings

As pointed out in the bullet points (iii) and (iv) at the beginning of this chapter,

the anomalous Higgs boson couplings to weak bosons, parameterized by

g2 and g4, do not contribute to the gg → ZH production. Therefore, if the

HZZ coupling is entirely g2 or g4, the contribution of the triangle diagrams

simply vanishes, and only that from the box diagrams survives. The box-only

results have been presented in Section 3.2.1, with the Higgs boson couplings

to fermions assumed to have SM couplings.

It is my intention then to study the experimental effect of the Higgs bo-

son anomalous couplings to heavy quarks, Htt and Hbb exclusively, in the

83



gg → ZH → ℓ−ℓ+bb̄ process. The HZZ coupling is assumed SM, and rep-

resentative combinations of κ and κ̃, which parameterize the Higgs boson

Yukawa coupling according to Eq. (1.30), are chosen in this study. The overall

strength of the Higgs boson Yukawa coupling is kept at the SM value, namely,

|κ|2 + |κ̃|2 = 1, (3.51)

and the same κ and κ̃ are assumed for both Htt and Hbb couplings. Again, the

Htt and Hbb couplings enter the gg → ZH → ℓ−ℓ+bb̄ process as indicated

by the shaded bulbs with dashed contour in Fig. 3.1. However, it should be

noted that the H → bb̄ decay is shared by both the triangle and box diagrams,

and because of the scalar nature of the Higgs boson, the choice of κ and κ̃ does

not affect the kinematics through the blob of the H → bb̄ decay except for the

normalization if Eq. 3.51 is violated.

In Fig. 3.13, the kinematic distributions of the simulated gg → ZH →

ℓ−ℓ+bb̄ events at 14 TeV are presented for selected combinations of κ and

κ̃. As shown in Fig. 3.13, all of the non-SM combinations of κ and κ̃ result

in larger cross sections of the gg → ZH → ℓ−ℓ+bb̄ process. Among all,

the "wrong sign" scenario of κ = −1 results in the largest cross section by

turning the destructive interference between the triangle diagrams and the

box diagrams in SM into a constructive one. The "wrong sign" scenario boosts

the cross section of the gg→ ZH → ℓ−ℓ+bb̄ from 2.9 fb to 14.0 fb. This boost

is significant compared to the qq̄ → ZH → ℓ−ℓ+bb̄ cross section of 34.0 fb,

which is not affected by the choice of κ and κ̃ as long as Eq. (3.51) holds.

While it is impossible to separate the contributions from the triangle and
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the box diagrams, in Fig. 3.14, the kinematic distributions of the simulated

box → ZH → ℓ−ℓ+bb̄ events at 14 TeV are presented for selected combina-

tions of κ and κ̃.
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As shown in Fig. 3.14, the pseudoscalar coupling between the quark loop

and the Higgs boson results in difference from the (SM) scalar coupling in

both the cross section and the shape of the kinematic distributions. The signs

of the κ and κ̃ parameter do not matter, because there is no interference when

the box diagram is considered along.

The choices of κ and κ̃ do not only affect the cross section of the gg →

ZH → ℓ−ℓ+bb̄ process, but also change the kinematic distributions as well.

This is not unexpected. As I have shown in Section 3.2.1, the triangle diagrams

and the box diagrams interfere at different levels in different kinematic region.

The choice of κ and κ̃ affects the interference, and is unlikely to result in

kinematic distributions that are simply scaled from those of the SM case.

Another observation from the distributions is that the sign of κ̃ does not

affect the distribution. This suggests that the κ̃ contribution does not interfere

with other contributions, and is proportional to |κ̃|2 only. This speculation

is found true using repeated simulations with κ̃ rotated around the complex

plane. In other word, the gg → ZH → ℓ−ℓ+bb̄ process is insensitive to the

relative phase between κ and κ̃.

3.2.5 Combined gg + qq̄→ ZH with Anomalous Couplings

In this and the next subsections, I extend the study of the ZH production in

Ref. [35] by combining the (LO) qq̄ → ZH production with the gg → ZH

production. In selecting the representative values of anomalous couplings to

study, I adopt a similar way used in Ref. [35] when mixing the Standard Model

couplings with anomalous couplings. In mixing SM and the g2 contribution,
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I started by calculating the contribution due to g2 alone, and finding the

value of g2, or g2,max, such that the proton-proton (sum of gluon-gluon and

quark-antiquark) cross section equals to the SM value. Then the relation of(︃
g1

2

)︃2

+

(︃
g2

g2,max

)︃2

= 1 (3.52)

is maintained while selecting tentative (g1, g2) pairs, where the 2 beneath g1

is there because in SM g1 = 2. Because of the interferences between g1 and g2

amplitudes, the relation in Eq. (3.52) does not maintain the cross section at the

SM value exactly, and fine adjustment of the coupling constants is needed to

keep the total cross section constant.

The selection of the values of g4 is similar to that of g2, but since the

interference between g1 and g4 and that between κ and κ̃ is zero, the following

relations are kept exactly,(︃
g1

2

)︃2

+

(︃
|g4|

g4,max

)︃2

= 1 , (3.53)

|κ|2 + |κ̃|2 = 1 , (3.54)

g1

2
=
|κ|
1

, (3.55)

|g4|
g4,max

=
|κ̃|
1

. (3.56)

The absolute sign in Eq. (3.56) signifies that the anomalous coupling constants

can be complex, and there can be a relative phase between SM and anomalous

amplitudes.

In the following table, the theoretical scenarios I am considering are listed
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with the corresponding coupling constants.

Scenario g1 g2 g4 κ κ̃ Λ

Standard Model 2 0 0 1 0 −

g2(ŝ) 0 ≈ 0.283 0 1 0 1 TeV

Pseudoscalar 0 0 ≈ 0.386 0 1 1 TeV

50% pseudoscalar
√

2 0 ≈ 0.386√
2

1√
2

1√
2

1 TeV

50% pseudoscalar, with π/2

relative phase with SM

√
2 0 ≈ 0.386 i√

2
1√
2

i√
2

1 TeV

Table 3.1: Coupling constants of theoretical scenarios considered in this chapter. Note
that these values are not the same as those in Table 2.1.

Because of the non-renormalizable nature of the operators g2HZµνZµν and

g4HZµνZ̃µν, the coupling "constants" g2 and g4 cannot remain constant at

arbitrary high energy, and these "constants" should eventually become energy-

dependent form factors. To account for this, the simple ad hoc prescriptions

g2 → g2(ŝ) = g2
Λ2

Λ2 + ŝ
, (3.57)

and g4 → g4(ŝ) = g4
Λ2

Λ2 + ŝ
(3.58)

are introduced, both of which have been implemented in JHUGEN. The

choice of cutoff energy scale Λ = 1 TeV, where beyond-SM physics may

emerge, is arbitrary. In the Fig. 3.15, the kinematic distributions for simulated

pp(gg + qq̄) → ZH → ℓ−ℓ+bb̄ events are presented for selected theoretical
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scenarios. The scenario of 50% pseudoscalar with π/2 relative phase with

SM is presented because of its noticeable distinction in the cos θ1, cos θ2 and

Φ distributions from those without the relative phase. To be specific, in the

cos θ1 and cos θ2 distributions, the π/2 relative phase leads to asymmetry

about cos θ2 = 0; and in the Φ distribution, the π/2 relative phase leads to

symmetry about Φ = 0 while the absence of the π/2 relative phase leads to

asymmetry about Φ = 0.

3.2.6 Application of Matrix-Element-Based Kinematic Discrim-
inants

Although with sufficiently large amount of experimental data, one should

be able to resolve different theoretical scenarios or set constraints on the

anomalous coupling constants using the presented kinematic distributions,

even with an integrated luminosity of 3000 fb−1 at s = 14 TeV from the High-

Luminosity LHC, the number of ZH events implied from the cross sections

listed in Ref. [63] is expected to be a fraction of 0.1 million, which will be

much less than the number of unweighted events, which is 10 million, that

can populate the above histograms to their precisions. It is therefore desired

to find kinematic variables that are much more sensitive to the theoretical

scenarios. The superior performance of the matrix-element-based discriminant

in separating the gluon-initiated events from the quark-initiated events, shown

in Fig.3.11, suggests that it may be applied here.
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+ŝ)

Pseudoscalar

50% Pseudoscalar

50% pseudoscalar, π/2 phase

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-4 -3 -2 -1  0  1  2  3  4

Λ = 1 TeVd
σ

 /
 d

η
Η

 [
fb

]

ηΗ

pp (gg+qq
-
@LO) > ZH > l

-
l
+
bb

-
, SM

g2 Λ
2
 / (Λ

2
+ŝ)

Pseudoscalar

50% Pseudoscalar

50% pseudoscalar, π/2 phase

Figure 3.15: Selected kinematic distributions for simulated pp (gg + qq̄) → ZH →
ℓ−ℓ+bb̄ events at 14 TeV with selected theoretical scenarios, the coupling constants
are listed in Table 3.1. The definition of cos θ1 is in Eq. (3.50).
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Define

DA/B, (gg or qq̄ or pp)({p}) = 1

1 +
(︂ σB

σA

)︂PA, (gg or qq̄ or pp)({p})
PB, (gg or qq̄ or pp)({p})

∈ [0, 1],

(3.59)

where A and B denotes the theoretical scenarios to be resolved, PA({p}) and

PB({p}) are the weights of a set of final-state four-momenta {p} belonging

to an event of the A or B scenario, and the subscripts of gg, qq̄, or pp denotes

whether the discriminant is for gg- or qq̄-initiated events only, or for all of the

pp→ ZH events. Correspondingly,

PA, gg({p}) = ∑
helicities

1
ŝ

PDFg(x1)PDFg(x2)|MA, gg({p})|2PS({p}),

(3.60)

PA, qq̄({p}) = ∑
helicities

∑
q

1
ŝ

PDFq(x1)PDFq̄(x2)|MA, qq̄({p})|2PS({p}),

(3.61)

PA, pp({p}) = ∑
helicities

∑
a,b

1
ŝ

PDFa(x1)PDFb(x2)|MA, a,b({p})|2PS({p}),

(3.62)

where the sum over a and b is the sum over all applicable parton combinations

for the ZH processes. Similar to that with Eqs. (3.48) and (3.49), because of

the shared phase space weight,
1
ŝ

and PS({p}) gets canceled in the fraction.

Again, x1,2 can be deduced from ({p}). In resolving the theoretical scenarios

listed in Table 3.1 the cross section ratio can be set to 1.

In Fig. 3.16, the distributions of kinematic discriminants Dg2/SM, gg and

DPseudoscalar/SM, gg for simulated gg → ZH → ℓ−ℓ+bb̄ events are presented
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with relevant theoretical scenarios.
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Figure 3.16: Distributions of kinematic discriminants Dg2/SM, gg (left) and
DPseudoscalar/SM, gg (right) for simulated gg → ZH → ℓ−ℓ+bb̄ events at 14 TeV with
relevant theoretical scenarios, the coupling constants are listed in Table 3.1. All of the
histograms have been normalized to an area of 1.

On the left plot of Fig. 3.16, because g2 is known for resulting in zero

contribution from the triangle diagram, the distribution of g2 is really that

of the SM box diagrams, and the discriminant is separating the entire gg→

(triangle + box)→ ZH process from the gg→ (box)→ ZH process.

On the right plot of Fig. 3.16, the value of DPesudoscalar/SM, gg tends to gather

around 0.9 for Standard Model gg → ZH events, and 0 for pseudoscalar.

The scenarios of 50% pseudoscalar with and without relative phase both

share some features with both the SM and pseudoscalar distributions, but are

indistinguishable from each other. To identify the relative phase, a dedicated

discriminant may be constructed. Notice the similarity between figures on the

left and right. It is due to the fact that both the g2 and pseudoscalar scenarios

receive contribution only from the box diagrams, except that the Htt and Hbb

couplings are not SM.

In Fig. 3.17, the distributions of kinematic discriminants Dg2/SM, pp and
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DPseudoscalar/SM, pp for simulated pp(gg + qq̄) → ZH → ℓ−ℓ+bb̄ events are

presented with relevant theoretical scenarios. With the addition of qq̄ events,
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Figure 3.17: Distributions of kinematic discriminants Dg2/SM, pp (left) and
DPseudoscalar/SM, pp (right) for simulated pp(gg + qq̄) → ZH → ℓ−ℓ+bb̄ events at
14 TeV with relevant theoretical scenarios. The coupling constants are listed in Ta-
ble 3.1. All of the histograms have been normalized to an area of 1.

in the distribution of Dg2/SM, pp, the SM events are seem to be tightly packed

around 1, and those due to g2 contribution around 0. The separation between

SM and pseudoscalar events are not as dramatic as that on the right plot of

Fig. 3.16 or the left plot of Fig. 3.17, but is still much more apparent than that

in the kinematic distributions presented in Fig. 3.13 or Fig. 3.15. Again, the

discriminant DPseudoscalar/SM, pp is incapable of determining the relative phase

between SM and the pseudoscalar couplings, and the distributions of cos θ2

and Φ with the pp events, or a dedicated kinematic discriminant such as DCP

used in Ref. [35] is needed.

The application of kinematic discriminant on qq̄-initiated events can be

found in Ref. [35]. It is worth noting that in determining the relative phase

between two coupling constants, which is left to accomplish, a kinematic

discriminant that involves two matrix elements and their interference can be
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constructed. Inspired by Eq. (B4) of Ref. [35], and with
σB

σA
set to 1,

DPhase,=(gg or qq̄ or pp)({p}) ∼
PInterference, (gg or qq̄ or pp)({p})

PA, (gg or qq̄ or pp)({p}) +PB, (gg or qq̄ or pp)({p}) ,

(3.63)

where

PInterference({p}) ∼ 2ℜ
(︁
M∗

A({p})MB({p})
)︁
, (3.64)

and the subscripts of gg, qq̄, or pp correspond to the treatments in Eq. (3.60,

3.61, and 3.62) respectively, may be applied to the gg-initiated or all of the

proton-proton events.

To resolve the relative phase between the Standard Model amplitude

and that of the pseudoscalar contribution, in the Fig. 3.18, the distributions

of kinematic discriminants Dphase, pseudoscalar, gg and Dphase, pseudoscalar, pp for

simulated gg→ ZH → ℓ−ℓ+bb̄ and pp(gg + qq̄)→ ZH → ℓ−ℓ+bb̄ events re-

spectively are presented with the theoretical scenarios "50% pseudoscalar" and

"50% pseudoscalar, with π/2 relative phase with SM". The Dphase, pseudoscalar, gg

distribution, which utilizes the gg → ZH process alone, is not sensitive to

the relative phase between SM and the pseudoscalar amplitudes. This is

consistent with the last statement made in Section 3.2.4. With the addition of

the qq̄→ ZH process, which by itself is sensitive to the relative phase (seen

in Fig. 18 of Ref. [35]), the Dphase, pseudoscalar, pp distribution indeed shows

noticeable difference between the theoretical scenarios with and without the

π/2 phase difference.
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Figure 3.18: Distributions of kinematic discriminants Dphase, pseudoscalar, gg (left) and
Dphase, pseudoscalar, pp (right) for simulated gg/pp(gg + qq̄) → ZH → ℓ−ℓ+bb̄ events
at 14 TeV with relevant theoretical scenarios, the coupling constants are listed in
Table 3.1. All of the histograms have been normalized to an area of 1.

3.2.7 Exploiting the ZH/WH (A)symmetry

This section is inspired by Ref. [64]. It argues that the ratio of the Drell-Yan-

like component of the ZH and WH cross sections can be calculated to high

precision. Since WH does not have any non-Drell-Yan-like component, by

comparing that ratio to the experimentally measured ZH/WH cross-section

ratio, which allows for the cancellation of many systematical uncertainties,

one can probe the beyond-Standard-Model (BSM) physics in the loop-induced

gg → ZH component at the High-Luminosity Large Hadron Collider (HL-

LHC). In this section I will discuss the dependence of signal strength of the

pp→ WH process on the anomalous coupling constants. It will be found out

that the dependences can be sensitive to the theoretical assumptions.

One can argue that the anomalous coupling constants g2 and g4 are depen-

dent on the vector bosons to which the Higgs boson couples, and they are
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related by the expressions[63],

gHWW
2 = cos2 θWgHZZ

2 + sin2 θWgHγγ
2 + 2 cos θW sin θWgHZγ

2 , (3.65)

gHWW
2 = cos2 θWgHZZ

4 + sin2 θWgHγγ
4 + 2 cos θW sin θWgHZγ

4 , (3.66)

where the superscripts HZZ, Hγγ, and HZγ denotes the anomalous interac-

tions may be considered. The latter two are beyond the scope of this thesis,

making the corresponding gHγγ,HZγ
2,4 = 0. θW is the weak mixing angle with

cos θW = mW/mZ in the Standard Model.

In the following figure, I assume that

gHWW
2 = cos2 θW gHZZ

2 , and gHWW
4 = cos2 θW gHZZ

4 , (3.67)

and I present the signal strength of the pp→WH process assuming that the

cross section of the pp → ZH process is kept at its SM value with Eq. (3.52)

up to some adjustments and Eq. (3.56).
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Figure 3.19: Dependence of signal strength of WH at 14 TeV with uncertainty on gHZZ
2

(left), with g1 set to approximately maintain the total cross section of ZH → ℓ−ℓ+bb̄ at
the SM value; and on gHZZ

4 (right) and κ̃. g1, κ, and κ̃ are assumed to be the same for
ZH and WH processes. gHWW

2 and gHWW
4 are related to gHZZ

2 and gHZZ
4 by Eq. (3.65

and 3.66) respectively.
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The uncertainties are estimated using the percentage uncertainty presented

earlier in this chapter. Unfortunately, with the uncertainty in the leading order

calculations, the signal strength of the pp→WH process would not deviate

significantly from 1. This is not surprising, because both g2 and g4 couplings

do not contribute to the gg→ ZH process, and turning them on is to decrease

the contribution from the triangle diagram, which may not be numerical

significant compared to the larger qq̄→ ZH cross section.

In the following figure, a different assumption is made,

gHWW
2 = gHZZ

2 , and gHWW
4 = gHZZ

4 , (3.68)

and I present the signal strength of the pp→WH process assuming that the

cross section of the pp → ZH process is kept at its SM value with Eq. (3.52)

up to some adjustments and Eq. (3.56). Again on the left of Fig. 3.20, with
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Figure 3.20: Dependence of signal strength of WH at 14 TeV with uncertainty on g2,
with g1 set to approximately maintain the total cross section of ZH → ℓ−ℓ+bb̄ at the
SM value (left); and on g4 and κ̃. All coupling constants are assumed to be the same
for ZH and WH processes (right).

the uncertainty in the leading order calculations, the signal strength of the

pp→WH process would not deviate significantly from 1. On the other hand,
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on the right of Fig. 3.20, the qq̄→ ZH cross section increases with increasing

g4, and so does the signal strength of the qq̄′ →WH process.

Fig. 3.19 and Fig. 3.20 only serve to demonstrate that, depending on the

theoretical assumptions, the comparison between the ZH and WH processes

may be used to extract information on the HVV anomalous couplings. How-

ever, it is the best that one goes beyond the mere signal strength, and explores

other aspects of the two processes simultaneously.
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Chapter 4

pp→ VH Production at
Next-to-Leading Order QCD

In Chapter 3, I have shown that in the Standard Model the Higgs boson

production in association of a Z boson (ZH) receives ≲ 10% contribution

from gluon fusion (gg→ ZH). It is therefore necessary to include the next-to-

leading order (NLO) correction to the VH production in quark annihilation,

which is at ∼ 10% level with LHC energies [65, 66, 67, 68, 69, 70, 71].

The NLO calculation of the qq̄′ → V∗ → VH processes is an application

of a subtraction-based algorithm introduced in Ref. [72]. In the following

sections, I will present the expressions specific to the VH processes. Because

the NLO correction to the qq̄′ → V∗ → VH processes takes place around the

qq̄′ → V∗ vertex, and does not involve the decay chain of the V∗ boson1, the

latter will most often not be expressed explicitly.

1The NLO QCD correction to the hadronic decay of the V boson (V → qq̄′), as well as that
to the Hbb̄ decay, are always treated in JHUGEN. The main effect of the V → qq̄′ decay is
captured by a constant scaling factor applied to the Vqq′ coupling. The main effect of the Hbb̄
decay is captured by evolving the b-quark mass to the energy scale of the Higgs boson mass.
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In addition to the real and virtual corrections to the LO calculation, con-

sistence in the NLO calculation of the hadronic cross section requires that

the partonic processes of gq, gq̄, qg, and q̄g, where an additional real quark

or antiquark (denoted by j, meaning hadronic jet) is in the final state2, be

included as well,

σLO+NLO
pp→VH = σLO+NLO

qq̄′→VH + σgq→VH+j. (4.1)

4.1 Calculating the qq̄′ → V∗ → VH Processes at
NLO QCD

Omitting the decay chain of the V∗ boson, the Feynman diagrams needed

for the NLO QCD calculation of the qq̄′ → VH are listed in Fig. 4.1. The

amplitudes of real emissions (Fig. 4.1(d, e)) can be similarly calculated as the

leading order amplitudes, except that they produce two types of infrared (IR)

singularities. The soft singularity arises when the energy of the radiated gluon

approaches zero, and the collinear singularity arises when the momentum of

the radiated gluon becomes parallel with its parent quark. These singulari-

ties are canceled by the same types of singularities produced by the virtual

correction (Fig. 4.1(b)), as the loop momentum of the gluon may approach

zero or become parallel to that of a quark, and by the renormalized parton

distribution functions.

The virtual correction also produces ultraviolet (UV) singularity, where

the loop momentum approaches infinity. This singularity is dealt with by the

chosen renormalization procedure [73], in which a counter term (Fig. 4.1(c)) is
2These processes will sometimes be collectively referred to as gq.
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(a) iMLO
qq̄′ . (b) iMV

qq̄′ . (c) iMC
qq̄′ .

(d) iMR1
qq̄′ . (e) iMR2

qq̄′ .

Figure 4.1: Feynman diagrams for (a) the qq̄→ V∗ process at LO, (b) one-loop virtual
correction in QCD to the LO approximation, (c) UV counter term for the one-loop
correction to the qq̄′V vertex, and (d, e) real emissions of gluon from the initial-state
quarks. The decay chain of the V boson is not shown for simplicity.
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added to cancel this singularity.

The infrared singularities in this calculation are handled in dimensional-

reduction scheme, where leading order amplitudes are calculated in spacetime

dimension 4, and singularities are regularized by dimensional regularization

in dimension Dim = 4− 2ϵ. To avoid ambiguity, a subscript of UV or IR may

be used to indicate the source of the singularity.

Before explaining each of the diagrams in detail, I am presenting the final

expression of the hadronic cross section of the qq̄′ → VH at NLO QCD, in a

compact form,

σLO+NLO
qq̄→VH = ∑

a,b∈{q,q̄′}

{︃
∫︂ 1

2ŝ
dx1dx2PDFa(x1; µ2

Fac)PDFb(x2; µ2
Fac)

∫︂
Θ(x1x2s− ŝ)dPSVH+j

×
[︂
|iMR1

ab (pa, pb; pj, {pf}) + iMR2
ab (pa, pb; pj, {pf})|2

− V ag,b|MLO
ab (p′a, pb; {p′f})|2 − V bg,a|MLO

ab (pa, p′′b ; {p′′f })|2
]︂

+
∫︂ 1

2ŝ
dx1dx2PDFa(x1; µ2

Fac)PDFb(x2; µ2
Fac)

∫︂
Θ(x1x2s− ŝ)dPSVH

×
[︂
|iMLO

ab + iMV
ab(ϵ) + iMC

ab(ϵ)|
2 + |MLO

ab |
2Iab(ϵ)

]︂
+∑

a′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)
∫︂

Θ(xx1x2s− ŝ)dPSVH
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×
[︂
Ka,a′(x)|MLO

a′b (xpa, pb)|2 + Pa,a′(xpa, x; µ2
Fac)|MLO

a′b (xpa, pb)|2
]︂

+∑
b′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)
∫︂

Θ(xx1x2s− ŝ)dPSVH

×
[︂
Kb,b′(x)|MLO

ab′ (pa, xpb)|2 + Pb,b′(xpb, x; µ2
Fac)|MLO

ab′ (pa, xpb)|2
]︂}︃

. (4.2)

The first term has the "dipole contributions", which contains the splitting

functions V , subtracted from the contributions due to real emissions. The

"dipole contributions" approach the infrared singularities in a similar man-

ner as real emissions, and thus systematically and smoothly eliminate these

singularities. However, because the cancellations take place numerically, and

that the "dipole contributions" depend on sets of momenta derived from but

not identical to those for the real emissions, mis-binning, where supposedly

canceling large values get filled into the adjacent bins of a histogram, could

occur. As a result, special treatments, to be discussed later in Section 4.3.1, can

be employed to improve the quality of the histograms.

The subtracted "dipole contributions" are compensated by the contribu-

tions due to I, K, and P operators. The I contribution contains the above

infrared singularities parameterized by ϵIR, which are canceled analytically by

those in the virtual correction and renormalization counter term. The K and P

contributions are by themselves not singular, which account for compensating

the rest of the "dipole contributions" as well as PDF renormalization.

The ultraviolet singularity is dealt entirely in the second term of Eq. (4.2),

where the ultraviolet singularity due to the virtual correction iMV
qq̄′ , parame-

terized by ϵUV, is canceled analytically by that in the renormalization counter
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Fig.4.1
1

ϵUV

1
ϵIR

1
ϵIR

2

(a)

2 Re
{︁
(iMLO)∗ × (iMV + iMC)}(b) iMV

ab

(c) iMC
ab

(d)
|iMR1

ab + iMR2
ab |

2
V ag,b|MLO

ab |
2 Ka,a′ |MLO

a′b |
2, Pa,a′ |MLO

a′b |
2

|MLO
ab |

2Iab
(e) V bg,a|MLO

ab |
2 Kb,b′ |MLO

ab′ |
2, Pb,b′ |MLO

ab′ |
2

Table 4.1: Terms of divergences in the NLO QCD calculation of the qq̄′ → VH
processes. Terms of divergence regularized by the same parameter are listed in the
same column. Terms on the same row have divergence(s) from the same Feynman
diagrams. Terms whose sum is finite are connected. Note that the cancellation of

the
1

ϵUV
divergence takes place at the amplitude level while the others the level of

partonic cross section.

term iMC
qq̄′ . Again, the part of the infrared singularities that are parameterized

by ϵIR is also canceled within the second term.

In Table 4.1, the sources of UV and IR divergences in the Feynman diagrams

and the corresponding terms in the final expression are summarized, which

shows how divergences regularized by each parameter get canceled.

The parton combination ab in Eq. (4.2) is summed over all of the applicable

that produce the specific VH final states, and the summation over a′ and b′ are

such that a′b and ab′ lead to the same VH final states. In Table 4.2, all of the

partonic combinations of ab as well as their corresponding applicable a′b and

ab′ are listed for ZH and W±H processes. Note that an identity CKM matrix

as an approximation can lead to great simplification in the calculation.
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ZH

ab dd̄ uū ss̄ cc̄ bb̄ d̄d ūu s̄s c̄c b̄b

aa′ dd uu ss cc bb d̄d̄ ūū s̄s̄ c̄c̄ b̄b̄

bb′ d̄d̄ ūū s̄s̄ c̄c̄ b̄b̄ dd uu ss cc bb

W+H

ab d̄u d̄c s̄u s̄c b̄u b̄c

aa′ d̄d̄ , d̄s̄, d̄b̄ d̄d̄ , d̄s̄, d̄b̄ s̄d̄ , s̄s̄, s̄b̄ s̄d̄ , s̄s̄, s̄b̄ b̄d̄ , b̄s̄, b̄b̄ b̄d̄ , b̄s̄, b̄b̄

bb′ uu, uc cu, cc uu, uc cu, cc uu, uc cu, cc

ab ud̄ cd̄ us̄ cs̄ ub̄ cb̄

aa′ uu, uc cu, cc uu, uc cu, cc uu, uc cu, cc

bb′ d̄d̄ , d̄s̄, d̄b̄ d̄d̄ , d̄s̄, d̄b̄ s̄d̄ , s̄s̄, s̄b̄ s̄d̄ , s̄s̄, s̄b̄ b̄d̄ , b̄s̄, b̄b̄ b̄d̄ , b̄s̄, b̄b̄

W−H

ab dū dc̄ sū sc̄ bū bc̄

aa′ dd, ds, db dd, ds, db sd, ss, sb sd, ss, sb bd, bs, bb bd, bs, bb

bb′ ūū, ūc̄ c̄ū, c̄c̄ ūū, ūc̄ c̄ū, c̄c̄ ūū, ūc̄ c̄ū, c̄c̄

ab ūd c̄d c̄s c̄s ūb c̄b

aa′ ūū, ūc̄ c̄ū, c̄c̄ ūū, ūc̄ c̄ū, c̄c̄ ūū, ūc̄ c̄ū, c̄c̄

bb′ dd, ds, db dd, ds, db sd, ss, sb sd, ss, sb bd, bs, bb bd, bs, bb

Table 4.2: Partonic combinations ab as well as the applicable superscripts a′b and ab′

of the K and P functions, for ZH and W±H processes.

The color algebra needed for the calculation of the qq̄′ → VH calculation

is provided in Section 3.2 and Appendix A of Ref. [72]. In fact, since the LO

Feynman diagrams of the qq̄′ → VH processes have only two color-charged

initial-state partons3, all of the color factors needed in this thesis are,

Tr[tatb] = δabTR = δab 1
2

, (4.3)

3While the decay products of V and H can be quarks, the color correlations between the
initial- and final-state quarks is not considered.
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Tg · Tg = Nc = 3 , (4.4)

Tq · Tq = CF =
(N2

c − 1)
2Nc

=
4
3

, (4.5)

T i · T j = T j · T i , (4.6)

T1 · T2|1, 2 > = − T1 · T1|1, 2 > = − T2
1|1, 2 > = − T2

2|1, 2 > , (4.7)

Tq · T q̄

T2
q

=
Tq · T q̄

T2
q̄

=
T q̄ · Tq

T2
q

=
T q̄ · Tq

T2
q̄

= −1 . (4.8)

The helicity amplitudes of the NLO real corrections to the qq̄′ → VH

processes can be calculated by the same manner used to calculate the LO

qq̄′ → VH amplitudes, which uses FORM [44] with the SPINNEY package [45],

and will not be presented in detail here (see Section. 2.4). The real corrections

require an additional final-state particle to the qq̄′ → V∗ → VH → f f̄ ′bb̄

phase space. This can be accomplished by one additional splitting of 12345→

1234, 5, with 5 being the particle of real emission (see Section 2.1 for details).

It is worth noting that in the real emission amplitudes, infrared singularities

appear in the terms that contain the factor of

1
2pa.pr

=
1

2EaEr(1− cos θar)
, (4.9)

where pa,b (Ea,b) are the momenta (energies) of the initial-state partons, pr (Er)

is the momentum (energy) of the radiated parton, and cos θar is the angle

between partons a and r. Soft singularity occurs as Er → 0, and colinear

singularity occurs as cos θar → 1. When the real emission amplitudes are

evaluated numerically, numerical stability is ensured by not allowing
pa.pr

pa.pb
to
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reach below machine precision.

Each contribution due to one of the two real emission diagrams (Fig. 4.1(d, e))

has a corresponding dipole contribution to be subtracted. The splitting opera-

tors V inside the dipole contributions presented in this chapter have absorbed

and factor of −1 due to Eq. (4.8), and with the understanding that the splitting

operators yield nonzero outcome only when sandwiched between the states

with the same helicities, those needed for the qq̄′ → VH processes become

functions,

V ag,b =
1

sag

1
xg,ab

8πµ2ϵIR
Fac αSCF

[︂ 2
1− xg,ab

− (1 + xg,ab)− ϵIR(1− xg,ab)
]︂

=
1

sag

1
xg,ab

8παSCF

[︂ 2
1− xg,ab

− (1 + xg,ab)
]︂
+O(ϵIR) (4.10)

where

xg,ab =
pa.pb − pg.pa − pg.pb

pa.pb
. (4.11)

Denoting pa, pb, pj, {pf} the set of momenta for the scattering of initial-state

partons a and b, which results in the final-state momenta pf and an addi-

tional parton j radiated from a, the momenta for the corresponding dipole

contribution are

pa → p′a = xg,ab pa, (4.12)

pb → pb, (4.13)

and pµ
f → pµ′

f = Λµ
ν

(︁
K, ˜︁K)︁

pν
f , (4.14)
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where

Kµ = pµ
a + pµ

b − pµ
j , (4.15)

˜︁Kµ = p′a + pµ
b , (4.16)

and Λµ
ν

(︁
K, ˜︁K)︁

= gµ
ν −

2
(︁ ˜︁K + K

)︁µ(︁ ˜︁K + K
)︁

ν(︁ ˜︁K + K
)︁2 − 2˜︁KµKν

K2 . (4.17)

The matrix Λµ
ν

(︁
K, ˜︁K)︁

generates a proper Lorentz transformation such that

momentum conservation without the radiated parton is obtained,

p′a + pb = ∑
f

p′f. (4.18)

The momenta for the dipole contribution corresponding to that j radiated

from b can be obtained in the same manner.

Note that the dipole contributions share the same flux factor
1
ŝ

and the

same phase space weight with those of the real emission. However, should

any phase space cuts be employed, the derived momenta need to be checked

against the same selection criteria. When dynamic scale is employed in Monte-

Carlo simulation, the renormalization and factorization scales need to be

reevaluated based on the derived momenta, and PDF’s need to be reevaluated

for the dipole contributions.

With the computational techniques introduced in the previous chapters,

in particular the Passarino-Veltman tensor integral reduction, the one-loop

virtual correction to the LO amplitude can be found as

iMV = iMLO (−i)16παSCF

[︃
B0(0, 0; 0; Dim)− 3

4
B0(0, 0; (pa + pb); Dim)
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− 1
2

ϵUVB0(0, 0; (pa + pb); Dim)− 1
2

sabC0(0, 0, 0; 0, (pa + pb), 0; Dim)

]︃
,

(4.19)

where the functions B0 and C0 were defined in Eq. (3.7 and 3.8), and

sab ≡ 2(pa.pb). (4.20)

The amplitude of the virtual correction is found to be proportional to the

leading order amplitude. This is not a general feature in NLO calculations, but

turns out to be convenient. The analytical expressions of the scalar integrals

can be found in Section 4.3.2 of Ref. [58] and Eq. (B.16) of Ref. [61]4,

B0(0, 0; 0; Dim)

=
iπ2

(2π)4

(︃
Γ(1 + ϵUV)(4π)ϵUV

ϵUV
− Γ(1 + ϵIR)(4π)ϵIR

ϵIR
+O(ϵIR)

)︃
, (4.21)

B0(0, 0; (pa + pb); Dim)

=
iπ2

(2π)4

[︃
2− ln

(sab − i0)
µ2

Ren
+

Γ(1 + ϵUV)(4π)ϵUV

ϵUV
+O(ϵIR)

]︃
, (4.22)

C0(0, 0, 0; 0, pa + pb, 0; Dim)

=
iπ2

(2π)4
1

sab

[︃
Γ(1 + ϵIR)

ϵIR
2

(︃
4πµ2

Ren
−sab − i0

)︃ϵIR

− π2

6
+O(ϵIR)

]︃
. (4.23)

The renormalization counter term for the above virtual amplitude is con-

structed using Eq. (2.25, 27, and 28) of Ref. [73],

4Note that the tensor and scalar integrals in both Ref. [58] and Ref. [61] have omitted a
factor of iπ2/(2π)4, which is not omitted in this thesis.
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iMC = iMLO αS

π
CF

[︂Γ(1 + ϵIR)(4π)ϵIR

4ϵIR
− Γ(1 + ϵUV)(4π)ϵUV

4ϵUV
+O(ϵ)

]︂
,

(4.24)

where the ratios of energy scales are set to be 1.

The renormalization counter term eliminates the UV divergence in the

virtual correction. In anticipating that the rest of the infrared singularities will

be canceled by the I contribution, and that in Ref. [72] a factor of

(4π)ϵ

Γ(1− ϵ)
= 1 +O(ϵ) → 1 (ϵ→ 0) (4.25)

is pulled outside the rest of the expression of I, it is necessary to apply the

same ϵ-normalization to the virtual correction and renormalization counter

term above so that the non-singular contributions are consistent. In doing this,

no γE will make appearance in the expression of the non-singular part of each

of the contributions mentioned above. The sum of the virtual correction and

the renormalization counter term reads,

iMNLO
UV-safe

=iMV + iMC = iMLO αS

π
CF

(4π)ϵIR

Γ(1− ϵIR)

×
{︃
− 3

4

[︃
2− ln

(sab + i0)
µ2

Ren

]︃
− 1

2
− 1

4
ln2 µ2

Ren
(−sab − i0)

− 3
4ϵIR
− 1

2ϵIR
ln

µ2
Ren

−sab − i0
− 1

2ϵIR
2 +O(ϵ)

}︃
. (4.26)

With the UV divergence taken care of, the UV-safe squared amplitude with
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one-loop virtual correction is

|MLO+NLO|2UV-safe = |iMLO + iMNLO
UV-safe|

2

=|MLO|2 + 2 Re
{︁
(iMLO)∗ × (iMNLO

UV-safe)
}︁
+O(α2

S). (4.27)

Omitting O(α2
S), it is convenient to introduce the shorthand notation,

|M|2NLO,UV-safe

≡2 Re
{︁
(iMLO)∗ × (iMNLO

UV-safe)
}︁

=|MLO|2 αS

π
CF2

[︃
(4π)ϵ

Γ(1− ϵ)

]︃[︃
− 3

4

(︃
2− ln

sab

µ2
Ren

)︃
− 1

2
− 1

4

(︃
ln2 sab

µ2
Ren
− π2

)︃]︃

−|MLO|2 αS

π
CF

[︃
(4π)ϵ

Γ(1− ϵ)

]︃
1

2ϵIR
2

−|MLO|2 αS

π
CF

[︃
(4π)ϵ

Γ(1− ϵ)

]︃
1

ϵIR

(︃
1
2

ln
µ2

Ren
sab

+
3
4

)︃
. (4.28)

The I contribution with any applicable qq̄′ combination ab is

[︁
I contribution for qq̄

]︁
≡

∫︂ 1
2ŝ

dx1dx2PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(x1x2s− ŝ)dPSVH
[︁
|MLO

ab |
2Iab(ϵIR)

]︁
=

∫︂ 1
2ŝ

dx1dx2PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(x1x2s− ŝ)dPSVH|MLO
ab |

2 αS

2π
CF

[︃
(4π)ϵ

Γ(1− ϵ)

]︃
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×
[︃(︃

10− π2 + 3 ln
µ2

Fac
sab

+ ln2 µ2
Fac

sab

)︃
+

1
ϵIR

2 +
1

ϵIR

(︃
ln

µ2
Fac

sab
+

3
2

)︃
− 1

]︃
(4.29)

The last −1 in Eq. (4.29) is due to the translation from the conventional

dimensional-regularization scheme used in Ref. [72] to the dimensional-

reduction scheme5. The divergences of
1

ϵIR
and

1
ϵIR

2 in Eq. (4.28) and Eq. (4.29)

cancel when these two expressions are combined at the squared-matrix-

element level.

The explicit expression of the contribution to the qq̄′ processes from the K

operators is

[︁
K contribution for qq̄

]︁
≡∑

a′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(xx1x2s− ŝ)dPSVH

[︂
Ka,a′(x)|MLO

a′b (xpa, pb)|2
]︂

+∑
b′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(xx1x2s− ŝ)dPSVH

[︂
Kb,b′(x)|MLO

ab′ (pa, xpb)|2
]︂

(4.30)

=∑
a′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(xx1x2s− ŝ)dPSVH|MLO
a′b (xpa, pb)|2

5See Note added at the end of Ref. [72].

113



× αS

2π
CF

{︃[︃
2

1− x
ln

(1− x)2

x

]︃
+

+

[︃
− (1 + x) ln

(1− x)2

x
+ (1− x)

]︃

+ δ(1− x)
[︃

2π2

3
− 5

]︃}︃
+
[︁
(a, 1)←→ (b, 2)

]︁
. (4.31)

The "+" prescription denotes the plus distribution,

∫︂ 1

0
dx g(x)

[︁
f (x)

]︁
+
≡

∫︂ 1

0
dx

[︁
g(x)− g(1)

]︁
f (x). (4.32)

Consequently,

[︁
K contribution for qq̄

]︁
=∑

a′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(xx1x2s− ŝ)dPSVH|MLO
a′b (xpa, pb)|2

× αS

2π
CF

[︃
2

1− x
ln

(1− x)2

x
− (1 + x) ln

(1− x)2

x
+ (1− x)

]︃

+∑
a′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(x1x2s− ŝ)dPSVH|MLO
a′b (pa, pb)|2

αS

2π
CF

[︃
−2

1− x
ln

(1− x)2

x

]︃

+∑
a′

∫︂
dx1dx2

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(x1x2s− ŝ)dPSVH|MLO
a′b (pa, pb)|2

αS

2π
CF

[︃
2π2

3
− 5

]︃
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+
[︁
(a, 1)←→ (b, 2)

]︁
. (4.33)

Notice that in applying the plus distribution in Eq. (4.32) to the K contribu-

tion in Eq. (4.31), as x approaches 1, both the numerator and denominator

approaches 0, and the integral is finite. However, to allow numerical stability

when the integral is evaluated numerically, one needs to set a cutoff value

that keeps x from being too close to 1. In addition, turning Eq. (4.31) into

Eq. (4.33) is needed if one were to fill the histograms of kinematic distribu-

tions. This is because, as shown in Eq. (4.33), three sets of momenta, each

with initial-state momenta (pa, pb), (xpa, pb), and (pa, xpb) respectively, are

involved and each set carries it own weight. The momenta sets of (xpa, pb)

and (pa, xpb) are obtained by first generating a set of momenta with invariant

mass xŝ = 2xpa.pb, and then a boost from the center-of-mass frame to the

laboratory frame using Eq. (2.115) and

x1 → xx1 and x2 → xx2 (4.34)

respectively. The momenta sets of (xpa, pb) and (pa, xpb) are identical in the

center-of-mass frame, and the scattering amplitudes are Lorentz invariant.

However, both of the momenta sets are needed if kinematic cuts are to be

performed properly.

The explicit expression of the contribution to the qq̄′ processes from the P

operator is

[︁
P contribution for qq̄

]︁
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=∑
a′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(xx1x2s− ŝ)dPSVH

[︂
Pa,a′(x, xpa, µ2

Fac)|MLO
a′b (xpa, pb; {p})|2

]︂
+∑

b′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(xx1x2s− ŝ)dPSVH

[︂
Pb,b′(x, xpb, µ2

Fac)|MLO
ab′ (pa, xpb; {p})|2

]︂
=∑

a′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(xx1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(xx1x2s− ŝ)dPSVH|MLO
a′b (xpa, pb)|2

αS

2π
CF(−1) ln

µ2
Fac

xsab

[︃
1 + x2

1− x

]︃
+

+
[︁
(a, 1)←→ (b, 2)

]︁
(4.35)

=∑
a′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(xx1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(xx1x2s− ŝ)dPSVH|MLO
a′b (xpa, pb)|2

αS

2π
CF(−1) ln

µ2
Fac

xsab

[︃
1 + x2

1− x

]︃

+∑
a′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(x1x2s− ŝ)dPSVH|MLO
a′b (pa, pb)|2

αS

2π
CF(−1) ln

µ2
Fac

sab

[︃
− 1 + x2

1− x

]︃
+
[︁
(a, 1)←→ (b, 2)

]︁
, (4.36)

and the discussion following Eq. (4.33) equally applies here.
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4.2 Calculating the gq→ VH + j Processes

The Feynman diagrams relevant to the gq→ VH + j production are listed in

Fig. 4.2.

(a) iMt
gq,q′ .

(b) iMs
gq,q′ .

(c) iMt
gq̄,q̄′ .

(d) iMs
gq̄,q̄′ .

Figure 4.2: Feynman diagrams of (a, b) gq-initiated process and (c, d) gq̄-initiated
process. The decay chain of the V boson is not shown for simplicity. Note that 4 more
diagrams of iMt

qg,q′ , iMs
qg,q′ , iMt

q̄g,q̄′ , and iMs
q̄g,q̄′ are not shown in the figure, and that

the superscript of s or t is used to indicate the s- or t-channel shape of a diagram.

Note that in naming the amplitudes, a superscript of s or t is used to

describe the s- or t-channel shape of a diagram, telling them apart. The final

expression of the total cross section of the gq → VH + q′ processes, in a
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compact form, is

σqg/gq→VH+q′ + σq̄g/gq̄→VH+q̄′ = ∑
a,b∈{q,q̄′}

{︃
∫︂

dx1dx2

∫︂
Θ(x1x2s− ŝ)dPSVH+j

1
2ŝ

PDFa(x1; µ2
Fac)PDFg(x2; µ2

Fac)

×
[︂
|iMt

ag,b(pa, pg; pb) + iMs
ag,b(pa, pg; pb)|2 − V gb,a|MLO

ab̄ (pa, p′g; {p′})|2
]︂

+
∫︂

dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFa(x1; µ2
Fac)PDFg(xx2; µ2

Fac)

×
[︂
Kg,b(x)|MLO

ab̄ (pa, xpg)|2 + Pg,b(xpg, x; µ2
Fac)|MLO

ab̄ (pa, xpg)|2
]︂

+
∫︂

dx1dx2

∫︂
Θ(x1x2s− ŝ)dPSVH+j

1
2ŝ

PDFg(x1; µ2
Fac)PDFa(x2; µ2

Fac)

×
[︂
|iMt

ga,b(pg, pa; pb) + iMs
ga,b(pg, pa; pb)|2 − V gb,a|MLO

b̄a (p′′g , pa; {p′′})|2
]︂

+
∫︂

dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFg(xx1; µ2
Fac)PDFa(x2; µ2

Fac)

×
[︂
Kg,a(x)|MLO

b̄a (xpg, pa)|2 + Pg,a(xpg, x; µ2
Fac)|MLO

b̄a (xpg, pa)|2
]︂}︃

. (4.37)

Notice the consistency among the subscripts of iMt,s, iMLO, and PDF’s. The

parton combination ab in Eq. (4.37) is summed over all that are applicable to

the ga/ag → VH + b process, and consequently ab̄ or b̄a leads to the same

VH final states in a leading order Feynman diagram. In Table 4.3, all of the

partonic combinations of ab are listed for ZH and W±H processes. Like in the

case of the qq̄′ processes, an diagonal CKM matrix as an approximation can

lead to great simplification in the calculation.
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ZH dd uu ss cc bb d̄d̄ ūū s̄s̄ c̄c̄ b̄b̄

W+H
ud cd us cs ub cb

d̄ū d̄c̄ s̄ū s̄c̄ b̄ū b̄c̄

W−H
du dc su sc bu bc

ūd̄ c̄d̄ c̄s̄ c̄s̄ ūb̄ c̄b̄

Table 4.3: Partonic combinations ab for ga/ag→ VH + b in Eq. (4.37).

The helicity amplitudes of the gq→ VH + q′ processes can be calculated by

the same manner used to calculate the LO qq̄′ → VH amplitudes, which uses

FORM [44] with the SPINNEY package [45], and will not be presented in detail

here (see Section. 2.4). The gq → VH + q′ processes require an additional

final-state particle to the qq̄′ → V∗ → VH → f f̄ ′bb̄ phase space. This can be

accomplished by one additional splitting of 12345→ 1234, 5, with 5 being the

particle of real emission (see Section 2.1 for details).

Having absorbed the color factor of −1, the splitting functions V needed

for the gq→ VH + q′ processes are,

V gb,a(xb,ga) =
1

sgb

1
xb,ga

8πµ2ϵIR
Fac αSTR[1− ϵIR − 2xb,ga(1− xb,ga)]

= −8παSTR[1− 2xb,ga(1− xb,ga)] +O(ϵIR), (4.38)

where

xb,ga =
pg.pa − pb.pg − pb.pa

pg.pa
, (4.39)

Considering only the incoming and outgoing nature of the particles and

ignoring the particle identities, the treatment of the phase space with an
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additional radiated particle is identical to that of the qq̄′ processes.

The explicit expression of the contribution to the gq processes from the K

operators with the quark combination ab is,

[︁
K contribution for gq

]︁
= ∑

a,b∈{q,q̄′}

{︃

=
∫︂

dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFa(x1; µ2
Fac)PDFb̄(x2; µ2

Fac)

×
[︂
Kg,b(x)|MLO

ab̄ (pa, xpg)|2
]︂

+
∫︂

dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFb̄(x1; µ2
Fac)PDFa(x2; µ2

Fac)

×
[︂
Kg,a(x)|MLO

b̄a (xpg, pa)|2
]︂}︃

(4.40)

= ∑
a,b∈{q,q̄′}

{︃ ∫︂
dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFa(x1; µ2
Fac)PDFb̄(x2; µ2

Fac)

× |MLO
ab̄ (pa, xpg)|2

αS

2π
TR

[︃(︁
x2 + (1− x)2)︁ ln

(1− x)2

x
+ 2x(1− x)

]︃

+
∫︂

dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFb̄(x1; µ2
Fac)PDFa(x2; µ2

Fac)

× |MLO
b̄a (xpg, pa)|2

αS

2π
TR

[︃(︁
x2 + (1− x)2)︁ ln

(1− x)2

x
+ 2x(1− x)

]︃}︃
.

(4.41)

The explicit expression of the contribution to the gq processes from the P
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operators with the quark combination ab is,

[︁
P contribution for gq

]︁
= ∑

a,b∈{q,q̄′}

{︃

=
∫︂

dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFa(x1; µ2
Fac)PDFb̄(x2; µ2

Fac)

×
[︂
Pg,b(xpg, x; µ2

Fac)|MLO
ab̄ (pa, xpg)|2

]︂
+

∫︂
dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFb̄(x1; µ2
Fac)PDFa(x2; µ2

Fac)

×
[︂
Pg,a(xpg, x; µ2

Fac)|MLO
b̄a (xpg, pa)|2

]︂}︃
(4.42)

= ∑
a,b∈{q,q̄′}

{︃ ∫︂
dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFb̄(x1; µ2
Fac)PDFa(x2; µ2

Fac)

× |MLO
ab̄ (pa, xpg)|2

αS

2π
(−1)TR

[︃
x2 + (1− x)2]︁ ln

µ2
Fac

xsab

]︃

+
∫︂

dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFb̄(x1; µ2
Fac)PDFa(x2; µ2

Fac)

× |MLO
b̄a (xpg, pa)|2

αS

2π
(−1)TR

[︃
x2 + (1− x)2]︁ ln

µ2
Fac

xsab

]︃}︃
. (4.43)

These gq contributions do not involve ultraviolet divergences, and there

is no infrared divergences parameterized by ϵ. However, the contribution

of real emission (of a quark) has colinear divergence when the momentum

of the radiated quark becomes parallel to that of the initial-state gluon. This

divergence is canceled by the subtracted dipole contribution, and the latter

is compensated by the contributions due to K and P operators. The K and P
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contribution is also responsible for the PDF renormalization.

4.3 Mis-binning and Treatment

4.3.1 Mis-binning due to Subtraction of Dipole Contributions

In both the next-to-leading order corrections to the qq̄-initiated processes, as

well as in the gq processes, the infrared divergences due to the radiation of

an additional particle is canceled by their respective dipole contribution. The

dipole contribution involve a set of momenta derived from that of the real

emission, but are not identical, and thus there is a chance of mis-binning when

filling their respective weights into histograms of kinematic variables. In

Ref. [72], the subtraction is applied to the entire phase space so that its effect

is smoothly applied everywhere. However, since the subtraction is meant

to have the infrared divergences canceled, it only needs to be applied to the

vicinity of the singularities, namely

ṽa,r ≡
pa.pr

pa.pb
→ 0, (4.44)

and ṽa,r ≡
pa.pr

pa.pb
→ 0, (4.45)

where pa,b are the momenta of the initial-state partons and pr is the momentum

of the radiated parton.

In Ref. [74], the subtraction method discussed above is modified by the

introduction of a parameter 0 ≤ α ≤ 1, and the splitting functions in Eqs. (4.10)
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and (4.38), respectively, become

V ag,b → V ag,b(α)

=
1

sag

1
xg,ab

8παSCF

[︂ 2
1− xg,ab

− (1 + xg,ab)
]︂
Θ(α− ṽa,g) +O(ϵIR), (4.46)

V gb,a(xb,ga)→ V gb,a(xb,ga; α)

=
1

sgb

1
xb,ga

8παSTR[1− 2xb,ga(1− xb,ga)]Θ(α− ṽa,g) +O(ϵIR). (4.47)

The Θ step function dictates that the subtraction would occur only when

va,r is less than α, or when the radiated momentum is sufficiently soft or

parallel to its parent particle. When α = 1, the original subtraction method is

recovered. When α is chosen to have a reasonably small value, the subtraction

does not take place in much of the phase space, and chances of mis-binning

can be greatly reduced.

In order to take into account the dipole contributions that are not sub-

tracted due to α, the I, K, and P operators are modified accordingly, whose

contribution were originally designed to compensate the dipole contribution

subtracted in the entire phase space. The I contribution (Eq. (4.29)) becomes

[︁
I(α) contribution for qq̄

]︁
=

∫︂ 1
2ŝ

dx1dx2PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(x1x2s− ŝ)dPSVH|MLO
ab |

2 αS

2π
CF

[︃
(4π)ϵ

Γ(1− ϵ)

]︃
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×
[︃(︃

10− π2 + 3 ln
µ2

Fac
sab

+ ln2 µ2
Fac

sab

)︃
+

1
ϵIR

2 +
1

ϵIR

(︃
ln

µ2
Fac

sab
+

3
2

)︃
− 1

−
(︃

2 ln2 α− 3
(︁
α− 1− ln α

)︁)︃]︃
(4.48)

Notice that the α-dependence is only with the finite part of the I contribution.

The K contribution to the qq̄-initiated processes (Eq. (4.31)) becomes

[︁
K(α) contribution for qq̄

]︁
=∑

a′

∫︂
dx1dx2

∫︂ 1

0
dx

1
2ŝ

PDFa(x1; µ2
Fac)PDFb(x2; µ2

Fac)

×
∫︂

Θ(xx1x2s− ŝ)dPSVH|MLO
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αS

2π
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×
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Θ(x + α− 1)
[︃

2
1− x

ln
(1− x)2

x

]︃
+

+ Θ(1− α− x)
[︃

2
1− x

ln
1− x

x

]︃
+

+

[︃
− (1 + x) ln

(1− x)2

x
+ (1− x) +

1 + x2

1− x
ln

(︃
min

(︂
1,

α

1− x

)︂)︃]︃

+

[︃
2

1− x
ln(1− x)Θ(1− α− x)

]︃

+ δ(1− x)
[︃

2π2

3
− 5 +

(︃
2 ln2 α− 3

2
(︁
α− 1− ln α

)︁)︃]︃}︃
+
[︁
(a, 1)←→ (b, 2)

]︁
. (4.49)

The K contribution to the gq-initiated processes (Eq. (4.41)) becomes

[︁
K(α) contribution for gq

]︁
= ∑

a,b∈{q,q̄′}

{︃
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=
∫︂

dx1dx2

∫︂ 1

0
dx

∫︂
Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFa(x1; µ2
Fac)PDFb̄(x2; µ2

Fac)

× |MLO
ab̄ (pa, xpg)|2

αS

2π
TR

[︃(︁
x2 + (1− x)2)︁ ln
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α
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x

+ 2x(1− x)
]︃

+
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dx1dx2

∫︂ 1
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dx
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Θ(xx1x2s− ŝ)dPSVH

1
2ŝ

PDFb̄(x1; µ2
Fac)PDFa(x2; µ2

Fac)

× |MLO
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[︃(︁
x2 + (1− x)2)︁ ln

(1− x)2 min
(︂
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x

+ 2x(1− x)
]︃}︃

.

The P contributions to both the qq̄- and gq-initiated processes are not

modified by the introduction of the α parameter. While the α parameter

controls the size of the phase space that contains the infrared singularities, and

a reasonably small value of α can be used to reduce the chances of mis-binning,

both the NLO correction to the qq̄-initiated processes and the gq-initiated

processes should be separately α-independent in their cross sections and in

their kinematic distributions. Therefore checking α-independence by running

the simulation with a few different α values can be used to check if mistakes

exist in the calculation.
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4.3.2 Mis-binning due to Plus Distributions

From Eqs. (4.33) and (4.36), one can also expect that cancellation between large

numbers in a numerical simulation is possible as x approaches 1. Therefore

mis-binning can occur when related momentum sets happen to end up in

different bins of a histogram. The effect of mis-binning here can be eliminated

by performing changes of variable in Eqs. (4.33) and (4.36),

xx1 → x1, x1 →
x1

x
; and xx2 → x2, x2 →

x2

x
, (4.50)

which substitutes multiple sets of momenta with multiple sets of PDF’s. This

technique is introduced in Ref. [75]. It is not employed in the current version

of JHUGEN, but has been implemented in another version of the generator

independently by Dr. Markus C. Schulze, a collaborator of JHUGEN. The two

independent implementations of I, K, P were used to crosscheck the results

from one another.

4.4 Collider Phenomenology

In Fig. 4.3, the theoretical uncertainties of the qq̄ → Z∗ → ZH → ℓ−ℓ+bb̄

simulation at next-to-leading order are presented. The theoretical uncertainty

mainly consists of that from different PDF sets, and that from the varying

energy scale of the calculation. The PDF sets used in this evaluation are

CT14NNLO [51], MSTW2008LO90CL [52], and NNPDF31_LO_AS_0118 [53].

The energy scales relevant to this simulation are the renormalization scale

µ2
Ren and the factorization scale µ2

Fac used by the PDF. Both have been set
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to µRen = µFac = mZH. To evaluate the uncertainty due to this scale, the

simulation is repeated with µRen = µFac = 2mZH and µRen = µFac = mZH/2.
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Figure 4.3: mZH distribution for simulated qq̄→ Z∗ → ZH → ℓ−ℓ+bb̄ SM events at
14 TeV at NLO, created with three PDF sets (left) as well as using three factorization
scales (right).

The cross section varies by approximately 12% with the selected PDF sets,

and 0.1% with the scales. The scale dependence of the cross section has been

reduced significantly from that of the LO calculation, which is an expected

feature of the NLO calculation.

In Fig. 4.4, the independence of the qq̄→ Z∗ → ZH → ℓ−ℓ+bb̄ simulation

at next-to-leading order due to the choice of the α parameter (See Section 4.3.1

for details) is presented. In the rest of this chapter,

α = 0.1 (4.51)

is selected if not specified otherwise, and Eq. (3.50) is adopted as the definition

of cos θ1.

In Figs. 4.5, 4.6, and 4.7, the ratios of differential cross sections between

NLO and LO (K factors) are presented for the theoretical scenarios of SM, g2,
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Figure 4.4: Demonstration of α-independence in simulated qq̄ → Z∗ → ZH →
ℓ−ℓ+bb̄ SM events at 14 TeV at NLO. The definition of cos θ1 is in Eq. (3.50).

and pseudoscalar. Notice that the angles defined in Fig. 1.2 are leading order

in nature and do not account for the radiated parton. The cos θ1, for example,

needs clarification when it is assigned to an NLO event. When computing

the angles in this Chapter, except for the radiated parton due to NLO real

correction, a boost is first performed on every final-state particle of the event

such that the boosted Z∗ → ZH → ℓ−ℓ+bb̄ system no longer has transverse

momentum. Then the boosted Z∗ → ZH → ℓ−ℓ+bb̄ momenta are used to

compute the angles in the same manner as for the LO events. While this

treatment is not unique, it allows a smooth transition between LO and NLO

kinematics, as well as a reasonable estimate of the momentum fractions x1,2 of

the scattering partons.

In Figs. 4.5, 4.6, and 4.7, the K factors remain relatively constant against

most of the kinematic variables in three theoretical scenarios with anomalous

couplings. The exception is pH
T , where higher pH

T receives slightly larger K

factor. The overall K factors are 1.12, 1.14, and 1.14 for the theoretical scenarios

of SM, g2, and pseudoscalar, respectively.
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Figure 4.5: Selected kinematic distributions for simulated qq̄→ Z∗ → ZH → ℓ−ℓ+bb̄
SM events at 14 TeV at NLO and LO, as well as the differential K factors. The overall
K factors is 1.12.
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Figure 4.6: Selected kinematic distributions for simulated qq̄→ Z∗ → ZH → ℓ−ℓ+bb̄
g2 events at 14 TeV at NLO and LO, as well as the differential K factors. The overall K
factors is 1.14.
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Figure 4.7: Selected kinematic distributions for simulated qq̄ → ZH → ℓ−ℓ+bb̄
pseudoscalar events at 14 TeV at NLO and LO, as well as the differential K factors.
The overall K factors is 1.14.
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+ŝ)

Pseudoscalar

10
-4

10
-3

10
-2

10
-1

10
0

 200  300  400  500  600  700  800  900  1000

Λ = 1 TeV

d
σ

 /
 d

m
Z

H
 [

fb
/G

e
V

]

mZH [GeV]

gg+qq
-
@NLO > ZH > l

-
l
+
bb

-
, SM

g2 Λ
2
 / (Λ

2
+ŝ)

Pseudoscalar
 0

 1

 2

 3

 4

 5

 6

 7

 8

-π -π/2 0 π/2 π

Λ = 1 TeV

d
σ

 /
 d

Φ
 [

fb
]

Φ

gg+qq
-
@NLO > ZH > l

-
l
+
bb

-
, SM

g2 Λ
2
 / (Λ

2
+ŝ)
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Figure 4.8: selected kinematic distributions are presented with simulated pp(gg +
qq̄)@NLO → ZH → ℓ−ℓ+bb̄ events at 14 TeV assuming the theoretical scenarios of
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In Fig. 4.8, selected kinematic distributions are presented with simulated

pp(gg + qq̄)@NLO→ Z∗ → ZH → ℓ−ℓ+bb̄ events assuming the theoretical

scenarios of SM, g2, and pseudoscalar.
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Chapter 5

Constraining the Higgs Boson
Coupling to Light Quarks in the
H → ZZ Final States

This study was first published in Ref. [39] in January 2016. Minor modifica-

tions were made. Since the discovery of a Higgs boson with a mass of around

125 GeV at the Large Hadron Collider (LHC) [1, 2], measurements of its prop-

erties have shown consistency with the Standard Model (SM) expectations

within the uncertainties [76, 77, 78]. Assuming SM, the gluon fusion via closed

quark loop dominates the Higgs boson production, because of large gluon-

gluon luminosity and large mass of the top quark. Also due to relatively large

mass of the b quark, the Higgs boson decays into a pair of b quarks most of the

time. While experimental analyses have been performed on the interactions

between the Higgs boson and heavy quarks [79, 80, 81, 82, 83, 84, 85, 86], as

well as leptons [87, 88, 89, 90, 86], at the time of this study, no experimental

results have been presented on the Higgs Yukawa coupling to the quarks,

namely, u, d, and s quarks. This is not surprising, because in SM, (1) the small
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masses of the u and d quarks make their Yukawa couplings to the Higgs boson

weak, with the branching fraction (Br) of the Higgs boson decaying to u or

d quark pair being ≲ 10−6; and (2) while Br(H → ss̄) ∼ 2.4× 10−4 (com-

parable to Br(H → µ+µ−)) and Br(H → cc̄) ∼ 2.9× 10−2 (comparable

to Br(H → ZZ)), these decaying processes are difficult to observe without

efficient quark flavor tagging. It is worth noting that in Ref. [89], the upper

limits of Br(H → µ+µ−) and Br(H → e+e−) have been set to be 0.0016

and 0.0019 respectively, where the latter is ≈ 3.7× 105 times the SM value. It

is also worth noting that phenomenological studies do exist on constraining

light Yukawa couplings of light quarks. For example, in Ref. [91], depending

on the analysis performed, the upper limit of the Yukawa coupling between

the Higgs boson and the c quark can be set as low as ≲ 6.2 times the SM value.

Another example is Ref. [92], in which Higgs-boson-mediated production of

vector meson in association with a vector boson is used to constrain Yukawa

couplings of u, d, and s quarks. Via a global fit and depending on how the cou-

plings are allowed to vary, the upper limit of these couplings are found to be

close to the SM Yukawa coupling of the b quark, whose numerical indications

will be summarized in a later table.

In this study I attempt to constrain the Yukawa coupling between the

Higgs boson and quarks in the first two generations. The Yukawa Lagrangian

after electroweak symmetric breaking is

LYukawa = −∑
f

m f

v
f̄ f H, (5.1)

where the summation is over fermion flavors. Relaxing the coupling constants,
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the deviation from SM considered in this study is written as

∆LYukawa = −∑
f
(κ f − 1)

m f

v
f̄ f H, (5.2)

where f = u, d, s, c, and the scaling factors κ f are real and can take both

positive and negative values. The masses of the quarks are set according to

the 2014 Particle Data Group summary table [93]. As the couplings of the

Higgs boson to other particles is kept SM, the deviation of κ f from 1 leads

to change in the Higgs boson width, and in the cross sections of processes

involving Yukawa interactions.

Combining the direct measurement with γγ and 4ℓ final states, the CMS

experiment has set an upper limit on the Higgs boson width at 1.7 GeV at

a 95% confidence level (CL) [78]. This can be translated to an upper limit

on each |κ f | by adding its contribution to the Higgs boson width predicted

by SM. In Table 5.1, I list the upper limits on |κ f | due to this argument, the

calculation is performed at leading order (LO), with the Higgs boson mass

mH = 125.6 GeV and the corresponding SM width ΓSM
H = 4.15 MeV. As

a reference, the upper limits set by requiring the theory being perturbative,

namely,

κ f
m f

v
< O(1) (5.3)

are listed in Table 5.1. In addition, the upper limits by Ref. [91] and Ref. [92]

are also listed, as some of the best constraints placed till January 2016.

In the remainder of this study I explore constraints on κ f from the pro-

duction of the Higgs boson, which decays into a pair of Z bosons. In SM, the

production of the Higgs boson is dominated by gluon fusion with t and b
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|κu| |κd| |κs| |κc|

Perturbation < 1.1× 105 < 5.1× 104 < 2600 < 190

ΓH < 1.7 GeV ≲ 4.9× 104 ≲ 2.4× 104 ≲ 1200 ≲ 88

Ref. [91] ≲ 6.2

Ref. [92] 2100− 2800 930− 1400 35− 70

Table 5.1: 95% CL upper limits of scaling factors |κ f |, due to Higgs boson width
direct measurement; in comparison with those by requiring the theory perturbative,
and those by Ref. [91] and Ref. [92]. In the Standard Model, κ f = 1.

loops (Fig. 5.1(a)). The dominant continuum background is the quark-initiated

ZZ production (Fig. 5.1(b)), accompanied by gluon-initiated ZZ production

(Fig. 5.1(c)). The subdominant production mechanism of the Higgs boson is

vector boson fusion (VBF, Fig. 5.1(d)), which contributes about 7% to the Higgs

boson production in the resonance region, and about 10% in the mZZ > 2mZ

region.

As the Yukawa couplings change with κ f , additional contributions from

the Higgs-mediated quark annihilation (Fig. 5.2(a, b)) and gluon fusion with

light quark loops (Fig. 5.2(c)) are taken into account in this study. While

it is understood that a large |κ f | could make a difference in the VBF type

diagram, by having Higgs boson in place of the weak bosons (Fig. 5.2(d)),

its contribution is neglected in this study because of its distinct kinematic

characteristics, particularly the angular correlation between the two jets, which

will allow suppression (see, e.g. Ref. [35]).

For a typical process with the Higgs boson created in the s-channel, the
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Figure 5.1: LO contributions to the main ZZ production processes: (a)
Higgs-mediated gg production; (b) quark-initiated background production; (c)
gluon-initiated background production; and (d) Higgs-mediated VBF production.

b

(a)

u, d, s, c

(b)

u, d, s, c

(c)

H

(d)

Figure 5.2: Additional LO contributions to the ZZ production due to b and light
quarks: (a) Higgs-mediated bb̄ annihilation; (b) Higgs-mediated light-quark
annihilation; (c) Higgs-mediated gg production; and (d) H → ZZ production via
Higgs boson fusion.

138



cross section in the resonance and off-shell region behaves as

σresonance
A→H→B ∼

g2
AH g2

HB
ΓH

and σoff-shell
A→H∗→B ∼ g2

AH g2
HB, (5.4)

respectively, where gAH (gHB) is the Higgs boson coupling to the initial (fi-

nal) state. The resonance and off-shell regions offer two distinct sources of

information on the Yukawa couplings. In the resonance region, the gluon

fusion is always the dominant mechanism of Higgs boson production, even

at large scaling factors |κ f |, as a result of the large gluon-gluon luminosity.

While each scaled-up Yukawa coupling makes its increased contribution in

the gg→ H closed quark loop, its increased contribution to the Higgs boson

width affects the production overwhelmingly at large |κ f |, reducing the cross

section to near zero. This feature can be used to constrain κ f by requiring |κ f |

being small enough to allow consistency with experimental observations. In

the off-shell region, the production cross section of the Higgs boson, which

decays into ZZ, receives enhancement at mZZ ≳ 2mZ, where the invariant

mass of the Higgs boson allows both Z bosons become on-shell [94, 95]. In

addition, the parton luminosities of qq̄, particularly uū and dd̄, are less domi-

nated by that of gg (see, e.g. Ref. [35]). As a result, the production of the Higgs

boson becomes dominated by the qq̄ annihilation (Fig. 5.2(b)) at large |κ f |, and

the cross section increases with |κ f |2. Therefore the measured off-shell cross

section may be used to further constrain κ f .

The cross section of ZZ production with four-lepton (4ℓ, ℓ = e, µ) final

states in proton-proton collisions at centre-of-mass energy
√

s = 7 TeV and

8 TeV is then calculated, as a function of each individual κ f , and compare to

139



the signal strength µggH reported by CMS in Ref. [78, 96], which is based on

integrated luminosities of 5.1 fb−1 at
√

s = 7 TeV and 19.7 fb−1 at 8 TeV. The

signal strength is defined by the relation,

σobs.
gg→ZZ = µggH σSM

signal +
√︁

µggH σSM
intf. + σSM

bkg., (5.5)

where σobs.
gg→ZZ, σSM

signal, σSM
intf., and σSM

bkg. are the total gluon-initiated ZZ cross sec-

tion observed, SM predictions for the Higgs boson signal, signal-background

interference, and background, respectively. While our analysis largely in-

volves Higgs boson production by qq̄ annihilation, its indistinguishability

from gluon fusion allows us to base the analysis on µggH. In each calculation,

one κ f is varied in the range set by Table 5.1 while others are kept at 1 (SM

value). The resonance region is defined as 120.5 GeV < m4ℓ < 130.6 GeV in

our calculation, which does not necessarily agree with the CMS definition.

The off-shell region is defined as 220 GeV < m4ℓ < 800 GeV, as adopted by

CMS in Ref. [96].

The gluon-initiated processes are calculated as follows. The contribution

from diagrams in Figs. 5.1(a), 5.2(c), and their interference with the diagram

in Fig. 5.1(c) is calculated using MCFM 6.8 [97] with NPROC = 128− 130

at loop-induced leading order in perturbative quantum chromodynamics

(QCD). The contribution from the diagram in Fig. 5.2(c) is implemented by

adding codes that are parallel to those that calculate the t and b loops. The

contribution from the diagram in Fig. 5.1 (c) is calculated with NPROC = 81

at loop-induced leading order. For simplicity, the quark mass evolution is

accounted as part of the uncertainty in the cross section. The cross sections of
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the gluon-initiated processes are scaled by the same mZZ-dependent correction

factors to the LO cross section (K factors) applied in Ref. [96], with next-to-

next-to-leading order and next-to-next-to-leading logarithms accuracy for the

total cross section [98, 99, 100]. The QCD renormalization and factorization

scales are set to µr = µ f = mZZ/2 (dynamic scales) and MSTW2008 parton

distribution functions (PDFs) [101] are used.

The quark-initiated processes are calculated using MADGRAPH5 V2.2.3 [102]

at LO, with a modified SM model that includes the Yukawa couplings for all

the quark species. Interferences between Fig. 5.1(b) and Fig. 5.2(a, b) are given

full treatment. The cross sections calculated at LO are scaled by a K factor,

which is the ratio between the NLO cross section of Fig. 5.1(b) obtained by

MCFM and the LO one by MADGRAPH5. The cross section is further scaled

by a K factor due to NLO electroweak corrections [103, 104], which predicts

negative and mZZ-dependent corrections to the qq̄→ ZZ process for on-shell

Z boson pairs. µr = µ f = mZZ/2 and MSTW2008 PDFs are used.

I employ the CMS selection requirements [105], requiring p⊥,µ > 5 GeV,

p⊥,e > 7 GeV, |ηµ| < 2.4, |ηe| < 2.5, mℓ+ℓ− > 4 GeV, M4l > 100 GeV. In

addition, the transverse momentum of the hardest (next-to-hardest) lepton

should be larger than 20 (10) GeV, the invariant mass of a pair of same-

flavor leptons closest to the Z boson mass should be in the interval 40 GeV <

mℓ+ℓ− < 120 GeV and the invariant mass of the other pair should be in the

interval 12 GeV < mℓ+ℓ− < 120 GeV.

In the resonance region, the cross section of qq̄ annihilation is dependent

on κ f , but its contribution to the total cross section is tiny due to small Yukawa
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couplings. For example, even at κu = 5× 104, this cross section is only at a

few percent level of that of the SM gluon fusion. The strongest dependence on

κ f is with the gluon fusion process, Fig. 5.1(a) and Fig. 5.2(c), combined with

its interference with the continuum background. This cross section decreases

as |κu| increases, because of its 1/ΓH dependence, as suggested in Eq. (5.4).

At sufficiently large |κu|, the signal is washed out, and the gluon-initiated

processes reduce to the continuum background production of ZZ.

In Fig. 5.3, the results in the resonance region are combined, and the

expected signal strength, translated from cross section by Eq. (5.5), as function

of each individual κ f , is presented and compare to the signal strength for gluon

fusion µggH = 0.85+0.19
−0.16, reported by the CMS experiment [78]. In Table 5.2, the

95% CL limits for each κ f is summarized. There is a slight asymmetry about

κ f = 0 due to the sign of the interference in the gluon-initiated processes.

In the off-shell region, the Standard Model expects the sum of Higgs boson

signal and its interference with the continuum background to be slightly

negative. While this sum is dependent on |κ f |, the total cross section becomes

dominated by the quark-initiated process at large |κ f |. Although the sensitivity

of the off-shell cross section is not as high as that of the gluon-initiated process

in the resonance region for relatively small |κ f |, sufficiently large |κ f | give rise

to a departure from the number of events observed by CMS.

In Fig. 5.4, the expected off-shell signal strength as functions of κ f are

compared with the one estimated from the result published by CMS in Ref. [96,

106]. The subtracted number of background events, instead of signal strength,

are presented in Fig. 5.4. The number of events are translated from signal
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Figure 5.3: Number of ZZ → 4ℓ events expected in the resonance region
(105.6 GeV < m4ℓ < 140.6 GeV) as functions of κ f (1σ and 2σ uncertainties in green
and yellow bands), in comparison with number of events observed by CMS (1σ and
2σ uncertainties in red and pink bands), with 5.1 fb−1 proton-proton collisions at√

s = 7 TeV and 19.7 fb−1 at 8 TeV. See text for details of calculation.

−3300 ≲ κu ≲ 3200 ,

−2000 ≲ κd ≲ 1900 ,

−130 ≲ κs ≲ 125 ,

−11 ≲ κc ≲ 9 .

Table 5.2: 95% CL limits of scaling factors κ f , by the observation of production of the
Higgs boson in the resonance and its decay to the ZZ final states.
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strength by Eq. (5.5). Moreover, since the observation of the Higgs boson

signal in the resonance is a well established fact, the analysis respects this fact

by scaling the off-shell signal strength in such a way that the resonance signal

strength is fixed. In other word, from the analysis in the resonance region, it is

learned that signal strength decreases with increasing |κ f |, and therefore in

the off-shell analysis, the signal strength is scaled accordingly so that for any

|κ f | the resonance signal strength remains 0.85. In Table 5.3, the 95% CL limits

on each κ f set by the analysis in the off-shell region are summarized. Again,

an additional 50% uncertainty is assigned to each limit for ignoring the quark

mass evolution.

From the analysis in the off-shell region, upper limits for |κu| and |κd|

that are over twice tighter than those due to the Higgs boson width direct

measurement are obtained, and slightly tighter results for |κs| and |κc|. The

better performance of this analysis on |κu| and |κd| is due to the higher parton

luminosities of uū and dd̄ than those of ss̄ and cc̄. Furthermore, at a fixed

energy of proton-proton collision, although parton luminosities decrease in

general as the center-of-mass energy of the colliding partons increases, the

rates of decreasing are slower for uū and dd̄ luminosities than those for ss̄ and

cc̄, which are still slower than that of gg (see, e.g. Ref. [35]). This suggests an

improvement of this analysis as the higher invariant mass region is explored.

As an illustration, I perform the analysis with m4ℓ > 1200 GeV at High-

Luminosity LHC (HL-LHC), where an integrated luminosity of 3000 fb−1 is

delivered at
√

s = 14 TeV. As shown in Fig. 5.5, a factor of ∼ 3 improvement

over the current limits can be expected for |κu| and |κd|, as well as a factor of
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Figure 5.4: Number of ZZ → 4ℓ events due to Higgs boson (signal and interference)
expected in the off-shell (220 GeV < m4ℓ < 800 GeV) region as functions of κ f (1σ
and 2σ uncertainties in green and yellow bands), in comparison with number of
events observed by CMS (1σ and 2σ uncertainties in red and pink bands), with
5.1 fb−1 proton-proton collisions at

√
s = 7 TeV and 19.7 fb−1 at 8 TeV. See text for

details.

|κu| ≲ 1.5× 104 ,

|κd| ≲ 8600 ,

|κs| ≲ 1100 ,

|κc| ≲ 110 .

Table 5.3: 95% CL upper limits of scaling factors |κ f |, by the observation of off-shell
production of the Higgs boson and its decay to the ZZ final states.
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∼ 2 for |κs| and |κc|.
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Figure 5.5: Number of ZZ → 4ℓ events due to Higgs boson (signal and interference)
expected in the off-shell (m4ℓ > 1200 GeV) region as functions of κ f (1σ and 2σ
uncertainties in green and yellow bands), in comparison with number of events
expected by HL-LHC (1σ and 2σ uncertainties in red and pink bands), with 3000 fb−1

proton-proton collisions at
√

s = 14 TeV. See text for details.

The analysis in the off-shell region may be further improved in two ways.

The first is to improve the statistics and include the WW → 2ℓ2ν final states.

The second is to suppress the ZZ (WW) continuum background by employing

a matrix-element-based method, as done in Ref. [96, 106]1. Due to the lack of

experimental access, I was unable to perform the analysis with combined CMS

and ATLAS results. I believe, however, an analysis based on ATLAS result

would yield very similar constraints; and for the purpose of demonstrating

our analysis methods, it suffices to use CMS results alone.
1See, e.g. Ref. [35, 107] for more details on the signal-background separation for H → ZZ

and H →WW processes using the matrix element likelihood analysis.
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Chapter 6

Discussion and Conclusions

In Chapters 2-4, I presented in detail the construction of the event generator for

the processes of e−e+ → ZH, qq̄′ → VH, and gg→ ZH, within the framework

of JHUGEN. Particular focus was given to the Higgs boson decaying to a

pair of bottom quark. The qq̄′ → VH processes were calculated at leading

order and next-to-leading order in QCD. The event generator was then used to

simulate a variety of VH processes involving anomalous HVV, Htt, and Hbb

couplings at lepton and hadron colliders. These simulations were used to not

only present kinematic distributions of these processes, but also demonstrate

techniques that may be applied to experimental data analysis. In particular, I

applied the matrix-element-based kinematic discriminants in separating gg-

and qq̄-initiated events, as well as in resolving theoretical scenarios involving

anomalous HVV, Hbb and Htt couplings. The asymmetry between ZH and

WH processes was also discussed, and to take full advantage of the effect of

the anomalous couplings on the asymmetry, one should go beyond simply

counting the total number of events.

In Chapter 5, I suggested that the Yukawa coupling between the Higgs
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boson and light quarks can be constrained by comparing the signal strength

of Higgs boson production as functions of scaling factors of the Yukawa

couplings with the value measured by the LHC experiments. The tightest

constraints are set in the resonance region, which are listed in Table 5.2. Upon

the original publication in 2016, these constraints are comparable with the

best phenomenological results in the literature [91, 92]. While the analysis

performed in the Higgs off-shell region does not place as tight limits on the

scaling factor, it places independent constraints. In addition, I demonstrated

that the analysis performed in a higher invariant mass region can receive im-

provement by taking advantage of the behavior of parton luminosity functions.

While I believe that my analysis is sufficiently accurate for order-of-magnitude

estimates, the present study ignores several theoretical as well as experimental

details. Therefore, it will be the best if experimental collaborations perform a

detailed analysis.

Outlooks

The tools and techniques I presented are for the study of HVV, Hbb, Htt, and

Higgs boson coupling to light quarks. The Higgs boson coupling that has not

been studied in this thesis is the Higgs boson self coupling HHH and HHHH,

whose measurement is arguably the ultimate test of the Standard Model.

Fortunately, the same techniques of constructing an event generator for the

gg → ZH processes can be easily applied to that for the gg → HH(→ bb̄bb̄)

and gg → H → HH(→ bb̄bb̄) processes, which may be sensitive to HHH,

Htt, and Hbb couplings. The representative Feynman diagrams are shown in
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Fig. 6.1.

Figure 6.1: Representative Feynman diagrams of the gg → HH → bb̄bb̄ and
gg → H → HH → bb̄bb̄ processes. The shaded blob indicates the Higgs Yukawa
interactions with anomalous couplings.

As a matter of fact, I have implemented the matrix element of this pro-

cess in JHUGEN, including the anomalous Htt, and Hbb couplings, and the

generator for both weighted and unweighted events are in development.

Another development one can make based on the NLO calculation of the

V∗ → VH processes is to produce unweighted events and perform matrix-

element likelihood analysis at the next-to-leading order. The technique for

achieving these can be found in Ref. [108]. These next-to-leading order tech-

niques not only provide some treatment of the jet radiation, but also handles

kinematics more realistically because at NLO the V∗ → VH system may have

non-zero transverse momentum.
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