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Abstract

A Measurement of the Azimuthal Decorrelation in Di-Jet Events in Proton-Proton

Collisions at
√

s = 7 TeV at the Large Hadron Collider

Gabriel Rosenbaum

Doctor of Philosophy

Graduate Department of Physics

University of Toronto

2011

A measurement of the azimuthal decorrelation in di-jet events in proton-proton col-

lisions at
√

s = 7 TeV is presented. Using 19.6 nb−1 of data collected in the ATLAS

detector this measurement uses the angle (∆φ) in the transverse plane between the

two leading pT jets to measure the normalized differential cross section 1
σtot

dσ
d(∆φ)

. An

unfolding correction is a applied to give a jet-level result. The unfolded spectrum

is compared to the predictions of two Monte Carlo event generators: Pythia and

Herwig++.

ii



Contents

1 Introduction 1

1.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Running of αs . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Parton Density Functions . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Perturbative QCD . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Azimuthal Decorrelation . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The ATLAS Detector and the LHC 18

2.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The ATLAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



2.2.4 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.5 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Jet Reconstruction 51

3.1 Topological Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Anti-kT Jet Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Jet Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Numerical Inversion . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Jet Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . 60

4 Data and Monte Carlo 63

4.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Integrated Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Jet Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Monte Carlo Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Analysis 74

5.1 Observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 JES Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Third Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.3 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Result 99

6.1 Unfolded ∆φ Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 99

iv



6.2 Comparison With Different Event Generators . . . . . . . . . . . . . 101

6.2.1 Pythia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.2 Herwig++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusion 107

A Other Contributions to the ATLAS Experiment 109

A.1 General LAr Calibration and Commissioning . . . . . . . . . . . . . . 109

A.2 LAr Endcap Calorimeter Noise Studies . . . . . . . . . . . . . . . . . 110

A.3 Hadronic Endcap Calibration Software . . . . . . . . . . . . . . . . . 111

A.4 Forward Calorimeter High Voltage Anomaly Modelling . . . . . . . . 111

Bibliography 112

v



List of Tables

2.1 Pseudo-rapdity, longitudinal segmentation and granularity of the elec-

tromagnetic calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Pseudo-rapdity, longitudinal segmentation and granularity of the hadronic

end-cap calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Pseudo-rapdity, longitudinal segmentation and granularity of the for-

ward calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Pseudo-rapdity, longitudinal segmentation and granularity of the hadronic

tile calorimeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Number of channels and percentage of channels operational for the sub

systems of the ATLAS detector. . . . . . . . . . . . . . . . . . . . . . 50

4.1 Data quality flag and LHC status requirements. . . . . . . . . . . . . 65

4.2 Run numbers and corresponding luminosity blocks used in this analysis. 66

4.3 Number of events passing each stage of the event selection. . . . . . . 68

4.4 Jet quality cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Monte Carlo data set components. . . . . . . . . . . . . . . . . . . . . 73

5.1 Jet kinematic cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Jet resolution fit parameters and over smearing parameter ǫsmear. . . 97

vi



6.1 Unfolded values of normalized ∆φ spectrum including statistical and

systematic errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vii



List of Figures

1.1 The possible QCD vertices with order in αS shown. The convention

used for the Feynman diagram depiction of quarks and gluons is also

shown and labelled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Example of a leading order and a next to leading order e+e− → e+e−

Feynman diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Schematic diagram of screening due to dipoles in a dielectric medium. 6

1.4 Possible loops in the gluon propagator which are responsible for colour

charge screening and anti-screening. . . . . . . . . . . . . . . . . . . . 7

1.5 Running of αs as a function of Q2. . . . . . . . . . . . . . . . . . . . 8

1.6 Feynman diagrams depicting parton splitting with corresponding split-

ting functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Proton PDFs at Q2 = 10000 GeV2. . . . . . . . . . . . . . . . . . . . 12

1.8 Examples of higher order qq̄ → qq̄ diagrams with internal (left) and

final state (right) gluons. . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Correspondence between jet multiplicity and ∆φ. . . . . . . . . . . . 17

2.1 Schematic of the LHC and the injection chain. Not to scale. . . . . . 22

viii



2.2 Production cross sections and rates as a function of
√

s for some stan-

dard model and beyond the standard model processes. . . . . . . . . 23

2.3 The ATLAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 The ATLAS coordinate system. . . . . . . . . . . . . . . . . . . . . . 28

2.5 The ATLAS Muon Spectrometer . . . . . . . . . . . . . . . . . . . . 29

2.6 ATLAS Inner Detector showing the SCT the pixel and TRT detectors. 30

2.7 Exploded view of the ATLAS Inner Detector showing the R positions

of the components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 The ATLAS Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Schematic of the calorimeter cut away in the R − z plane showing the

boundaries in pseudo-rapidity. Note that the FCal is not included. . . 35

2.10 Diagram of a section of the ATLAS electromagnetic barrel calorimeter.

The accordion geometry and the segmentation in azimuth and pseudo-

rapidity are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.11 Linearity and single particle fractional energy resolution in the EMB

as measured with an electron test beam (η = 0.687). . . . . . . . . . . 38

2.12 Diagram of one of 64 tile wedge modules. . . . . . . . . . . . . . . . . 40

2.13 Linearity and single particle fractional energy resolution of the com-

bined EMB and tile calorimeters as measured using a pion test beam

(η = 0.25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.14 Example of a liquid argon electronics pulse shape, showing 25 ns sam-

pling, resulting from the overlaid triangular ionization pulse. . . . . . 43

2.15 Possible choices for jet window configuration relative to a jet RoI for

window sizes of 2 × 2, 3 × 3 and 4 × 4 jet elements. . . . . . . . . . . 48

ix



2.16 Example of criteria for RoI (labelled as R) being a local maximum.

Rotations and reflections of this configuration are equivalent. . . . . . 48

2.17 MBTS trigger efficiency as a function of number of particles. . . . . . 49

3.1 Example result of anti-kT clustering algorithm, run on a Herwig gen-

erated QCD event, showing the grouping of energy in conical distribu-

tions around the high energy objects. . . . . . . . . . . . . . . . . . 56

3.2 Two jet event recorded in the ATLAS detector. The upper-left and

lower-left panels show R − φ and R − z projections respectively and

the upper-right panel shows the calorimeter cell energies as a function

of η and φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Jet energy scale correction for two example bins in η. . . . . . . . . . 59

3.4 Relative jet energy scale uncertainty as a function of |η| and pT . . . . 62

4.1 Trigger efficiency for the L1 J5 jet trigger as a function of pT and η.

Trigger efficiencies are ≈ 100% for pT > 60 GeV. . . . . . . . . . . . . 68

4.2 Jet pT showing cut flow of jet quality cuts. The N90 cut has an effect

at high PT while the other cuts show a negligible effect. . . . . . . . . 71

4.3 Jet φ showing cut flow of jet quality cuts. The cuts remove a small

number of event uniformly which has a negligible effect on the distri-

bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Jet η showing cut flow of jet quality cuts. The cuts remove a small

number of event uniformly which has a negligible effect on the distri-

bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Definition of azimuthal angle ∆φ which lies in the range [0, π]. . . . . 76

x



5.2 Transverse momentum distributions for leading and second leading

jets. MC spectrum is normalized to the number of events in data. . . 76

5.3 Rapidity distributions for leading and second leading jets. MC spec-

trum is normalized to the number of events in data. . . . . . . . . . . 77

5.4 Azimuthal angle distributions for leading and second leading jets. MC

spectrum is normalized to the number of events in data. . . . . . . . 77

5.5 Normalized differential 1
σtot

dσ
d(∆φ)

cross section with no unfolding cor-

rections, statistical errors only. . . . . . . . . . . . . . . . . . . . . . . 78

5.6 (above) Full-sim and truth ∆φ distrubutions. (below) Ratio of the

full-sim to the truth ∆φ distributions. This ratio corresponds to the

expected amount of unfolding required. . . . . . . . . . . . . . . . . . 80

5.7 Migration matrix Mij . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 Migration matrices for events in which the third truth jet is mis-

reconstructed as a leading jet (right), and for events in which the third

truth jet is reconstructed as a leading jet (left). . . . . . . . . . . . . 83

5.9 Fraction of events in which the third truth jet is reconstructed as one

of the leading full-sim jets (in MC). . . . . . . . . . . . . . . . . . . . 84

5.10 Total unfolding correction on the ∆φ spectrum resulting from the

weights described by equations ?? and ??. . . . . . . . . . . . . . . . 85

5.11 Number of jets. Ratio of data to full-sim Monte Carlo shown (lower). 88

5.12 Distribution of third jet pT . Ratio of data to full-sim Monte Carlo

shown (lower). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.13 Distribution of third jet rapidity. Ratio of data to full-sim Monte Carlo

shown (lower). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi



5.14 The effect of mis-modeled third jet kinematics: The red line shows

the systematic error on the unfolding done using the a 3-D unfolding

histogram, W . The black shows the effect on the ∆φ spectrum of the

weighting Wjet3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.15 pT resolution estimated from MC. . . . . . . . . . . . . . . . . . . . . 93

5.16 The half-Gaussian fit result to the pT response in two example pT bins. 93

5.17 η resolution estimated from MC. . . . . . . . . . . . . . . . . . . . . . 95

5.18 φ resolution estimated from MC. . . . . . . . . . . . . . . . . . . . . 96

5.19 Relative systematic and statistical errors: All the sources of systematic

errors are shown individually. The total error is taken as the quadratic

sum of the individual errors. . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Unfolded normalized ∆φ spectrum including statistical and systematic

errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Unfolded normalized ∆φ spectrum compared with Pythia and Her-

wig++ predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xii



Chapter 1

Introduction

This thesis describes a measurement made using the ATLAS detector at the Large

Hadron Collider (LHC). The measurement of interest is the azimuthal decorrelation

in di-jet events. This introductory chapter lays out some of the theoretical back-

ground needed to understand this measurement, discusses some of the details of the

high energy physics entities known as “jets” and describes and motivates the measure-

ment. Chapter 2 gives an overview of the LHC and describes the ATLAS detector.

Chapter 3 details the algorithms used by the analysis software which use detector

output to reconstruct jets. Details of the data set and a simulated data set are dis-

cussed in chapter 4. The details of this specific analysis are explained in chapter 5

including discussions of uncertainty calculations. The results are shown with a com-

parison to simulation predictions in chapter 6. Concluding remarks can be found in

chapter 7.

The remainder of this chapter is a synthesis of ideas taken from [1][2][3][4][5][6].

1
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1.1 The Standard Model

The Standard Model (SM) of particle physics is a theory that describes the particles

which make up all matter that we know of and the interactions, or forces, between

these particles. There are three fundamental forces described by the SM which are:

the electromagnetic force, the weak force and the strong force. The SM is based on a

gauge symmetry under the group UY (1)⊗SUL(2)⊗SUC(3). The group UY (1)⊗SUL(2)

yields the electroweak (the unified electromagnetic and weak) forces while the group

SUC(3) describes the strong interactions. The SM says nothing of the gravitational

interaction; however, the gravitational force is so weak (at currently accessible energy

scales) compared to the other forces that it is neglected in the following without

consequence.

The SM includes two classes of particles, these are the fermions which are spin-1
2
∗

and, bosons which are particles with integer spin. The vector bosons (spin-1) in the

SM mediate the interactions of the particles, including in some cases the interactions

of the bosons with themselves, by transmitting the force between them. The force

carrying boson for the electromagnetic force is the photon. The vector bosons of the

weak interaction are the W± and the Z0, and there are eight gluons that transmit

the strong force.

There is one additional boson (which is spin-0) in the SM called the Higgs boson.

This particle is a result of the Higgs mechanism which is needed in the SM in order to

generate particle masses. The Higgs mechanism involves introducing a SU(2) complex

∗In general fermions can be any be any half integer spin (e.g. 1

2
, 3

2
, 5

2
. . . ) but the fundamental

fermions of the SM are spin- 1

2
.
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scalar doublet field into the theory and allows particles to have mass in the theory

without violating gauge invariance. The result is that the theory requires one spin-0

particle which couples to all massive particles. This is the Higgs boson; which is the

only SM particle yet to be discovered experimentally.

The fundamental fermions are the building blocks of matter. They are classified in

two groups: leptons and quarks. Both the leptons and the quarks are grouped into

three generations where each generation contains a SU(2) doublet of particles giving

a total of six leptons and six quarks. Each lepton doublet contains one particle with

charge -1; these three leptons are (in order of increasing mass): the electron (e), muon

(µ) and tau (τ), each having a corresponding (electric) chargeless neutrino, (νe, νµ

and ντ respectively). The lepton generations differ in mass† and can be written in

ascending mass order as:

(

e

νe

) (

µ

νµ

) (

τ

ντ

)

.

The quarks are named up (u), down (d), charm (c), strange (s), top (t) and bottom

(b) and are written in their doublets, in ascending mass order as:

(

u

d

) (

c

s

) (

t

b

)

.

The quark charges are +2
3

for the up-type (the upper entry in the doublet) or −1
3

for

the down-type (lower entry).

The leptons do not combine with other particles to form other subatomic particles.

†The mass referred to here are the masses of the e, µ and τ . The neutrinos also have mass
(although they are treated as massless in the SM) but their masses are not known at this time.



Chapter 1. Introduction 4

However, the contrary is true for the quarks whereby they do not exist in a bare

state (alone) but rather combine to form what are known as hadrons. Hadrons are

classified as either baryons or mesons. Baryons contain three quarks whose electric

charges sum to an integer value, for example the proton (uud) and the neutron (udd).

Mesons contain one quark and one anti-matter partner of the quark, the anti-quark,

for example pions (e.g. uū or ud̄).

It is the strong force that is of interest in the following discussion as it is the interaction

which is relevant to the physics studied in this thesis. This is the force which is

responsible for holding protons and neutrons together in atomic nuclei and is also the

force with which the constituents of the proton interact most readily‡.

1.2 Quantum Chromodynamics

The theory of the strong force is known as quantum chromodynamics (QCD) and is

based on the gauge symmetry SUC(3), where C stands for colour. The requirement of

local gauge invariance under SU(3) transformations results in eight massless gluons

which carry colour charge (of which there are three, and three anti-charges) and are

responsible for the transmission of this force. There are three interaction vertices in

QCD which are shown in figure 1.1 along with the corresponding dependence on αs,

the coupling strength of the strong interaction. The convention used for the Feynman

diagrams to depict quarks and gluons is also shown and labelled. Note that in QCD

the force carrying bosons (the gluons) have self-interactions, which will be important

‡In fact the constituents of the proton can interact via the electromagnetic and weak forces as
well but, as the name implies, the strong force is much stronger and dominates other interactions.
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Figure 1.1: The possible QCD vertices with order in αS shown. The convention used
for the Feynman diagram depiction of quarks and gluons is also shown and labelled.

in following section.

1.2.1 Running of αs

The strength of the strong interaction depends on a parameter, αs, which depends on

the four momentum transfer (Q2) between the interacting partons. In order to under-

stand this phenomenon qualitatively it is useful to first consider a similar phenomenon

in the theory of quantum electrodynamics (QED), which describes the electromag-

netic interaction. In QED the force carrying boson (the photon) couples to electrically

charged particles. Since the photon does not carry electric charge it does not couple

to itself, therefore the only vertex possible is the one analogous to the left most di-

agram in figure 1.1 with q → e, g → γ and with the coupling αS → α where α is

the strength of the QED coupling. In the case of e+e− → e+e− (Bhabha) scattering§,

the leading order diagram can be modified by diagrams in which the photon contains

§Bhabha scattering is one example, the situation is the same regardless of the process in which
the photon is exchanged.
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Figure 1.2: Example of a leading order and a next to leading order e+e− → e+e−

Feynman diagram.

Figure 1.3: Schematic diagram of screening due to dipoles in a dielectric medium.

intermediate e+e− loops. Figure 1.2 shows an example of a leading order (LO) and a

next to leading order (NLO) contributions to Bhabha scattering. The effect of hav-

ing the e+e− loop is similar to the charge screening due to dipoles around an electric

charge in a dielectric medium, as illustrated in figure 1.3, where the perceived charge

increases with shorter distance to the charge. Short distance scale equates to higher

Q2 meaning that the QED coupling increases with Q2.

In QCD a similar effect is present, however there are more possible vertices to con-

sider. In the case in which only quark loops are considered, the same effect as the
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Figure 1.4: Possible loops in the gluon propagator which are responsible for colour
charge screening and anti-screening.

QED screening occurs. However, since the gluon itself carries colour charge the gluon

self-interactions add two extra corrections with gluon loops, at leading order. Fig-

ure 1.4 shows the three types of loops in the gluon propagator which go into the

effect on the strong coupling. Unlike the quark loop which leads to colour charge

screening analogous to the electric charge screening of QED, the gluon loops have

an anti-screening effect that decreases the coupling with increasing Q2. The overall

dependence of αS on Q2 (at LO) is

αs(Q
2) =

12π

(11n − 2f) ln Q2

Λ2

(1.1)

where n is the number of colours, f is the number of quark flavours and Λ is the

energy scale, such that this evolution is only valid for Q2 ≫ Λ2. From equation 1.1 it

is clear that with increasing Q2, αs decreases. Figure 1.5 shows recent measurements

of, and fits to, αs as a function of Q2[7].
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Figure 1.5: Running of αs as a function of Q2.

1.3 Factorization

The problem of calculating what happens when two protons are brought into collision

at high energies is very complex. It involves QCD physics at many different scales

and hence different values of αs. The quarks inside a single proton interact with each

other at low energy or large distance (∼ 1 fm), while the interaction between the

constituents of the two colliding protons happens at high energy or short distance

scale. The fate of the final state particles from that interaction is also governed

by large distance scale QCD. Because αs decreases with increasing energy, the hard

interaction of the partons can be calculated by means of a perturbative expansion

since the coupling is small. However, the initial and final processes, which take place

at large distance scale, are not calculable perturbatively, so the full interaction can

not be calculated. Fortunately, according to the factorization theorem[8], these three

processes can be treated independently; a perturbative calculation can be used for
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the hard interaction of the partons while other methods are used to handle the large

distance scale physics describing the initial and final states. Explicitly, the cross

section for an interaction of two partons, a and b coming from protons A and B,

interacting and producing some partonic final state X can be written as¶

σAB =

∫

dxadxb fa/A(xa)fb/B(xb)σ̂ab→X . (1.2)

Here the functions fa/A(xa) and fb/B(xb) are parton density functions describing the

distribution of the momentum fraction xa (or xb) of the initial state partons in a

proton, and σ̂ab→X is the cross section of the hard interaction ab → X which is

calculable perturbatively. What happens to the outgoing partons is then treated

separately as described in section 1.3.3. This splitting of the entire process into three

sub-processes is called factorization and is needed to make predictions at the LHC.

Note that there is one other part of the process which is not mentioned in the above.

This related to the remaining part of the proton which was not involved in the hard

interaction. This is known as the underlying event. It is also described by large

distance scale physics and can be accounted for by means of a correction to measured

quantities.

1.3.1 Parton Density Functions

The parton density functions (PDFs) fa/A(xa) and fb/B(xb) in equation 1.2 are used

to calculate the probability of having some type of parton carrying a fraction x of

¶In general the process does not have to be parton-parton → n-partons but for the purpose of
this thesis it is the process of concern.
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the total proton momentum. PDFs cannot be calculated from first principles but

rather are determined from fits to experimental results, for example, deep inelastic

scattering of electrons and protons and the results of hadron collider experiments.

The two most prevalent collaborations which provide PDFs are the CTEQ[9] and

MRST[10] groups. The PDFs mentioned above, however, are an over-simplification.

In fact, PDFs have a dependence on the momentum transfer, Q2, between the initial

state partons. This is due to the fact that before the interaction the incoming partons

can emit initial state radiation (ISR), that is, emit another parton in a splitting as

illustrated in the diagrams shown in figure 1.6. The PDFs evolve as a function of

Q2 according to the Dokshitzer - Gribov - Lipatov - Altarelli - Parisi (or DGLAP)

equations[11], which are

dq(x, Q2)

d log Q2
=

αs

2π

∫ 1

x

dy

y

(

Pq←q

(

x

y

)

· q(y, Q2) + Pq←g

(

x

y

)

· g(y, Q2)

)

dq̄(x, Q2)

d log Q2
=

αs

2π

∫ 1

x

dy

y

(

Pq←q

(

x

y

)

· q̄(y, Q2) + Pq←g

(

x

y

)

· g(y, Q2)

)

dg(x, Q2)

d log Q2
=

αs

2π

∫ 1

x

dy

y

(

Pg←q

(

x

y

)

·
∑

q

[

q(y, Q2) + q̄(y, Q2)
]

+ Pg←g

(

x

y

)

· g(y, Q2)

)

(1.3)

where the PDFs have been split up into q(x, Q2), q̄(x, Q2) and g(x, Q2) for quarks,

anti-quarks and gluons respectively‖. The functions of the form Pp←p′

(

x
y

)

are the

leading order splitting functions which describe the probability of a parton p′ with

proton momentum fraction y radiating a parton with momentum (1 − x
y
)y leaving

the interacting parton p (not necessarily the same species) with momentum fraction

x. Figure 1.6 shows the Feynman vertices associated with each splitting function.

‖The fact that there are PDF contributions from gluons and anti-quarks will be explained in
what follows.
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Figure 1.6: Feynman diagrams depicting parton splitting with corresponding splitting
functions.

Figure 1.7[12] shows an example of a proton PDF for a value of Q2 = 10000 GeV2.

Although the proton is said to be composed of the “valence” quarks uud it is clear

that there are particles other than these valence quarks carrying some momentum

fraction of the proton. The valence quarks dominate at high values of x. However,

through qq̄ loops all other types of quarks can be present as well; these are called

“sea” quarks. Also, there is a very large contribution from the gluons at low x. The

gluons make up a total of about 50% of proton’s momentum, mostly at low x.

1.3.2 Perturbative QCD

As mentioned above, after factorizing the proton-proton interaction into three parts

it is only the middle part, the hard parton-parton interaction which is calculable.

This calculation is only possible because of the decreasing value of αs with increasing

characteristic momentum scale. The calculation of σ̂ab→X from equation 1.2 is done

by means of a perturbative expansion in powers of αs but is only valid for a Q2 ≫

Λ2. Each term of the perturbative expansion includes Feynman diagrams with more

vertices, which can result in internal loops or additional partons in the final state.

Figure 1.8 shows an example of two higher order diagrams for the process qq̄ → qq̄.
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Figure 1.7: Proton PDFs at Q2 = 10000 GeV2.
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Figure 1.8: Examples of higher order qq̄ → qq̄ diagrams with internal (left) and final
state (right) gluons.

The diagram with the final state gluon reflects the case in which the calculations to

higher order correspond to a cross section for events with more than two jets. This

concept of multiple parton topologies corresponding to higher order calculations will

be important in later sections.

1.3.3 Fragmentation

After the perturbative calculation, to some order, is done to obtain σ̂ab→X , the final

step of the factorized problem is the long distance scale process that determines the

fate of the outgoing partons. The probability of a parton radiating another parton

at this point is O(αs ln2 Q2

Λ2 ) and since αs ∼ ln−1 Q2

Λ2 there is a high probability that a

parton is emitted. These emitted partons can in turn emit additional partons eventu-

ally resulting in a collection of partons, mostly travelling in the direction of the initial

parton, which combine to form hadrons. This process is known as hadronization.

The process of the partons radiating other partons and the subsequent hadronization

together is called fragmentation.

Fragmentation, like the initial step of the factorized problem, is not calculable per-
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turbatively but is treated in a similar manner to the parton density functions. The

functions which describe the probability of evolution from a parton of type p to a

hadron of type h, such that the hadron carries a fraction z of the parton’s momen-

tum, are called fragmentation functions Fh←p(z). Like PDFs these functions are

determined from experiment and then applied to calculations universally. Also like

PDFs, they evolve as a function of Q2 so should be written Fh←p(z, Q
2).

1.4 Jets

The process of a proton-proton interaction, which was discussed in the previous sec-

tion, results in groups of hadrons being formed travelling in approximately the same

direction as the outgoing partons from the hard scatter. These collimated groups of

hadrons are known as “jets”. Although this is a nice picture of what happens to a

single parton after some hard interaction, the picture is over-simplified. First of all,

experimentally it is not possible to define a jet in this manner as there is no way to

know if a final state particle came from a specific parton or not. Hence the definition

of a jet needs to be formulated in a different way. A jet will therefore be defined

as the result of a jet finding algorithm. Jet finding algorithms are tools which use

the proximity of particles∗∗, in either coordinate or momentum space, to group them

together. These groups of particles are defined to be the jets. A jet algorithm also

calculates the four momentum of the jet. This definition is also useful for theoretical

calculations as the outgoing partons (and incoming ones for that matter) do not act

∗∗The term particle is somewhat generic here. Really it can be any object with known four
momentum. It will be shown that in experiment clusters of energy are used.
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as independently as was described. Each coloured object in the event is influenced by

many other coloured objects, so it may not be clear, even in calculation, how to match

final state particles to partons (especially in light of the fact that fragmentation is a

long distance phenomenon which is not calculable via perturbative QCD). Note that

for a comparison between theory and experiment for a jet observable, it is necessary

for the theorist and the experimentalist to implement the same jet algorithm. If an

experimental result is a partonic measurement, that is, it is thought to describe the

behaviour of the partons, not the particle jets, then this is not necessary. In the

following the results are presented at the jet level. The details of the specific jet

algorithm used are found in chapter 3.

1.5 Azimuthal Decorrelation

The focus of the analysis described in this thesis is a measurement of the azimuthal

decorrelation in di-jet events resulting from proton-proton collisions in the LHC. The

concept is to employ a simple observable that is sensitive to multi-jet production and

robust against systematic effects.

As discussed above, knowing the protons’ momenta does not uniquely dictate the

momenta of the interacting partons. However, the partons inside the protons of the

LHC beams have no appreciable momentum in the direction perpendicular to them

therefore the vector sum of the total momentum in this direction must always be zero.

It is conventional to define the plane perpendicular to the proton beam direction as

the “transverse” plane. The component of a jet’s momentum projected into this plane
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is called the transverse momentum (pT )††. The azimuthal decorrelation measurement

is performed by measuring only the properties of the two leading jets (“leading”

refers to the jets with the highest pT ). The advantage of this observable is that it

can be used to test perturbative QCD predictions at orders higher than LO (since it

is sensitive to multi-jet production) or can be compared to Monte Carlo simulations

(that may only make calculations to LO) which attempt to describe proton-proton

collisions. It is beneficial to be able to have such a measurement while only having

to measure properties of the jets with the highest transverse momentum since these

jets are least sensitive to experimental confounds. The azimuthal decorrelation is one

such measurement which looks at the angle (∆φ) in transverse plane between the two

leading jets. Figure 1.9 shows the correspondence between jet multiplicity and ∆φ

range. Since the final vector sum of the pT of all objects in an event must be zero,

in the case where there are only two jets in an event, the requirement that the jets’

pT must balance forces ∆φ = π. As more jets are present in the events the possible

range of ∆φ includes values < π. The smaller the value of ∆φ the more decorrelated

the leading jets are said to be. More details regarding how this observable is defined

and measured are found in chapter 5. A similar measurement has been reported by

the D0 collaboration[13]. These results will be discussed briefly in chapter 6.

††Note that throughout this document the convention of expressing momenta in units of GeV is
used as opposed to units of GeV

c
.
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Figure 1.9: Correspondence between jet multiplicity and ∆φ.



Chapter 2

The ATLAS Detector and the

LHC

The ATLAS detector [14, 15, 16] is one of the two general purpose detectors at

the Large Hadron Collider (LHC)[17]. It has been designed to provide precision

measurements of the energy, momentum and trajectory of particles resulting from

the collision of protons at one of the LHC’s four interaction points. This chapter

will give an overview of the LHC and a description of the ATLAS detector, which

will focus on the parts of the detector which are of relevance to this analysis. Unless

otherwise stated, the figures in this chapter are taken from [14].

18
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2.1 The Large Hadron Collider

The Large Hadron Collider at the European Organization for Nuclear Research (CERN),

is a proton-proton collider located ∼ 100 m underground below Switzerland and

France near Geneva, Switzerland. It occupies the 27 km long underground tunnel

which was first built to house the Large Electron Positron Collider (LEP), which as

the name implies, was an e+e− collider. LEP was just one in a series of colliders

which have been built and (hopefully) will be built in the future. The predecessor

to LEP at CERN, was the Super Proton Synchrotron (SPS). This accelerator began

commissioning in 1976 and was in operation until the mid 1980’s bringing protons

and anti-protons into collisions at energies up to 400 GeV per beam. During this time

the W± and Z0 boson were discovered at the SPS[18][19] lending great credence to

the SM. The SPS was later converted into an e+e− accelerator which was used as an

injector for the LEP collider which began operation in 1989. Although there were

no discoveries made at LEP it benefited from the relatively clean environment of a

lepton collider and was able the make very high precision measurements[20] in the

electroweak sector as well as putting mass limits on particles which have not (yet)

been discovered. Independent of CERN, in Illinois, USA, a proton anti-proton col-

lider (The Tevatron) was built and began operation in 1983 with beam energies of

∼ 900 GeV per beam. The last quark to found experimentally (the top quark) was

discovered at the Tevatron in 1995[21]. None of the experiments at these colliders

have been able to discover the Higgs boson, although all of the results are still con-

sistent with its existence and the LEP experiments have been able to put a lower

limit on its mass of 114 GeV[22]. It remains the only piece of the SM to be observed

directly in experiment.
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The search for the Higgs boson is one of the motivations for building the LHC, how-

ever not the only one. There are a host of theories beyond the Standard Model (BSM)

which can explain some phenomena that are not addressed in the SM. Without going

into detail, some examples are Super Symmetry (SUSY), Universal Extra Dimensions

(UED) and theories which involve heavy versions of the vector bosons (W ′ and Z ′).

Each of these theories has regions of their parameter space which will be accessi-

ble at the LHC via the production of heavy particles which have never before been

observed.

The LHC is poised to confirm or deny the existence of the Standard Model Higgs

particle and to discover or limit the viability of BSM theories. In the tradition of

hadron colliders making discoveries, and electron positron colliders making precision

measurements, planning is underway for a future TeV-scale electron positron collider.

If built this machine would allow for high precision measurement of the properties of

any phenomena discovered at the LHC.

The LHC consists of ∼ 1200 superconducting dipole magnets which are used to bend

proton beams around its circumference. These magnets are cooled by superfluid

liquid helium, are maintained at a temperature of 2 K and can achieve a magnetic

field of 8 T. The LHC also includes ∼ 400 superconducting quadrupole magnets used

for beam focusing.

The LHC accelerator is the final machine in a chain of accelerators which together

bring protons up to their collision energy. The accelerators leading up to the LHC

are known as the injection chain. Figure 2.1 shows a schematic (not to scale) of the

LHC and the injection chain. The injection chain consists of:
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Linac2 A linear accelerator that accelerates the protons to an energy of 50 MeV.

Proton Synchrotron Booster (PSB) The first of three circular accelerators the

PSB brings the protons up to 1.4 GeV.

Proton Synchrotron (PS) The PS, which started operation as a standalone accel-

erator in 1959, brings the protons from 1.4 → 25 GeV.

Super Proton Synchrotron (SPS) The SPS accelerator which began operation in

1976 was CERN’s primary research machine through to the mid 1980’s. It

now serves as the final stage in the injection chain accelerating protons from

25 → 450 GeV and injecting them, via two transfer lines, into the LHC.

The protons injected into the LHC are grouped into bunches. Once injected, the

proton bunches are accelerated by an RF system that operates at 400 MHz with a

voltage per beam of 8 − 16 MV. This accelerates the proton bunches to their final

collision energy.

There are two important parameters when considering the physics reach of a particle

collider: the centre of mass energy and the instantaneous luminosity. The centre

of mass energy is the energy which is available in the colliding particles (protons

in the case of the LHC) for production of other particles. Increasing the centre of

mass energy can increase the cross section of a process of interest or provide enough

energy to be above a production threshold for massive particles, such as the Higgs

or particles from BSM theories. The instantaneous luminosity is related to the rate

at which collisions take place. For rare processes, a high instantaneous luminosity is

important in order to increase the probability of observation. Figure 2.2[23] shows
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Figure 2.1: Schematic of the LHC and the injection chain. Not to scale.

the centre of mass energy (
√

s) and cross section (σ) for some processes at the LHC.

The right-side y-axis shows the rate (in Hz) of events produced as a function of

√
s. The curves on the plot correspond to various physics processes of interest. The

numbers given for the event rate are for the LHC maximum design luminosity and

the event rate scales linearly with this number, i.e. the event rate is proportional

to the instantaneous luminosity. Note that the event rate also increases (over this

energy range) as
√

s increases. This plot also shows the predicted cross sections for

some BSM physics processes, for example, g̃ and q̃ refer to particles associated with

SUSY.

The LHC has been designed to operate at a maximum centre of mass energy,
√

s, of

14 TeV with a maximum instantaneous luminosity of L = 1034 cm−2s−1. A discussion

of luminosity can be found in chapter 4. This luminosity is achievable by filling
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Figure 2.2: Production cross sections and rates as a function of
√

s for some standard
model and beyond the standard model processes.
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the LHC with ∼ 2800 bunches each containing ∼ 1011 protons. During the period

that the data for the analysis in this thesis were taken, the LHC was operating at

√
s = 7 TeV (half of the design energy), and achieving instantaneous luminosities

of L ∼ 1029 − 1030 cm−2s−1, with 16 or fewer bunches in the machine with 1010 −

1011 protons per bunch. With this few protons per bunch the probability of have

multiple proton-proton interactions is small. With more protons per bunch up to 20

interactions per bunch crossing are expected. This phenomenon is known as “pileup”

and can affect the measured energy of objects in the detector. However, this is not

of concern in the data set considered for this analysis.

In 2008 the LHC started the magnet commissioning process to prepare for beam

energies of 7 TeV per beam. During this process one of the magnets experienced an

electrical short which resulted in a breech in the magnet’s cryostat, explosively venting

many tonnes of helium and damaging many magnets. This took approximately one

year to repair. Although this type of problem which caused the accident can now be

foreseen and avoided, the current, lower than nominal, conditions for the LHC energy

and luminosity are precautions. This said, the LHC initial performance is still very

encouraging, as it is the highest energy hadron collider in the world. The collider

to previously hold the record is the Tevatron pp̄ collider in the United States which

operates at
√

s ∼ 2 TeV and L ∼ (1032 − 1033) cm−2s−1.

2.2 The ATLAS Detector

ATLAS is composed of three main detector subsystems, which are shown in fig-

ure 2.3:
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• Muon Spectrometer which consists of the muon chambers and superconduct-

ing toroidal magnets.

• Inner Detector which consists of the silicon detector, the semiconductor

tracker, the transition radiation tracker and the solenoid magnet.

• Calorimeter which consists of the liquid argon (LAr) electromagnetic calorime-

ter, the tile calorimeter and the forward hadronic calorimeters.

These detector systems are generally divided into a “barrel” region corresponding to

the central part of the detector, and “endcap” regions corresponding the the forward

parts of the detector. The sub-systems of the inner detector which extend into the

endcap use the same technology as is used in the barrel region. The muon system

and calorimeter systems however, use different technologies in the endcap and barrel

regions in some instances. The analysis that follows focuses on jets reconstructed

in the central region of the calorimeter and thus the barrel is given more emphasis.

The detector also relies on a trigger system which dictates which data events are

recorded.

The detector subsystems and the trigger are described in more detail in the following

sections, following a discussion of the coordinate system defined for ATLAS. Note that

neither the muon spectrometer nor the inner detector are of significant importance∗

to the following analysis. For this reason the description of these components of the

ATLAS detector are is somewhat brief, while the description of the calorimeter is

more in depth.

∗Although a vertex reconstructed by the inner detector is required.
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Figure 2.3: The ATLAS Detector
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2.2.1 Coordinate Systems

There are three ATLAS coordinate systems to consider. They are:

1. A right handed Cartesian coordinate system (pictured in figure 2.4) centred at

the interaction point, in which the y-axis is straight up, the x-axis points toward

the centre of the LHC, and the z-axis points along the beam direction.

2. A spherical coordinate system based on the Cartesian system, using the az-

imuthal angle φ, which is the angle measured in the x-y plane up from the

x-axis, θ, the polar angle measured up from the z-axis and s the distance to the

origin.

3. A cylindrical coordinate system based on the Cartesian system, using the same

azimuthal angle φ as above, the perpendicular distance to the z-axis (R) and

the z coordinate.

Note that in the following, the angle θ is not used but rather the coordinates ra-

pidity, y, and pseudo-rapidity, η. For the description of jet direction in a physics

measurement the quantity y is used where

y =
1

2
ln

(

E + pz

E − pz

)

. (2.1)

Here E is the energy and pz is the projection of the momentum in the z-direction. In

some cases, it is more convenient to use pseudo-rapidity η which is lim
m→0

y, where m

is mass, or

η =
1

2
ln

( |~p| + pz

|~p| − pz

)

(2.2)
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Figure 2.4: The ATLAS coordinate system.

which reduces to

η = − ln

[

tan

(

θ

2

)]

. (2.3)

This quantity is independent of particle mass and depends only on the angle θ making

it more suitable for referring to quantities related to the detector itself, for example

coverage or location of detector components.

2.2.2 Muon Spectrometer

The muon spectrometer, depicted in figure 2.5, is designed to accurately measure

the momenta of muons which are expected to pass through and exit the detector.

The muon spectrometer can record space point hits up to |η| < 2.7. This system is

the outermost detector and relies on a magnetic field in the circumferential direction

which is generated by the toroidal magnets. Charged muons’ trajectories are bent in

this magnetic field and space point measurements are made using precision tracking

chambers in order to reconstruct the muons’ trajectories to calculate the momentum.
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Figure 2.5: The ATLAS Muon Spectrometer

These chambers are known as the monitored drift tubes (MDTs). Planes of MDTs

are arranged in layers of 3 or 4 at three sampling distances in the barrel region,

inner (R ≈ 4.5 − 6 m), middle (R ≈ 7 − 8 m) and outer (R ≈ 9 − 11 m). The muon

spectrometer is designed to have a standalone momentum resolution of 10% for 1 TeV

muons. The central region of the muon system also includes modules with resistive

plate chambers (RPCs) in order to deliver track information within a few tens of nano

seconds for the purpose of muon triggering up to |η| = 2.4. In the forward region

the particle flux is too high for the MDTs and they are replaced with cathode strip

chambers (CSCs) which can be operated with a higher hit occupancy. The forward

boundary of the muon system is at |η| = 2.7. The muon endcap trigger information

comes from the thin gap chambers (TGCs) which are located behind the endcap

calorimeters.
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Figure 2.6: ATLAS Inner Detector showing the SCT the pixel and TRT detectors.

2.2.3 Inner Detector

The inner detector (ID), depicted in figure 2.6, consists of three independent sub-

systems; the silicon pixel detector, the silicon microstrip (SCT), and the transistion

radiation tracker (TRT), all of which are located inside a 2 T solenoid magnet. Figure

2.7 shows the distances to the beam axis of the ID subsystems. The ID is designed to

reconstruct the paths of charged particles passing through it both for the reconstruc-

tion of vertices and to make momentum measurements. The pixel detector and SCT

use finely segmented solid state silicon components in order to give high precision

spatial measurements while remaining radiation hard. The pixel detector consists of

≈ 8 × 107 pixels of nominal size 50 × 400 µm2 and provides single space point hit

resolution of 10 µm and 115 µm in the R − φ and the z directions respectively. The

SCT consists of ≈ 6 × 106 channels with a strip pitch of 80 µm and is designed to

provide a spatial resolution of 17 µm and 580 µm in the R − φ and the z directions

respectively. The SCT consists of a barrel section which provides hit information in
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Figure 2.7: Exploded view of the ATLAS Inner Detector showing the R positions of
the components.
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the range of |η| < 1.6 and an endcap section which extends to |η| ∼ 2.5. The TRT

consists of ≈ 4 × 105 drift tubes (or “straw tubes”) of diameter 4 mm which provide

measurements in R − φ in the barrel and in z−φ in the endcap improving the mo-

mentum resolution of the ID with a single straw tube position resolution of 130 µm.

The TRT consists of a barrel section which extends to |η| ∼ 1 and an endcap section

which extends to |η| ∼ 2.2.

2.2.4 Calorimeters

Sampling Calorimeters

All of the calorimeter sub-systems of the ATLAS detector are sampling calorimeters.

These devices are designed to measure the energy of incident particles by means of al-

ternating layers of absorber and active materials. The absorber material, is typically

much more dense than the active material. Incident particles undergo cascades of

interactions resulting in showers of particles. Through the shower the incoming parti-

cle loses all of its energy to these showered particles which deposit all of their energy

into the calorimeter. A sampling calorimeter is designed to measure the energy of the

incident particle using the energy deposited in the active regions by ionization.

Showers are caused by repeating interactions in which a single particle branches into

multiple particles which in turn branch into multiple particles resulting in more and

more particles with decreasing average energy as the shower proceeds. Depending

on whether or not the incident particle is a hadron or an electromagnetic particle
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(electron† or photon) the shower development is different.

Electromagnetic showers are initiated by high energy electrons or photons and consist

of electrons and photons. These particles are produced in a series of Bremsstrahlung

and e+e− pair production processes until the showered particles’ energies are suffi-

ciently low for the probabilities of Compton scattering and the photoelectric effect

to be dominant. Most of the energy of these showers is deposited in the absorber

and a small amount is deposited in the active medium. The fraction of the energy

of an electromagnetic shower which is deposited in the active regions is called the

electromagnetic sampling fraction. The sampling fraction is used to convert from the

measured energy to the total energy of the electromagnetic shower.

Hadrons incident on the calorimeter produce hadronic showers which are the result

of a series of inelastic hadron-nucleon interactions and consist of mostly π± and π0

particles. The π0’s decay almost immediately into photons which shower electro-

magnetically, which means that hadronic showers contain electromagnetic showers

within them. The electromagnetic showers are more compact resulting in an EM

core within the shower. The charged pions continue to interact producing more and

more particles. The energy of a hadronic shower is sampled in the same way as an

electromagnetic shower however there is an additional complication. The strong in-

teractions of the hadrons and nucleons can result in particles losing energy to nuclear

excitations, neutrino or muon production through hadron decay, nuclear break-up or

slow neutrons; processes that do not result in ionization in the active medium. This

is referred to as invisible energy. The energy of a hadronic shower measured by the

calorimeter is said to be at the electromagnetic scale (“em-scale”) and does not rep-

†In this section “electron” refers to electrons or positrons.
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Figure 2.8: The ATLAS Calorimeters

resent the energy of the incident hadron. The ratio between the actual value and the

measured value is called e
h

and is > 1. A calibration to account for this effect needs

to be applied. Details of this procedure can be found in chapter 3.

The ATLAS Calorimeters

The ATLAS calorimeter, depicted in figure 2.8, consists of five subsystems: the tile

calorimeter, the hadronic endcap calorimeter (HEC) and the forward calorimeter

(FCal), which compose the hadronic calorimetry system, and the electromagnetic

barrel (EMB) and electromagnetic endcap (EMEC) calorimeters which make up the

electromagnetic calorimetry system. There are three cryostats in the ATLAS detector.

The EMB is contained in the barrel cryostat and EMEC, HEC and FCal are all

contained in two endcap cryostats (one at each end of the detector).

The ATLAS calorimeter system was designed to measure particle energies uniformly
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Figure 2.9: Schematic of the calorimeter cut away in the R − z plane showing the
boundaries in pseudo-rapidity. Note that the FCal is not included.

over the full range in azimuth and up to a pseudo-rapidity of ≈ 5. Figure 2.9 shows a

schematic of the calorimeter cut away in the R − z plane showing the boundaries in

pseudo-rapidity for all the calorimeter systems with the exception of the FCal.

The readout of each calorimeter is segmented in depth (longitudinally) and in η

and φ. Each segment is referred to as a “cell”. The cell includes the active and

absorber regions within its boundary. The cells’ geometry is projective back to the

interaction point. The segmentation granularity varies for each subsystem and within

each subsystem. The active regions of each cell are instrumented together and there

is a unique electronics channel associated with each cell. Cell granularities are listed

in the sections that follow.
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The Electromagnetic Calorimeter

The electromagnetic (EM) calorimeter is made up of the EMB and EMEC. The

details of their pseudo-rapidity ranges, longitudinal segmentation and cell granularity

are listed in table 2.1[15]. Note that the granularity of each sampling layer decreases

with depth. The very fine segmentation of the first sampling layer improves the

calorimeter’s position resolution. The majority of the energy of an electromagnetic

shower is deposited in the second sampling layer. The granularities of the layers

affect the jet pT and position resolutions, which are discussed in chapter 5. Both of

these subsystems are sampling calorimeters that use lead as the absorber material and

liquid argon as the active medium. The active and absorber layers are said to have

an accordion geometry which is illustrated for a section of the EMB in figure 2.10.

The EMEC accordion geometry differs slightly. This geometry allows for complete

coverage (without gaps) in the azimuthal direction.

Before assembly of the calorimeter a section of the EMB calorimeter was tested by

means of an electron test beam and the single particle resolution and response linearity

were measured. The linearity and the fractional energy resolution (σE

E
), are shown in

figure 2.11[14]. The fractional resolution is conventionally parameterized as:

σE

E
=

a1√
E

⊕ a2 ⊕
a3

E
. (2.4)

The three parameters a1, a2 and a3 of this parameterization describe what are known

as the sampling term, the constant term and the noise noise term, respectively. The

sampling term (sometimes called the stochastic term) is due to statistical fluctuations

which have a variance proportional to n where n is the number of charged particles
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Figure 2.10: Diagram of a section of the ATLAS electromagnetic barrel calorimeter.
The accordion geometry and the segmentation in azimuth and pseudo-rapidity are
shown.

from a shower passing through the active region. The energy E is proportional to n

making the relative energy resolution due to statistical fluctuations proportional to

E−
1

2 . The constant term is due to resolution effects which are proportional to the

energy, making the fractional resolution independent of energy. Examples of such

effects are: gaps in the detector coverage‡, detector non-uniformities or calibration

problems. The noise term describes the contribution to the energy resolution due

to effects, such as electronics noise, which are independent of the energy making an

effect on the fractional energy resolution ∝ E−1.

‡The desire for good detector coverage and hence a lower constant term was one of the reasons
for the EM calorimeters’ accordion geometry.
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Table 2.1: Pseudo-rapdity, longitudinal segmentation and granularity of the electro-
magnetic calorimeter.

EM Calorimeter Barrel End-cap
Coverage |η| < 1.475 1.375 < |η| < 3.2
Longitudinal segmentation 3 samplings 3 samplings 1.5 < |η| < 2.5

2 samplings 2.5 < |η| < 3.2
Granularity (∆η × ∆φ)
Sampling 1 0.003 × 0.1 0.025 × 0.1 1.375 < |η| < 1.5

0.003 × 0.1 1.5 < |η| < 1.8
0.004 × 0.1 1.8 < |η| < 2.0
0.006 × 0.1 2.0 < |η| < 2.5
0.1 × 0.1 2.5 < |η| < 3.2

Sampling 2 0.025 × 0.025 0.025 × 0.025 1.375 < |η| < 2.5
0.1 × 0.1 2.5 < |η| < 3.5

Sampling 3 0.05 × 0.025 0.05 × 0.025 1.5 < |η| < 2.5
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Figure 2.11: Linearity and single particle fractional energy resolution in the EMB as
measured with an electron test beam (η = 0.687).
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Table 2.2: Pseudo-rapdity, longitudinal segmentation and granularity of the hadronic
end-cap calorimeter.

Hadronic LAr
Coverage 1.5 < |η| < 3.2
Longitudinal segmentation 4 samplings
Granularity (∆η × ∆φ) 0.1 × 0.1 1.5 < |η| < 2.5

0.2 × 0.2 2.5 < |η| < 3.2

Table 2.3: Pseudo-rapdity, longitudinal segmentation and granularity of the forward
calorimeter.

Forward Calorimeter
Coverage 3.1 < |η| < 4.9
Longitudinal segmentation 3 samplings
Granularity (∆η × ∆φ) ∼ 0.2 × 0.2

The Hadronic Calorimeter

The hadronic calorimeter is composed of the HEC, the FCal and the tile calorimeters.

The HEC and FCal are, like the EM calorimeter, sampling calorimeters which use

liquid argon as the active medium. The HEC uses copper as the absorber material and

the FCal, which has three sampling layers, has a copper sampling layer followed by two

tungsten sampling layers. The coverage, granularity and longitudinal segmentation

are detailed in tables 2.2 and 2.3[15].

The tile calorimeter is a sampling calorimeter consisting of alternating layers, in the

z-direction, of steel and scintillator (which is the active medium). The scintillator-

steel layers are constructed into 64 wedge shaped modules that form a self supporting

structure. A diagram of one of the modules showing the orientation of the steel and

scintillators is shown in figure 2.12. The scintillators are connected to wavelength

shifting fibres which transmit the light signal from the scintillators to photo mul-

tiplier tubes (PMTs). The specifications regarding the tile calorimeter’s coverage,
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Figure 2.12: Diagram of one of 64 tile wedge modules.

segmentation and granularity are shown in table 2.4[15].

To measure the single particle response using the tile and LAr calorimeters, part of the

EM calorimeter and tile calorimeter were tested simultaneously (in the same relative

configuration as in the ATLAS detector) using pion beams of known energy. From

this, the combined response linearity and fractional energy resolution for single pions

were measured and can be seen in figure 2.13[14] along with a fit to a parameterization

of the fractional resolution.
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Table 2.4: Pseudo-rapdity, longitudinal segmentation and granularity of the hadronic
tile calorimeter.

Hadronic Tile Barrel Extended Barrel
Coverage |η| < 1.0 0.8 < |η| < 1.7
Longitudinal segmentation 3 samplings 3 samplings
Granularity (∆η × ∆φ)
Samplings 1 and 2 0.1 × 0.1 0.1 × 0.1
Sampling 3 0.2 × 0.1 0.2 × 0.1
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Figure 2.13: Linearity and single particle fractional energy resolution of the combined
EMB and tile calorimeters as measured using a pion test beam (η = 0.25).
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Calorimeter Signal Reconstruction

The goal of the signal reconstruction is to obtain a value for the energy deposited

in a cell and to obtain timing information (relative to the LHC collision time for

that event) for that cell. The energy and timing information are inputs into the

reconstruction of physics objects from the calorimeter.

An ionizing particle passing through the active region induces a current pulse in the

electronics. In the tile calorimeter this pulse is the output from a photomultiplier tube.

In the liquid argon detectors the current pulse is a triangular signal, generated within

the cell, which is amplified and shaped by the front-end electronics. An example of

this shaped pulse and a triangular ionization pulse in the liquid argon electronics are

shown in figure 2.14. Note that the area of the shaped pulse above zero (or pedestal) is

equal to the area below zero. This ensures that many overlaid pulses, spread out over

time sum to zero and do not shift the pedestal value. The shaped pulse is sampled

each 25 ns and the samples are used to reconstruct the cell energy (E) and timing (τ)

for that cell. These values are reconstructed by applying optimal filtering coefficients

(OFCs) to the n samples around the peak of the pulse. The OFCs are two sets of

values ai and bi which are applied to the sample values such that

E =

n
∑

i

ai · si (2.5)

and

Eτ =

n
∑

i

bi · si (2.6)

where si are the sample amplitudes in ADC counts. A simplified χ2 parameter is also
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calculated to quantify the agreement between the measured signal and the expected

signal. It is defined as

χ2 =
n
∑

i

(si − E(gi − τ
dgi

dt
))2 (2.7)

where gi is the normalized pulse shape expected from a particle passing through the

active medium. The value of χ2 can be used to determine if a signal is from a particle

passing through the active region or from electronics noise.

Figure 2.14: Example of a liquid argon electronics pulse shape, showing 25 ns sam-
pling, resulting from the overlaid triangular ionization pulse.

Electronics Calibration

The liquid argon and tile calorimeters both have precision charge-injection systems

which are used to calibrate the electronics response. These systems are used to

inject a current pulse into the readout electronics. In the tile calorimeter the pulse

is injected in the electronics after the PMTs and emulates the shape of the PMT
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signal. In the LAr calorimeters it is injected onto the calorimeter electrodes§. The

LAr injected pulse shape is designed to mimic the current pulse expected due to an

ionizing particle passing through the active medium. The amplitude and time relative

to the sampling time of the electronics can be adjusted in these calibration pulses.

Three types of dedicated calibration runs are taken. These are, ramp runs, delay runs

and pedestal runs. During a ramp run the calibration pulse amplitude is increased

in steps throughout the run. From the data taken in these runs the output signal

amplitude can be obtained as a function of the input pulse amplitude. During a delay

run the pulse amplitude is held constant while a time delay is added between the input

pulse injection time and the sampling time. This delay is shifted in 1 ns increments.

The data from the delay runs allow for the reconstruction of the pulse shape with 1 ns

time granularity, as opposed to the 25 ns sampling granularity. A pedestal run is a run

in which the calorimeter is read out with no pulse being injected into the electronics.

The mean value of the output from the electronics during one of these runs is known

as the pedestal value, i.e. the average value expected with no signal pulse. The RMS

of the values about this mean is defined as the characteristic noise in that channel.

The data from the pedestal runs is also used to extract a matrix describing any

correlations between the samples (known as the auto-correlation matrix).

The high time-granularity pulse shape, the pedestal value and the auto-correlation

matrix are all used to calculate the OFCs described in the previous section. The

ratio of the input to output amplitudes is used to obtain the overall normalization.

The characteristic noise for each channel in stored in a database and is accessible for

reconstruction and analysis, for example, to define a signal to noise ratio.

§The is true for all LAr calorimeter subsystems with the exception of the FCal, in which the
pulse is injected into the electronics.
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The tile calorimeter has two additional calibration systems, a laser system and 137Cs

source which is moved hydraulically through the detector, which are used to calibrate

the light response of the scintillators and photomultipliers as a function of time. The

laser system uses a 532 nm laser to inject pulses into the photomultipliers in dedicated

runs and the response as a function of the pulse intensity is measured. The 137Cs

source is moved through the calorimeter, also in dedicated runs, and the response to

the electrons from the beta decays of 137Cs is measured and any changes over time

can be accounted for.

2.2.5 Trigger

Main Trigger Chain

The LHC has the ability to collide bunches of protons at a rate of 40 MHz. It is not

possible to write event data to disk at a rate that high, nor are all of the events of

equal interest, so, as is the case for all collider experiments, a sophisticated trigger

system is used at ATLAS. This trigger system operates at three levels, level-1 (L1),

level-2 (L2) and event filter (EF). Each successive level uses the information from

the previous level and then makes additional decisions. L1 reduces the event rate to

∼ 75 kHz, L2 further reduces it to ∼ 3.5 kHz and finally the event filter reduces the

rate to ∼ 200 Hz which is sufficient to be able to read out and record the data. Each

level of the trigger has different “trigger items” that correspond to physics objects

such as jets, electrons, photons or muons above some ET threshold. For example the

L2 EM30 trigger would be a level-2 trigger designed to trigger on electromagnetic

objects (e or γ) with ET > 30 GeV.
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The L1 uses information from the muon system and the calorimeters to search for

objects (e,γ, τ , µ and jets) with transverse momentum above a predefined threshold.

To allow for a sufficiently short processing time this trigger level relies on field pro-

grammable gate arrays (FPGAs) which operate much more quickly than computation

by computer processor. L1 provides a decision for each L1 trigger item individually

and also supplies an associated region of interest (RoI) which specifies the region

in the detector which will be read out and analyzed by the L2 trigger. The RoI is

also of use in offline studies of the L1 trigger as it is the only available geometrical

information associated with the L1 trigger decision.

The L2 trigger uses all of the detector information from the RoI supplied by L1, which

typically represents ∼ 2% of the total event. Physics objects (for example electrons

or jets) are reconstructed at this stage and a decision for each trigger item is passed

to the EF.

The EF runs reconstruction algorithms on a computer farm located on the surface

above the ATLAS detector. These algorithms are very similar to those run offline

after the data have been recorded. The EF has access to all the event data in memory

and once physics objects have been reconstructed decisions can be made for each EF

trigger item.

The L1 trigger system was the only trigger used during the early running period over

which the data used here were recorded. The analysis described in this thesis uses

only a level-1 jet trigger; the details of which are given in the following.
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Level-1 Jet Trigger

The calorimeter jet trigger uses trigger towers as input. Each trigger tower is a group-

ing of all the cells in a predetermined area of 0.1× 0.1 in ∆η×∆φ projected through

all sampling layers of the electromagnetic and hadronic calorimeters. However, the

L1 jet trigger algorithm uses objects of coarser granularity, “jet elements”, which are

the sum of 2 × 2 trigger towers resulting in a granularity of 0.2 × 0.2 in ∆η × ∆φ.

From the jet elements two objects are constructed for use in the algorithm, a RoI

which corresponds to 2 × 2 jet elements ( 0.4 × 0.4 in ∆η × ∆φ) and a jet window

which is either 2 × 2, 3 × 3 or 4 × 4 jet elements. Each jet trigger item has a prede-

fined jet window size. For each possible RoI the jet window is constructed as shown

in figure 2.15. This figure shows that the 2 × 2 and 4 × 4 windows only have one

possible configuration, while the 3 × 3 window has four possible configuations. For

each possible RoI the sum of the ET of all the towers in the jet window is calculated

(for 3 × 3, the window with the highest ET configuration is used). The algorithm is

satisfied if both of two conditions are met. The first condition is that the sum of ET

in the jet window is greater than some specified value which is fixed for that trigger

item. The second condition is that the RoI is a local maximum. That is considered

to be the case if the sum of its ET is greater than that of all its neighbours on two

connected sides and greater than or equal to that of its neighbours on the opposite

sides, as shown in figure 2.16.

In the analysis which follows, the jet trigger used is the L1 J5 trigger. This trigger

requires the sum of the ET in the jet window to be ≥ 5 GeV and uses a jet window

of size 0.8 × 0.8 in ∆η × ∆φ.
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Figure 2.15: Possible choices for jet window configuration relative to a jet RoI for
window sizes of 2 × 2, 3 × 3 and 4 × 4 jet elements.

Figure 2.16: Example of criteria for RoI (labelled as R) being a local maximum.
Rotations and reflections of this configuration are equivalent.
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Figure 2.17: MBTS trigger efficiency as a function of number of particles.

Minimum Bias Trigger Scintillator

The Minimum Bias Trigger Scintillator (MBTS) is a detector located at high pseudo-

rapidity (2.1 < |η| < 3.8) that is designed for triggering in early data taking. It

consists of 16 scintillators on each side of the detector mounted between the endcap

and barrel cryostats. Once the LHC is operating at nominal luminosity it is expected

to sustain enough radiation damage in the first few months to become inoperable.

However, currently it is being used as a trigger which is > 99% efficient for events

with more than 3 reconstructed tracks, as shown in figure 2.17[24].

The ATLAS detector is the work of almost two decades of research and development,

design, building, installation and commissioning. During the data taking period con-

sidered for this analysis the ATLAS detector was almost fully operational. Table

2.5[25] shows the number of channels and the percentage of them that were opera-

tional at the beginning of the LHC data taking period.



Chapter 2. The ATLAS Detector and the LHC 50

Table 2.5: Number of channels and percentage of channels operational for the sub
systems of the ATLAS detector.

Detector System Number of Channels Percent Operational
Pixel 80M 97.5%
SCT 6.3M 99.3%
TRT 350k 98.2%

LAr EM 170k 98.6%
Tile 9800 98.0%
HEC 5600 99.9%
FCal 3500 100%
Muon 1.7M 99.6%



Chapter 3

Jet Reconstruction

This chapter describes the methods used to reconstruct jets for this analysis. The

starting point for the reconstruction is energies at the cell level in the calorimeter.

From this point there are three steps implemented. The first is to combine the

information from the cells into larger objects which are formed around localized energy

deposits in the calorimeter. This is done using a topological clustering algorithm

which is explained in section 3.1. The second step, explained in section 3.2, is to run

a jet algorithm to combine these clusters into jets. The final step is to perform a

jet calibration, which is applied in order to correct for the non-compensating nature

of the calorimeter as well as for inhomogeneities in the detector response due to, for

example, transition regions between detector subsystems or regions of the detector

which are not operating in the nominal configuration. This is described in section

3.3.

51



Chapter 3. Jet Reconstruction 52

3.1 Topological Clustering

In order to reconstruct the response to a particle incident on the calorimeter a method

know as topological clustering[26] is used. This method uses the cell energies (at the

em-scale), the neighbour relationship between cells and the characteristic cell noise.

The algorithm works as follows:

1. Each cell energy (E) is compared to the stored value for that cell’s characteristic

noise (σ). If |E|
σ

> 4, the cell is used as a cluster seed and is included in the

cluster. The absolute value of the energy is used in order to not bias the result

towards higher values.

2. All cells adjacent, in three dimensions, to the seed cell (neighbours) which have

|E|
σ

> 2 are added to the cluster.

3. All cells neighbouring the neighbour cells (from step 2) which have |E|
σ

> 2 are

included in the cluster. NB: This step is repeated for all new neighbours until

there are no cells for which |E|
σ

> 2.

4. All neighbour cells on the perimeter of the cluster are included in the cluster in

order to reduce the energy missed outside of the cluster.

This clustering method is used, as opposed to a method which uses a fixed area in η

and φ, in order to reduce the noise contribution from cells which do not have energy

deposits. As a result, clusters include a variable number of cells (N).
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The energy of a cluster is given by:

Ecluster =

N
∑

i=0

Ecell
i (3.1)

and the cluster’s η and φ values are determined by calculating the energy weighted

barycentre, i.e.

ηcluster =

N
∑

i=0

Ecell
i ηcell

i

N
∑

i=0

Ecell
i

(3.2)

and

φcluster =

N
∑

i=0

Ecellφ
cell
i

N
∑

i=0

Ecell
i

. (3.3)

The clusters are treated as massless and their 4-momenta are calculated and then

used as inputs into a jet algorithm.

3.2 Anti-kT Jet Algorithm

The anti-kT jet algorithm [27] is a modification of the kT jet algorithm [28]. These

algorithms cluster objects with 4-momenta into jets. Consider beginning with a col-

lection of particles with known 4-momenta. A list is made of these particles. For each

element of the list, i, two “distances” in pT , y and φ space are considered. The first

distance is dij , which is actually a set of distances, one relative to each other element
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of the list, j, and is defined by

dij ≡ min((pT,i)
2p, (pT,j)

2p)
∆2

ij

R2
(3.4)

where

∆2
ij = (yi − yj)

2 + (φi − φj)
2 (3.5)

and R is a distance parameter which has two default ATLAS values, 0.4 and 0.6. The

larger value, 0.6, is used in this analysis since in the low luminosity running from

which the dataset used here originates, the amount of pileup energy (which is due to

multiple interactions during a single interaction of the proton bunches) added to the

jet is negligible, and the large jet size reduces the risk of missing energy outside of

the jet. The other distance (diB) defined relative to the beam axis, is given by:

diB ≡ (pT,i)
2p . (3.6)

Both of these distances rely on terms with an exponent of 2p. For the kT algorithm

p = +1 while p = −1 for the anti-kT algorithm, which is what is used in the following

analysis and is the default choice of the ATLAS collaboration[29].

Once the distances are calculated, the minimum distance from the entire set of dij and

diB is found. If this minimum is one of the dij then elements i and j are removed from

the list and replaced by an object referred to as a “pseudo-jet”, which is the combina-

tion of the elements i and j, i.e. ppj = pi + pj where ppj, pi and pj are the 4-momenta

of the peusdo-jet and the elements i and j respectively. If the minimum distance in

the set is diB then the element i is taken to be a jet with 4-momentum pi and removed

from the list. The list is iterated over until there are no more elements.
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An example of the resulting jet shapes is shown in figure 3.1[27] for a parton level

event generated by the Herwig event generator[30]. As seen the figure, in the typical

case in which there are a few hard particles and many soft particles, the anti-kT

algorithm (p = −1) favours configurations in which the soft particles are clustered

around hard particles over the case in which soft particles are clustered together. In

the case where a hard particle has no other hard particle within a distance 2R the

final jet will include only the hard particle plus the accumulation of the soft particles

within a cone of radius R. In the case in which two hard particles are separated by

a distance > R and < 2R two jets will be formed with the jet around the higher pT

particles being conical and the jet around the lower pT particle being conical minus

the overlap between the jets. The case in which two hard particles are within a

distance less than R they will be merged into one conical jet along with the included

soft particles. This algorithm therefore produces jets whose shape is not dependent

on soft particles but rather only on the high pT objects. This is a consequence of

choosing p = −1 as opposed to the kT algorithm which chooses p = +1.

Figure 3.2[31] shows an example event, recorded by the ATLAS detector, in which two

jets have been reconstructed and clear collimated groups of particle tracks are seen.

The upper-left and lower-left panels show R − φ and R − z projections respectively

and the upper-right panel shows the calorimeter cell energies as a function of η and

φ.
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Figure 3.1: Example result of anti-kT clustering algorithm, run on a Herwig generated
QCD event, showing the grouping of energy in conical distributions around the high
energy objects.

3.3 Jet Calibration

The ATLAS calorimeter measures jet energies at the em-scale. Since, in general, jets

have both an electromagnetic and a hadronic component a calibration needs to be

applied in order to estimate the actual jet energy. Once the em-scale jet energy has

been calibrated the jet energy is said to be at the hadronic-scale (although there is

no assumption made that the jet is exclusively composed of hadronic showers).

3.3.1 Numerical Inversion

The method currently used to calibrate the jets as measured by the calorimeter at

the em-scale is referred to as numerical inversion[32]. This method relies exclusively
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Figure 3.2: Two jet event recorded in the ATLAS detector. The upper-left and lower-
left panels show R − φ and R − z projections respectively and the upper-right panel
shows the calorimeter cell energies as a function of η and φ.
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on a Monte Carlo (MC) simulation of the ATLAS detector∗. The terms “full-sim”

and “truth” will be used in the following. Full-sim jets are the result of running the

anti−kT jet finding algorithm on the simulated output of the detector (including a

full simulation of the detector response), while the truth jets are the result of running

the same jet algorithm on the MC particles themselves, with no detector simulation

(i.e. the output of an event generator). The full-sim jets are the MC representation

of what is measured by the detector and the truth jets are the MC representation of

particle jets which we are attempting to measure. Note that the full-sim jet energies

are at the em-scale. In the following, a quantity labelled as “FS” or “Truth” refers

to a quantity made with either full-sim or truth jets respectively.

The principle of this method is to use the differences between the truth and the full-

sim to extract a correction, as a function of pT , to apply to the data to give a measure

of the hadronic-scale pT . This correction is essentially an inversion of the response

function

R(pFS
T ) ≡ pFS

T

pTruth
T

. (3.7)

In order to determine this response function first a response function as a function

of pTruth
T is found, R(pTruth

T ). This is constructed by first filling a 2-D histogram with

y-axis R = pFS
T /pTruth

T and x-axis pTruth
T . This 2-D histogram is projected in bins of

pT onto the x-axis and fit to Gaussian distributions. The width of these Gaussian

distributions are then plotted versus the average pTruth
T of the bin. A function

4
∑

i=0

ai

(ln(pT [GeV ]))i
(3.8)

∗In the future, methods will be developed to extract this calibration using data, however, there
is an insufficient amount data, at this point in time, to be able to do this.
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is fit to this distribution (with 5 free parameters ai) and the resultant fit is taken as

R(pTruth
T ). This function R(pTruth

T ) is the response as a function of pTruth
T , therefore

pFS
T can be estimated by

pFS
T = R(pTruth

T ) · pTruth
T . (3.9)

Now the 2-D histogram from above is refilled with the same value for R but as a

function of pFS
T which has been calculated from equation 3.9. This 2-D histogram

is fit to Gaussians in bins of pT as above and the resulting response function is fit

to equation 3.8 yielding a functional form for R(pFS
T ). The calibrated transverse

momentum pcalib
T is finally given by

pcalib
T =

pFS
T

R(pFS
T )

. (3.10)

This procedure is performed in 5 bins in |η| resulting in a calibration which is a

function of both pT and η. The amount that the em-scale jets are calibrated in order

to bring them to the hadronic scale is called the jet energy scale (JES). The correction

1/R is shown, for two η bins in figure 3.3[33].
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3.3.2 Jet Energy Scale Uncertainty

It is a substantial effort to estimate the uncertainty on a jet calibration which is taken

from MC. In order do so, the systematic effects which feed into this uncertainty have

been simulated[33]. The idea is to vary parameters in the MC simulation to estimate

the effect on the jet energy reconstruction. The effects studied are:

Dead material The amount of dead material (uninstrumented material outside of

the calorimeter into which particles can deposit energy which is not measured by

the calorimeter) between the interaction point and the calorimeter can have an

effect on the overall jet energy scale. An increase in the dead material of up to

0.2X0 (radiation lengths) was simulated to study this effect. This corresponds

to an increase in the amount of dead material of approximately 10%.

Noise thresholds A difference between the noise values used in the MC and data

could affect the results of the topological clustering algorithm. To see this effect,

jets were reconstructed with the topological clustering signal to noise thresholds

varied by ±10%. This is a conservative estimate based on observations of the

noise stability which is typically < 1% in the EM[34] and tile[35] calorimeters.

Beam spot Jets are nominally reconstructed assuming that the beam spot posi-

tion is at (x, y, z) = (0, 0, 0). The simulation was rerun using a beam spot at

(x, y, z) = (1.5, 2.5,−9.0) mm to show the effects of a displaced beam spot. This

conservative estimate is more than three times the beam spot displacement seen

in the data set used, which had a beam spot position that remained relatively

stable.
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Absolute em-scale energy An uncertainty of 3% on the absolute em-scale energy

was assumed for the EM calorimeter. This number is derived from the difference

in response between test beam data and MC, and the time stability of the

electromagnetic scale estimated by variations in the electronics behaviour over

time.

Closure of numerical inversion The inherent uncertainty in the numerical inver-

sion technique was estimated as the discrepancy between the truth and cali-

brated spectra after the numerical inversion was applied. This effect was seen

to be ≤ 1%.

Hadronic shower model In order to assess the effect of different hadronic shower-

ing models the simulation was rerun switching from the nominal model (QGSB

+ BERTINI) to two other models, QGSB and FTFP + BERTINI. The for-

mer does not use Bertini nucleon cascades and the latter substitutes the Quark

Gluon String fragmentation model with the Fritiof model.

Monte Carlo event generator To assess the effect of different Monte Carlo event

generators the simulation was rerun using two non-nominal tunes of the Pythia

event generator, one with a different model of the underlying event and one

which has parameters tuned from LEP data. The simulation was also rerun

using an independent generator (ALPGEN + HERWIG).

More details regarding the changes to the hadronic shower model and the MC event

generators can be found in [33]. The estimated systematic effects above, which are

assumed to be uncorrelated, are combined and the resulting uncertainty on the jet

calibration which depends on pT and |η|. This relative uncertainty is shown in figure
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3.4 as a function of pT and |η|. The JES uncertainty is ∼ 10% at the lowest values of

pT and decreases to ∼ 5% for values > 60 GeV. The JES uncertainty is approximately

flat as a function of |η| for |η| < 2 and increases slightly for |η| > 2. Note that this

JES uncertainty estimation is only valid for pT > 20 GeV and |η| < 2.5. As will be

seen in chapter 5 these limitations are of no concern for the analysis presented here.

 [GeV]
T

p

50 100 150 200 250 300 350 400

|η|

0

0.5

1

1.5

2

2.5

0

0.02

0.04

0.06

0.08

0.1

Figure 3.4: Relative jet energy scale uncertainty as a function of |η| and pT .



Chapter 4

Data and Monte Carlo

This chapter outlines the details of the data set which was collected and used for this

analysis. The data were collected over the period from 30 March 2010 to 4 June 2010

which corresponds to the beginning of the LHC 7 TeV physics run.

The data recorded by ATLAS are split up into “luminosity blocks” (lumi blocks)

which correspond to the data recorded during a period of 2 minutes. The data are

separated into lumi blocks because the LHC instantaneous luminosity changes as a

function of time, as can the state of the ATLAS detector subsystems. With the data

separated into time durations shorter than a full run (which can be ≈ 1 day) a more

accurate integrated luminosity calculation can be made, and a selection can be made

to choose only data which have been taken with the ATLAS detector in the desired

state. Details of how the integrated luminosity is calculated and how the state of

the ATLAS detector is recorded (this is known as “data quality”) can be found in

sections 4.1 and 4.2.

63
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After the appropriate lumi blocks are identified based on the data quality information,

further selection is made to choose specific events for the analysis, as will be described

in section 4.3, and cuts are applied in order to accept only “good” jets, as detailed in

section 4.4. A brief description of the Monte Carlo simulated data is also included in

this chapter, in section 4.5.

4.1 Data Quality

In order to keep track of the status of each component of the ATLAS detector, which

can change as a function of time, data quality flags are used for each sub-detector.

These flags indicate whether each sub-detector is in the nominal state (flag status

= GREEN), a non-nominal status which either does not have a major effect on the

data or can be fixed offline (flag status = YELLOW) or the sub-detector is in a

state in which the data are not useable (flag status = RED). The data quality flags

are determined from a series of comparisons to the expected state of the detector.

The properties considered include, for example, electronics status (both readout and

power), high voltage status, detector noise, database values and accessibility and

basic detector performance. A flag may be set to YELLOW for a sub-system if, for

example, it is operating at a non-nominal voltage. A RED data quality flag could

be assigned if, for example, there is a dead power supply which completely disables

the instrumentation in some part of the detector. The data quality flags are stored

for each lumi block of each run and can be accessed via the ATLAS Run Query

tool[36] which searches the run meta-data and returns a list of run numbers and

lumi blocks which meet specified data quality criteria. The Run Query tool also



Chapter 4. Data and Monte Carlo 65

Table 4.1: Data quality flag and LHC status requirements.
DQ Item Flag

LHC Beam STABLE
LHC Beam Energy 3.5 TeV

Pixel Detector GREEN
SCT GREEN

LAr Calorimeter GREEN
Tile Calorimeter GREEN

retrieves information regarding the status of the LHC. The data quality and LHC

status requirements used for this analysis are summarized in table 4.1. The LHC

“STABLE” status denotes that the beams are in a state such that it is unlikely that

the control of the beams will be lost. This status is dictated by LHC control and the

solid state subsystems of the ID are not brought to nominal operating voltages until

it is set to STABLE. The corresponding run numbers and luminosity blocks used in

this analysis are listed in table 4.2.

4.2 Integrated Luminosity

Although the observable defined to examine the azimuthal decorrelation is chosen to

be a normalized differential cross section which is not dependent on the total amount

of data taken (see chapter 5) it is still useful to know the total integrated luminosity
∫

Ldt, which is the instantaneous luminosity (L) integrated over the data taking time,

where L is the interaction rate per unit cross section, given in units of flux (cm−2s−1)

which is O(1029 cm−2s−1) for this data set.

In order to calculate the integrated luminosity a Van Der Meer scan[37] was per-

formed. This method measures a visible cross section (σvis) for some detector which
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Table 4.2: Run numbers and corresponding luminosity blocks used in this analysis.
ATLAS Run Number

∫

Ldt [nb−1] Lumi Block Range
156682 1.41 396-514
155697 4.33 264-506
155678 1.21 241-308
155669 0.53 257-311
155634 1.13 144-147 & 149-333
155160 1.36 240-503
155116 0.57 8-93
155112 3.68 127-166 & 186-625
155073 1.20 82-407
154822 0.43 177-365
154817 0.57 9-287
154813 3.41 8-20 & 40-49 & 83-187
Total: 19.55

acts as a counter. Once σvis is determined it can be combined with the measured

counting rate for the detector (R) to give the instantaneous luminosity by

L =
R

σvis
. (4.1)

Therefore by calculating σvis for a detector (which should be constant for a given

beam energy) the luminosity can be found at any time by measuring the event rate.

The quantity σvis can be measured with the colliding proton beams by physically

moving them through each other incrementally and recording the counting rate for

each position. In an example case as described in [38] the counting detector used is

the MBTS and the corresponding visible cross section denoted by σMBTS
vis was found

to be

σMBTS
vis = (50.5 ± 5.4) mb. (4.2)

The total integrated luminosities for each run used are listed in table 4.2.
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4.3 Event Selection

After data quality selection on lumi blocks, a further selection is made on an event

by event basis. The first selection accepts only events in which there are two or more

reconstructed jets. As the following analysis focuses on angles between jets there is

no need to keep events which have fewer than two. This selects only a small subset

of the events which pass the data quality criteria, greatly reducing the data file size

and reducing the computing time of the analysis.

The second event selection is a trigger selection which requires that the L1 J5 trigger

has been satisfied. In order to ensure that there is no bias introduced into the analysis,

the trigger efficiency of the L1 J5 trigger is estimated from data. This is done by

making a trigger turn on curve from a comparison of the L1 J5 trigger with the

MBTS trigger under the assumption that the latter is fully efficient over the turn on

of the L1 J5 trigger.

Trigger efficiency curves are shown in figure 4.1[39]. These distributions show the

efficiency of the L1 J5 trigger as a function of pT and η. The trigger efficiency is

calculated by taking the ratio of two pT (or η) distributions. The denominator is the

pT (or η) distribution made from all of the events which pass the MBTS selection.

The numerator is the pT (or η) distribution made from all jets which are matched to

a level-1 RoI within a cone of ∆R < 0.4 where ∆R ≡
√

∆η2 + ∆φ2. The efficiency

as a function of jet pT is ≈ 100% for pT > 60 GeV and correspondingly, the efficiency

as a function of η with a cut of pT > 60 GeV is ≈ 100% and flat as a function of η.

Note that the analysis described in chapter 5 requires all events to have at least one

jet in this fully efficient region of the L1 J5 trigger. These efficiencies also agree with
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Figure 4.1: Trigger efficiency for the L1 J5 jet trigger as a function of pT and η.
Trigger efficiencies are ≈ 100% for pT > 60 GeV.

Table 4.3: Number of events passing each stage of the event selection.
# of Events Fraction

Total events with ≥ 2 jets 13629475 1
L1 J5 trigger passed 3361846 0.247
Vertex cut passed 3328705 0.244

the prediction from the PYTHIA simulated Monte Carlo data set which is described

in section 4.5.

The final event selection which is made is to require that for each event there is

at least one reconstructed vertex that contains at least five tracks. This criterion

ensures that an event corresponds to a proton-proton collision and not to noise or

other backgrounds.

The number of events which pass each of the event selection criteria is listed in

table 4.3.
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4.4 Jet Selection

Jets were reconstructed using an anti-kt jet finding algorithm, as described in section

3.2. These jets have been calibrated using the numerical inversion technique, detailed

in section 3.3 and are thus at the hadronic energy scale. After reconstruction a set of

quality cuts[40] are applied in order to remove “jets” which were reconstructed based

on clusters which were seeded by cells which show high energies due to calorimeter

noise or from cosmic rays. There are four jet variables which are cut on. These

are:

N90 Numer of cells which contain 90% of jet’s energy.

Quality The fraction of a jet’s energy which comes from cells which have a poor

agreement between the predicted pulse shape and the measured pulse shape for

that event according to the OFC χ2 variable.

Electromagnetic fraction (EMF) The fraction of the jet’s energy which is de-

posited in the electromagnetic calorimeter layers.

Timing Cell-energy-squared-weighted time of all the cells in the jet, ie:

∑

cells

E2
celltcell

∑

cells

E2
cell

,

where Ecell is the cell energy at the em-scale and tcell is the cell time.

Table 4.4 shows the values of the cuts which are made on the these variables, in the

order in which they were made. A jet that is composed mostly of energy from a

few noisy cells will not pass the N90 cut. There are rare occasions in which the LAr

calorimeter has “noise bursts” which consist of a group of LAr cells which exhibit a
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Table 4.4: Jet quality cuts.
Jet Quality Cut

N90 ≥ 5
Quality < 0.8 & EMF < 0.95

abs(Timing) < 50 ns

coherent noise for a short period of time. The simultaneous cuts on Quality and EMF

are intended to reject jets from these type of events. Most of the cosmic ray muons

passing through the detector are minimum ionizing and leave only a small amount of

energy in calorimeter cells which is insufficient for a jet to be reconstructed. However,

in the rare situation in which a cosmic ray deposits a large amount of energy via

Bremsstrahlung radiation, an energetic jet can be reconstructed. In this case the

energy is not, in general, in time with the LHC collision and is contained within a

small number of cells and will be rejected by the timing and/or the N90 cut. Figures

4.2, 4.3 and 4.4 show the cut flow of the jet cuts as a function of track η, φ and pT .

Cuts are applied in the order indicated in the legend with each distribution showing

the events which have passed the cuts cumulatively. None of the cuts remove a large

number of jets but the N90 cut’s effect on the pT spectrum is significant since the

jets are removed from the high pT region. The other cuts remove a small number of

jets uniformly over the the distributions resulting in little visible effect. These cuts

are standard for ATLAS jet analyses.

4.5 Monte Carlo Data

Aspects of this analysis require using a Monte Carlo (MC) simulated data set. These

data use PYTHIA 6.4.21[41] to simulate the parton-parton hard scattering process,
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Figure 4.2: Jet pT showing cut flow of jet quality cuts. The N90 cut has an effect at
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Figure 4.4: Jet η showing cut flow of jet quality cuts. The cuts remove a small number
of event uniformly which has a negligible effect on the distribution.

showering and hadronization. Details of how PYTHIA performs these predictions can

be found in chapter 6. Pythia contains numerous tuneable parameters. The choice

the values for these parameters for this analysis is standard for the ATLAS simulation.

After the PYTHIA simulation has been performed the resultant particles’ interactions

with the detector are simulated using GEANT4[42]. This GEANT4 simulation[43]

includes all the components of the ATLAS detector including non-active material (for

example: cabling, mechanical supports or cryostat walls) as well as a simulation of

the full electronics system of the read-out of each component of the detector. The

resulting simulated data are a representation of the data output of ATLAS, and are in

the same format. In some cases it is useful to use only the data produced by PYTHIA

and not to use the GEANT4 simulation of the detector, in order to have a simulated

data set that represents the final state of a physics process without the effects of the

detector.
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Table 4.5: Monte Carlo data set components.
pT Range [GeV] Number of Events Cross Section [nb]

∫

Ldt [nb−1]
8-17 399993 9.75 × 109 4.10 × 10−5

17-35 395793 6.73 × 108 5.88 × 10−4

35-70 399691 4.11 × 107 9.71 × 10−3

70-140 393891 2.19 × 106 1.80 × 10−1

140-280 388944 8.73 × 104 4.46
280-560 391289 2.33 × 103 1.68 × 102

560-1120 385341 3.34 × 101 1.15 × 104

In order to cover a wide range in transverse momentum numerous MC data sets were

generated with different ranges in transverse momentum∗. Since the jet production

cross section decreases very rapidly as a function of increasing pT , many component

MC data sets are used to provide a broad range in pT without having to generate an

unreasonable amount of MC nor having to use a complicated event weighting scheme.

Table 4.5 summarizes the seven MC data set components which make up the total

MC data set used in this analysis. The effective integrated luminosity is shown for

each component.

∗The pT of each range refers to the average pT of the two initial outgoing partons resultant from
the hard scattering simulation. This does not represent the pT value of the outgoing jets exactly.
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Analysis

5.1 Observable

The azimuthal decorrelation is measured using the varible ∆φ, defined as the angle

between the projections, onto the transverse plane, of the momenta of the two highest

pT jets in the event, as illustrated in figure 5.1. For ease of notation the leading and

second leading jet, based on pT , will be denoted j1 and j2. The angle is always chosen

to be the smaller of the two possible angles between j1 and j2 resulting in a range

for ∆φ of 0 → π radians. The observable is then defined as a normalized differential

cross section 1
σtot

dσ
d(∆φ)

where the normalization 1
σtot

is the inverse of the total number

of events used to make the distribution. This normalized differential cross section is

plotted versus ∆φ
π

and is scaled by the inverse of the bin width of each bin giving a

value per radian. The value of ∆φ
π

is not taken as the bin centre, but rather, as the

average value over the bin, as these two values can differ significantly in this rapidly
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changing distribution. Only events are chosen in which the transverse momentum of

j1 and j2 are above a minimum pT value and both of the leading jets fall within a

specified range in rapidity. Table 5.1 shows the values of these cuts for this analysis.

The cut on the jet pT ensures that the jets considered are of a high enough pT to

be on the fully efficient part of the trigger efficiency curve. The rapidity cut, which

limits the jets to the central region of the detector is chosen in order to limit the

variance in the detector response which is expected as the detector geometry varies

as a function of rapidity.

Figures 5.2, 5.3 and 5.4 show the j1 and j2 distributions, for data and MC, for the

transverse momentum (pT ), rapidity (y) and azimuthal angle (φ) respectively. The

MC distributions have been normalized to the number of events in data. The pT data

distribution shows jets with pT values up to ≈ 400 GeV. The y and φ distributions

are flat over the range considered. The agreement between data and MC is within

the statistical errors shown.

Figure 5.5 shows the raw ∆φ distribution from data showing only the statistical

errors. This distribution is made from jet quantities as measured by the ATLAS

detector and has not been corrected to account for detector effects (this correction is

known as unfolding and is discussed in detail section 5.2), nor are systematic errors

shown. The following sections detail the unfolding corrections and the assessment of

systematic errors.

Table 5.1: Jet kinematic cuts.
Cut

pT,1 > 70 GeV
pT,2 > 50 GeV
−0.8 < y < 0.8
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Figure 5.1: Definition of azimuthal angle ∆φ which lies in the range [0, π].
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Figure 5.2: Transverse momentum distributions for leading and second leading jets.
MC spectrum is normalized to the number of events in data.
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Figure 5.3: Rapidity distributions for leading and second leading jets. MC spectrum
is normalized to the number of events in data.
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Figure 5.4: Azimuthal angle distributions for leading and second leading jets. MC
spectrum is normalized to the number of events in data.
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cross section with no unfolding correc-
tions, statistical errors only.

5.2 Unfolding

The goal of this analysis is to provide a measurement which is independent of the

ATLAS detector. That is, to provide a result which best represents physical phenom-

ena independent of the detector. In this case an unfolding is performed in order to

correct the final ∆φ spectrum from what is measured by the ATLAS detector to one

that represents the particle jets, after hadronization, incident on the detector. This

gives a result which is ATLAS-independent.

The difference between the measured spectrum and the particle jet spectrum is due

to the fact that the detector does not measure the kinematic jet properties perfectly.

When a kinematic jet quantity is measured by the detector there is some associated
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uncertainty. For example consider some kinematic variable X ′. For a large number of

jets incident on the detector with exactly the same value X ′ = x′ the measured values

will make up some distribution X with mean µx and characteristic width σx. The

width of this distribution (σx) is known as the resolution. The difference between

the measured values and the true values of the jets’ pT , y and φ change the ∆φ

spectrum, and it is these effects which must be corrected for in the unfolding. Note

that these effects are not just due to the uncertainty associated with the inherent

detector response but can also be due to gaps in instrumentation, dead material in

the detector, hardware defects or other detector anomalies.

The information for the unfolding is taken from the ATLAS Monte Carlo simulation

(see chapter 4 for details). The “full-sim” jets are the result of running the anti-kT

jet finding algorithm on the simulated output of the detector, while the “truth” jets

are the result of running the same jet algorithm on the generator level MC particles

themselves. The full-sim jets are the MC representation of what is measured by the

detector, while the truth jets are the MC representation of the particle jets of which

we are attempting to measure the properties. In the following, a distribution labelled

as “Full-sim” or “Truth” refers to the distribution being made with either “full-sim”

or “truth” jets.

Figure 5.6 shows the ratio of the full-sim to the truth ∆φ distributions which is an

estimate of the amount of unfolding which needs to be performed. Figure 5.7 shows

the “migration matrix” for ∆φ from truth to full-sim, Mij , which gives the probability

of an event which has a ∆φTruth value in bin i to have a ∆φFull−sim value in bin j.

The matrix Mij is normalized such that
∑

j

Mij = 1.



Chapter 5. Analysis 80

π
φ∆

]
−

1
 [r

ad
)φ∆

d(
σd

 
to

t
σ1

−110

1

10 Full−sim

Truth

π
φ∆0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
ru

th
F

ul
l−

si
m

0.95

1

1.05

1.1

1.15

1.2

Figure 5.6: (above) Full-sim and truth ∆φ distrubutions. (below) Ratio of the full-
sim to the truth ∆φ distributions. This ratio corresponds to the expected amount of
unfolding required.



Chapter 5. Analysis 81

truthφ∆

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

fu
ll−

si
m

φ∆

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.90 0.05 0.01 0.01 0.00 0.00 0.00 0.00

0.05 0.81 0.03 0.01 0.00 0.00 0.00 0.00

0.02 0.09 0.86 0.06 0.01 0.00 0.00 0.00

0.02 0.01 0.08 0.81 0.07 0.00 0.00 0.00

0.01 0.01 0.01 0.09 0.81 0.08 0.00 0.00

0.00 0.00 0.00 0.01 0.10 0.80 0.12 0.01

0.00 0.00 0.01 0.01 0.01 0.11 0.73 0.21

0.00 0.02 0.00 0.00 0.00 0.01 0.14 0.78

Figure 5.7: Migration matrix Mij

Although the full-sim spectrum in figure 5.6 includes all of the detector effects using all

the available information from the MC simulation of the detector, it is not sufficient

to make the unfolding correction simply by taking the ratio the two distributions,

i.e.

∆φTruth

∆φFull−sim
. (5.1)

In order for this simple ratio to give the proper unfolding correction the MC estimation

of the jet distributions would have to be known to be correct; specifically, the case

in which a third jet (j3) is present in the event. In this case the distribution of the

third jet’s pT and y would have to be well modelled in the MC and it is not desirable

to be dependent on this. In order to understand why this is the case consider first

the scenario in which there are only two jets in an event. In this case the difference

between the truth and full-sim spectra would be exclusively due to detector effects
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which are described by the simulation of the ATLAS detector and would not be

sensitive to how well the jet kinematic distributions are represented in the event

generator. In this case the simple ratio in equation 5.1 would be sufficient for an

unfolding correction. However, in the presence of a third jet the situation becomes

more complex. In this case the difference in the truth and full-sim spectra is due to

the detector effects on the first and second jet, as before. However, in this case there is

a probability that what is the truth third jet is reconstructed as the second jet in the

full-sim. In this case the ∆φ between the first and third truth jets is measured, which

is not the intended measurement. Figure 5.8 shows the migration matrices for the

case in which the leading two truth jets are properly identified (MX

ij ) as the leading

two full-sim jets, and the migration matrix for the case in which the third truth jet

is reconstructed to be the first or second full-sim jet (M×
ij ). The former is essentially

diagonal, however the latter is closer to a flat distribution, that is, showing nearly

equal probability for an event with ∆φTruth in some bin to have a ∆φFull−sim value

in any other bin. For low values of ∆φ this can have a large effect on distribution.

Figure 5.9 shows the fraction of events in which the third truth jet is found to be

one of the leading full-sim jets. Given this dependence on the third jet, using

the ratio in equation 5.1 would give an unfolding correction that is dependent on

the MC prediction of probability of having a third jet in the event, as well as the

predicted shape of the pT and y distributions for the third jet. In order to remove

this dependence a weight is applied which takes into account the kinematics of the

third jet in an event (if one is present), as well as the ∆φ between the two leading

jets. This weight (W ) is applied to each event and is calculated by taking the ratio of

two 3-dimensional histograms in ∆φ, pT,3 and y3, where pT,3 and y3 are the transverse

momentum and rapidity of the third jet, or, in the case where there is no third jet
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just by the ratio of the ∆φ histograms, i.e.

W (∆φ, pT,3, η3) =
Ntruth(∆φ, pT,3, η3)

Nfull−sim(∆φ, pT,3, η3)
, njet ≥ 3 (5.2)

W (∆φ) =
Ntruth(∆φ)

Nfull−sim(∆φ)
, njet = 2 (5.3)

The unfolded spectrum is then made by taking all events in data, which pass the

kinematic cuts defined for the observable, and filling the ∆φ histogram with each

event getting a weight W (∆φ, pT,3, η3), or W (∆φ) for events with only two jets. Figure

5.10 shows the total unfolding correction on the ∆φ spectrum. The bin corrections

range in value from ≈ 0.7 to 1.05 and roughly correspond to the amount of unfolding

predicted in figure 5.6.
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Figure 5.10: Total unfolding correction on the ∆φ spectrum resulting from the weights
described by equations 5.2 and 5.3.

5.3 Systematic Uncertainties

In order to assess the systematic error on the measurement of the ∆φ spectrum three

effects are considered. These are:

• Propagation of the uncertainty on the jet energy scale

• Effect of the inaccuracies of MC estimation of the third jet properties

• Effect of inaccuracies in the MC resolution predictions

The procedure for estimating the systematic errors due to these three effects is de-

scribed below. Following these descriptions all of the errors are displayed, bin by bin,

in figure 5.19.
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5.3.1 JES Uncertainty

The relative uncertainty on the JES is a function of pT and η and is shown in figure

3.4 [33]. To estimate the effect of this uncertainty on the measurement, the analysis

is repeated with the unfolding histogram W (equations 5.2 and 5.3) calculated as in

the standard analysis. However, before filling the corrected ∆φ distribution, the pT

of each jet is scaled, up and down, by the uncertainty given at that value of pT and η.

This yields two new ∆φ distributions, one for the positive and one for the negative

scaling. The ratio of these spectra to the nominal corrected MC spectrum is taken,

and for each bin whichever of the positive or negative scaling errors is larger is taken

as the corresponding systematic error on that bin due to the JES uncertainty. Figure

5.19 includes the result.

5.3.2 Third Jet

The unfolding method detailed in section 5.2 is designed to be insensitive to how

well the third jet kinematics have been modelled in the MC. To test the insensitivity,

the differences between the MC prediction and the data for the third jet transverse

momentum and rapidity and the number of jets is used, where cuts on the third jet

minimum pT and η range are: pT,3 > 15 GeV and |η| < 2.5. As in the previous section

the analysis is redone, calculating the unfolding weights from the nominal MC truth

and full-sim jets. However, in this case a weight (Wjet3) is applied to each event

along with the unfolding correction. This additional event weight is derived from the

discrepancies between data and MC with respect to the third jet and is in fact the

product of three weights,Wjet3 = W prob
jet3 × W pT

jet3 × W y
jet3. Where W prob

jet3 (=0.97) is the
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data:MC ratio of the number of events with ≥ 3 jets corresponding to the probability

of having a third jet in the event (see figure 5.11). W pT

jet3 is a function of the third jet’s

pT and is determined by fitting a linear function to the data:MC ratio of the third jet

pT distributions (see figure 5.12). W y
jet3 is a function of the third jet rapidity and is

taken directly from the ratio histogram shown in figure 5.13.

Figure 5.14 shows the ratio of the Wjet3 weighted ∆φ spectrum to the nominal ∆φ

spectrum. This corresponds to the error which would be associated with using the

simple ratio unfolding in equation 5.1. This figure also shows the estimated system-

atic error on the unfolding which takes the third jet into account. This systematic is

calculated by comparing how well the unfolding of the MC full-sim spectrum repro-

duces the original MC truth input with the event weights, Wjet3, relative to how well

the unfolding works in the nominal analysis, i.e.:

∆φWeighted
Corr

∆φWeighted
Truth

÷ ∆φCorr

∆φTruth
. (5.4)

This distribution is taken as the associated systematic uncertainty due to the inac-

curacies in the MC estimation of the third jet, and is included in figure 5.19.

5.3.3 Resolution

The final source of systematic error considered is the error associated with a mis-

modeling of the resolution of the detector in the GEANT4 simulation. In order

to estimate this effect an over-smearing is applied. The analysis is redone using

the nominal MC to obtain the unfolding correction. However, before the unfolding



Chapter 5. Analysis 88

Number of Jets

N
um

be
r 

of
 D

at
a 

E
ve

nt
s

10

210

310

410

MC

Data
>70 GeV

T,1
p

>50 GeV
T,2

p

|<0.8
2

|&|y
1

|y

Number of Jets
0 1 2 3 4 5 6 7 8 9

T
ru

th
D

at
a

0

0.5

1

1.5

2

2.5

3

3.5

Figure 5.11: Number of jets. Ratio of data to full-sim Monte Carlo shown (lower).
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correction is applied each (full-sim) jet has its pT , η and φ smeared. If the variable

being smeared is λ with a value of λ = λ0 the smearing is done by shifting λ0 → λ′0

where λ′0 is a random number chosen from a Gaussian distribution with mean λ0 and

width σsmear
λ . In order to obtain a value for σsmear

λ , first the pT , η and φ resolutions as

a function of pT are estimated from from MC. To estimate the pT resolution, for each

truth jet, which is matched to a full-sim jet within ∆R < 0.4 (∆R =
√

∆φ + ∆η), the

pT response (
pfull−sim

T

ptruth
T

) is calculated and histogrammed in bins of ptruth
T . The width of

the each of these distributions is taken to be the relative resolution, i.e.
σpT

pT
for that

pT bin. In order to find the width of the distribution a half-Gaussian, Ghalf(µ, σ), is

fit to each bin’s response distribution where the half-Gaussian is defined as

Ghalf(x) = A × θ(x − 1) × G(1, σ) (5.5)

where A is a normalization factor which is not used in the following, θ(x) is a Heavy-

side Unit Step Function and G(µ, σ) is a Gaussian distribution with mean µ and

width σ. For each bin the fit value σ =
σpT

pT
is plotted versus the mean pT value

for that bin. Figure 5.15 shows the relative pT resolution estimated from MC as a

function of the truth jet pT . Note that the half-Gaussian function is used, as opposed

to a symmetric Gaussian, because of a bias at low pT due to a cut in the minimum

reconstructed jet pT (which is 7 GeV). The points for a full Gaussian fit are overlaid

in figure 5.15 as well and show a clear discrepancy at low pT . Figure 5.16 shows an

example bin at low pT and one at higher pT with both fits overlaid; note that at

higher pT the half-Gaussian and Gaussian functions have very similar widths. The
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σpT

pT
versus pT plot is fit to the function

(

σpT

pT

)2

=

(

a2
1

pT
+ a2

2 +
a2

3

p2
T

)

(5.6)

where a1, a2 and a3 are the fit parameters, giving the resolution as a function of pT

as

σpT
= pT

(

a2
1

pT

+ a2
2 +

a2
3

p2
T

)1/2

. (5.7)

To obtain the resolutions for η and φ the same procedure is used however now the

response is taken as an absolute response, ηfull−sim−ηtruth and φfull−sim−φtruth which

makes the resolution as a function of pT

σ =

(

a2
1

pT
+ a2

2 +
a2

3

p2
T

)1/2

. (5.8)

Where σ is either ση or σφ with the corresponding parameters a1, a2 and a3 shown in

table 5.2. The response distributions are fit to regular Gaussian functions not half-

Gaussian functions. The resultant resolution plots are show in figures 5.17 and 5.18.

The values of a1, a2 and a3 for pT , η and φ resolutions are listed in table 5.2.

With these parameterized resolution functions the value of σsmear
λ (where λ represents

pT , η or φ) are taken as a fraction of the resolution, i.e. σsmear
λ is taken as σ× ǫ where

σ is taken from equation 5.7 for pT and equation 5.8 for η and φ. A preliminary

result[44] for the discrepancy between the jet pT resolution taken from MC and one

derived from data shows agreement to within 15% for |η < 2.8|[33]∗ so ǫ is taken as

0.15 for the pT over-smearing.

∗This is intentionally a conservative estimate
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Table 5.2: Jet resolution fit parameters and over smearing parameter ǫsmear.
a1 a2 a3 ǫsmear

pT 0.757 2.56 0.07275 0.15
η 0.175 0.70 0.02926 0.10
φ 0.113 1.242 0.00935 0.05

Preliminary studies have been done[45] using an algorithm which matches tracks

reconstructed by the inner detector to clusters in the calorimeters. This study looks at

the width of the angular residual distributions and compares data and MC to quantify

the magnitude of the discrepancy. The jet reconstruction is then run with the angular

positions of the clusters smeared by this amount and the angular resolution effects

are measured in the resulting jets. Conservative estimates for the effect on the jets

are 10% and 5% for η and φ respectively, which give the corresponding values of ǫ of

0.1 and 0.05 shown in table 5.2.

Figure 5.19 shows the systematic error result for this over-smearing along with the

systematic error estimates from all the other sources considered. The statistical error

and total error are also shown.
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Result

The following chapter presents the unfolded normalized cross section 1
σtot

dσ
d(∆φ)

, plotted

and tabulated showing statistical and systematic errors. A comparison to and a

description of two MC event generators is also provided. The results are found in

section 6.1 and the MC comparison and description are found in section 6.2.

6.1 Unfolded ∆φ Spectrum

The final normalized ∆φ spectrum after unfolding is shown in figure 6.1, which in-

cludes statistical and systematic errors. The numerical values for each point along

with each source of uncertainty is detailed in table 6.1.

99
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Table 6.1: Unfolded values of normalized ∆φ spectrum including statistical and sys-
tematic errors.

Bin [∆φ
π

] Average [∆φ
π

] 1
σtot

dσ
d(∆φ)

Stat Error [%] Sys Error [%] Total Error [%]

0.50-0.60 0.559 0.037 25.8 13.4 29.1
0.60-0.70 0.652 0.173 15.1 14.2 20.7
0.70-0.78 0.748 0.402 10.5 6.1 12.2
0.78-0.85 0.817 1.280 6.8 8.1 10.6
0.85-0.90 0.879 2.434 5.3 3.3 6.2
0.90-0.95 0.929 4.965 4.1 2.7 4.9
0.95-0.98 0.965 8.754 3.6 3.5 5.1
0.98-1.00 0.990 11.059 4.2 6.1 7.4
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6.2 Comparison With Different Event Generators

Monte Carlo event generators are used to simulate high energy physics interactions.

Given an initial state (here proton-proton collisions at centre of mass energy
√

s =

7 TeV) the event generator is used to produce a large number of “events”, which are a

set of outgoing particles of known type and four momentum. The events are generated

using a specific choice of interaction, or interactions (here a+b → Xparton) where a and

b are partons and Xparton is some partonic final state∗. The two generators discussed

below use the same basic concept of factorization as laid out in section 1.3 with some

of the details explained in the following.

6.2.1 Pythia

The Pythia MC event generator[41] is a leading order (LO) event generator†. Pythia

interfaces with CTEQ parton density functions[9] to model the parton distributions.

The hard scattering parton-parton interaction is calculated to leading order only, i.e.

2 → 2 scattering of partons. A parton showering algorithm is then run to model

multiple-parton final states and finally fragmentation is modelled. Note that the

parton showering part would be included in the term σ̂ab→X of equation 1.2, that

is, instead of this term being calculated exclusively from perturbative QCD, as was

described earlier, it is calculated at LO by pQCD and then states with more partons

are predicted not by higher order calculations, but rather by the parton showering

∗“Final” state is a little misleading as it is not the final output of the event generator, but rather
just the result of the hard parton-parton interaction.

†In fact Pythia does some NLO calculations but not for the processes of interest here.
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model. The fragmentation, which involves modelling softer and collinear partons and

hadronization, is modelled with the string fragmentation model.

The leading order calculation requires an energy scale, Q2 to be set for the evaluation

of the cross section. In Pythia calculations, this scale is chosen to be the transverse

mass squared (m2
T ) of the outgoing partons. If the 2 → 2 process is a + b → c + d

then

Q2 = m2
T =

1

2
(m2

c + p2
T,c + m2

d + p2
T,d) =

1

2
(m2

c + m2
d) +

t̂û − m2
cm

2
d

ŝ
(6.1)

where the Mandelstamm variables have been defined as: ŝ = (pc + pd)
2, t̂ = (pb + pd)

2

and û = (pb + pc)
2. Or for the approximation of massless quarks

Q2 = m2
T =

t̂û

ŝ
. (6.2)

The parton showering model uses the probability of a “mother” parton (p1) splitting

into two “daughter” partons (p2 and p3), or p1 → p2 + p3 with parton p2 taking mo-

mentum fraction z of p1 and parton p3 taking the remaining fraction, 1−z. After this

splitting each of the partons p2 and p3 has the opportunity to be mothers themselves,

and so on. The possible splittings considered are q → qg, g → gg and g → qq̄ with

probabilities derived using the splitting functions mentioned in section 1.3 to obtain

what is referred to as the Sudakov form factor, which is the probability of p1 NOT

splitting into p2 and p3 after some time t − t0 and is given by:

Pno-splitting(t0, t) = exp

(

−
∫ t

t0

dt′
∑

2,3

I23←1(t
′)

)

(6.3)
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where the summation over 2, 3 is over all possible combination of pairs p2 and p3

and

I23←1(t) =

∫ z+t

z−t

dz
αs

2π
P23←1(z) (6.4)

where the P functions are the splitting functions. Note that the term “time” is

a misnomer; it does not represent actual time, but instead represents an evolution

variable which is given by

t = ln

(

Q2

Λ2

)

(6.5)

where Q is taken as the mass of the mother parton (m1) and Λ is the scale above which

pQCD is still applicable. Each pair of daughter partons is generated isotropically in

the rest frame of the mother parton. This splitting is continued as long as Q2 > Q2
min

where, Q2
min has a default value of (1 GeV)2. Once Q ≤ Qmin the parton does not

split and is forced to be on mass shell. The evolution of t taking Q = m1 is known

as mass ordered parton showering.

As mentioned above, Pythia uses a string fragmentation model to evolve the partons

resulting from the parton showering method described above into hadrons in the final

state. The string model uses the analogy of outgoing partons connected via a string

whose tension (κ) denotes the energy in the field between them. Pythia uses a model

in which the string tension is a linear function of distance and is given a value of

κ = 1 GeV/fm or 0.2 GeV2. For example, consider the case of a quark anti-quark

pair q0q̄0 moving apart. Once there is sufficient energy in the string it can “break”

producing another quark anit-quark pair q1q̄1 leaving two strings, one between q0q̄1

and one between q1q̄0. Each string can then break again and again until what remains

are only on-shell qq̄ mesons. The probability of producing a “break” is related to a



Chapter 6. Result 104

tunnelling process for which the probability is

e
−πm2

q,T

κ (6.6)

where mq,T is the transverse mass of the quark such that m2
q,T = m2

q + p2
T . The

previous equation can then be factored giving

e
−πm2

q

κ e
−πp2

T
κ (6.7)

which shows via the the quark mass dependance that there is a heavy quark sup-

pression. The ratio of the production of quarks u : d : s : c is approximately

1 : 1 : 0.3 : 10−11 strongly favouring the production of light quarks. The momentum

fraction z taken by the hadron is obtained from a symmetric Lund fragmentation

model:

f(z) ∼ 1

z
(1 − z)2e−

bm2

h,T
z (6.8)

where a and b are parameters which are determined empirically and mh,T is the

hadron’s transverse mass.

6.2.2 Herwig++

The Herwig++ event generator[30] is similar to the Pythia event generator with a

few key differences, which are outlined below. Like Pythia, Herwig++ calculates at

leading order, a 2 → 2 parton scattering followed by a parton shower. Here CTEQ

PDFs are used as well. Herwig++, however, uses a different value for the Q2 scale
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for this evaluation. In Herwig++ the scale is chosen by

Q2 = 2
ŝt̂û

ŝ2 + t̂2 + û2
(6.9)

where û, t̂ and û again are the Mandelstamm variables.

The parton showering model in Herwig++ differs from that of Pythia with respect

to the evolution of the variable t as defined in 6.5. In Herwig++ instead of using

Q2 = m2, Q2 is defined as

Q2 =
m2

z(1 − z)
(6.10)

where, here z is defined as the fractional momentum p2 projected onto the direction of

the mother particle’s momentum p1. This gives values of t which evolve according to

the angular separation of the mother and daughter particles. This evolution scheme

is known as angular ordering.

The hadronization model used in Herwig++ also differs to what is used in Pythia.

Instead of a string fragmentation model, Herwig++ uses what is know as a cluster

fragmentation model. This technique first converts outgoing gluons into quark anti-

quark pairs, (or, with a lower probability, diquark anti-diquark). Then the (di)quarks

are clustered with their nearest neighbours to form a colour singlet clusters. These

clusters are then allowed to decay into hadrons. For a cluster of a quark anti-quark

type qaq̄b the decay is performed by creating a quark anti-quark pair out of the

vacuum, qq̄, resulting in two hadrons qaq̄ and qq̄b.

The proceeding discussion was meant to be illustrative and does not explain the

mechanism by which baryons can be produced by either Herwig++ or Pythia. Both
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of these generators have such methods, descriptions of which can be found in the

relevant references.

Figure 6.2 shows the unfolded ∆φ spectrum with combined statistical and systematic

errors, with the predictions of the Pythia and Herwig++ event generators overlaid.

The Pythia tuning corresponds to the ATLAS default and the Herwig++ tuning

corresponds to the default “out of the box” tuning of Herwig++.
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Figure 6.2: Unfolded normalized ∆φ spectrum compared with Pythia and Herwig++
predictions.
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Conclusion

Using 19.55 nb−1 of proton-proton collision data at
√

s = 7 TeV recorded between the

30 March and 4 June 2010 by the ATLAS detector at the Large Hadron Collider, the

azimuthal decorrelation in di-jet events was studied by means of an observable, ∆φ

defined as the angle in the transverse plane between the two jets, with the highest

transverse momenta in each event. A differential cross section, normalized by the

inverse of total di-jet cross section was used in order to reduce additional uncertainties

caused by efficiency effects and uncertainty on the total integrated luminosity. This

observable was designed to be robust against systematic uncertainties resulting from

detector effects, some of which may currently be large due to the fact that these data

were recorded early in the running of the ATLAS experiment, while commissioning

is still underway.

An unfolding procedure was performed on the ∆φ spectrum using a Monte Carlo data

set along with a GEANT4 simulation of the ATLAS detector including a simulation
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of the full electronics chain. This unfolding procedure was performed in order to

correct for effects in the measured spectrum which were due to the ATLAS detector.

The result is a measurement which attempts to be independent of the detector from

which it was made. The aim of this type of measurement is to allow for any other

party to make a comparison with a similarly unfolded measurement from a different

experiment, a jet level theory prediction, or a prediction from a Monte Carlo event

generator.

The result has been compared to the predictions of two Monte Carlo event generators,

Pythia 6.4.21 and Herwig++. The agreement with the Herwig++ simulated data was

seen to be better than that to the Pythia simulated data. In a similar measurement

made by the D0 collaboration [13] a comparison to Herwig[46] and Pythia also showed

a better agreement between the Herwig prediction and data, although the Herwig

and Pythia versions are not the same as was used in this analysis. All such types

of event generators contain a large number of tuneable parameters which can be

empirically determined from this type of measurement. The azimuthal decorrelation

measurement made by the D0 collaboration has been used for MC event generator

tuning[47, 48]. There has not yet been an attempt made to tune these parameters

based on this result. The D0 measurement has also being compared to a next-to-

leading-order calculation[49].

As the ATLAS detector records more and more data this measurement can and will

be repeated with higher statistics, a better understanding of the detector and hence

the jet properties and a higher range in jet energies.



Appendix A

Other Contributions to the ATLAS

Experiment

The following section outlines some of the contributions I have made to the ATLAS

experiment that were not mentioned in the preceding document.

A.1 General LAr Calibration and Commissioning

The ATLAS detector was installed underground at the LHC Point-1 between 2005

and 2008. Since this time (and even before the completed installation) much effort

has been put into the commissioning of this detector. I have been involved in such

efforts since first travelling to CERN in the summer of 2006. At this time groups

of “experts” were formed in order to study the performance of the detector. I was

involved at the first such expert week for the endcap calorimeters and have remained
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involved since, becoming one of the earliest expert LAr shifters. The commissioning

tasks were to prepare the detector for running once the LHC was operational. This

involved taking shifts running calibration tests which were performed using electronic

simulations of ionization pulses in the detector to calibrate and to find and diagnose

problems in the detector’s performance. The results of this work were summarized in

[34], a paper of which I am an author.

Before the LHC was operational cosmic ray muons were used for detector commis-

sioning as well. The data recorded during cosmic ray data taking was used to test

the liquid argon’s (as well as the rest of the detector’s) trigger and data acquisition

systems, electronics response and data processing capabilities. I was involved in data

taking shifts as well as data analysis for the cosmic ray commissioning effort appeared

as an author of two cosmic ray commissioning notes[50, 51].

A.2 LAr Endcap Calorimeter Noise Studies

Beyond the general calibration and commissioning tasks that were performed I was

also charged with the task of studying the electronics noise and pedestals for the sub-

dectectors in the liquid argon endcap region (these are the EMEC, HEC and FCal).

My duties were to analyse calibration data in order to:

• quantify electronics noise channel by channel

• search for anomalies in the noise values and diagnose the cause

• develop tools to examine coherent noise in detectors and to diagnose the cause



Appendix A. Other Contributions to the ATLAS Experiment 111

and propose solutions

• monitor electronic pedestal values for stability and develop tools to do this in

a automated fashion

• report findings to the liquid argon community

A.3 Hadronic Endcap Calibration Software

The software that was designed to process the raw calibration data from liquid argon

detector tests was designed originally with the liquid argon barrel calorimeter in mind.

For this reason certain aspects of the software were incompatible with the data output

from the HEC. I was responsible for rewriting this software making it compatible with

the HEC data while ensuring that it remained compatible with the all the other sub-

detectors, thus allowing all LAr systems to use the same calibration software. This

re-write affected all parts of the software chain, from the raw data level to the final

GUI used to display results. These modifications allow the HEC calibration software

to function and are part of the ATLAS software package.

A.4 Forward Calorimeter High Voltage Anomaly

Modelling

The during installation of the FCal there was damage to one of the high voltage

system which resulted in a region of the FCal having to be operated at a non-nominal
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high voltage configuration. In order to better understand the effect of this I was in

charge of adjusting the GEANT4 simulation of the FCal to incorporate this effect so

that it could be accurately modelled in Monte Carlo data. I also used the output

from the adjusted GEANT4 simulated data to study the effect on jet kinematics and

to study the feasibility of a jet by jet correction. This software is now part of the

official ATLAS software simulation package.
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