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Chapter 1

Introduction and Motivation

In a head on collision of an accelerator experiment two particles collide with a certain center
of mass energy Ecm. For this study the particles are leptons (e+, e−) and the energy is set
to 91.2 GeV, which is roughly the rest mass of the Z0 boson. When the leptons collide, three
possible processes can occur. Two of them are elastic e+e− scattering (Bhabha scattering) and
inelastic e+e− scattering where both virtual photons interact and produce hadrons. The third
is the annihilation of e+e− into an intermediate particle: a photon, Z0 boson or even a mixture
of both.

If e+e− annihilates into an intermediate particle, at Ecm = MZ , the one into a Z0 is preferred
(see section 2.2.3). With a probability of about 30% the Z0 decays into two leptons, either a
νν̄, µ+µ−, τ+τ− or again a e+e− pair, and with about 70% probability the Z0 decays into a qq̄
(quark-antiquark) pair which further on evolves into a final hadronic state[1]. This hadronic
channel is subject of this study.

During the evolution of e+e− to hadrons many different physical processes take place. Un-
fortunately, the only things that can be measured, or about which the experimentalists can
be quite sure, is the very initial state (electron-positron pair) and the very final state (lots of
neutral and charged particles). With this information at hand it is the aim of particle physics
to reveal the processes which take place during the transition from initial to final state. The
theory which attempts to describe all this is the so called standard model of particle physics.

Due to the complexity of the seemingly basic process e+e− → hadrons it takes the whole
power of the standard model to describe all stages from initial to final state and to reproduce
the measured event topologies and other quantities by means of Monte Carlo simulations. A
consequence of this probabilistic treatment is that some properties or processes which take place
and are measured elude themselves from being described or reproduced. The Bose-Einstein
effect, which is a purely quantum mechanical effect, is an example.

Even though the BE effect may play a minor role for most studies of multihadronic Z0

decays, it is a good place to test suitable algorithms to describe it. Event topologies at the
Z0 peak are complex but not as complex as for fully hadronic W +W− decays or even events
which result from proton antiproton collisions (at Fermilab for example). For those studies, BE
effects are more important. For the first (W +W− decays), because the BE effect may introduce
an unknown shift on the calculation of the W mass, for the second (pp̄ collisions) because way
more identical bosons, which underly the BE effect, are produced. Algorithms which describe
BE effects in multihadronic Z0 decays are also thought of being capable to describe the effect
when it comes to W+W− decays or even pp̄ events.

Chapter 2 gives an overview of the process of interest (e+e− → hadrons) and of the theories

1
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behind the different stages. In chapter 3 the experimental setup is presented and relevant
aspects of the detector are discussed. A brief introduction to the theory of the BE effect
and a sensitive quantity to measure it (→ Q-distribution) is given in chapter 4. Analysis
related things, i.e. event selection and the measured Q-distribution, are presented in chapter
5. Chapter 6 gives a theoretical overview of the two basic methods, namely PYBOEI (BE
routine of PYTHIA) and a model by V.Kartvelishvili and R.Kvatadze, used to implement BE
effects into MC simulations. How the algorithms are applied and results for all used variations
of the basic methods can be read in chapter 7 and chapter 8 presents an application of the BE
algorithm PYBOEI on 2, 3 and 4 jet topologies. Finally chapter 9 gives a summary of what
has been done.

2



Chapter 2

Theoretical Framework

2.1 The Process e+e− → Z0 → qq̄

In the case of a hadronic event the evolution from the initial state e+e− to the final hadronic
state can be subdivided into different processes (see Figure 2.1).

Z0

e+

e-

q

q

π+

π+

Φ0 K-
K+

(a) (d)(c)(b)

initial
state

final
state

Figure 2.1: Schematic representation of the process e+e− → hadrons

(a) Collision and annihilation of the two leptons e+e− into a Z0 boson which decays further
into a primary qq̄ pair. This process is well described by electro-weak theory.

(b) Fragmentation (perturbative region): radiation of gluons from the primary qq̄ pair, gluon
splitting

(c) Fragmentation (non-perturbative region): transition of partons (i.e. quarks and gluons)
into colorless hadrons

(d) Decay of short lived hadrons

The terms hadronization and fragmentation are used differently throughout particle physics. In
this thesis hadronization stands for the complete process of evolution from the primary quark
pair to the final state particles including the decay of short lived particles. Fragmentation is a

3
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subprocess of hadronization, i.e. the perturbative region (b) and the non-perturbative region
(c) of figure (2.1). The whole process can be described by the so called standard model of
particle physics. The theoretical basis is presented in the next section.

2.2 The Standard Model

The Standard Model is the most successful theory in today’s particle physics. It attempts to
describe fundamental particles and the forces that act between them.

According to the standard model 24 fundamental particles, which are all fermions (spin 1
2),

and 12 ”messenger particles”, (all bosons, spin = 1) which are supposed to mediate the differ-
ent kind of forces between particles, exist. Fermions are further divided into 6 leptons and 6
quarks (see table 2.1). Since each quark carries color charge (red, green or blue), 18 different
quarks exist.

Generation I II III Charge

Leptons

(
νe

e−

) (
νµ

µ−

) (
ντ

τ−

)
0
−1

Quarks

(
u
d

) (
c
s

) (
t
b

)
2/3
−1/3

Table 2.1: Fundamental fermions of the standard model

Of the 4 known fundamental forces - electromagnetic, weak, strong and gravitational - ”only”
the first 3 are part of the standard model. It was not yet possible to describe all four forces in
one theory, although many attempts were/are made (→ Grand Unified Theories [3]). Reasons
for that are eclectic and complicated and might be read elsewhere[3]. However, since gravity
is by far the weakest of all forces (see Table 2.2), it does not play a role for the outcome of
present particle physics experiments and can therefore be neglected in the study of the other
three interactions.

interaction mediator(s) range [m] relative strength

strong 8 gluons 10−15 1

electromagnetic photon (γ) ∞ 1/137

weak W± , Z0 10−17 10−5

gravitational graviton ∞ 10−39

(postulated)

Table 2.2: Fundamental interactions and their relative strength[4, 5]

Within the standard model electromagnetic and weak force are described by electro-weak
theory, strong interactions by quantum chromo dynamics (QCD).

4



- Theoretical Framework -

2.2.1 Electro-weak Theory

The formal unification of quantum electro dynamics (QED) and the theory of weak interactions

into a theory of electro-weak interactions was done by Glashow, Salam and Weinberg in 1967.
This section and the next were written in analogy to [4, 5].

Electro-weak theory is based on the gauge group SU(2)L×U(1)Y . For free electrons and
neutrinos the Lagrangian looks like

L = ı(Ψ̄eγ
µ∂µΨe) + ı(Ψ̄νLγµ∂µΨνL) (2.1)

No right handed neutrinos have ever been observed and hence no right handed term for neutri-
nos appears in the Lagrangian. The electron spinor can be split into a right and a left handed
part

Ψe = ΨeR + ΨeL (2.2)

and (2.1) can be written in a more symmetric form

L = ı(Ψ̄νL, Ψ̄eL)γµ∂µ

(
ΨνL

ΨeL

)

+ ı(Ψ̄eRγµ∂µΨeR) (2.3)

In order to keep the first part of (2.3) gauge invariant under a transformation U(x) ∈ SU(2),
∂µ needs to be replaced by the covariant derivative Dµ

∂µ → Dµ = ∂µ + ıg
3∑

k=1

1

2
W k

µσk (2.4)

The interaction term of the new gauge invariant Lagrangian is

LW = −g

2
(Ψ̄νL, Ψ̄eL)γµW k

µσk ·
(

ΨνL

ΨeL

)

(2.5)

where σk=1,2,3 denote the three generators of SU(2) (i.e. Pauli matrices) and W k=1,2,3
µ are the

three gauge fields with gauge bosons W 1,2,3. With W± := 1√
2
(W 1 ∓ ıW 2) and substitution of

the Pauli matrices a preliminary result for the electro-weak Lagrangian is given by

LW = − g

2
· (W 3

µ(Ψ̄νLγµΨνL − Ψ̄eLγµΨeL)

− g√
2
· W+

µ (Ψ̄νLγµΨeL) − g√
2
· W−

µ (Ψ̄eLγµΨνL)

︸ ︷︷ ︸

(2.6)

=: LCC

The coupling of W± in LCC is identical to the charged-current coupling in weak theory, and
hence W± are identified as the two charged gauge bosons of weak interactions.

To get a connection to Z0 and the gauge boson A of QED, (2.3) is also made invariant under
a U(1) transformation.

Again Dµ is replaced and, with the following currents

µν = Ψ̄νLγµΨνL

µeL = Ψ̄eLγµΨeL

µeR = Ψ̄eRγµΨeR

µem = Ψ̄eγ
µΨe = µeL + µeR

5
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it is possible to write down the complete interaction term of the electro-weak Lagrangian

LW =LCC − 1

2
(gW 3

µ − g′Bµ)µν

+
1

2
(gW 3

µ + g′Bµ)µeL − YRg′BµµeR (2.7)

where YR is the so called hypercharge.
Since both, W 3 and B, couple to the neutrino, none can be the photon. However, the linear

combination (gW 3
µ − g′Bµ) couples to the neutrino only and since the neutrino feels nothing

but a weak force this term can be identified with the Z0 boson. The gauge field Aµ for the
photon is an orthogonal linear combination to the Z0

Aµ = Bµ cos θW + W 3
µ sin θW

Z0
µ = −Bµ sin θW + W 3

µ cos θW (2.8)

with cos(θW ) = g√
g2+g′2

and sin(θW ) = g′√
g2+g′2

.

The observed gauge bosons Z0 and A are a mixture of the gauge fields obtained by requiring
gauge invariance of (2.3). The mixing angle θW is called Weinberg angle. It needs to be
determined by experiment and has been measured to sin2 θW = 0.2315 ± 0.0002[5]. With the
new fields Z0

µ and Aµ (2.7) becomes

LW =LCC

−
√

g2 + g′2 · Zµ · {1

2
µν − 1

2
µeL − sin2 θW (−µeL + YRµeR)}

−
√

g2 + g′2 · sin θW cos θW · Aµ(−µeL + YRµeR) (2.9)

It is possible to convert the last term to the well known interaction term of electromagnetism
by choosing the (up to now) arbitrary hypercharge YR to -1 and identifying the electric charge
with e =

√

g2 + g′2 · sin θW · cos θW .
So, at length, the interaction term of the final Lagrangian of electro-weak theory is

LW = LCC + eAµ · µem − e

sin θW cos θW
· ZµµNC (2.10)

with µNC = (1
2µν − 1

2µeL) + sin2 θW µem.

This Lagrangian is valid for the 3 lepton isospin-doublets (νe, e−), (νµ, µ−) and (ντ , τ−).
In order to expand this scheme to suite the 3 quark generations as well, the first part of NC

is rewritten as a sum of a left and a right handed part

NC = (I3 − Q sin2 θW )L − Q sin2(θW )R (2.11)

= CLL + CRR (2.12)

If the three quark generations are also understood as weak isospin doublets, i.e. I3(u) = 1/2
and Q(u) = 2/3, one can easily calculate the appropriate neutral current NC and LW for all
quarks (see table 2.3).

6
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fermion
charge

Q
isospin

I3

CL =
I3 − Q sin2 θW

CR =
−Q sin2 θW

νe, νµ, ντ 0 1/2 1/2 0
e−, µ−, τ− -1 -1/2 −1/2 + sin2 θW sin2 θW

u, c, t 2/3 1/2 1/2 − (2/3) sin2 θW −(2/3) sin2 θW

d, s, b -1/3 -1/2 −1/2 + (1/3) sin2 θW (1/3) sin2 θW

Table 2.3: Coupling constants for the neutral current

Alternatively, vf and af can be defined as

vf = CL + CR

af = CL − CR (2.13)

to calculate the cross section of e+e− → Z0 → ff̄ and are used in section 2.2.3.
The procedure shown is often presented as a unification of weak and electromagnetic theory.

Rather it is a unified formulation of both theories. The value of the parameter YR was set to
-1 to convert the last term of (2.9) to the known interaction term of electromagnetism. It is
not an outcome of electro-weak theory. Neither is θW - it has to be determined by experiment.

2.2.2 The Higgs Mechanism

By requiring the Lagrangian (2.3) in the previous section to be gauge invariant, 3 new gauge
bosons W 1,2,3 which lead to the observable particles W +, W− and Z0 were introduced. In
this theory these particles are, as well as the photon, massless. To generate the observed
masses, a new physical assumption called Higgs mechanism[4, 5] was found. First, the basic
mechanism which makes use of spontaneous breaking of a gauge symmetry is shown by the
example of a complex scalar field. Second the full mechanism is demonstrated by generating a
mass for a gauge boson of a U(1) local gauge symmetry. Finally results for the more complex
SU(2)L × U(1)Y symmetry of electro-weak theory and it’s gauge bosons are presented.

Spontaneous Breaking of a Global U(1) Symmetry

Consider a complex scalar field Φ described by a Lagrangian

L = (∂µΦ)∗(∂µΦ) − V (2.14)

with the potential V as

V = µ2(Φ∗Φ) + λ(Φ∗Φ)2 (2.15)

where µ2 < 0 and λ > 0. The Lagrangian (2.14) is invariant under a global U(1) gauge
transformation Φ → eıαΦ. With Φ = 1/

√
2(Φ1 + ıΦ2), (2.14) becomes

L =
1

2
(∂µΦ1)

2 +
1

2
(∂µΦ2)

2 − 1

2
µ2(Φ2

1 + Φ2
2) −

1

4
λ(Φ2

1 + Φ2
2)

2 (2.16)

There is an infinite number of minima for the potential V (Φ) which fulfill

Φ2
1 + Φ2

2 = −µ2

λ
=: v2 (2.17)

7
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Without loss of generality it is possible to move the field Φ to one arbitrary minimum, say
Φ1 = v and Φ2 = 0 and expand L about this minimum with two new fields η and ξ

Φ(x) =

√

1

2
{v + η(x) + ıξ(x)} (2.18)

This translation of the field to one arbitrary minimum spontaneously breaks the symmetry of
the Lagrangian. Substitution of (2.18) into (2.16) yields

L =
1

2
(∂µξ)2 +

1

2
(∂µη)2 + µ2η2 + const. + higher − terms (2.19)

Even though this Lagrangian describes the same physics as the original one, it has a field η
with a mass term µ2. If compared to the Lagrangian of the familiar Klein Gordon equation,
the mass of the particle described by η is mη =

√

−2µ2. Unfortunately a second field ξ is also
present which describes a massless particle. By the attempt of generating a massive boson by
spontaneous symmetry breaking we also got an unwanted massless gauge boson, the so called
Goldstone Boson. A hint for a solution to this problem can be seen if we chose the gauge
symmetry to be local instead of global.

Higgs Mechanism for a Local U(1) Symmetry

If the Lagrangian (2.14) shall be invariant under a local gauge transformation like Φ → eıα(x)Φ,
the derivative ∂µ has to be replaced by the covariant form Dµ

∂µ → Dµ = ∂µ − ıeAµ (2.20)

and the gauge field Aµ transforms as

Aµ → Aµ +
1

e
∂µα(x) (2.21)

The gauge invariant Lagrangian then becomes

L = (∂µ + ıeAµ)Φ∗(∂µ − ıeAµ)Φ − µ2Φ∗Φ − λ(Φ∗Φ)2 − 1

4
FµνF

µν (2.22)

With the same procedure as before, i.e. expansion of Φ about one minimum of the potential V
a.s.o., again a massless Goldstone particle enters the scene. This time, however, an unusual off-
diagonal term Aµ∂µξ appears which gives a hint that not all fields which appear in L give rise
to an observable particle. Further on, the gauge boson Aµ acquires a mass mA = ev (see 2.25),
which means it can be polarized longitudinal as well and its degrees of freedom increase from
2 to 3. This additional degree of freedom corresponds to the possibility to make an additional
gauge transformation of the original Lagrangian.

With a different set of real fields (h, Θ), instead of (η, ξ), expand the field Φ about one
minimum of the potential (2.15)

Φ =

√

1

2
(v + h(x)) eıΘ(x)/v (2.23)

and substitute it with an additional transformation of the gauge field

Aµ → Aµ +
1

ev
∂µΘ (2.24)

8
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into the original Lagrangian (2.22) and get

L =
1

2

(
∂µh2

)
− λv2h2 +

1

2
e2v2A2

µ + selfint. + higher − order (2.25)

At last, no Goldstone boson appears in this Lagrangian. It describes two massive particles, one
gauge boson Aµ and the so called Higgs boson h. The Goldstone boson has been turned into
the longitudinal polarization of the massive particle Aµ.

Higgs mechanism for electro-weak theory

To generate the masses of W±, Z0 and γ, the Higgs mechanism is applied on the SU(2)L×U(1)Y

symmetry of electro-weak theory. The procedure is the same as presented in the preceding
section, but more complicated in detail due to the more complex symmetry.

The basic potential is (2.14) with µ2 < 0 and λ > 0. Φ is a SU(2) doublet of complex scalar
fields

Φ =
1√
2

(
Φ1 + ıΦ2

Φ3 + ıΦ4

)

(2.26)

This Φ is the original one used by Weinberg in 1967. The potential (2.14) has minima at

Φ2
1 + Φ2

2 + Φ2
3 + Φ2

4 = −µ2

λ
=: v2 (2.27)

The choice of a certain minimum Φ0 is arbitrary since any will break the symmetry and create
masses for the gauge bosons. Knowing that the photon is massless, Φ0 is taken as

Φ0 =
1√
2

(
0
v

)

(2.28)

This choice breaks both symmetries SU(2) and U(1)Y but leaves the subgroup U(1)em unbroken
and therefore the corresponding gauge boson γ will be massless.

The masses of W± and Z0 are obtained by substituting (2.28) into the Lagrangian of electro-
weak theory and come out as

Mγ = 0 MZ0 =
1

2
v
√

g2 + g′2

MW± =
1

2
vg (2.29)

v is also called the vacuum expectation value of the Higgs boson.
With v = 246 GeV, sin(θW )2 = 0.2315, e =

√

4παe.m.(MZ), αe.m.(MZ) ≈ 1/128 and
e = g sin(θW ) = g′ cos(θW ), numerical values for the masses are

Z0 W±

Higgs ≈ 91GeV ≈ 80GeV

experiment 91.1876 ± 0.0021GeV 80.423 ± 0.039GeV

Table 2.4: Calculated and measured masses of electro-weak gauge bosons [1]

9
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MW and MZ are not predicted by the Higgs mechanism, because v and s2
W are input values

coming from experiment. What is predicted is a relation between the masses of the gauge
bosons: MW

MZ
= cos θW . With the Higgs mechanism it is also possible to generate the masses

of leptons and quarks[5]. The Higgs particle H0 is the only missing element of the standard
model to date.

2.2.3 The Cross Section of e+e− → ff̄

By use of electro-weak theory it is possible to calculate the cross section of e+e− → ff̄ for all
possible intermediate particles (i.e. γ, Z0 or interference γ/Z0) and final fermions (i.e. e, µ, τ ,
d, u, s, ...)[6]. It is given by

dσ

dΩ
=

α2
em

4S

[
G1 · (1 + cos2 θ) + 2G2 · cos θ

]
(2.30)

where θ is the angle between incoming electron and outgoing fermion and

G1 = Q2
f − 2 · QfS · <(1/D) · vevf +

S2

|D|2 (v2
e + a2

e)(v
2
f + a2

f )

G2 = 0 − 2 · QfS · <(1/D) · aeaf +
4S2

|D|2 (veae)(vfaf )

D = (S − M2
Z) + ıMZΓZ S = E2

cm (2.31)

The first part in G1/2 stands for annihilation into a γ, the second for the possible interference
γ/Z0 and the third for a Z0 only. The couplings of the fermions to the Z0 can be deduced by
looking at table (2.3) and at

vf =
I3 − 2Qf sin2 θW

2 sin θW cos θW
af =

I3

2 sin θW cos θW
(2.32)

ΓZ is the total decay width of the Z0 and has the numerical value of 2.4952 ± 0.0023 GeV[1].
To get the total cross section σtot, integrate (2.30) over dΩ = sin θdθdφ. The result is

σtot =
4πα2

3S
· G1 = σ0 · G1 (2.33)

A closer look at G1 reveals that the interference term γ/Z0 vanishes, since <(1/D) = 0 for
S = M2

Z . Annihilation into a Z0 boson is preferred by that into a γ by

σe+e−→γ→qq̄ = σ0 ·
∑

q

Q2
q =

11

9
σ0

σe+e−→Z0→qq̄ = σ0
S

Γ2
Z

(v2
e + a2

e) ·
∑

q

(v2
q + a2

q) ≈ 1296σ0

⇒ σγ

σZ0

≈ 1 : 1060

See table (2.5) for detailed decay probabilities of the Z0 into the possible fermions: νν̄,
e+e−,µ+µ−,τ+τ− and uū, cc̄, dd̄, ss̄ or bb̄. No decay into a tt̄ is expected because the center
of mass energy (Ecm = 91.2 GeV) is too low for t-quark production which has a mass of about
175GeV

c2
[1].
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fermion prob.
∑

νeν̄e, νµν̄µ or ντ ν̄τ 6.6 % 20 %
e+e−,µ+µ− or τ+τ− 3.3 % 10 %

uū or cc̄ 12 %
dd̄,ss̄ or bb̄ 15 % 70 %

Table 2.5: Probabilities for the decay of Z0 into possible primary fermions

2.2.4 Strong Interactions - QCD

After the Z0 has decayed, the two primary quarks move apart in opposite directions. The
further evolution from qq̄ into the final state is described by Quantum Chromo Dynamics

(QCD[5]), the theory of strong interactions.
In its basic concept it is a copy of QED, which means it is also a gauge theory. However,

the underlying symmetry group is more complex and has properties which makes QCD very
different from QED.

The QCD analogues to QED electric charge is color charge. Three types of color charges
exist: red, green and blue. The symmetry group is the non-abelian group SU(3)C . By requiring
the QCD Lagrangian to be gauge invariant under a SU(3) transformation, 8(= 32 − 1) gauge
fields need to be introduced. They are referred to as gluons, and since SU(3) is non abelian,
quarks and gluons carry color charge.

The Lagrangian of QCD is

LQCD = q̄(ıγµ∂µ − m)q − g(q̄γµTaq)G
a
µ − 1

4
Ga

µνG
µν
a (2.34)

with g the coupling constant, Ta the generators of SU(3) and Ga the eight color fields (gluons).
The last term stands for gluon self interaction. This becomes more clear if the Lagrangian is
rewritten with

Ga
µν = ∂µGa

ν − ∂νG
a
µ − gfabcG

b
µGc

ν (2.35)

in a more symbolic way (see figure 2.2)

LQCD = ”q̄q” + ”G2” + g”q̄qG” + g”G3” + g2”G4” (2.36)

The first three terms, free quark/gluon propagation and quark-gluon interaction, have QED
analogues. The three and four gluon vertex, however, are unique to QCD and reflect the fact
that gluons themselves carry color charge.

This has a deep impact on the behavior of quarks and gluons. As long as the particles
are close together (high Q2), they hardly feel the strong force because the coupling constant
αS is small (αs(Q

2 = M2
Z) = 0.12) and it is possible to compute color interactions using the

perturbative techniques familiar from QED. At larger distances, however, αS becomes bigger
(αs ≈ 1) and perturbation theory fails at all or becomes too complicated and elaborate for
practical use. This behavior is called asymptotic freedom and confinement.

Due to the confinement it is not possible to observe a single quark/gluon. Only colorless
formations of partons exist: mesons (qq̄), baryons (qqq) and anti-baryons (q̄q̄q̄).

To leading order, the dependence of αS on the energy scale Q2 of a process is

αS(Q2) =
12π

(33 − 2nf ) log (Q2/Λ2)
(2.37)
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q g q-g 3g 4g

Figure 2.2: Schematic representation of the QCD Lagrangian

where nf is the number of flavors possible. αS is small as long as Q is big compared to Λ and
gets large when Q is of the order of Λ. The parameter Λ can be seen as marking a boundary
between quasi-free quarks/gluons and the world of hadrons. It is a free parameter of QCD and
is determined by experiment. The value is about the inverse size of a typical hadron (≈ 0.2
GeV[1]).

The process of fragmentation is subdivided into these two stages, namely the perturbative
region, where quarks and gluons are more or less free particles, and the non-perturbative region,
where the strong force gets really strong and starts to bind the partons into colorless hadrons.

2.2.5 Fragmentation: Perturbative Region

The principle of perturbation theory is to express a physical quantity T (i.e. a solution to
an equation which cannot be solved exactly) in terms of a power series in a small parameter.
αe.m.(M

2
Z) ' 1/128 of QED is a good example. The (approximated) solution is then given by

T (α) = T0 + αT1 + α2T2 + ... (2.38)

If α is small compared to unity the series might converge rapidly and already the first term
only is a very good approximation of the real solution. If, however, α is of the order of 1 (or
bigger) the series does not converge at all and a perturbative expansion of the solution is not
possible.

Two methods are in use to simulate the perturbative region (see figure 2.1b) of the process
e+e− → hadrons:

(i) Matrix Element Method

This method[2] is based on exact calculations of feynman diagrams for all (possible) orders of
perturbation theory. For first order calculations, in addition to the basic process e+e− → qq̄,
one quark emits a gluon. Initially a 2 → 3, i.e. e+e− → qq̄g, process has 9 variables of which 5
are independent. After integration over the three Euler angles, 2 independent variables remain.
One choice is the scaled energies of q and q̄

xq =
Eq√
S/2

xq̄ =
Eq̄√
S/2

(2.39)

The differential cross section for this process is

d2σ

dxqdxq̄
= σ0 ·

CF αS

2π
·

x2
q + x2

q̄

(1 − xq)(1 − xq̄)
(2.40)
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Figure 2.3: The physical vertex as a sum of the perturbative orders

with CF = 4/3 (color factor) and

σ0 =
4παS

3S
· NC ·

∑

d,u,s,...

Q2
f (2.41)

For certain values of the kinematic variables xq, xq̄ the cross section is divergent

(a) xq → 1 ⇒ q̄ and g are collinear

(b) xq → 1 and xq̄ → 1 ⇒ soft gluon radiation (q and q̄ almost back-to-back)

These divergencies are of a non physical nature. They come from the fact that the physical
vertex of this reaction is not only made up of the basic process (0th order) and first order, but
is the sum of all orders of perturbation theory (see figure 2.3). In fact, interference terms of
2nd order feynman diagrams with 0th order give a contribution to 1st order and all divergencies
of first order cancel out. This is called renormalization and is a very important aspect of the
theory. For the total cross section of e+e− → hadrons in terms of a perturbation series in αS

one gets

σ = σ0(1 +
αS

π
+ . . .) (2.42)

In general, it cannot be said if a matrix method calculation, which at present is possible up to
O(α2

S), is sufficient to reproduce data. At a center of mass energy of 91.2 GeV (= MZ) it turns
out that this is not the case and that another model has to be used.

(ii) Parton Shower Model

The parton shower model[2] is a different approach to simulate the perturbative region of
fragmentation. It is simulated by a successive (independent) branching of partons, starting
from the primary pair. The basic structure of the shower is made up by three branching
processes: q → qg, g → gg and g → qq̄. Each process is characterized by the so called
Altarelli-Parisi splitting kernels

Pq→qg = CF
1 + z2

1 − z

Pg→gg = CA

(
z

1 − z
+

1 − z

z
+ z(1 − z)

)

Pg→qq̄ =
nf

2
(z2 + (1 − z2)) (2.43)
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Figure 2.4: Parton cascade

The branching rate is proportional to
∫

Pa→bc(z)dz. The z value of the branching describes
the energy sharing among daughter partons b and c. Parton b gets a fraction z of the mother
energy, parton c gets (1 − z). The two daughter partons can then split again, and so on.
With this approach, almost any order in αS can be simulated. In addition to z, each parton is
characterized by a virtuality scale Q2, where the very first parton in the shower has a virtuality
of Qmax. In final state showers, Q2 decreases at each branching (see figure 2.4)

In PYTHIA, Q2 is associated with m2 of the branching parton. Starting from Qmax, the first
parton evolves down in Q2 until a branching occurs. The selected Q2 defines the mass of the
branching parton, and the z of the splitting kernel the energy sharing among the daughters.
These daughters also evolve down in Q2 separately, where their starting virtuality scale is
given by kinematics. When Q reaches Q0 the parton shower is stopped. From this point on
perturbative calculations are no longer valid, due to the rise in αS . In addition, corrections to
the leading-log picture (→ soft gluon interference) lead to an ordering of subsequent emissions
in terms of decreasing angles. A detailed description of the parton shower model can be found
in[2].

2.2.6 Fragmentation: Non-Perturbative Region

After the parton shower is stopped the set of colored partons needs to be evolved into the final
observable colorless hadrons. Since the underlying physics, i.e. QCD in the strongly interacting
region, is not yet completely understood, several phenomenological models have been developed.
Three of them are widely used: string fragmentation, independent fragmentation and cluster
fragmentation.

Only string fragmentation[2] will be discussed in a bit more detail since it is the default
fragmentation model of the event generator PYTHIA used in this study.

The partons delivered by the parton shower are connected via a color field due to the strong
force. To explain the basics, consider an initial parton configuration made up of two quarks
only. The string stretches from quark to antiquark. Coulomb forces are neglected and the
approximation is made that the energy in the string increases linearly with the separation of
the two quarks. The amount of energy per unit length of the string is 1GeV

fm . On further

separation of the partons, energy increases and the string may break up into a new q ′q̄′ pair.
One of the two new string pieces is assumed to be a hadron. The energy/momentum of it is
calculated by probabilistic functions. Further breakups may occur if the invariant mass of the
remaining string piece is large enough. In the Lund string model[9] implemented in PYTHIA,
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breakups occur until only on-mass-shell hadrons remain.
In general, breaking of the string can be started at either side of it. Starting at q should

give the same results as starting at q̄. This symmetry is a constraint on the so called Lund

symmetric fragmentation function, which has two free parameters a and b. They are determined
from data (see section 7.3.1).

The treatment of a multi-parton configuration is complicated due to the number of string
pieces moving in different directions and due to different possibilities to connect the partons.
Calculable matrix elements of perturbative QCD contain interference terms between the pos-
sibilities and they are found to be down in magnitude by a factor 1

N2
C

= 1
9 [2]. Hence, approxi-

mations with no interference terms can be found.
Meson production is directly understood by this breaking of strings into lower energy pieces.

Baryons, however, are made up of three quarks and the simple picture of qq̄ string pieces does
not lead to three quark colorless hadron production. Different models for baryon production
are used, an overview is given in [2].

After the energy of the string pieces is too low for further breakups the (almost) final state
of the process of electron-positron annihilation into hadrons is reached. The last step is the
decay of resonances into stable particles.

At the end of this section it should be said that nature does not distinguish between the
two steps (b) and (c) of figure (2.1). To handle the problem by means of a perturbative and
then a non-perturbative approach is a purely artificial separation of the whole process. The
boundaries between the regions are not fixed, but given by model parameters (ΛQCD,Q0) which
need to be tuned to describe data. Many aspects of this process are yet not understood and
therefore some observable effects are not reproduced by the simulation. The Bose-Einstein
Effect, which is subject of this thesis, is a good example.

2.2.7 Decay of Short Lived Particles

The last step to the final state is the decay of short lived particles. Actually most of the particles
of the up to now final state are unstable. Nevertheless, many of them can be treated as stable
because they, on average, do not decay before they leave the detector. The definition of the
lifetime above which a particle is considered stable has to be specified and is also influenced by
the size of the detector. For a MC sample on hadron level of the simulation, all particles with
a mean lifetime above 10−9 seconds are stable (e.g. π± or K±). A π+ with a mean lifetime of
τ = 2.6 ·10−8 seconds and a mean momentum of p̄ = 3.37 GeV, for example, on average travels
a distance of 190 meters before it decays. This is far outside of the detector and therefore it is
stable.

For a full detector simulation, however, all decays are taken into consideration because it is
also possible that a π+ decays inside the detector.

2.2.8 Charged Particle Composition of the Final State

To give an overview of the composition of charged particles in the final state a PYTHIA MC
sample on hadron level (Nev = 2·106) was used. The mean charged multiplicity is 〈nch〉 = 20.66.
Table (2.6) shows the average numbers and average percentages of charged particles in the final
state.
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π± K± p± e± µ±

〈n〉 16.94 2.14 1.07 0.38 0.14
in % 82.0 10.4 5.4 1.8 0.68

Table 2.6: Average number of charged particles in the final state

On average, 82% of all charged particles in the final state are charged pions (either π+ or π−).
This makes the pion the most frequently produced charged particle of the hadronic final state.
The main contribution to the measured Q-distribution (see chapter 5) will therefore come from
pairs of pions.
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Chapter 3

Experimental Setup

3.1 The ALEPH Detector

The basis of this study is data taken by the ALEPH collaboration in the year 1994. The ALEPH
detector was one of four detectors which were built and used for the Large Electron Positron
collider (LEP) at the European Organization for Nuclear Research (CERN), Geneva. ALEPH
itself is not only the first letter in the Hebrew alphabet, where the ALEPH logo ℵ comes from,
but also stands for Apparatus for LEP pHysics. Figure (3.1)1 shows a schematic sketch of
the LEP accelerator. It has a circumference of about 27 km and is located approximately 100
meters underground. The electron and positron beams are injected, after being pre-accelerated
in various smaller accelerators, in opposite directions and brought to an energy of 45.6 GeV
(=MZ/2) each. The two beams intersect at four different places around the ring, exactly were
the four large detectors are situated.

The ALEPH detector itself is shown in figure (3.2)1 . It has a cylindrical shape with the
beam pipe as its axis. The size is about 12 × 12 × 12 m3 and its weight about 3000 tons. The
different sub-detectors like Time Projection Chamber (TPC) or Electromagnetic Calorimeter
(ECAL) are arranged in cylindrical layers around the beam pipe with end caps on either side.
In multihadronic Z decays, outgoing particles cover a solid angle of 4π and events have an
average multiplicity of about 20 charged and 20 neutral particles. Therefore the detector was
designed to have hermetic coverage and accurate vertexing.

For this study the momentum and 2-track resolution of the detector is important and will
be discussed in a bit more detail in the next section. An overall description of the detector and
its performance can be found elsewhere [10, 11].

1taken from the CERN photo database
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Figure 3.1: The Large Electron Positron Collider at CERN

Figure 3.2: The ALEPH detector
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resolution

interaction point

Figure 3.3: 2-track resolution

3.2 Momentum and 2-Track Resolution

The main quantity to be measured is the so called Q value of a pair of like-sign charged particles,
and herein especially pairs with small Q values (Q < 0.5 GeV) are of interest. As presented
later, only pairs close in phase space, i.e. ~pi ≈ ~pj and Ei ≈ Ej , have a small Q value. Therefore
it is important to have a very good momentum and/or energy resolution within the detector.

The momentum of a charged particle is determined in the three innermost detectors, namely
the silicon vertex detector (VDET[13]), the inner tracking chamber (ITC[14]) and the time

projection chamber (TPC[15]), by measuring the particles’ curvature due to the magnetic field
(1.5 T) in the inner detector. The momentum resolution is given by

σ(1/pt) = 0.6 × 10−3(GeV/c)−1 (3.1)

(at 45 GeV) where pt is the transverse momentum[11]. With the 3 dimensional track infor-
mation of the TPC, the angle between the beam axis and ~p (at the production point of the
particle) is known and pz can be calculated.

The energy of a particle is then E2 = ~p2 + m2
π, where mπ ≈ 140 MeV is the pion mass,

which is assumed for all charged particles.
The limited spatial resolution in the TPC (about 180 µm for rΦ and 0.8 mm for the z

direction [12]) also leads to a limited 2-track resolution (see figure 3.3). The hits of the particles
in the TPC and therefore their real tracks (continuous and dashed line) are very close together
and are misidentified during reconstruction as being only one particle (shaded area). The overall
track reconstruction inefficiency is reproduced by the simulation to better than 10−3[16].
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Chapter 4

Particle Correlations

4.1 BE-Statistics

Consider a region in space where particles are produced[17]. The amplitude for emission of
a pion with momentum ~p1 from a point ~xA is eı~p1·~xA . If one could distinguish between two
identical pions, the joint probability amplitude for the emission of two pions at points ~xA and
~xB would be

eı~p1·~xAeı~p2·~xB (eıΦAeıΦB ) (4.1)

with phases ΦA and ΦB. However, since the pions are indistinguishable particles, the amplitude
must be made Bose symmetric, i.e. symmetric under particle exchange

A12 =
1√
2
(eıΦAeıΦB )

[

eı~p1·~xAeı~p2·~xB + eı~p2·~xAeı~p1·~xB

]

(4.2)

The joint probability for two identical bosons is then

P12 = |A12|2 = 1 + cos(4~p · 4~x) (4.3)

with 4~x, 4~p as the space and momentum difference of the two pions, respectively. Let the
points of pion production be distributed with a function ρ(~x) and integrate (4.3) over ~xA and
~xB, you get

P12 = 1 + |ρ̃(4~p)|2 (4.4)

ρ̃ is the normalized Fourier transform of ρ and tends to unity as 4~p → 0. This means that
for small values of 4~p the production probability of two identical pions is enhanced. So far,
equation (4.4) has two shortcomings:

• only valid for a completely chaotic source

• no time dependence

Both shortcomings can be addressed by introducing a new parameter λ and allow ρ̃ to be a
function of the four vector 4p instead of 4~p

P12 = 1 + λ|ρ̃(4p)|2 (4.5)
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Figure 4.1: Enhanced pair production at low Q values

λ is a measure of coherence of the particle emitting source and takes the value 1 for a completely
chaotic source and 0 for a completely coherent source. Therefore it is also referred to as a
measure of strength of the BE effect.

To get a more meaningful expression for (4.5) we make the following assumptions about the
source of particle production

• the particle emitting source is spherically symmetric

• the point of production is distributed with a gaussian of width σ

• the source is exponentially decaying with e−
t
τ

The result is

R(Q) := P12 = 1 + λe−
Q2

σ2 (4.6)

with

Q :=
√

−(p1 − p2)2 (4.7)

Again, for pairs of pions with a small Q value, i.e. pairs which are close in momentum space,
the production probability P12 is enhanced (see Fig. 4.1). This is called Bose-Einstein Effect.

4.2 Q-Distribution

A sensitive observable to measure this effect is the so called Q distribution of identical bosons
given by

ρ (Q) :=
1

Nev

dn

dQ
(4.8)

It is a measure of how many pairs lie within a certain Q interval dQ, normalized to the
number of events Nev. The theoretical prediction for the Q-distribution is now that due to the
BE effect it should show an enhancement in number of pairs with a small Q value compared
to what uncorrelated production would give.
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A good way to study BE correlations is therefore to divide a measured or MC (with BE)
generated Q-distribution bin-by-bin by an BE unaffected sample. For small Q values this ratio
should be clearly above unity. Since it is impossible to measure distributions of identical bosons
in the absence of BE, other types of reference samples have to be considered (see next section).

When the choice of reference sample has been made the following ratio is the observable of
interest

C(Q) =
1

NData

(
dn

dQ

)

Data

/
1

NMCnoBE

(
dn

dQ

)

MCnoBE

(4.9)

C(Q) is called correlation function. It is a measure of how the Q distribution is changed by
BE. The choice of a parameterization of C(Q) is important when MC samples which include
the simulation of BE effects need to be generated. A very basic form is given in (4.6). Due to
theoretical considerations, various (more sophisticated) parameterizations are used and tested
to implement BE correlations (see chapter 6).

4.3 Reference Samples and Resonance Decays

For this thesis a reference sample is only needed to make the BE effect visible by means of the
correlation function (4.9). If one wants to determine parameters for a certain parameterization
of this function, one has to be careful because the parameters depend on the reference sample
used.

One choice is to take a Monte Carlo generated one with no simulation of BE implemented.
This type of reference sample is used in this study. Another, but more delicate choice is to take
a measured distribution from unlike-sign pairs (like π+π−) with the assumption that, due to
the opposite charge, it is not affected by BE. It is shown, however, that BE correlations acting
between identical pions may have significant indirect effects on distributions of non identical
pions. This is called residual BE effect [18]. A second result of residual BE correlations in π+π−

is an apparent change in line shapes of certain resonance decays. An example is the decay of
ρ(770)0 into π+π−[18].

A third possible reference sample can be obtained by means of an event mixing technique.
It is obvious that identical bosons of two different events do not interfere with each other. If
the Q distribution is constructed with identical pairs, where one particle comes from the first
event and the other from the second, it is possible to get a BE unaffected reference sample.
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Chapter 5

Experimental Q-Distribution

5.1 Event Selection

For this study, ALEPH data containing 1 million hadronic Z-decays from 1994 were analyzed.
The event selection of qq̄ candidates is purely based on information about charged tracks in
the final state. The so called CLAS 16 predefined ALEPH hadronic event selection was used,
which is defined as follows[19]:

• the event has to contain at least 5 TPC tracks which have

– more than 4 hits in the TPC

– a radial distance to the beam axis |d0| < 2 cm

– a distance on the beam axis from the interaction point |z0| < 10 cm

– | cos θ| < 0.95, with θ = ] (beam axis to charged track)

• in addition, the energy sum of all TPC tracks satisfying the
cuts above, should have more than 10% of the total center
of mass energy Ecm = 91.2 GeV

With these cuts the selection efficiency for hadronic events is almost 100%. Only events which
are well contained within the detector are selected by the cut | cos θ(thrust−beam)| < cos(30◦).
To reduce residual background events (mainly e+e− → τ+τ− and γγ reactions), which pass
the CLAS 16 selection criteria, additional energy flow cuts are applied:

• (
∑

Ech+n)/Ecm > 0.5

• N(energy flow objects) > 12

τ+τ− background events are reduced to less than 0.3% of all selected events and are therefore
negligible for most analyses[16].

For the experimental Q-distribution additional cuts for charged tracks were used. These are
the type=0 tracks of the ENFLW energy flow algorithm[19].

• use only charged tracks which come from the interaction point

• reject e± with p > 1 GeV

• reject µ± with p > 2 GeV
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5.2 Experimental Evidence for BE

As stated earlier the Q-distribution of identical bosons should show an enhancement in pro-
duction of pairs with a small Q value, i.e small 4-momentum difference. Figure (5.1a) shows
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Figure 5.1: (a) measured (dashed line) and MC generated (continuous line) Q-distribution. (b)
the ratio C(Q) (see 4.9) of the two distributions.

two Q-distributions. A measured one from 1994 LEP data taking (dashed line) and a MC
generated one (1994) with no BE implemented (continuous line). The MC sample was further
sent through a detector simulation to be comparable to the uncorrected data. The ratio C(Q)
(see 4.9) of the two distributions is shown in (b). Towards smaller Q values a clear rise in C(Q)
above unity can be seen. This is due to the Bose-Einstein effect.

A remark to the measured Q-distribution is that it actually is not known if two charged
tracks are identical bosons. Therefore it happens that also the Q value of a non-identical pair
(e.g. π+K+) contributes to the overall Q-distribution. However, since more than 80% of all
charged tracks (see section 2.2.8) are charged pions, their contribution to the Q-distribution is
the largest.
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Chapter 6

MC Event Generators and BE

6.1 Introduction

Monte Carlo event generators are widely used in physics, especially in high energy physics.
The aim is to describe and reproduce many characteristics of a given physical process like
e+e− → hadrons (see figure 2.1). The basis to simulate this process is theory presented in
chapter 2, the language of the generator, however, is a probabilistic one. Everything is simulated
by means of probabilistic expressions: splitting functions, flavor composition of initial quark
pairs, branching ratios a.s.o. Event samples generated with these programs are in very good
agreement with real measurements. Many model parameters (see next section) are used to
control the event generator used and to simulate the physical processes which take place. A
high accordance between data and simulation can only be accomplished if all the parameters
are tuned to describe measured distributions as accurate as possible.

Nevertheless, due to the probabilistic treatment of physical processes some measured effects
can not be described properly. The Bose-Einstein effect is a very good example.

When BE needs to be implemented into a MC event generator, a principal choice between
two different approaches has to be made

• Implementation within the framework of event generation, i.e. simulation of the BE effect
at some stage of the event generation process. This is the approach of PYBOEI, the BE
simulation routine of PYTHIA[2].

• Afterwards implementation, i.e apply a BE simulating algorithm onto existing MC sam-
ples. This is the approach of a model proposed by V.Kartvelishvili and R.Kvatadze.
Their model will be further denoted as K+K[21].

Both approaches have advantages and shortcomings which will be addressed in subsequent
sections. Throughout this study (also for K+K), PYTHIA (Version 6.152) was used to generate
events.

6.2 PYTHIA

PYTHIA is a very commonly used event generator in high energy physics. The program is
capable of simulating e+e−, proton-proton and e−-proton collisions in a large energy range.
Many different physical processes (about 240 hard processes like qg → qg for example) are
included. Due to it’s versatile applicability it offers a multitude of parameters and switches
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to be used and varied. Only parameters/switches explicitly used/changed in this study for
event generation are presented in table (6.1). All other parameters and switches have PYTHIA
default values. BE related parameters and QCD parameters which are varied in this study are
described in chapter 7.

PARJ(1) 0.108 suppression of diquark-antidiquark pair
production compared with
qq̄ production → P(qq)/P(q)

PARJ(2) 0.286 P(s)/P(u)
PARJ(3) 0.69 {P(us)/P(ud)} / {P(s)/P(d)}
PARJ(11) 0.553 probability that a light meson

(with a u or d quark) has spin 1
PARJ(12) 0.470 probability that a strange meson has spin 1
PARJ(13) 0.65 prob. that a charmed or heavier meson has spin 1
PARJ(17) 0.20 prob. that a meson with spin 1, orbital angular

momentum 1 and total spin 2 is produced
PARJ(26) 0.276 extra suppression factor for η′ production
PARJ(42) 0.85 b[GeV−2] parameter for symmetric Lund

fragmentation function
PARJ(54) -0.04 εc

PARJ(55) -0.002 εb

MSTJ(11) 3 choice of longitudinal fragmentation function
3 = hybrid fragmentation scheme

MSTJ(46) 0 azimuthal isotropy

Table 6.1: Overview of PYTHIA parameters and switches changed

6.3 PYBOEI - BE Simulation in PYTHIA

PYTHIA has a built-in routine for simulating BE effects called PYBOEI. It needs to be said
that this routine is turned off by default. So most studies which use PYTHIA are carried out
with no consideration of possible influences of BECs on the obtained results. It also underlines
the fact that the provided implementations are far from being perfect. Even the authors of
PYTHIA call it a crude option for the simulation of Bose-Einstein effects[2].

Nevertheless it is better to start somewhere than not to start at all. In the subsequent
sections the general method, parameters, switches and variations of PYBOEI will be described
and presented.

6.3.1 General Method of PYBOEI

In PYBOEI the simulation of BE effects is done within the framework of event generation.
Fragmentation is allowed to proceed as usual and so is the decay of short lived particles. After
their decay the simulation of Bose-Einstein effect starts and then long lived particles are allowed
to decay, the evolution to the final state proceeds. The terms short and long lived are not to be
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mixed up with the meanings given in section (2.2.7). Here, the meaning short/long is relative
to the scale of hadronic interactions (see 6.3.4).

As mentioned earlier, BECs are supposed to enhance production of identical particle pairs
with small Q values, i.e. which are close in momentum space. In terms of simulating BECs an
increase in particle pairs with small momentum difference can be accomplished by shifting the
momentum of identical pairs towards each other. This is the basic principle behind PYBOEI.

The procedure is as follows: A pair of identical particles is considered, e.g. π−π−, and it’s
Q value calculated

Qij :=
√

−(p1 − p2)2 =
√

M2
ij − 4m2 (6.1)

where Mij is the invariant mass of the pair and m the common particle mass. The shift towards
smaller Q values is done with the aim that the ratio (4.9) takes the form of a function f(Q)
which parameterizes the BE effect (see chapter 4). A very basic parameterization is

f2(Q) = 1 + λe−(QR)m

(6.2)

with m = 1,2 , i.e. exponential or gaussian parameterization, respectively. If the inclusive distri-
bution of Qij values is assumed to be given just by phase space (for small relative momentum),

then, with d3p
E ∝ Q2dQ√

Q2+4m2
, the shifted Q′

ij value can be found as the solution of

∫ Qij

0

Q2dQ
√

Q2 + 4m2
=

∫ Q′
ij

0
f2(Q)

Q2dQ
√

Q2 + 4m2
(6.3)

If Q′
ij is determined, its translation into a change of the 4-vector pi of the particle i is not

unique. Here the choice is made that the momentum of the pair (i, j) shall be conserved. The
momentum shift of a particle i due to an identical particle j is δpj

i . It can be calculated by use

of (6.1) and momentum conservation among the two particles, i.e. δpi
j = −δpj

i .
For our basic parameterization (6.2) only shifts to smaller momentum differences occur. For

a parameterization which is not always above unity, Q′
ij can also be larger than Qij . The result

is a shift of the two particles apart from each other. In general, functions will be used which,
for intermediate values of Q, also dip a bit below unity.

All shifts are calculated with respect to the original momenta of the particles and then at the
end each momentum is shifted. It is clear, that using this procedure, conservation of the total
momentum of the event is granted. However, this so called local approach has other serious
shortcomings.

By shifting momenta towards or apart, energy conservation is obviously fulfilled neither
pairwise (locally) nor for the full event (globally). A possible solution is to re-scale all particle
momenta in the rest frame of the event to restore energy conservation. This so called global

re-scaling is purely ad-hoc and on the one hand does minimal harm for the study of a single Z-
decay, but on the other hand, this must not hold for a pair of resonances. Other studies indeed
show, that this kind of re-scaling introduces an artificial large shift in the reconstruction of the
W mass in the process e+e− → W+W− → hadrons[22].

Therefore alternative methods to restore energy conservation have been considered, namely
BE32, BEm and BEλ.

The global energy re-scaling procedure of the basic algorithm is running counter to PYTHIA’s
philosophy that BECs should be local in nature. Energy should be conserved locally, and not
by assigning one factor to the whole event. This, in general, is accomplished by calculating an
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additional shift δrl
k for a, not necessarily identical, pair of particles k and l. The final shift to

ones particle momentum is then

p′
i = pi +

∑

j 6=i

δpj
i + α

∑

k 6=i

δrk
i (6.4)

The α parameter is adjusted separately for each event so that the total energy is conserved.

6.3.2 BE3 and BE32

The very basic parameterization (6.2) was obtained by integrating (4.5) over a gaussian source.
If, theoretically, a non-gaussian source of particle production is assumed, f2(Q) should show
an oscillatory behavior, i.e. should go below unity as well. As indicated by data and by
global model studies, the oscillations dampen out very quickly and for a simpler simulation it
is accurate enough to use the first peak and dip only. The basic weight is therefore multiplied
by a factor

(

1 + αλ exp(−QmRm

3m
)

)

(6.5)

and gets

f2(Q) = {1 + λ exp(−QmRm)}
{

1 + αλ exp(−QmRm

3m
)

}

(6.6)

which (with α < 0) leads to values of f2(Q) smaller than unity. m=1(2), for exponen-
tial(gaussian) parameterization.

This parameterization is called BE3 due to the 3m in the denominator of the exponential.
The factor is consistent with data but should not be given any deeper meaning. In this algorithm
only identical particles are shifted additionally by δrj

i . The shift is calculated like δpj
i but by

using the BE3 weight (6.6) in (6.3). After these shifts are calculated, they are scaled by a factor
α to restore energy conservation of the whole event. As expected α is negative, which means
that some pairs are shifted apart.

It is, however, not the final weight because f2(0) 6= 2 for λ = 1 as expected from theory.
Another factor needs to be introduced

(

1 − exp(−Q2R2

22
)

)

(6.7)

and the final parameterization is then

f2(Q) = {1 + λ exp(−QmRm)}

×
{

1 + αλ exp(−QmRm

3m
)

(

1 − exp(−Q2R2

22
)

)}

(6.8)

Due to the 3m and 2m in the denominator of the exponentials this method is called BE32. We
see that if λ = 1, f2(0) gets

f2(0) = 1 + λ = 2 (6.9)
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as predicted by theory.
This weight can be viewed as a gaussian, smeared out representation of the first dip of the

cosine function. The calculation for δrj
i is done as for BE3 and also with the BE3 parameteri-

zation. Finally δrj
i is scaled down by (6.7). The average value for α needed to restore energy

conservation tends to be about -0.25.
This method is a mixture of a global and local approach to restore energy conservation. The

momenta of the BE affected pair is shifted additionally by δrj
i (→ local) and the value of α

has to be adjusted event by event (→ global). Only then energy is conserved.
Figure (6.1) shows f2(Q) for BE3 and BE32 and the two possibilities of an exponential or

gaussian basic weight.
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Figure 6.1: The BE parameterization function f2(Q) for BE3 and BE32

(a) Exponential parameterization for BE32 (cont. line) and BE3 (dashed line). For BE3 it can
be clearly seen that f2(0) 6= 2. The dotted line shows the exponential basic weight (6.2).

(b) Gaussian parameterization for BE32 (cont. line) and BE3 (dashed line). Again f2(0) 6= 2
for the BE3 algorithm. The dotted line shows the gaussian basic weight (6.2).

6.3.3 BEm and BEλ

For these two methods the original basic gaussian/exponential form of the parameterization
function (6.2) is retained. These two are, other than BE32 and BE3, purely local methods.
Energy is conserved by taking two particles in the vicinity of the identical ones and by shifting
the momenta of these two particles apart. It is important to say that the two particles (k, l)
may not be identical to each other nor to the BE affected pair (i, j). In detail, for each BE
caused shift δpj

i a corresponding δrl
k of two close particles is found so that energy is conserved

locally in the system of the four particles (i, j, k, l).
A principle problem of this method is how to define closeness of particles. A possible

measure is that of a small invariant mass mijkl of the four particle system. So for a pair (i, j)
two additional particles (k, l) are found with m−2

ijkl being a maximum. In finding such two
particles one has to be careful and aware of the following situation (see figure 6.2):

One of the two non-identical particles (say k) of the four considered closest has an identical
partner nearby. The momentum shift required to produce a significant BE effect between k
and its partner k′ is small. Therefore, even though the final shift of each particle is applied
only after all shifts are calculated, the shift of particle k due to energy conservation in the ijkl
system smears out the small BE caused shift due to k and its identical partner. It is therefore
necessary to disfavor momentum compensation shifts that break up close identical pairs.
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Figure 6.2: Breaking up of an identical pair due to energy conservation shift

In both algorithms, BEm and BEλ, a suppression factor for each of the two non-identical
bosons (k, l) is defined as

(
1 − exp(−Q2

kR
2)
)
·
(
1 − exp(−Q2

l R
2)
)

(6.10)

where Qk and Ql are the Q values to their closest identical partners.
In BEm two particles (k, l) are chosen which maximize the measure

Wijkl =

(
1 − exp(−Q2

kR
2)
) (

1 − exp(−Q2
l R

2)
)

m2
ijkl

(6.11)

If, hypothetically, k has an identical partner with Qk = 0 the suppression factor is zero and
Wijkl is zero as well. Therefore it is not enough for a system (ijkl) to have a small invariant
mass mijkl. It is also necessary that no identical particles to k or l are close. It needs to be
said however, that since two other particles have to be found to restore energy conservation, it
is still possible (with reduced probability) that a close identical pair is broken up.

The algorithm denoted as BEλ uses a different measure of closeness but again with the
suppression factor (6.10). The so called λ measure (which is not the λ value that governs the
strength of BE) corresponds to a string length in the Lund string model. It can be shown that
hadrons close to each other have a small λ value, although with rather big fluctuations. The
following measure

Wijkl =

(
1 − exp(−Q2

kR
2)
) (

1 − exp(−Q2
l R

2)
)

min(12permutations)(mijmjkmkl, ...)
(6.12)

is maximized. The denominator corresponds to exp (λ). Hence, if four particles are close, λ is
small and Wijkl gets big. If, however, identical particles to either k or l are nearby, Wijkl is
reduced again and some other particle has to be considered for energy conservation.

Since the invariant mass of many 4-particle systems, and every time the Q values of identical
particles to (k, l) have to be calculated to figure out which system has the biggest value of Wijkl,
these last two methods are way more time consuming for computation (about a factor of 3 to
4) than BE3 or BE32.
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6.3.4 Parameters and Switches

PYTHIA offers several parameters and switches to influence the behavior of PYBOEI, to chose
between the different methods described above and to adjust the values used for parameteri-
zation. Table (6.2) and (6.3) show BE related parameters and switches which were used.

PARJ(92) 1. λBE , strength of the BE effect

PARJ(93) 0.20 GeV σBE , size of the BE effect region in terms of Q.
The radius RBE of the production volume
is given by RBE = ~/σ ≈ (0.2fm · GeV )/σ

PARJ(91) 0.020 GeV minimum resonance particle decay width

Table 6.2: BE related parameters of PYBOEI

MSTJ(51) 0 BE simulation off (default in PYTHIA)
1 on, exponential parameterization
2 on, gaussian parameterization

MSTJ(52) particle classes involved in BE (1-9)
3 π+, π− and π0

7 Pions and K+, K−, K0
S , K0

L

9 Pions, Kaons and η, η′

MSTJ(54) type of energy compensation
0 BE0

1 BE3

2 BE32

-1 BEm

-2 BEλ

Table 6.3: BE related switches of PYBOEI

In this study exponential and gaussian weight distributions were used. MSTJ(54) was set to 2,
-1 and -2 and for these algorithms MSTJ(52) was set to 9, which means that all (MC-)possible
bosons participate in BE. The values shown for PARJ(92) and PARJ(93) are PYTHIA default
values for which a tuning was done (see chapter 7).

The parameter PARJ(91) needs to be discussed in more detail. As mentioned before, PY-
BOEI implements BE effects after hadron resonances have decayed. The term short lived has
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to be specified of course. A value of PARJ(91) = 20 MeV means that decay products (i.e. one
of the 9 BE participating bosons) of resonances with a decay width of at least 20 MeV are
considered BEable and their momenta are shifted according to the used algorithm. This, for
example, includes decay products of ρ0 and K∗ (like ρ0 → π+π− or K∗ → Kπ) but excludes
particles which come from ω decays (e.g. ω → π+π−π0).

Particles with a smaller decay width travel too far and their decay products are too far away
from the production region to contribute to the BE effect. In terms of a mean lifetime only
decay products of particles with τ < 3.3 · 10−23 seconds are considered BEable.

6.4 Global Event Weight by K+K

An alternative approach to implement BECs into MC simulations is by use of a so called global

event weighting procedure. A theoretical motivation for a possible global weight was given by
B. Andersson and M. Ringner in [9]. In this study, a MC program written by V.Kartvelishvili
and R.Kvatadze[21] was tested. Motivated by the shortcomings of PYBOEI, especially the
necessary re-tuning of QCD parameters and the problems with local/global energy conservation,
K+K tried to implement the ideas of Andersson and Ringner in a BE simulating algorithm.
The theoretical motivation of this model is based on the fact that in the simulation of the
hadronization process with PYTHIA, interference terms between different amplitudes of final
states of identical bosons are not included. This lack might be responsible that BECs are not
reproduced by PYTHIA (which if used with default values, runs without PYBOEI). Therefore,
this model tries to include those terms with hindsight by calculating weights which are supposed
to make up for the interference terms. Since this approach assigns a weight to an event as a
whole, it is also called a global event weighting method. A further advantage is that no momenta
are shifted, hence, energy is conserved by default.

6.4.1 General Method

Almost any hadronic final state contains, among other particles, a certain amount, say n,
of identical bosons. If M is considered the matrix element describing the production of a
hadronic final state, it needs to account for the n! possible (undistinguishable) permutations
P of identical bosons

M =
∑

P

MP (6.13)

The matrix element of the simulation considers all possible permutations, however, does not
include interference terms. The probability of the process, given by |M |2, is therefore incomplete

|M |2MC =
∑

P

|MP |2 6= |
∑

P

MP |2 = |M |2 (6.14)

It is shown that interference terms can be taken into account by assigning a weight to each
event such that

|M |2 =
∑

P

ωP |MP |2 (6.15)

and ωP is given by

ωP = 1 +
∑

P ′ 6=P

2<(MP M∗
P ′)

|MP |2 + |MP ′ |2 (6.16)
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To be used in a simulation, MP has to be parameterized. This is done with consideration of
the Lund string model[9]

MP = exp[(ıκ − b

2
)AP ] (6.17)

where κ is the tension of the string (phenomenologically κ ≈ 1 GeV/fm), AP is the area of the
breakup region of this particular boson configuration P and b describes the breaking probability
of the string. With this MP substituted into (6.16) we get

ωP = 1 +
∑

P ′ 6=P

cos(κ∆APP ′)

cosh( b
2∆APP ′)

(6.18)

with ∆APP ′ = AP − AP ′ .
This rather abstract parameterization can be linked to the parameters R and Q usually

chosen to describe BECs. The product κ∆APP ′ is estimated as an average BE interaction
radius R times Q. The Q variable used in this approach coincides with the one used in PYBOEI
(i.e. 4.7). The meaning of it is a somewhat different one and characterizes the difference in
kinematics between the two permutations P and P ′. The argument of the hyperbolic cosine in
the denominator is also replaced by R · Q but multiplied by a model parameter ξ which needs
to be adjusted phenomenologically.

With these replacements the weight gets

ωP = 1 +
∑

P ′ 6=P

cos(RQ)

cosh(ξRQ)
(6.19)

and, e.g. for only two identical bosons

ω2 = 1 +
cos(RQ12)

cosh(ξRQ12)
(6.20)

The important and new feature about this event weighting method is that the weight (6.19)
goes slightly below unity for some intermediate values of Q (similar to (6.8)). This faces the
problem of too large event weights of earlier approaches, because the total weight of an event
is made up of the product of weights like (6.19).

With this parameterization the whole process of simulating BECs can in principle be applied
on existing MC samples. The Q values for identical bosons and therefore the weight can be
calculated with (6.19). The same 9 bosons as in PYTHIA are considered, namely π+, π−, π0,
K+, K−, K0

S , K0
L, η and η′, and the final weight is the product of the 9. The various event

distributions (e.g sphericity, initial qq̄ flavor, Q-distribution a.s.o.) are calculated as usual but
afterwards multiplied by the obtained event weight.

From a computational point of view, this straight forward procedure is unfortunately not
quite possible. Consider an event which has only 2 π0’s and 3 K0

L’s and no more than one
of the other 7 types in the final state. The full event weight is (schematically) calculated as
follows

ω2π0 = 1 + (12)

ω3K0
L

= 1 + (12) + (13) + (23) + 2 × (123)

ωEvent = ω2π0 · ω3K0
L

(6.21)
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Figure 6.3: Maximum rapidity difference ∆ymax vs. Q

where e.g. (23) stands for cos(RQ23)/ cosh(ξRQ23) and (123) for a circular permutation of
all three K0

L. This still looks quite manageable, but the final hadronic state of a Z0 decay
can have up to around 15 identical bosons of a kind. The number of permutation goes with
n!, which means that for only one event and only one boson type, as a worst case scenario,
15! ≈ 1.3 · 1012 weights have to be calculated and summed! Together with 2 million events
needed for proper statistics, it is obvious that the number of permutations has to be reduced.
This can be accomplished by making good assumptions about which particles participate in
BE and which don’t.

6.4.2 Methods of Computation

Since BE effects are supposed to take place at some stage during the process of hadronization,
decay products of long lived particles do not participate in BE. So similar to the lifetime cut
(Γ > 20MeV ) in PYBOEI a distance of flight cut is introduced. Decay products of a parent
particle, which, in total (i.e including the distances its parents flew) travelled more than a
cut off distance dmax before decaying, are not considered for BE. The value of dmax ranges
between 10 and 80 fm and, when chosen, remains fixed throughout all events. After this cut
with dmax = 10 fm about 42% of all π+ remain, ≈ 58% for dmax = 40 fm and ≈ 64% for
dmax = 80 fm. In contrary to the life time cut Γ of PYBOEI, dmax is not a lorentz invariant
quantity.

Further on, not all permutations contribute to the summed weight (6.19). Mostly, the
kinematic difference of two permutations P and P ′ is rather big and, hence, their contribution
to BE small. It is therefore desirable to select permutations which are close in phase space
to each other, i.e. which have a small Q value. However, calculating Q values for all possible
permutations to filter out those with small ones brings us back to the start. It is better to do
the following:

• calculate the rapidity of all bosons of a kind, given by y = (1/2) ln(E+pz

E−pz
), with respect

to the thrust axis of the event

• order the particles according to their rapidity
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Figure 6.4: Cluster methods used in K+K to reduce the possible number of permutations of
identical bosons

• build clusters of up to nmax identical particles which have a maximum rapidity difference
of less than ∆ymax and calculate the weight for each cluster separately

• the overall weight for one particle type is given by the product of the cluster weights

A strong correlation exists between the largest difference in rapidity of a cluster and its Q
values (see figure 6.3)1. This means that if only clusters with a ∆y smaller than a certain
∆ymax are considered, contributions with big Q are filtered out to a certain extend. But, more
important, clusters with small Q (= big BE contribution) are kept, because there’s almost no
cluster with a y bigger than 1.5 and a Q smaller than 0.5 GeV.

Two different types of cluster algorithms have been used (see figures 6.4 and 6.5). The
first method builds clusters with particles which have a ∆y < ∆ymax with respect to the first
particle. The second builds clusters with particles which have a ∆y < ∆ymax with respect to the
previous particle in the row. Method 1 (continuous line) prefers clusters with only one (no BE
contribution) or two particles whereas method 2 (dashed line) has, as expected, an almost equal
amount of one particle clusters but a tendency towards clusters with 3 or 4 particles (more than
4 particles are not allowed, see next section). Due to the looser clustering of method 2 there are
more events which at least contain one cluster (i.e. with 2 or more particles), however, events
with smaller and tighter clusters (smaller Q between the permutations) should contribute more
to the overall weight than the bigger and looser cluster of method 2. Anyway, a clear prediction
about which method will describe BE better cannot be made and we will see that simulation
shows that there is not much difference between the results of both.

1taken from [21]
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Figure 6.5: Comparison of the two cluster methods for π+ with the respect to cluster size and
number of clusters per event

6.4.3 Parameters

Due to the scheme of computation introduced the model has more parameters than would be
necessary physically. Table (6.4) gives an overview of parameters and their values.

R dmax nmax ∆ymax

0.667 and 0.9 fm 10, 40, 80 fm 4 6/nBEable

Table 6.4: BE related parameters of K+K

R and dmax have been described before. nmax is the maximum number of particles a cluster
can contain and is chosen to be 4, which is a good compromise between computing time and
strength of BECs, since bigger clusters are assumed to contribute less to BE. The maximum
difference in rapidity of a cluster depends on nBEable, i.e. the number of BEable particles of
a kind in the event. If there are more particles, ∆ymax is smaller and more tighter clusters,
which are supposed to contribute more to BE, are formed. On average, for π+ and dmax = 40
fm, there are between 4 and 6 particles per event. This means a ∆ymax ≈1. - 1.5, which is
rather harmless (see figure (6.3)).

For the basic noBE MC sample needed to apply the BE simulating algorithm, PYTHIA
with the following values of QCD parameters was used. They were obtained by a tuning of
noBE MC samples to existing data[20].
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PARJ(81) 0.295 GeV ΛQCD

PARJ(82) 1.39 GeV Q0

PARJ(21) 0.366 GeV σ, width of the gaussian px and py transverse
momentum distributions for primary hadrons

PARJ(41) 0.40 parameter a of the symmetric Lund
fragmentation function

PARJ(42) 0.885 parameter b of the symmetric Lund
fragmentation function

Table 6.5: noBE best values for hadronization parameters

6.5 PYBOEI vs. K+K

Even though both methods described above have the same goal, i.e. the implementation of
BECs into MC simulations, the way to accomplish it is quite different. It cannot be said in
advance which way is best or which way will describe data better. Both have shortcomings
and advantages and both can be as far and close to reality as can be imagined.

The physical idea behind the methods is very much the same and comes from the theory
of particle correlations: it is assumed that BECs should enhance particle configurations of
identical bosons which are close to each other.

One obvious difference in the strategy of achieving this aim is the treatment of BE as either
local (→ PYBOEI) or global (→ K+K) in the sense that ...

... PYBOEI takes a pair of particles and shifts their momenta away or towards each other
according to their Q value. Other particles in the event are not affected by this local shift, but
treated separately - hence, BE is introduced as a local effect on close identical particles.

... K+K takes a look at the Q values of clusters of up to 4 identical particles and calculates
a weight for the whole event. BE is then introduced as a common factor by which all calculated
distributions have to be multiplied - hence, BE affects the event as a whole.

A small difference herein is that PYBOEI only takes pairs of particles into account, whereas
K+K also uses clusters of up to 4 particles. As a consequence PYBOEI might overestimate
the BE effect of 3 or more close identical particles by looking at them pairwise.

A further problem is that of the factorization property of QCD, which says that in the
process of hadronization no influence on earlier stages of event evolution is possible. In other
words, BE may not change initial quark flavor distributions, which are already given at parton
level before BE takes place. As a consequence of an event weighting model, parton distributions
also have to be multiplied by the event weight. This, however, as we will see later, can change
parton distributions and thus the factorization property of QCD is not guaranteed.

A similar crucial issue is that of multiplicity: Does BE change the average number of particles
produced in high energy physics experiments?

The answer is unknown. PYBOEI leaves the total multiplicity unchanged by definition,
because shifting momenta does not produce new particles. K+K changes multiplicity of single
events because the event weight has to be applied to the multiplicity distribution as well. The
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intention of leaving average quantities unchanged by adjusting the average event weight 〈ω〉 to
1 does not guarantee that this is true. And, see section 7.4.3, it is in general not the case.

In the next chapter both methods are used to simulate BE. The tuning procedure for BE
and QCD parameters of PYTHIA as well as the application of K+K onto noBE MC samples
is described and results are presented.
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Chapter 7

Adjustment of Monte Carlo to Data

7.1 Correcting Data with Monte Carlo

Before a measured quantity can be compared with the results of other measurements or with
theoretical predictions, it first needs to be corrected for detector related effects like geometrical
acceptance, reconstruction efficiency or particle interactions with the material of the detector.
Usually this is accomplished by multiplying the measured quantity Xmeasured by a correction
factor C

Xcorr = C · Xmeasured (7.1)

Mostly the measured quantity is displayed in a frequency distribution also called histogram.
The distribution is multiplied bin-by-bin by a correction factor which is calculated for this
distribution only and for each bin separately. Xmeasured could be, for example, one bin of the
Q-distribution of like-sign charged particles.

The computation of the correction factor(s) has to be done for different studies individually.
For the study of ALEPH hadronic events the following correction procedure was used[16].

Two MC samples have to be generated. The first one is designed to be as close as possible to
what real events look like in the detector. They are generated including initial state radiation.
These events are then sent through a detector simulation. For the ALEPH detector this program
is called GALEPH[26]. The outcome is a MC sample on detector level which, for further
analysis, can be treated just like real data. Fortunately, within the ALEPH collaboration, a
large number of Jetset MC events is already available.

The second one is a well defined sample of what is expected to be seen in a perfect detector.
No initial state radiation takes place and all final particles with a mean lifetime of more than
10−9 seconds are considered stable because they do, on average, not decay before they leave
the detector. This includes particles like π± and KL but not π0, KS , η or η′. In this way, only
particles are in the MC final state which would also be seen for a real event in the detector.
The outcome is a MC sample on hadron level. Both samples are produced using the same
values for QCD parameters.

With these two samples the two corresponding quantities XMC+Det.Sim. and XMC,had are
computed. The correction factor is calculated as

C :=
XMC,had

XMC+det.sim.
(7.2)
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Figure 7.1: Increase in pairs with small Q value due to the iterative correction procedure

Application of these factors results in measurements corrected to a well defined particle com-
position, center of mass energy and with no initial state radiation.

The correction factor C also depends on the MC generator used. A cross-check between
different MC programs is therefore desirable. A full detector simulation, however, is a big
computational effort. An approximation has to be made, since it is important to at least
estimate the model dependency of a certain C.

Instead of using a full detector simulation, only cuts which are used for real events are
applied on the MC samples. With this simplified approach a variety of generators can be used
to calculate C and the spread in the values of C is taken into account for estimating systematic
uncertainties. Comparison to values obtained with full detector simulation shows that the
biggest contributions to the overall correction come from cuts on geometry and energy, which
are also used for real data (see chapter 5).

7.2 Corrected Q-Distribution

The corrected Q-distribution defined in equation (4.8) is obtained by the procedure described
above. For this special case, however, it was found that for small Q values (Q ≈ 0.1 GeV) the
correction factor is especially dependent on the MC generator and on the choice of parameter
values used to create the sample[23]. A so called iterative procedure has to be carried out,
beginning with a MC sample (106 events) with no BE implementation to correct data. With
this lowest order corrected Q-distribution a parameter tuning including BE parameters, as
described below, is carried out. The obtained values λBE and RBE are used to generate a
new MC sample (5 · 105 events) with BE implemented, with which the first (uncorrected) Q-
distribution is corrected. This is called first iteration of the correction procedure. All steps are
repeated again, and a Q distribution, corrected to second order, is obtained. This can be done
even further and figure (7.1) shows that the increase in pairs with small Q values (≈ 0.1GeV )
from lowest (noBE) to 1st iteration is about 6%. The increase by using 2nd iteration compared
to 1st is rather small which makes no further iterations necessary.

This means that if a 0.th order correction procedure is used, the BE effect will be seriously
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underestimated. Table (7.1) shows the increase in the BE strength parameter λBE with higher
iterations. Throughout this study, data corrected to second order was used.

iteration
λBE in MC used
for correction

results of tuning
for λBE

0 no BE 0.69
1 0.69 0.99
2 1.00 1.11
3 1.12 1.14

Table 7.1: λBE for different orders[23]

7.3 Tuning of Parameters of PYBOEI

To get an optimal agreement between data and MC samples, parameters of the simulation have
to be tuned. A description of the general tuning procedure in ALEPH can be found in [16].
For the actual fit of parameters, the fortran program LINFIT, as developed inside ALEPH,
was used.

The whole procedure will be explained in this section in detail and results will be presented.

7.3.1 Ingredients

In this study 6 parameters were tuned simultaneously. Only two of them are purely BE related.
The other 4 are important parameters controlling the hadronization process in the simulation.
They are also subject of the tuning because the use of PYBOEI changes event properties.
The shift of particles towards each other, for example, leads to jets which are narrower than
without BE. To compensate this effect, the parameter σ (see table 7.2) needs to be increased.
As a consequence the multiplicity goes down, which makes a rise of A necessary to bring it
back up to where it was. Effects like that make a re-tuning of the QCD model parameters of
hadronization necessary.

Table (7.2) gives an overview of parameters subject to tuning. The given values correspond
to starting points.
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PARJ(92) 1. λBE , strength of BE effects
PARJ(93) 0.34 GeV size of the BE effects region in terms of Q

R≈ 0.2GeV fm
PARJ(93)

PARJ(81) 0.30 GeV ΛQCD

PARJ(82) 1.5 GeV invariant mass cut-off mmin of parton showers,
below which partons are not assumed to radiate

PARJ(21) 0.38 GeV σ, width of the gaussian px and py transverse
momentum distributions for primary hadrons

PARJ(41) 0.40 parameter a of the symmetric Lund
fragmentation function

Table 7.2: BE and QCD parameters for tuning

The next ingredient for tuning is a set of measured and corrected distributions derived from
∼ 106 hadronic events of 1994[16] data taking, to which the MC generated ones have to be
fitted. In addition to the Q distribution of like and unlike-sign pairs for BE parameters, the
following event shape and inclusive distributions were used

• event shape distributions:

– sphericity S

– aplanarity A

– 1-thrust 1-T

– 3 jet resolution parameter y3

• inclusive distributions of

– scaled momentum of charged particles zch

– pin
⊥ and pout

⊥ of charged particles

Figures of all distributions are shown in the result section. Sphericity and aplanarity are
obtained from the eigenvalues of the momentum tensor defined as Mαβ =

∑

i pαipβi. α and
β each refer to the x, y and z components and the sum goes over all selected particles of the
event. If Qj label the normalized eigenvalues of M with

∑

j Qj = 1 and 0 < Q1 < Q2 < Q3,
sphericity and aplanarity are defined as

S =
3

2
(Q1 + Q2)

A =
3

2
Q1 (7.3)

The corresponding eigenvector ~n3 determines the sphericity axis, ~n2 and ~n3 the event plane.
The thrust T is given by

T = max




∑

j

|p‖j |/
∑

j

|pj |



 (7.4)
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Figure 7.2: Variation of parameters (all in GeV except λBE and a)

where p‖ is the momentum along the thrust axis. The event shape variable y3 is a measure of
closeness for 3 jet events. To obtain it a cluster algorithm (DURHAM[24, 25] for this study)
has to be used. The algorithm stops when exactly 3 clusters (≡ jets) remain. The smallest
value of y between two of the three jets is the event shape variable y3.

The inclusive distribution zch is defined as 2|~p|
Ecm

. Finally pin
⊥ and pout

⊥ are the components of
a particle’s momentum in the event plane and perpendicular to it:

pin
⊥ = |~p · ~n2|

pout
⊥ = |~p · ~n1| (7.5)

7.3.2 Tuning Procedure

For the tuning of parameters it is important to know the dependence of a measured quantity
Mj (i.e. bin content of bin j) on these parameters. The dependencies, however, are not known
in analytical form. It is therefore necessary to calculate these quantities for various values of
the chosen parameters to be able to determine a parameterization of the dependency for each
bin separately. For practical use it is enough to choose a linear parameterization. The variation
of parameters is shown in figure (7.2) and is done as follows. For each parameter xi a starting
value or center point xi0 has to be chosen. For our case the starting points for the four non
BE related parameters were taken from previous experience, λBE was set to 1 (chaotic source)
and R≈ 0.6 fm. With these 6 initial values a set of 4 million events is calculated and all the
histograms are filled. Then each parameter is varied to four other points separately and every
time 1 million events are calculated and the histograms are filled. Usually the four additional
points are spread around the center point symmetrically at distances of −∆xi, −∆xi/2, ∆xi/2
and ∆xi. It is also possible to chose other than those four points if e.g. physical constraints
don’t allow values on both sides of the central point. The variation range for all six parameters
is shown in figure (7.2). For each parameter 4 sets of histograms have to be computed with the
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other 5 parameters at their center point. This makes a total of 28 million events for one tuning
and means a time of computation on an ATHLON 1800XP between 1 and 3 days depending
on the energy conservation method used (BE32, BEm or BEλ).

Now the bin content in dependence of the six parameters is known and a linear expression
can be fitted for each Mj separately

Mj(xi) = mi
j + ai

j(xi − xi0) (7.6)

The best values for the model parameters is found by minimizing the function

χ2 =
∑

j

(

Mdata
j − MMC

j (~x)

σdata
j

)2

(7.7)

where the sum goes over all measured quantities, i.e. over all bins and histograms. σdata
j is the

quadratic sum of the statistical and systematical error of the data and is much bigger than the
MC error, therefore the latter can be neglected. The statistical error of 1

N
dn
dQ was multiplied

by an arbitrary factor 2 because no systematic errors were available.
If the tuned parameters exceed a linear range which is calculated according to the goodness

of the parameterization (7.6), the tuning has to be repeated by shifting the central points xi0

according to the last results. This type of fit (7.7) assumes that the experimental data points
are uncorrelated, which does not need to be true in general and therefore the errors on the
results can only be regarded as a rough measure of uncertainty. The tuning was repeated until
all parameters were within the given linear range.

7.3.3 Results for PYBOEI

In this section results of the tuning of the six parameters of table (7.1) are presented. Three
different methods, namely BE32, BEm and BEλ (see chapter 6), with two different basic pa-
rameterizations (gaussian and exponential) each, were used and parameters were adjusted.

Figures (7.3) and (7.4) show the 4 event shape distributions S, A, 1 − T and y3 and the 3
inclusive hadron spectra zch, pt,in and pt,out for all three energy conservation methods BE32,
BEm and BEλ for a gaussian parameterization. Figures (7.5) and (7.6) show the according
graphs for an exponential parameterization.

For pt,out and aplanarity A (and also for the Q distributions) not all bins were used for the
tuning. A line with an arrow indicates the bins which were included.

There is a good agreement between data and MC if you only look at bins used for the tuning.
For higher values of A and pt,out (and also for zch), BEm and BEλ show better agreement with
data than BE32 does. When it comes to the simulation of the BE effect, however, we will see
that BE32 gives the best results.

Final BE results for all methods are shown on the subsequent pages.
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Figure 7.3: Event shape distributions for gaussian parameterization
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Figure 7.4: Inclusive distributions for gaussian parameterization
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Figure 7.5: Event shape distributions for exponential parameterization
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Figure 7.6: Inclusive distributions for exponential parameterization
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Results for BE32

Figure (7.7) shows the final correlation function, as defined in (4.9), for the BE32 algorithm
in comparison with corrected data (crosses). The region used for tuning is indicated by a line
with arrows. The table below provides information about the numerical values of the tuned
parameters. In addition, values for the four non BE related parameters ΛQCD, Q0, σ and a
which come from a tuning with no BE effect implemented, are given.
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Figure 7.7: BE32 like-sign and unlike-sign Q-distributions

λBE RBE [fm] ΛQCD [GeV ]

gauss 1.135 ± 0.030 0.606 ± 0.011 0.291 ± 0.002
exp 1.799 ± 0.067 0.788 ± 0.020 0.292 ± 0.002

noBE 0.285

Q0 [GeV ] σ [GeV ] a

gauss 1.493 ± 0.051 0.377 ± 0.002 0.429 ± 0.014
exp 1.513 ± 0.053 0.385 ± 0.002 0.446 ± 0.014

noBE 1.32 0.366 0.365

Table 7.3: Results for BE32

49



- Adjustment of Monte Carlo to Data -

Results for BEm

Results for BEm are shown in figure (7.8), below are the values of the tuned parameters.
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Figure 7.8: BEm like-sign and unlike-sign Q-distributions

λBE RBE [fm] ΛQCD [GeV ]

gauss 0.691 ± 0.010 0.347 ± 0.005 0.289 ± 0.002
exp 0.748 ± 0.010 0.366 ± 0.005 0.280 ± 0.002

noBE 0.285

Q0 [GeV ] σ [GeV ] a

gauss 0.771 ± 0.026 0.304 ± 0.002 0.103 ± 0.010
exp 0.677 ± 0.027 0.282 ± 0.002 0.051 ± 0.009

noBE 1.32 0.366 0.365

Table 7.4: Results for BEm
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Results for BEλ

Figure (7.9) shows the results for BEλ. Table (7.5) contains the numerical values of the tuned
parameters.
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Figure 7.9: BEλ like-sign and unlike-sign Q-distributions

λBE RBE [fm] ΛQCD [GeV ]

gauss 0.479 ± 0.008 0.193 ± 0.003 0.290 ± 0.002
exp 0.571 ± 0.008 0.195 ± 0.003 0.286 ± 0.002

noBE 0.285

Q0 [GeV ] σ [GeV ] a

gauss 0.739 ± 0.030 0.352 ± 0.002 0.187 ± 0.011
exp 0.680 ± 0.028 0.342 ± 0.002 0.162 ± 0.014

noBE 1.32 0.366 0.365

Table 7.5: Results for BEλ
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7.3.4 Discussion of Results

The preceding three pages show that BE32 gives the best description of the like and unlike-sign
Q-distributions. BEm and BEλ, however, are not useful when BECs are to be simulated. The
goodness of the fits (table 7.6) underlines this. χ2 values for the Q-distributions of BEm and
BEλ are higher by a factor of 4 to 6 compared to BE32. Due to the somewhat better description
of the event shapes and inclusive distributions by BEm and BEλ compared to BE32, the overall
goodness (= sum over all χ2) of the latter is only a bit better than that of the first two.

Q like-sign Q unlike-sign
∑

χ2
(∑

χ2
)
/ndof

BE32 gauss 61.5 36.9 675.3 3.08
BE32 exp 34.6 41.5 672.7 3.07

BEm gauss 353.2 164.6 875.3 3.99
BEm exp 296.5 113.1 901 4.11

BEλ gauss 247.3 144.7 850.2 3.88
BEλ exp 135.1 123.5 705.8 3.22

# bins 48 16 225

Table 7.6: Value of χ2 for the different methods

The best agreement is achieved with BE32 and an exponential parameterization which is
a bit better than the gaussian one. BEm with a gaussian parameterization yields the worst
agreement.

When a gaussian parameterization is used, a theoretical range for λBE ∈ [0, 1] was given in
section (4.1). The tuned value of λBE for BE32 lies a bit above unity (λBE ≈ 1.1). This cannot
be viewed as a violation of the allowed range, because λBE is, primarily, a model parameter
tuned to describe data best. To reach this goal, it turns out that it has a value above 1.

The QCD related parameters ΛQCD and σ only differ a bit from noBE values. ΛQCD turns
out to be quite stable for all BE methods and σ has its highest deviation from noBE value for
BEm with exponential parameterization (about 20% lower). Q0 and a are comparable in size
with noBE values for the BE32 algorithm, which is a good sign for its applicability to implement
BECs into MC samples. For BEm and BEλ these two parameters differ a lot from the noBE
case (e.g. a of BEm with exponential parameterization is only about 14% of the noBE value!).

The residual BE effect (see section 4.3) in unlike-sign pairs is reproduced, at least qualita-
tively, by all three algorithms. Here, best agreement is achieved (see χ2 of Q unlike-sign in
table 7.6) with BE32 and a gaussian parameterization.

The correlation coefficients for BE32 between λBE , σBE and the four QCD parameters is
given in table (7.7). RBE and σBE are related via RBE = ~/σBE ≈ (0.2 fm GeV)/σBE .
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λBE σBE ΛQCD Q0 σ a

gaussian
λBE 1. -0.769 -0.036 0.018 -0.062 0.016
σBE -0.769 1. -0.049 0.110 0.441 0.228

exponential
λBE 1. -0.867 -0.051 0.005 -0.120 -0.009
σBE -0.867 1. -0.006 0.080 0.415 0.183

Table 7.7: Correlation coefficients for tuned parameters of BE32

A strong negative correlation exists between the two BE parameters λBE and σBE . The
biggest correlation between a BE and QCD related parameter is that between σBE and σ
(≈ 0.4). Among other parameters no correlation larger than 0.3 exists.

Reasons for a better performance of one algorithm compared to another are not all clear.
The 3 methods are based on the same principle of shifting particle momenta apart of or to-
wards each other. The only difference lies in energy conservation. Nevertheless all 3 are a
purely phenomenological post-processing of what really happens when the identical bosons are
produced. It also cannot be said in general that one is more appealing theoretically than the
other. The more troublesome approaches of purely local energy conservations (see chapter 6)
among 4 close particles of BEm and BEλ may give hint that these methods might be worse.
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7.4 ”Tuning” of Parameters of K+K

7.4.1 Adjustment of 〈ω〉
The adjustment of MC to data for the K+K model is somewhat different compared to PY-
BOEI/PYTHIA. An advantage over other global event weighting models is that the weight w
for a single event can also be below 1. This makes it possible that the average event weight
can be adjusted to unity. If 〈ω〉 is about unity it is hoped that average event quantities (like
average multiplicity) or distributions on parton level (e.g. initial quark flavor distribution) are
left unchanged. As we will see in the result section, this is unfortunately not the case.
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Figure 7.10: Event weight distribution for R=0.667 fm, dmax = 40 fm

To adjust 〈ω〉, for a given set of BE parameters R, dmax and nmax, one single parameter ξ is
used[21]. This value determines where the parameterization (6.19) goes below unity. To find a
good value for ξ is a time consuming task and is done by trial and error. For an arbitrary value
of ξ, let the simulation run, look at the event weight distribution and at the average weight
and then change ξ accordingly and do it all over. The dependence of 〈ω〉 on ξ is not linear.
This makes it harder to guess how to change ξ so that after the next run 〈ω〉 is closer to unity
than before.

Figure (7.10) shows an event weight distribution for R=0.667 fm, dmax = 40 fm and by use
of cluster method 1. The average weight is 〈ω〉 = 0.9978 with a rms of 1.087. Events with
a large weight have a bigger influence on the average event weight than those closer to unity.
Therefore a cut is used which excludes events with a weight bigger than 20. This affects only
0.05% of all events and it is reasonable not to take those into consideration since they only seem
to have a (coincidentally) special combination of kinematics and number of identical bosons
which makes the weight that high. These events show otherwise no special behavior and would
unnecessarily shift the average event weight of the distribution so that another, for most events
wrong ξ would be used.
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7.4.2 Results for K+K

The adjustment of 〈ω〉 to unity has been done for several values of R and dmax (see table 7.8).
A value of 0.9 fm for R is the default used by K+K, 0.667 fm comes from PYBOEI results
which are around 0.6 to 0.8 (for BE32). Keep in mind that the R of K+K is not identical to the
RBE of PYBOEI due to the a priori different algorithms. Therefore R values obtained from
PYBOEI cannot be directly compared to those used here but can only be taken as a suggestion.

method 1

dmax[fm] 10 40 80

R[fm] 0.667 0.9 0.667 0.9 0.667 0.9

ξ 1.12 0.99 1.18 1.04 1.20 1.06
〈ω〉 0.99 1.00 1.00 1.00 1.00 1.00

method 2

dmax[fm] 10 40 80

R[fm] 0.667 0.9 0.667 0.9 0.667 0.9

ξ 1.02 0.92 1.07 0.96 1.08 0.97
〈ω〉 1.00 1.00 1.00 1.00 1.00 1.00

Table 7.8: Parameter settings with corresponding ξ and 〈ω〉 values

On the following pages results for the K+K algorithm are presented.
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Results for dmax = 10 fm
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Figure 7.11: Q-distributions for dmax = 10 fm

The like-sign distributions for both R=0.667 fm and R=0.9 fm show a clear rise towards
smaller Q values. Due to the small dmax = 10 fm only 42% of all identical bosons participate
in BE. Hence, the BE effect is not reproduced to full scale. Agreement with data is, for all
values of Q, rather bad.

The unlike-sign Q-distribution shows good agreement up to Q ≈ 0.6 GeV. The change of Q
values of resonance decays due to the residual BE effect (see section 4.3) shown by the data
(bump at around 0.7 GeV) is not reproduced at all.
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Results for dmax = 40 fm
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Figure 7.12: Q-distributions for dmax = 40 fm

With a higher value of dmax = 40 fm more bosons (58%) participate in BE and the rise
towards smaller Q values gets bigger. A bad behavior for intermediate Q values remains.

The disability of describing the shift in Q values of resonance decays remains and seems to
be parameter independent. It can be viewed as a general shortcoming of this algorithm.
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Results for dmax = 80 fm
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Figure 7.13: Q-distributions for dmax = 80 fm

With dmax = 80 fm, the BE effect is reproduced almost to its full strength. Best agreement
is achieved with R=0.667 fm and cluster method 2, which also better describes the dip below
unity for intermediate values of Q.

Again, the shift in Q values of resonance decays is not reproduced.
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7.4.3 Discussion of Results

The obtained results show that this method might be capable of describing BECs in multi-
hadronic Z decays. The adjustment of the average event weight 〈ω〉 to unity for every set of
parameters is a troublesome attribute of this algorithm and has to be done by hand. In that
sense a tuning as carried out for PYBOEI is not really possible. Only a few sets of parameter
values were used and the resulting Q-distributions compared to data. Therefore, it is very well
possible and likely that with other values a better agreement with data can be achieved. Some
shortcomings of the algorithm, however, seem to be independent of this choice.

Best agreement is achieved for dmax = 80 fm. The choice of R doesn’t have much impact on
the results for small Q values, and the type of cluster method used neither. For intermediate
values of Q, cluster method 2 with R=0.667 fm shows a better behavior when it comes to
describe the slight dip below unity. Nevertheless, if compared to BE32 of PYBOEI, the result
can only viewed as being satisfactory for values of Q smaller than 0.3 GeV.

Despite of this small success, this method also causes some problems when it comes to the
description of resonance decays or fundamental things like the factorization property of QCD.

First, the Q value of decay products of resonances like ρ → π+π− is almost a constant
quantity given by (6.1). Almost, because Γρ ∼ 150 MeV[1]. After the production of the π+π−

pair, BE effects can change the Q value if another identical boson, in this case a π+ or a π−,
is close by in momentum space (→ residual BE effect). The results show that the model of
K+K ignores this influence of the BE effect on the unlike-sign distribution. The bump at Q
around 0.7 GeV as seen for data is not reproduced by the simulation, independent of the set of
parameters used. Second, if the global event weight is applied on parton level distributions like
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Figure 7.14: Changed flavor composition due to global event weight

the initial quark flavor distribution, the cross sections of the decay of the Z into the five possible
types of quarks (d, u, s, c and b) is changed, despite the fact that 〈ω〉 was adjusted to unity. The
same is unfortunately true for other average event quantities (see below). Figure (7.14) shows
the initial quark flavor composition after the global event weight has been applied divided by
an un-weighted noBE sample. The parameter setting which leads to the best agreement with
data unfortunately shows the biggest change in the initial quark flavor composition. After the
weighting, events with bb̄ as the primary quark pair are reduced by about 12% (cc̄ events by
about 5%). This is a violation of the concept of factorization which should hold during the
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whole process of hadronization. In principle a smaller weight for bb̄ (or cc̄) events would be
alright because it is known that the BE effect in those events is less than for events with d, u
or s as the primary quark pair. Because of the relatively long lifetime of B and C mesons (→
weak decays, τ ≈ 10−12 sec) their decay products do not participate in BE anymore and the
overall BE effect is reduced.

Other average event quantities like average multiplicity are also changed by this global event
weighting procedure. Table (7.9) shows some average values for the case of dmax = 80 fm and
R = 0.667 fm.

no weight K+K change in %

〈Nch〉 18.2 18.49 + 1.6%
〈S〉 0.07591 0.07069 - 6.9%
〈A〉 0.01176 0.01133 - 3.7%

Table 7.9: Average event values before and after the global event weight is applied

7.5 PYBOEI vs. K+K

In summary, the only method which is in satisfactory agreement with data over a wide range
of Q values is the BE32 algorithm of PYBOEI. Neither BEm/BEλ nor K+K (no matter which
parameter setting tried) show a comparable good result.

A general advantage of PYBOEI over K+K is that a tuning of parameters is very well
possible, which helps a lot to achieve good or even the best results possible for a given algorithm.
This doubtlessly outbids the disadvantage of a necessary re-tuning of QCD parameters, because
BE parameters have to be tuned anyway. By doing so, QCD parameters can be determined as
well.

Another benefit of PYBOEI is that it is also capable of describing the change in Q values of
resonance decays due to the residual BE effect, which is measured in unlike-sign Q-distributions.
K+K does not show any change concerning the Q values of resonance decays.

A global event weighting routine, like the one from K+K, is an a priori problematic algorithm
because one must be aware that the global weight has to be applied on every quantity of an
event. This implies that some (especially parton level) distributions will be changed afterwards
even with the adjustment of an average weight to unity. But one has to decide if a slight change
of parton level distributions (i.e a slight violation of factorization) can be accepted, if in return
it is possible to get a good agreement with data for the BE effect, without having the problems
of total energy conservation PYBOEI has.

As a result it can be said that for further studies which need to include BECs it is advisable
to use PYTHIA’s built in routine PYBOEI with BE32 option and the parameter settings
presented.

At last, to defend the K+K algorithm it needs to be said that it is still under development.
The version studied in this thesis is not up to date anymore. Since the aim of this diploma
thesis is the study and comparison of different BE algorithms I had to agree on one K+K
version back then, knowing that it won’t be up to date by the time writing the thesis.
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Chapter 8

Further Checks of PYBOEI

In the preceding chapter we saw that the BE32 option of PYBOEI describes the BE effect
observed in the Q-distribution of identical bosons, which come from hadronic Z0 decays, quite
well. For the study of fully hadronic W +W− events (i.e. e+e− → W+W− → hadrons) at
LEP-2 the center of mass energy of the colliding electron-positron pair was raised to Ecm ≈
200 GeV. Most of these events are so called 4-jet events. However, not all of the selected
events are fully hadronic W +W− decays, about 15% come from hadronic Z0 events with a
4-jet topology (i.e. e+e− → Z0 → hadrons(4jet))[27]. This background has to be subtracted
for the analysis of fully hadronic W +W− decays and therefore it is important to know if the
BE effect is also reproduced in 4 jet hadronic Z0 decays by simulation.

The number of jets an event has is dependent on the jet algorithm and its parameters. For
this study the DURHAM[24, 25] algorithm with ycut=0.01 was used.

In this chapter the ratio C(Q) (see 4.9) of 2, 3 and 4 jet events of hadronic Z0 decays,
obtained by MC simulation, was compared to the ones obtained from data. Here Ecm = MZ ,
but it is assumed that the results are also valid for Ecm ≈ 200 GeV.

For the tuning of the six parameters which was done on hadron level, the data had to be
corrected for detector related effects, i.e. brought from detector level to hadron level. Corrected
Q distributions for the different 2, 3 and 4 jet events are not available and therefore the MC
analysis is moved from hadron level to detector level. Up to now the MC simulation is free of
detector related effects. It has to be sent through a detector simulation (see section 7.1). For
clarity, figure (8.1) shows the connection between the two different levels.

Simulation

Experiment

detector simulation

correction
hadron
level

detector
level

corrected
data

data

MC MC
full simulation

Figure 8.1: Connection between hadron and detector level
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A fully simulated MC sample (PYBOEI with BE32 and a gaussian parameterization) with
λBE = 1.12 and RBE = 0.604 fm according to iteration 3 in table (7.1) was chosen. The values
of λBE and RBE are very close to the ones found in this study (λBE = 1.13, RBE = 0.606 fm).
The ratio C(Q) of like-sign bosons for all events and for 2, 3 and 4 jet events were compared
with data and are presented in figure (8.2).

The ratio C(Q) for all events is also reproduced on detector level. Just like in figure (7.7),
the BE effect, when implemented with a gaussian parameterization, is a little bit smaller than
that of data. More interesting, BE effects in 2 to 4 jet events, to which the model was not
tuned, are also reproduced. BE in 3 jet events is simulated best, in 4 jet events it is a bit
overestimated and in 2 jet events it’s a bit too small. Since about 70% of all events are 2 jet
events, the ratio C(Q) for all events lies a bit below data. Even though for the simulation of
BE effects in hadronic Z0 events the BE32 option of PYBOEI shows best agreement of all the
different methods tried, this result shows that it is not perfect either. The K+K algorithm was
not tried for 2 to 4 jet events separately and therefore no statement about its performance for
this case can be made.
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Figure 8.2: BE effect in n-jet topologies
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Chapter 9

Summary

The aim of this thesis was the study and tuning of different algorithms which try to implement
the Bose-Einstein effect into MC simulations.

Theory of the Bose-Einstein effect predicts an enhancement in the production of pairs of iden-
tical bosons which are close in phase space. A sensitive quantity to measure this effect is the so
called Q-distribution of identical bosons. Particles which are close in phase space have a small
Q value. To make the BE effect visible the Q-distribution of identical particles is divided by a
Q-distribution of a so called reference sample which is assumed to be free of BE effects. This
ratio is called the correlation function C(Q). Different choices of reference samples are possible
(see section 4.3). For this study it was obtained by a MC simulation with no BE simulation
implemented. A rise in the C(Q) distribution of data towards smaller Q values (see figure 5.1)
is taken as evidence for the existence of BE effects. Since the reference sample was only used to
visualize the BE effect by calculating the ratio C(Q), its choice has no effect on the parameters
fitted in this study.

To implement the BE effect into MC simulations two different methods were used:

• PYBOEI, a momentum shift method together with local conservation of energy. It is
part of the event generator PYTHIA[2] (but turned off by default).

• A routine written by V.Kartvelishvili and R.Kvatadze which makes use of the concept of
a global event weighting scheme proposed by B. Andersson and M. Ringner[9].

For both, the event generator PYTHIA 6.152 was used (for K+K with PYBOEI turned off)
and 9 different quasi-stable bosons were subject to BE: π+, π−, π0, K+, K−, K0

S , K0
L, η and

η′ (→ about 80% of all charged particles in the final state are pions!).

Corrected data from 1994 with 1 million hadronic Z0 events (e+e− → Z0 → hadrons) was
provided by the ALEPH collaboration.

In PYBOEI, the change in the Q value of identical pairs due to the BE effect has to be
translated in a change of the 4-vector p of each particle. The choice is made that momentum
is conserved. As a consequence energy is not conserved anymore. PYBOEI offers different
options to restore energy conservation. Three of them were tried: BE32, BEm and BEλ. For
all three a gaussian and an exponential parameterization was considered. A simultaneous
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tuning of 6 model parameters was carried out: 2 BE related parameters (RBE , λBE) and
4 model parameters (ΛQCD, Q0, σ and a), which are important parameters controlling the
hadronization process. In addition to the two Q-distributions (like and unlike-sign), 7 other
event and inclusive distributions (see chapter 7) were used to tune the 6 parameters. The
tuning of BEm and BEλ was done here for the first time in ALEPH.

For the BE routine of K+K, different sets of model parameters RBE , dmax and 2 cluster methods
(see table 7.8) were tried. The ratio C(Q) of the like-sign Q-distribution was calculated and
compared to that of data. A genuine multi-dimensional tuning for the two BE parameters RBE

and dmax was not possible due to the different scheme of computation.

Best results were obtained with the BE32 option of PYBOEI (see figure 7.7). Not only the
enhanced production of identical bosons with small Q values (Q . 0.5 GeV) due to the BE
effect is reproduced, there is also good agreement between the MC Q-distribution and that of
data for intermediate and larger values of Q up to 2 GeV.

The K+K algorithm did not show good agreement with data for most parameter values tried.
For one parameter setting (R=0.667 fm, dmax=80 fm), the enhanced production of pairs of
identical bosons with small Q values (Q . 0.3 GeV) due to the BE effect was reproduced.
For Q values of the like-sign Q distribution above 0.3 GeV the agreement with data is bad.
In addition, for this parameter setting, it was found that distributions at parton level (e.g.
the initial quark flavor distribution) were changed. The cross section of bb̄, for example, was
reduced by 12%. This is a violation of the important concept of factorization of QCD.

The BE effect also changes the Q-distribution of unlike-sign pairs. This is called residual BE
effect. A part of this effect is the change of Q values of resonance decays. All energy conservation
options of PYBOEI (BE32, BEm and BEλ) reproduce the residual BE effect observed in the
unlike-sign Q-distribution. The algorithm of K+K is not capable of doing so. It is in rather
good agreement for Q values smaller than 0.6 GeV but in bad agreement for values above. A
shift in the Q values of resonance decays is not described at all.

The overall result is, that it is advisable to use the PYTHIA built-in routine PYBOEI with
option BE32 and parameters presented whenever it is necessary for the analysis to take BE
effects into account.
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