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I. Introduction

A false vacuum decays due to thermal fluctuations or through quantum
tunneling. This process is the heart of the reaction rate theory and was inten-
sively investigated in connection with the nucleation phenomena in statisti-
cal physics [1], with fission decay in nuclear physics [2] and with inflationary
models of the univers in field theory (cosmology) [3,4].

The equilibrium rate of the thermally activated nucleation, such as the
condensation of a supersaturated vapor or the boiling of a superheated fluid
may be expressed as Ag = ve Eo/¥T where E, is the activation energy, and v
a model-dependent factor. The stationary rate for decay through quantum
tunneling of a metastable state was calculated using various semiclassical
methods (WKB, path integrals) as Ay = fe~We/t where f is the frequency of
"barrier assaults”, and Wj the effective action evaluated along the classical
trajectory between the turning points in the inverted potential [5,6].

The importance of dissipation in the computation of » became first evi-
dent in the chemical reaction rate theory [7]. These reactions are activated
by the molecular Brownian motion induced by the thermal random forces
connected through the fluctuation - dissipation theorem with the tempera-
ture T and the friction coefficient 4. Thus we may expect a strong decrease in
the reaction rate both at weak and strong friction. For the case of moderate-
to-strong friction the reaction rate is given by Kramers [8]

Wa _
AR = g(\/l +nF —mp)e BT (1)

where 1, = /2wy, and wq() are the frequencies of the liniarized molecular
potential around the metastable minimum (a) and around the barrier (b).
The effect of dissipation on the bound quantum states was a puzzling
problem since the early days of the quantum theory, when it was realized that
the atomic electrons do not dissipate the energy by electromagnetic radiation
as it was predicted by the classical electrodynamics. For the first tunneling
process investigated, the o decay, the dissipation was also practically absent,
and the decay rates were described satisfactory by the Gamow fomula. The
importance of dissipation during nuclear decay was mentioned for the first
time in connection with the near-barrier fission of actinide nuclei [8]. Though
initially seemed to be no need for dissipation, because the fission widths were
well reproduced by the simple Bohr-Wheeler formula [9], the calculus of the
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kinetic energy in the final state suggested the opposite. At fission not all the
reaction energy is released as kinetic energy of the fragments, but about 10%
is transfered to their intrinsic degrees of freedom during the descent from
the saddle point to the scission configuration [10]. In principle this transfer
could be accounted for if the cross-section was obtained by a coupled channel
calculation including many inelastic channels. Since such a calculation is not
feasible, it appears natural to model the global effect by a phenomenological
friction coeflicient for the nuclear shape dynamics. Unfortunately, even at
this level the problem has no definite answer, because the type of the nuclear
friction and the related dissipation mechanism are not yet known. However,
assuming friction forces linear in the velocities and high excitation energies,
the Kramers formula can be directly applied to estimate the fission decay
rate [11].

Attempts to develop a quantum theory of dissipative tunneling are rel-
atively recent, starting with the work of Caldeira and Legget [12]. Their
result was that for potentials with a single metastable minimum, at 7' = 0
the dissipation decreases the tunneling rate exponentially.

For double-well potentials new effects occur due to back-scattering. With-
out dissipation, in such systems the phenomenon of ”quantum coherence” ap-
pears, when the localization probability in either well undergoes periodic os-
cillations. In general these oscillations characterize two-level systems [13] and
may be observed also for non-geometrical degress of freedom, as it is the case
of the neutrino oscillations or the strangeness oscillations of the K° mesons
[14]. Within the two-level approximation it was shown [15] that in symmetric
double-well potentials the presence of the frictional forces distroys the quan-
tum coherence oscillations and the tunneling becomes aperiodic. Moreover,
when the friction coefficient exceeds the critical value 4. = 27h/mD? | with
m the particle mass and D the distance between the potential minima, the
"self-trapping” may appear, namely after infinite time the particle has more
than 50% probability to be localized in the initial well.

For asymmetrical double-well potentials the problem of self-trapping and
energy loss was considered in [16], showing that the dissipated energy satu-
rates at a value limitted by the bottom of the stable well and the particle
is always allowed to escape. Thus, the self-trapping do not appear in this
case, though the tunneling is strongly suppressed when the friction constant
exceeds v.. However, more exact calculations of the tunneling probability
using the time-dependent Schrdodinger equation (TDSE) have shown that in

3



such double-well potentials the resonance effects are very important, and the
non-resonant states practically do not tunnel even in the absence of dissi-
pation [17]. In addition, the saturation value of the energy loss should be
clearly limitted by the true ground state energy.

The purpuse of the present work is to clarify these aspects by investigat-
ing the tunneling for resonant and non-resonant states in double-well poten-
tials using TDSE with dissipative terms. Because there is no standard way
to introduce dissipative terms in TDSE, we consider two phenomenological
models corresponding to two different dissipation laws. In the first the rate
of energy decrease is supposed proportional to its fluctuation (Gisin [18]),
and in the second it is proportional to the square of the average momentum
(Albrecht [19]). These models are presented in the next section, while in
Appendix the Albrecht term is derived from the model of a quantum par-
ticle coupled bilinearly to a bath of classical harmonic oscillators. Though
strightforward, this derivation was not found in the literature and we belive
to represent an important case, intermediate between those when the particle
and the reservoir are both classical or quantum.

Before to investigate the tunneling problem, in sect. III is discussed the
effect of the Gisin and Albrecht terms on the time-evolution of the gaussian
wave packets in a harmonic oscillator potential. The main difference between
these terms is revealed by the "squeezing” motion of the wave function [20]
which is not damped by the linear friction term. The Albrecht-like dissipa-
tive term for squeezing will be constructed by using appropriate coordinate
and momentum operators.

In sect. IV are presented numerical results for dissipative tunneling of a
gaussian wave packet in an asymmetric double well potential with a variable
width of the stable well. By changing this width it is possible to study the
resonance effects.

The last section is devoted to a survey of the main results and to the
concluding remarks.




II. Phenomenological models for dissipation

Within the phenomenological models one assumes that the pure states

are preserved during the time evolution and the "free” Schrodinger equation
L Oy

i1s modified due to the coupling with the environment by a term W), ad-
ditional to Hp, accounting for the loss of energy. This term depends on
¥, making the modified equation non-linear and violating the superposition
principle.

Although there is a rich literature on the possible dissipative terms, in
the following we will restrict ourselves essentially to two models [18,19] which
we belive to be representative.

1. Gisin model

This approach [18] follows the lines of the optical model were the inelastic
channels are accounted by the use of a complex potential. Additional complex
terms were used for the treatment of a large variety of phenomena in nuclear
[21] as well as in solid state physics [22]. A phenomenological treatment of
dissipative tunneling for squeezed states in double well potentials by adding
imaginary terms to the energy was given in [23]. In the Gisin’s model they are
constructed by using the initial Hamiltonian, though this choice cannot be
related in general to the velocity dependent frictional force from the classical
mechanics.

Within the Gisin model the time evolution of the wave function | ¢ > is
given by

S0 = Hop —iX(Ho- < | Ho | > Q
where A is the damping coefficient. The rate of dissipation for the energy
E=<1/)1H0|’(b>is

= -2 <y 0> — < Holp>?) )

appearing proportional to its fluctuation. Therefore the eigenstates of H,
remain stationary, and there is no dissipation for the free particle. Otherwise
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the energy is dissipated until the wave function approaches the state with
minimum energy contained in the initial wave-packet [18].

2. Albrecht model

In this model [19] the additional term W is chosen such that when

Hy = % + Vz) the correspondence principle is fulfilled and the Ehrenfest
theorem gives for the expected values of the coordinate and momentum the
classical equations of motion with friction

d<z> <p>
dt  om

(3)

d

%=—<%>—7<p> (6)
These equations are not very restrictive for the choice of Wy, and additional
criteria may be added, namely that the ground state of Hy is preserved and
the energy dissipation law has the classical form E = —y/m < p >% Thus a
free particle dissipates energy, while a stationary state of vanishing average
momentum remains stationary. This behaviour seems similar to the one re-
quired by the virial theorem in the classical mechanics [24] where for a system
of particles subject to conservative forces and frictional forces proportional
to the velocity the motion does not die, but it reaches a stationary state.

An operator satisfying these conditions and which is invariant to the space

translations is W4 = v(z— < 2 >) < p >, with  the friction constant. Thus
the modified TDSE is

%4

th—r = Hp +y(e—<dla|yp>) <y [pld >3 (7)

and the corresponding dissipation law

d<¢|Ho!¢>_
dt N

~Ley|ple>? (8)
m

However, in the present study we will use for simplicity the "non-invariant”
form W4 = v < p >, because the time-dependent function —y < z >< p >
contributes to the solution of TDSE only with a coordinate independent
phase factor.



Beside the arguments based on the correspondence principle, in Appendix
it is shown that the Albrecht term may be reproduced also by a variational
treatment of the standard model for dissipative systems, assuming the quan-
tum particle to be coupled bilinearly to a bath of classical harmonic oscilla-
tors. This approach has the quality to avoid the ambiguities related to the
canonical quantization of the Langevin equation [25,26].

III. Gaussian wave packets in a harmonic oscillator potential:
analytical results

A strightforward application of the phenomenological models concerns
the time evolution of the gaussian wave packets by the harmonic oscillator

Hamiltonian ) )

p Mwy o

Hy=—+4+—2

0= + 5 x (9)

Let us consider at t=0 a gaussian wave packet
da,t =0) = (_;_9)1/46—00(2:—u0)2/2 (10)

having the width 6 =< ¢ |22 | ¢ > — <o |z | ¢ >2= 51—0, placed at
<% |z | >=u, and with no momentum < ¢ | p | ¥ >= vy = 0.

A trivial situation appears when cq = ¢,, ¢, = mwy/h and up = 0, because
In this case the considered wave packet is the exact ground state | g > of
Hy and the whole evolution is given by a time-dependent phase factor e ~#ot/2.

Il1.a Coherent states

If co = ¢, but ug # 0 the wave packet (10) is a ”shifted ground state”

| ¢ > because it is eigenstate of the shifted Hamiltonian H,, = 2; +m—;"2l(x—
uo)? and is related to the ground state of Hy by a unitary transformation
generated by the momentum operator p

| tho >= 57 | g > (11)

This state is non-stationary, and is called Glauber coherent state. Without
dissipation it preserves its shape in time, but it changes the average position
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uy =< Pg(t) | | Ya(t) > and the average momentum v; =< ¥g(t) | p |
¥g(t) > according to the classical Hamilton equations for the harmonic os-
cillator, such that u; = ugcos(wot) , vy = —weugsin(wot). In the coordinate
representation the wave packet at the time t, | ¥g(t) >= e #50t | 1h5(0) > is

@bc(a:, t) = (@)1/46—iwot/2e-co(z_ut)2/2+(i/h)u,(x—ut/z) (12)

s

This wave packet may be written also as
| T/)G(-T,t) >= 6—iwot/zez,b+_z:b I g > (13)

Here z; = \/c,/2(u; + tvi/hec,) = e7™0tzy is a complex function of time, and

b= /c,/2(x + tp/hey) is the Dirac-Fock annihilation operator.

In the presence of the dissipative terms Wg = —iA(Ho— < Ho >) or
W4 = vz < p > the wave function | ¥g(z,t) > preserves its form ,(up
to a time-dependent phase factor), and therefore the Glauber states remain
coherent. The effect of the frictional forces appear only on the time evolution
of the parameters u and v, which now, instead of the harmonic evolution have
damped oscillations. In the case of Wg the evolution of the Glauber wave
packet is given by

|”(/)G(:L‘,t,/\) >= 8—zwot/2 )bt —(2})*b g > (14)
with 2} = e~Mole~iotz; and the average position and momentum: u)} =
uoe 0! cos(wot), v = —mwguge ot sin(wot).

If the additional term is W, the wave packet becomes
| a(z,t,7) >= e | g (15)

with 2} = /¢, /2(u] + ] [he,), u] = upe ™" 2cos(Ut + ¢o)/cosdo, v] =

—mQuoe~"2sin(Qt)/cos?(¢o), tan(go) = —7/20, Q = Jw? — (7/2)? . These
solutions are different with respect to the ones obtained for Wg, but the com-
parison of the exponential terms shows that similar effects may be expected
for v = 2Awy.

The phase factor ®(t) is

UJot

@(t) = — + _/ dt Utl utl Utl) +

h (16)
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and depends on 7. At large times when u and v become 0, the gaussian wave
packet becomes the ground state of Hy, and only ® is keeping records on the
past history of the wave function.

A general discussion of the multidimensional case may be found in [27].

I11.b Squeezed states

When ¢y # ¢, and u=0 the wave packet represents a ”squeezed state”,
| s > and it is non-stationary. Writing cq as mw/h we can easily see that
the squeezed states are eigenstates for an oscillator Hamiltonian having the
frequency w instead of wy ? . The squeezed state | Ysq > is eigenstate of the
Hamiltonian H, = Hy — uK where p = (w@ — w?)/wo , K = ¢,22/2, and it
can also be related to the ground state of Hy by a unitary transformation
28]

| ¥sq >= e o2 | g > (17)
with po = In(wo/w) and Sy = i((b%)? — b?)/4 = (zp + pz)/4h.

Without dissipation this wave function becomes in time e=# "ot | 4, (0) >
and up to a phase factor it can be written as

?

| Psq(t) >= e PE eS| g 5 (18)
with w o
pr = ln(—ocosz(wot) + —sin?(wot)) (19)
w wo
2 wo w sin(2wpt)
= S0 N2iewet) 20
pt Cp( w wo) 80_t2 ( )

and 07 =< 2® > — < z >?= ¢”/2¢,. These equations shows that the free
motion of the squeezed wave packet is an oscillation of the width o2 having
the frequency 2wy.

’In the three-dimensional case, if Hy corresponds to a spherical harmonic oscillator,
then a squeezed state will be the ground state of a deformed harmonic oscillator [28]. For
the nuclear mean-field this change of shape appears when the quadrupole operator Qg has
a non-vanishing ground-state expected value and the quadrupole-quadrupole interaction
term may be written as —émw{(22% — 2% — y?)/6 with § the deformation parameter. In

this case the oscillator frequencies are changed from wy to wy = wy = woy/1+ %, and

1— 2

W, = Wo 3 -



The Gisin dissipation term preserves the form (18) of the squeezed states,
but has the effect of changing in time the frequency w towards wy. Denoting
this time-dependent frequency by w(t), w(t = 0) = w, then

ePtanh(Awot) + 1

t) = 21
w(t) = wo ero + tanh(Awot) (21)
and the oscillations of the width are damped according to the law
1w w(t) .
ol = E[?z)coﬁ(wgt) + wLO)smz(wot)] (22)

until the squeezed state becomes identical to the ground state | g >.

The Albrecht procedure is ineffective: the squeezing oscillations are not
damped by the addition of the term W4 = yz < p > to Hg. According to (8),
the energy is dissipated only if the momentum has a non-vanishing average
value, which is not the case for the squeezed states. In fact the squeezing
represents an additional degree of freedom for the quantum dynamics, beside
the "center of mass” degree of freedom and it is necessary to construct Wy
using the appropriate coordinate and momentum operators. The comparison
of the shifted states (11) and (17) which are ground states for H,, and H,, re-
spectively, suggests that the relevant coordinate operator is related to the ad-
ditional term in H,,(,), responsible for the shift. For squeezing this operator
is K, and the related momentum operator appears to be S;. With this choice
1{Ho, K]/h = 2wy S2, similarly up to constant factors to i[Ho,z|/k = p/m. It
is worth noting also that the average < v, | K | sy >= c,02/2 gives the
width. However, by contrast to the usual commutation relations between the
canonical coordinate and momentum [z, p] = ¢k the commutation relations
between K and S; are more complicated, [K, S3] = ¢K. Using these operators
we can write the corresponding Albrecht term for the squeezing dynamics as
Wig = 75, K < 52 >.

In all the considerations about squeezing presented above we have as-
sumed that the coherent state motion is absent, such that < z >= 0 and
< p >= 0. To account for this motion we have to write W, in a translation
invariant form, and in the following this will be

W,, = %(x—— <z>)(<zptpr>-2<z><Ip>) (23)
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It is important to remark that this term has no effect on the equations (5,6)
for the center of mass motion. The dissipation law given by W, is

dE

= V(< Tptpr>—2<c><p>) (24)

and as expected it is proportional to the square of the average squeezing
momentum.

IV. Dissipative tunneling through an asymmetric double-well
potential: numerical results

In the numerical calculations we have used the double-well polynomial
potential V and false vacuum wave function o (Fig. 1) employed previously
[17,29] for the study of resonances in quantum mechanical tunneling. The
potential is

5 (o +3)%(z — 2)(z — 6) ife <2
Vi) =1 o <z <3+d
(@ —d+3)2(z—d—2)(c—d—6) ifz>2+d
having the metastable minimum at # = —3 and the barrier height Vjy =

V(z = 0) = 0.83. Here d is a parameter allowing a widening of the sec-
ond well such that it may be tuned to obtain resonances. For a particle of
unit mass the first ones are obtained at d = 0.4,1.97 and 3.5, when avoided
crossings between the energy levels of the Hamiltonian Hy = p?/2 + V(z)
occur [29]. The initial wave function vy is a gaussian wave packet (10) hav-
ing the paremeters uo = —3, vo = 0, 02 = 0.6. This wave function is the
ground state of a particle with m = 1 in the harmonic oscillator potential
having wp = 0.69, chosen to approximate V(z) around the left-hand mini-
mum. In the polynomial potential the average energy < g | Ho | 10 > of ¥o
is By = 0.425. The bottom of the right-hand well, between 9/2 and 9/2 + d
is —1.62, and at the first resonance (d = 0.4) the true ground state energy is
—1.23.

The time-dependent Schrodinger equation for the Hamiltonian H = Hp +
W4, was solved numerically by the iterated leap-frog method [30], consid-
ering for Wy the terms W¢, Wy, or W,,. The quantities of interest are the
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time-dependent probability p(t) to find the wave function in the right-hand
well (z > 0) and the energy E(t).

Without dissipation (E£(t) = Ep) the tunneling p has an oscillatory be-
haviour, represented in Fig. 2 for three values of d chosen such that one
corresponds to the first resonance (d=0.4) and the other two are symmetric
on both sides of the resonant value. At d = 0.4 the energies of the sec-
ond and third excited states of Hy are ¢, = 0.375 and e3 = 0.400, slightly
lower than Fy. The quantum coherence oscillations [29,31] for this quasi-
degenerate doublet, pys(t) = sin?(At/2) , A =| €3 — ¢ |, have maxima at
integer multiples of 7/A = 125, almost the same as of the free oscillation
observed for our initial wave packet at d = 0.4 (Fig. 2). This indicates that
without dissipation. the second and third levels are indeed the relevant ones
for the problem.

For d < 0.4 one of these energies increase (e3), while the other maintains
almost the same value, and at d > 0.4 one of the energies decrease (e;), while
the other stays almost constant [29]. This behaviour may be significant for
the study of dissipative tunneling: if a loss of energy occurs, one may ex-
pect to observe an enhanced tunneling effect for d = 0.5 as compared with
d=0.3.

At low-to-moderate damping, for each of the terms W considered, one
can distinguish three main stages:

1. For short times the oscillatory behaviour of p (existing in the absence
of the dissipation) is still present, and for d = 0.4,0.5 the particle does no
more completely return in the first well. As expected, a different behaviour
is observed at d = 0.3, when the dissipation has the tendency to localize the
particle in the first well. The energy decrease during this stage is relatively
small. These features are illustrated in Fig. 3 for W4 with v = 0.05.

2. When p approaches 0.5 a transitory stage starts characterized by a strong
decrease of energy and irregular oscillations of p . During this period the
wave function changes fast its shape to accomodate for the energy loss be-
coming a combination of eigenstates localized in the right hand well.

3. The asymptotic stage when p tends towards 1 and the energy becomes
close to the ground state energy. At this limit the wave function is almost
the ground state gaussian and it has damped oscillations in the second well,
by changing the average position and the width in a similar way as discussed
in the previous section for the harmonic oscillator potential.

Beside the common qualitative features presented above, a more precise
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analysis reveals important differences between the three dissipative terms
considered here. For a quantitative comparison- it is usefull to relate the time
scale to a measurable quantity. Thus one can try to compare the energy E for
a given value of p, or p for a given amount of dissipated energy. An obvious
choice for such reference values would be p,.; = 1 or E,.; = ground state
energy, but this is hard to use, because in general such values are reached at
very large computer times.

The calculations with the linear friction term W4 have shown that the
main decrease of the energy appears after the moment 7}, of "half-tunneling”
when the localization probability in either well is the same, suggesting the
choice pr.y = 0.5. Another important moment (7p) is when the energy be-
comes negative, since the interval between T} and T gives an idea about the
length of the transitory period.

The half-tunneling time 7} and the corresponding value of the energy E},
are shown in Fig. 4-6 for the three damping terms investigated both in the
resonant (d=0.4) and nonresonant case (d=0.3,0.5).

In the Gisin model (Fig. 4) for d=0.3 and 0.5 the tunneling of the first half
of the wave function appears shortly after T and is accompanied by the loss of
a large amount of energy for all A-values, in a period of time monothonically
decreasing with increasing A. In the non-resonant case, without dissipation
the tunneling is never 0.5, and this is why T} increase very much for small
A. By contrast, for d=0.4 and A < A, A, = 0.075, the tunneling is faster,
less dissipative and less dependent on A. The maximum of p at ¢t = 125
1s the last one surviving from the free quantum coherence oscillations, but
it dissapears at A = 0.045. If X increase over A., then T, and E} decrease
strongly, following the behaviour of the non-resonant case.

In the Albrecht model (Fig. 5 ), the first half of the wave function pene-
trates quickly without loosing much energy (for d=0.5 ) or slowly loosing a
lot of energy (for d=0.3 ). The case d=0.4 shows both regimes depending on
the value of . It is interesting to remark that when v = v,, 7. = 0.1, the
maximum of p at ¢ = 125 dissapears and p remains almost constant (~ 0.5)
during a relatively long interval 100 < ¢ < 220 . This value of v would give
self-trapping [13] in a symmetric double-well potential having the potential
minima separated by the same distance D = 7.5, as in the case of V(z).
The occurence of this long-living state is reflected by the discontinuities of
the E}, and T} plots from Fig. 5-A,B. The ratio v./2A. = 0.66 is close to
wo = 0.69, as suggested by the damping of the coherent states investigated
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in the previous section. -

The results obtained with the squeezing dissipation, Eq. (23) are shown
in Fig. 6. For d=0.4 and ~,, < 0.005, the dissipation effect is stronger then
observed for W¢ or Wy: a given amount of energy is lost in shorter time, in-
dicating the importance of the squeezing mode during tunneling. The barrier
penetration proceeds basically by the change in the shape of the wave func-
tion, which means also a change in the width, and this is strongly affected
by the squeezing dissipative term. At large 7,, the tunneling slow down and
Th increase, like in the case of Wy, but Ej, decrease and becomes negative as
was observed for Wg.

Worth noting is that in Fig.4-B and 6-B there is a unique value of the
dissipation constant when 7}, = T,. For this value the system arrives at
half-tunneling with 0 energy, by contrast to the linear friction case, Fig. 5-B
, when the energy at T}, is allways positive.

For linear friction and v = 4, the values of T}, and Tj are represented as
function of d in Fig. 7. They do not have a monotonical behaviour, but it ap-
pears to be a optimal d when the tunneling and the dissipation are favoured
such that T, and Ty have minimal values.

V. Summary and Conclusions

The topic of dissipative tunneling is one of the few related to such a wide
variety of problems, as ranging from the conceptual foundations of quantum
mechanics to the physics of Josephson junction or SQUID devices. In par-
ticular, at the nuclear scale the dissipative phenomena play a key role in the
understanding of fission or fussion reactions.

In this paper the dissipation is treated phenomenologically, inserting non-
linear damping terms in TDSE. We consider three such terms, two employed
before (Wg and W), and one new (W,,), without a classical analog, but con-
structed as a linear friction term for the squeezing motion of the quantum
wave packet. Wy corresponds to the reference case of the Ohmic dissipation
and in Appendix we show that it can be derived from the microscopic model
of a quantum particle coupled bilinearly to a classical bath of harmonic oscil-
lators. It is interesting to remark that the proposed variational derivation of
the Albrecht term provide us naturally with an additional term representing
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the noise. This term might become important for the treatment of a quantum
Brownian particle, but here it was neglected assuming the particle having a
large inertia. The general structure of the noise appearing in TDSE due to
the coupling to the termal bath was recently discussed [32] considering self-
consistent terms leading to a chaotic trajectory of the wave function in the
Hilbert space. However, one should note that chaotic aspects were observed
in the tunneling of the squeezed wave packets even in the absence of the bath
coupling [23,31].

The three dissipative terms were compared first on a test system repre-
sented by a shifted gaussian wave packet in an arbitrary harmonic oscillator
potential. Without dissipation this wave packet remains gaussian and it has
two oscillatory modes, one for the center of mass and one for the width.
The analytical calculations have shown that a complete damping of the both
modes appears only for Wg. In this case the center of mass oscillations have
no frequency shift and are damped according to an exponential law, while the
damping of the squeezing oscillations is more complicated (eq. 21,22). The
term W4 produces a frequency shift for the center of mass oscillations and
an exponential damping law, but proves to have no effect on the squeezing
motion. Therefore a complementary term Wsq (23) was constructed, damp-
ing completely the squeezing oscillation but having no effect on the center of
mass motion.

The numerical analysis of the dissipative tunneling process in an asvm-
metric double-well potential has revealed important aspects which were not
observed before. On short-time the friction may have two opposite tenden-
cies, depending on the resonance parameter d : if d < d,., prevents the
escape 1n the stable well, slowing down the process, or prevents the return to
the metastable well of the wave function already escaped if d > d,.,. Thus,
near the resonance value d,,, d acts as a control parameter for tunneling. A
measure of this effect is represented by the change in the half-tuneling time
T}, and of Tj presented in Fig. 7. For linear friction, an interesting behaviour
was noticed at resonance, when 7 becomes close to the self-trapping value:
a quasistationary state appears, when p is almost constant (0.5) during a
relatively large time interval, though the energy decrease.

At large times p becomes very close to 1 for all models, but the energy
goes to the ground state value only in the Gisin case. For the other damping
terms the final state obtained was a gaussian in the stable well performing
low frequency oscillations of the average position and width. This residual
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motion is damped with a very slow rate, and a precise numerical investiga-
tion of the energy loss in the asymptotic limit becomes difficult.

The interplay between dissipative and resonance effects at tunneling pre-
sented above is the result of the exact calculations using TDSE and it cannot
be obtained by a semiclassical treatment or within the two-level approxima-
tion. This is because the tunneling involves degrees of freedom of the wave
function without a classical correspondent, while a consistent quantum de-
scription requires in our case at least three levels: the two in resonance and
the true ground state. The present approach has not such limitations and
therefore is quite promising for further calculations with realistic potentials.
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Appendix

Let us consider the joint system of a quantum particle and N classical
harmonic oscillators (bath). If there is no coupling the time evolution of
the oscillator coordinates ¢;,7 = 1, N and of the wave function i may be
obtained from the variational equations

5,,,./Ld(qi,q1~)dt =0

and
buge [ Lo, $7)dt = 0 (25)
[33], where
N
L = 3 [mid? /2 — muwlq? /2]
i=1
Ly=<¢|ihd, —Hy | > (26)

and Ho = p?/2m+V (x) is the Hamiltonian operator of the isolated quantum
particle.

If there is coupling the superposition principle is affected, and the joint
system appears like a quantum system with superselection variables [34]. For
this system it is natural to assume that the dynamics will be given also by a
variational equation

6(?&#1’##‘) /(Lcl + Lg + Leowp)dt =0 (27)
with L,y a coupling term depending on ¢;,i = 1, N, 4,4, and eventually

on their first time derivatives [35]. This variational equation may be written
further in the form

N
Sy [[omild) '+ <w im0 —H |p >}t =0 (28)
=1

where H = Ho + Hj, and H,, represents the bath energy plus the interaction
operator. For bilinear coupling this operator is

Xomigt | m? C;
My = T Ty Oy (29
i=1

2 m;w;
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Following the variational procedure, the equations of motion are

., O x? -
ih— = (Ho + = Z C;g; + XZ Cigi)¢ (30)
at 2 i=1 i=1
Wlth g:i = Cz/m,w? and
g = -
m;
pi=-—muwliq —Ci<|x|> (31)

The classical equations (31) may be solved in terms of the unknown function
of time < % | x | ¥ >(4, and their "retarded” solution is
() = [a; . . q',-(()) . ]
¢i() = [6:(0) + gi < [ x| ¢ >(o)]eos(wit) + =—=sin(wit)—

)

t A<y x| > ,
— g <P |x [P > +gi/0 dt ¢|dt’|¢ (t)cosw,-(t—t) (32)

As expected, the classical bath oscillators are sensitive only to the average
position and velocity of the quantum particle. Inserting this solution in (30)
we obtain a non-linear Schrédinger equation A9 = (Ho + W s (10))% with

Wint(¢) = W,en — Xf(t) + X'/: F(t - t’) < d) | p | d) > dt’ (33)

Here Wien = (x2/2 —x < ¢ | x | ¥ >) T, Cigi, £(t) = — 2, [Ci(0:(0) +
gi <Y |z [P >(0))coswit+Cigi(0)sinw;t/w;], and T'(t) = m™? Ef\il g:Cicosw;t.
The first term W,.,, can be considered as a renormalization potential in the
intrinsic frame of the particle due to the coupling. It has no contribution to
the right-hand side of the Ehrenfest equations (5,6) for the center of mass
motion and it will be neglected. For small N, £(¢) acts simply like an ex-
ternal driving force. If N is large and the bath coordinate and momenta
at t=0 are statistically distributed then £(t) represents the noise and is re-
lated to I'(t) (the "memory function”) by the fluctuation-dissipation theorem
< {(t)é(s) >= mkgTT (¢t — s) [7], the brackets meaning statistical averaging.
When the motion of the particle is slow, such that there are no correlations
between the random forces at different moments of time, I' becomes a é-
function, I'(t) = 46(t), with v the friction coefficient, and the last term in
(33) reduces to the Albrecht’s term.
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Figure Captions -
1. The potential V and the initial wave function g
2. The tunneling p without disipation for d=0.3,0.4,0.5

3. Linear damping. The time-dependence of the tunneling p (solid) and
the energy E/Eq (dots) for v = 0.05

4. Gisin damping. The A-dependence of the average energy (E;) and time
(Th) at 50% tunneling: d=0.4 (A,B), d=0.3 (C,D)-dash, d=0.5 (C,D)-solid

5. Linear damping. The y-dependence of the average energy (E}) and
time (T%) at 50% tunneling: d=0.4 (A,B), d=0.3 (C,D)-dash, d=0.5 (C,D)-
solid

6. Squeezing damping. The v,,-dependence of the average energy (E})
and time (73) at 50% tunneling: d=0.4 (A,B), d=0.3 (C,D)-dash, d=0.5
(C,D)-solid

7. Linear damping. T} (solid) and Ty (dash) as function of d for v = 0.1
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