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Abstract: Data processing frameworks are an essential part of HEP experiments’

software stacks. Frameworks provide a means by which code developers can un-

dertake the essential tasks of physics data processing, accessing relevant inputs and

storing their outputs, in a coherent way without needing to know the details of

other domains. Frameworks provide essential core services for developers and help

deliver a configurable working application to the experiments’ production systems.

Modern HEP processing frameworks are in the process of adapting to a new comput-

ing landscape dominated by parallel processing and heterogeneity, which pose many

questions regarding enhanced functionality and scaling that must be faced without

compromising the maintainability of the code. In this paper we identify a program of

work that can help further clarify the key concepts of frameworks for HEP and then

spawn R&D activities that can focus the community’s efforts in the most efficient

manner to address the challenges of the upcoming experimental program.
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1 Introduction

The aim of this document is to promote a common vision and roadmap for data

processing frameworks that will allow enhanced collaboration across experiments and

will meet future challenges given the variety of stakeholders which will be defined

below. We describe the problem domain and introduce the concepts and relationships

needed to formulate common data processing framework solutions for the future.

The time periods of interest for this document are DUNE and HL-LHC, which

will deliver on the order of 50 PB of data events per year per experiment. The

results of the proposed R&D ought to be used for building the final software systems

that will be utilized in commissioning and operations of these experiments and the

processing of the data.

2 Scope and Challenges

Frameworks in HEP are used for the collaboration-wide data processing tasks of

triggering, reconstruction, and simulation, as well as other tasks that subgroups of

an experiment collaboration are responsible for, such as detector alignment and cal-

ibration. Providing common framework services and libraries that will meet with

compute and data needs for HL-LHC experiments and the Intensity Frontier experi-

ments is a large challenge given the multi-decade legacy in this domain. At the same

time the computing landscape is changing requiring enhanced framework function-

ality to help users adapt to these changes. We see a number of upcoming challenges

that need to be addressed in the coming decade:

1. Changes needed in the programming model that are necessary to handle the

massive parallelism that will be present throughout all layers in the available

computing facilities. This is necessary because of the ever-increasing availabil-

ity of specialized compute resources, including GPGPUs, Tensor Processing

Units (TPUs), tiered memory systems integrated with storage, and ultra high-

speed network interconnects.

2. Challenges related to advanced detector technology, like finer granularity, high

bandwidth continuous readout DAQ, and the need for a very tight feedback

loop for conditions, which in turn requires a focus on low-latency solutions.

3. Tighter integration with the computing model: informing higher-level systems

(workflow, data management, workload management, job management) based

on fundamental changes in compute facilities.

4. Support structures that permit frameworks to be collaboratively developed

and maintained across a large number of experiments. This includes excellent
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integration with the wider ecosystem encompasses development, deployment,

and runtime components.

5. Provide flexibility and the interfaces required to efficiently integrate the various

parallelization efforts on simulation, reconstruction and other fields.

The challenge present in all of these elements is to ensure productivity given the

increased complexity and scale of the upcoming experiments and computing facilities.

This means decreasing program development and debugging time, and increasing

efficiencies in diverse facilities use. Frameworks have accomplished these tasks in

the past, the challenge is to continue this into the next generation experiments and

facilities.

2.1 Stakeholders

Understanding who influences the organization and behavior of the framework is

obviously important. This is typically accomplished by collecting requirements and

use cases. This paper does not pretend to do this. We do, however, recognize the

stakeholders that heavily influence the requirements placed upon an event processing

framework. In this document we recognise that there are needs from several kinds of

stakeholders depicted in Figure 1 and listed below. We attempt to address the needs

of all of these stakeholders.

1. Physics developers who write trigger, reconstruction, simulation, and analysis

algorithms that plug into the framework. This category also includes providers

of generalized infrastructures which are used by the physics developers to im-

plement the above applications. Examples are the upgraded Geant simulation

engine and online triggering infrastructures.These are important because inter-

facing to them may impose special requirements on the Framework.

2. Physics users who run framework programs for particular applications to pro-

duce collaboration wide datasets.

3. Funding agencies/laboratories, who mandate security requirements, or dictate

the need for shared software infrastructure projects

4. Facilities who buy, operate, and build new systems that existing software in-

frastructures must be adapted to or rethought for

3 Current Practice

Although most frameworks used in HEP share common concepts, there are, for

mainly historical reasons, a number of different implementations; some of these are
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Physics user: writes 
configurations and 
runs the framework

Physics developer: 
writes algorithms that 
plug into a framework

Facilities: providers of 
computing resources

Agencies: dictators of 
policy and direction

Framework

Figure 1: Our stakeholders.

shared between experiments. A complete description of framework use cases written

for the Gaudi collaboration is described in [1] and these are sufficiently general to

apply to all HEP experiments. The Gaudi framework [2, 3] was originally developed

by LHCb, but is also used by ATLAS and various non-LHC experiments. CMS uses

its own CMSSW framework [4] which was forked to provide the art framework for the

Fermilab Intensity Frontier experiments [5]. Belle II uses basf2 [6]. The linear collider

community developed and uses Marlin [7]. The FAIR experiments use FairROOT,

closely related to ALICE’s AliROOT. The FAIR experiments and ALICE are now

developing a new framework, which is called ALFA [8]. At the time of writing, most

major frameworks support basic parallelisation, both within and across events, based

on a task-based model [9, 10]. ALFA already includes additional multi-node setups

and communication.

The frameworks provide the necessary functionality like I/O, scheduling, config-

uration, logging, etc. to support the execution of these processing components. The

aforementioned components provide functionalities like pattern finding in a certain

sub-detector or the high-level identification of a given particle type. This layout

allows independent development and a high flexibility in the usage of physics algo-

rithms within an experiment collaboration.

The above defines frameworks in terms of its use. A more formal definition is

the framework holds the protocols, tools and concepts for defining, developing, and

deploying physics algorithms, along with all the ancillary data and tools for provid-

ing services to the algorithms. This includes algorithm scheduling components, the

event data model, handling of input and output from physics applications that utilize

the framework, interfaces for non-event data, and configuration of framework appli-
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cations. Frameworks define processing and programming models for a collaboration,

as well as fulfill requirements for interfacing to the computing model under which

they operate. The processing model is the mechanism used to execute and apportion

work. Mechanisms for this are threads, tasks, heavy-weight processes along with

interprocess communication. Programming model elements, such as a well-defined

logical design, scheduling, and interactions with multiple languages that permit ef-

ficient and maintainable algorithms, are also dictated by the processing framework.

The programming model also defines a well-thought out physical code layout that

minimizes coupling of logically independent functionalities and libraries. This eases

maintenance, extension and refactoring, which is inevitable over the lifetime of HEP

experiments. The framework should provide hooks for doing monitoring and logging

services for performance and other purposes.

We have identified two kinds of required behavior that have directly affected

overall software system architecture, and therefore the organization of the framework

itself:

• Throughput maximizing: here it is most important to efficiently move data

through all the available resources (memory, storage, and CPU), maximizing

the number of events that are processed. The workload management systems

used by experiments on the grid work towards this goal.

• Latency minimizing (or reducing): online and interactive use cases where im-

posing constraints on how long it takes to calculate an answer for a particular

datum is relevant and important. Dataflow and transaction processing systems

work towards this goal.

Whether or not these differences necessitate fundamentally different software

systems remains to be seen, but both concepts need to be accommodated and have

relevant impact on the framework architecture and design. Ways of accommodating

both goals through the same system architecture, or same software system with

different configurations is an area of research, and could enable us to meet some of

the challenges introduced in the previous section.

Current practice for throughput-maximizing system architectures have constrained

the scope of framework designs. Framework applications have largely been viewed

by the system as a batch job with complex configuration, consuming resources ac-

cording to rules dictated by the computing model: one process using one core on one

node, operating independently with a fixed size memory space on a fixed set of files

(streamed or read directly). Only recently has CMS broken this tradition starting in

the beginning of Run 2, by utilizing all cores on one virtual node in one process space

using threading. ATLAS is currently using a multi-process fork-and-copy-on-write

solution to remove the constraint of one core/process, and is now moving to the

multithreading approach too. Both experiments were driven to solve this problem

– 5 –



by the ever growing needs for more memory per process brought on by the increasing

complexity of LHC events. Current practice manages system-wide (or facility-wide)

scaling by dividing up datasets, generating a framework application configuration,

and scheduling jobs on nodes/cores to utilize all available resources. Given antici-

pated changes in hardware (heterogeneity, connectivity, memory, storage) available

at large computing facilities, the interplay between workflow/workload management

systems and framework applications needs to be carefully examined. It may be

advantageous to permit framework applications (or systems) to span resources, per-

mitting them to be first-class participatents in the business of scaling within a facility.

O2 provides a successful proof-of-principle of this approach.

4 Roadmap

Forward-looking work is underway as part of projects funded through government

agencies, laboratories, and collaborations. We want to be sure that relevant ideas

and accomplishment are known, and that the groups doing this work have a place

to report to and receive feedback for everyone’s benefit. To organize the community,

one needs to establish regular working group meetings, on a bi-monthly basis as we

did with the concurrency forum. Face to face workshops after at least the 1st and

the 3rd year can be co-hosted with events like CHEP and/or the WLCG workshops.

A future planning workshop for transforming the results of the R&D activities into a

full development and deployment project plan should happen at the 5-year timescale.

4.1 One-year goals

Our assumption is that a set of one-year goals will be completed by the end of

2018. We want work completed here to produce results that will be useful in refining

and moving into satisfying the three-year goals. Below is a list of all the areas

that we believe need work and ought to be considered when establishing projects

that will help meet all or some subset of these goals. Since this is R&D, overall

goals are papers, workshop reports, analysis results, and software architectures. A

major purpose being to set direction for further R&D, or defining a path towards a

new production product development, or integration of results into existing software

components.

Concept refinement Jointly identify key abstractions that made frameworks good

for HEP in detail beyond what can be described in this paper. Identify and describe

where individual frameworks have similarly or uniquely implemented these concepts.

It is important to describe how these choices are connected to the concrete use-cases.

A publishable paper should come of this that will serve as an agreed-upon guide for

where we can hope to go.
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Technology investigations There are four key areas that ought to be explored

to help determine future direction with regards to software technology. The areas

are: (1) task-based programming tools, (2) inter-process and inter-node communi-

cation tools, (3) parallel number crunching libraries, and (4) framework workflow

management.

Functional programming Conduct a study describing where we currently are

with functional programming. The study should address the following questions. 1.

What are the perceived benefits and drawbacks? 2. Where can it be useful? 3.

What does it mean in terms of framework changes? 4. Where is language support

headed for this kind of programming, and recommendations for where to go next.

Support multiple concurrent scheduling tools, strategies, time scales, and

granularities Describe how an event-parallel execution framework handles event-

asynchronous I/O and processing (e.g. alignment, offloading). Describe how under-

lying concurrency libraries and tools can be shared. Describe how data blocks having

different granularities (e.g. groups of particles, events) are processed concurrently

and synchronized. DNN (including simulation GANs) offloading to GPU could be

an early example to work on. A parallelized Geant particle transport mechanism

would be another one.

Domain-specific language We believe it is useful to describe the language that

HEP uses to define and describe how to simulate and reconstruct physics events.

By language, we mean the terms used to communicate and express how tasks are

described and carried out within a framework. This includes not only expressing data

dependencies, but also resource preferences and constraints, such as GPUs. The goal

here is to provide enough information for a group to take on development of domain-

specific libraries components and tools that will increase the efficiency of carrying out

physics. A good example is how ML toolkits have evolved over the past few years.

The abstractions that have been developed have greatly increased productivity and

growth in the ML space such as the abstractions in Tensor Flow that allow a coding

of the matrix algebra that then gets remapped internally to match the shape of the

data being operated on. The user only has take care of getting the domain science

functions correct.

Concluding workshop Soon after the end of the first year, our goal is to have a

workshop. This workshop will be used for reporting on results, reviewing alignment

with written three-year goals, and agreeing upon and developing next steps forward.

4.2 Three-year goals

Our assumption is that a set of three-year goals will be completed by the end of

2020. Since LHC run three is targeted to start at this time. At least some of the
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focus ought to be on completing goals that demonstrate advances over what will be

in production during this period. An ongoing goal during this period ought to be

incorporating advancements in practices and tools into codes that will be available

during Run 3.

Common feature definition Produce reports on how frameworks ought to evolve

to incorporate features of functional programming, scheduling across heterogeneous

resources, polyglot programming, and addressing both necessary data model changes

and I/O handling.

Technology upgrades Useful technologies identified during the first phase ought

to be further demonstrated and incorporated into existing tools wherever possible.

Keeping up with evolving facilities Memory, storage, and network changes

will be introduced during this timeframe. We want studies that show how we might

benefit from these changes. A goal is to provide recommendations for how to react

to ongoing facility upgrades in the three areas listed above.

Common library integration Plans for breaking out common tools should be

made during this period, along with demonstrating how current frameworks might

evolve to share more components.

Geant-framework cohesion Make the next steps in bringing underlying tech-

nology, toolkits, and designs together so Geant fits well within the framework. A

demonstration should be available in at least one of the frameworks used in Run 3

of the LHC.

Blending of Workflow Management System functions Multi-node schedul-

ing and heterogeneous resource management will start to become more relevant dur-

ing this period. Frameworks ought to share responsibility with larger orchestration

systems, and better exchange information to increase flexibility in scheduling on

diverse platforms and architectures.

Facilities embedding We have a consensus that the main programming language

we will be using in the near future is C++. Much of our community stresses use

of modern language features. However, some supercomputing facilities require the

compilation of software with dedicated compiler setups, thus making use of new

language features difficult. By the time of the milestone, we should have members of

the HEP community embedded in the decision-making process for the provisioning

of these machines. Since other programming languages are also used, the same

arguments can be made for them.
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Continued coupling with ongoing R&D activities Projects funded outside

this work will continue through this period, and our one-year goals ought to continue

here.

Progress workshops Workshops should happen at the end of each year, with

goals similar to those listed in the previous section.

4.3 Five-year goals

Our assumption is that a set of five-year goals will be completed by the end of

2022. By this time we ought to have in place plans for taking the R&D results and

incorporating them into the framework software that will be further developed and

utilized for HL-LHC. We anticipate to work on these items:

Facilities readiness A proven strategy for the integration of HEP software frame-

works with supercomputer centres and cloud providers. This work will be done in

cooperation with the facilities WG.

Common tools and practices demonstrated and in place where possible

Based on the common tools and components identified during the common library

integration milestone, work on production quality framework libraries for use by

multiple experiments.

Interaction with Workflow and Data Management Systems By this time

well-defined interfaces between those systems and frameworks should be prepared,

including at least one proven reference implementation.

Incorporation of results from ongoing R&D activities There will be inde-

pendent progress on parallelization strategies and implementations. At the time scale

of 5 years we anticipate at least one major paradigm shift to take place, which can

not be incorporated by continuous adjustment alone.

Defining what happens next Based on the results of the mentioned activities

and the results of the other HSF working groups, re-evaluate and define a concrete

strategy for common framework implementations for the coming years.

4.4 Working towards these goals

To organize the community and to work towards these goals, one needs to establish

regular working group meetings, on a bi-monthly basis as we did with the concurrency

forum. Face to face workshops after at least the 1st and the 3rd year can be co-

hosted with events like CHEP and/or the WLCG workshops. A future planning

workshop for transforming the results of the R&D activities into a full development

and deployment project plan should happen at the 5-year timescale.
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