Report number
| arXiv:1902.09971 ; CP3-19-07 ; CERN-TH-2019-016 ; HU-Mathematik-2019-01 ; HU-EP-19/03, SLAC-PUB-17406 ; HU-EP-19/03,
SLAC-PUB-17406 |
Title
| Elliptic polylogarithms and Feynman parameter integrals |
Author(s)
| Broedel, Johannes (Humboldt U., Berlin, Inst. Math.) ; Duhr, Claude (CERN ; Louvain U., CP3) ; Dulat, Falko (SLAC) ; Penante, Brenda (CERN) ; Tancredi, Lorenzo (CERN) |
Publication
| 2019-05-21 |
Imprint
| 2019-02-26 |
Number of pages
| 37 |
In:
| JHEP 05 (2019) 120 |
DOI
| 10.1007/JHEP05(2019)120
|
Subject category
| hep-th ; Particle Physics - Theory ; hep-ph ; Particle Physics - Phenomenology |
Abstract
| In this paper we study the calculation of multiloop Feynman integrals that cannot be expressed in terms of multiple polylogarithms. We show in detail how certain types of two- and three-point functions at two loops, which appear in the calculation of higher order corrections in QED, QCD and in the electroweak theory (EW), can naturally be expressed in terms of a recently introduced elliptic generalisation of multiple polylogarithms by direct integration over their Feynman parameter representation. Moreover, we show that in all examples that we considered a basis of pure Feynman integrals can be found. |
Copyright/License
| publication: (License: CC-BY-4.0) preprint: (License: arXiv nonexclusive-distrib 1.0) |